09年高二必修2试题
- 格式:doc
- 大小:363.50 KB
- 文档页数:7
第九章统计B(提高卷)参考答案与试题解析一.选择题(共8小题)1.(2020•福田区校级模拟)某校举行“我和我的祖国”文艺汇演,需征集20名志愿者参与活动服务工作,现决定采取分层抽样的方式从“摄影协会”、“记者协会”、“管理爱好者协会”中抽取,已知三个协会的人数比为5:2:3,且每个人被抽取的概率为0.2,则该校“摄影协会”的人数为()A.10 B.20 C.50 D.100【解答】解:由题意知从“摄影协会”抽取的人数为,因为每个人被抽取的概率为0.2,故该校“摄影协会”的人数为.故选:C.2.(2019春•楚雄州期中)为了检验某厂生产的取暖器是否合格,先从500台取暖器中取50台进行检验,用随机数表抽取样本,将500台取暖器编号为001,002,…,500.如图提供了随机数表第7行至第9行的数据:若从表中第7行第4列开始向右依次读取3个数据,则抽出第4台取暖器的编号为()A.217 B.206 C.245 D.212【解答】解:由题意,根据简单的随机抽样的方法,利用随机数表从第7行的第4列开始向右读取,依次为217,157,245,217,206,由于217重复,所以第4台取暖器的编号为206.故选:B.3.(2020•唐山二模)某科考试成绩公布后,发现判错一道题,经修改后重新公布,如表是抽取10名学生的成绩,依据这些信息修改后的成绩与修改前的相比,这10名学生成绩的()学生学号 1 2 3 4 5 6 7 8 9 10修改前成绩126 130 104 100 133 123 100 120 139 103修改后成绩126 135 99 100 138 123 95 120 144 98A.平均分、方差都变小B.平均分、方差都变大C.平均分不变、方差变小D.平均分不变、方差变大【解答】解:经计算,修改前后的平均数均为117.8,故可排除AB,又经计算修改前的方差为(8.22+12.22+13.82+17.82+15.22+5.22+17.82+2.22+21.22+14.82)=197.16 修改后的方差为(8.22+17.22+18.82+17.82+20.22+5.22+22.82+2.22+26.22+19.82)=307.16,故选:D.4.(2020•贵州模拟)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》的学生有70位,只阅读过《红楼梦》的学生有20位,则既没阅读过《西游记》也没阅读过《红楼梦》的学生人数与该校学生总数比值的估计值为()A.0.1 B.0.2 C.0.3 D.0.4【解答】解:∵随机调查了100名学生,其中阅读过《西游记》的学生有70位,∴没有阅读过《西游记》的学生有100﹣70=30位.∵只阅读过《红楼梦》的学生有20位,则既没阅读过《西游记》也没阅读过《红楼梦》的学生人数为30﹣20=10人,则既没阅读过《西游记》也没阅读过《红楼梦》的学生人数与该校学生总数比值的估计值为0.1,故选:A.5.(2019春•眉山期末)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于等于19秒.如图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,平均成绩为z,则从频率分布直方图中可分析出x、y、z的值分别为()A.0.9,35,15.86 B.0.9,45,15.5C.0.1,35,16 D.0.1,45,16.8【解答】解:从频率分布直方图上可以看出x=1﹣(0.06+0.04)=0.9,y=50×(0.36+0.34)=35,第一组的频数为0.02×50=1,第二组的频数为0.18×50=9,第三组的频数为0.36×50=18,第四组的频数为0.34×50=17,第五组的频数为0.06×50=3,第六组的频数为0.04×50=2,则平均数y(13.5×1+14.5×9+15.5×18+16.5×17+17.5×3+18.5×2)15.86,故选:A.6.(2020•定远县模拟)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A.B.2 C.D.9【解答】解:甲班学生成绩的中位数是80+x=81,得x=1;由茎叶图可知乙班学生的总分为76+80×3+90×3+(0+2+y+1+3+6)=598+y,乙班学生的平均分是86,且总分为86×7=602,所以y=4,若正实数a、b满足:a,G,b成等差数列且x,G,y成等比数列,则xy=G2,2G=a+b,即有a+b=4,a>0,b>0,则(a+b)()(1+4)(5+2)9,当且仅当b=2a时,的最小值为.故选:C.7.(2020•松江区二模)已知实数x1,x2,……,x100∈[﹣1,1],且x1+x2+……+x100=π,则当x12+x22+……+x1002取得最大值时,x1,x2,……,x100这100个数中,值为1的个数为()A.50个B.51 个C.52 个D.53个【解答】解:∵x1+x2+……+x100=π,则当x12+x22+……+x1002要取得最大值,只需正负抵消,即有48个﹣1,51个1,1个无理数为π﹣3时符合试题要求,故选:B.8.(2020春•四川月考)关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m名同学每人随机写下一个都小于1的正实数对(x,y);再统计两数能与1构成钝角三形三边的数对(x,y)的个数a;最后再根据统计数a估计π的值,那么可以估计π的值约为()A.B.C.D.【解答】解:根据题意知,m名同学取m对都小于l的正实数对(x,y),即,对应区域为边长为1的正方形,其面积为1,若两个正实数x、y能与1构成钝角三角形三边,则有,其面积S;则有,解得π.故选:D.二.多选题(共4小题)9.(2020春•福州期中)某城市收集并整理了该市2019年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了如图的折线图.已知该城市各月的最低气温与最高气温具有较好的线性关系,则根据折线图,下列结论正确的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个【解答】解:由该市2019年1月份至10月份各月最低气温与最高气温(单位:℃)的数据的折线图,得:在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0℃的月份有3个,故D错误.故选:ABC.10.(2020春•胶州市期中)在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续7天,每天新增疑似病例不超过5人”.过去7日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是()甲地:总体平均数,且中位数为0;乙地:总体平均数为2,且标准差s≤2;丙地:总体平均数,且极差c≤2;丁地:众数为1,且极差c≤4.A.甲地B.乙地C.丙地D.丁地【解答】解:该事件在一段时间内没有发生大规模群体感染的标志为“连续7天,每天新增疑似病例不超过5人”.甲地:总体平均数,且中位数为0,存在连续7天中某一天新增疑似病例超过5人的可能,故甲地不一定符合标准,故A错误.乙地:总体平均数为2,且标准差s≤2,存在连续7天中某一天新增疑似病例超过5人的可能,例如7天中增增病例数为1,1,1,1,2,2,6,满足总体平均数为2,且标准差s≤2,故乙地不一定符合标准,故B错误;丙地:总体平均数,且极差c≤2,每天新增疑似病例没有超过5人的可能,故丙地一定符合标准,故C正确;丁地:众数为1,且极差c≤4.每天新增疑似病例没有超过5人的可能,故丁地一定符合标准,故D正确.故选:CD.11.(2020•德州一模)某地某所高中2019年的高考考生人数是2016年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考升学情况,得到如下柱图:则下列结论正确的是()A.与2016 年相比,2019 年一本达线人数有所增加B.与2016 年相比,2019 年二本达线人数增加了0.5 倍C.与2016年相比,2019 年艺体达线人数相同D.与2016 年相比,2019 年不上线的人数有所增加【解答】解:依题意,设2016年高考考生人数为x,则2019年高考考生人数为1.5x,由24%•1.5x﹣28%•x=8%•x>0,故选项A正确;由(40%•1.5x﹣32%•x)÷32%•x,故选项B不正确;由8%•1.5x﹣8%•x=4%•x>0,故选项C不正确;由28%•1.5x﹣32%•x=42%•x>0,故选项D正确.故选:AD.12.(2020•潍坊一模)如图是《2018年全国教育事业发展统计公报》中1949﹣2018年我国高中阶段在校生数条形图和毛入学率的折线图,根据如图可知在1949﹣2018年()A.1978年我国高中阶段的在校生数和毛入学率比建国初期大幅度提高B.从1990年开始,我国高中阶段的在校生数和毛入学率在逐年增高C.2010年我国高中阶段在校生数和毛入学率均达到了最高峰D.2018年高中阶段在校生数比2017年下降了约0.9%而毛入学率提高了0.5个百分点【解答】解:由图可知,1978年我国高中阶段的在校生数和毛入学率比建国初期大幅度提高,A对;2016年我国高中阶段的在校生数和毛入学率降低,B错;2015年我国高中阶段在毛入学率均达到了最高峰,C错;2018年高中阶段在校生数比2017年下降了约0.9%而毛入学率提高了0.5个百分点,D对,故选:AD.三.填空题(共4小题)13.(2020•亭湖区校级一模)若样本a1、a2、a3的方差是2,则样本2a1+3,2a2+3,2a3+3的标准差是2.【解答】解:样本a1、a2、a3的方差是2,设平均数为,则样本2a1+3,2a2+3,2a3+3的平均数为23,方差S2[(2a1﹣2)2+(2a2﹣2)2+(2a3﹣2)2],4[(a1)2+(a2)2+(a3)2],=4×2=8.故样本2a1+3,2a2+3,2a3+3的标准差为:2,故答案为:214.(2020•盐城四模)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,图中小矩形从左向右所对应的区间依次为[0,50),[50,100),[100,150),[150,200),[200,250].若一个月以30天计算,估计这家面包店一个月内这种面包的日销售量少于100个的天数为12天.【解答】解:日销售量少于100个的频率为:0.003×50+0.005×50=0.4,∴30天中面包的日销售量少于100个的天数为30×0.4=12,故答案为:12.15.(2020•昆山市模拟)某市为了响应江苏省“农村人居环境整治的新实践”,调研农村环境整治情况,按地域将下辖的250个行政村分成A,B,C,D四组,对应的行政村个数分别为25,75,100,50,若用分层抽样抽取50个行政村,则B组中应该抽取的行政村数为15.【解答】解:B组所占比例为:,样本容量为50,故B组中应抽取的行政村数为5015,故答案为:15.16.(2020•丹东二模)某医院职工总数为200人,在2020年1月份,每人约有25次到超市或市场购物,为调查职工带口罩购物的次数,随机抽取了40名职工进行调查,得到这个月职工带口罩购物次数的频率分布直方图,根据该直方图估计,2020年1月份,该院职工带口罩购物次数不低于15次的职工人数约为60.【解答】解:由频率分布直方图得:2020年1月份,该院职工带口罩购物次数不低于15次的职工所占频率为:(0.05+0.01)×5=0.3,∴2020年1月份,该院职工带口罩购物次数不低于15次的职工人数约为:0.3×200=60.故答案为:60.四.解答题(共5小题)17.(2020•吴忠模拟)近年来,我国电子商务行业迎来了蓬勃发展的新机遇,但是电子商务行业由于缺乏监管,服务质量有待提高.某部门为了对本地的电商行业进行有效监管,调查了甲、乙两家电商的某种同类产品连续十天的销售额(单位:万元),得到如图茎叶图:(1)根据茎叶图判断甲、乙两家电商对这种产品的销售谁更稳定些?(2)如果日销售额超过平均销售额,相应的电商即被评为优,根据统计数据估计两家电商一个月(按30天计算)被评为优的天数各是多少.【解答】解(1)根据茎叶图可知,甲的数据比较分散,而乙家销售的额比较集中,对这种产品的销售更稳定,(2)甲的平均销售额122,故10天中甲的销售额超过平均值122的有5天,从而30天中约有15天被评为优,乙的销售额平均值(107+115+117+118+123+125+132+136+139+148)=126,10天中乙的销售额超过平均值122的有4天,从而30天中约有12天被评为优,18.(2020•临汾模拟)随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的n位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如右图所示.(1)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;(2)若按分层抽样的方法从年龄在[20,30)以内及[40,50)以内的市民中随机抽取10人,再从这10人中随机抽取3人进行调研,记随机抽的3人中,年龄在[40,50)以内的人数为X,求X的分布列以及数学期望.【解答】解:(1)由频率分布列知被调查的人员年龄在20~30岁间的市民的频率为0.030×10=0.3,∵被调查的人员年龄在20~30岁间的市民有300人,∴n1000,∵被调查人员的年龄在40岁以上(含40岁)的市民的频率为(0.020+0.005)×10=0.25,∴被调查人员的年龄在40岁以上(含40岁)的市民人数为:0.25×1000=250人.(2)年龄在[20,30)内的市民有:0.030×1000=300人,年龄在[40,50)内的市民有:0.020×1000=200人,按分层抽样的方法从年龄在[20,30)以内及[40,50)以内的市民中随机抽取10人,年龄在[20,30)内的市民抽中3006人,年龄在[40,50)内的市民抽中:2004人,再从这10人中随机抽取3人进行调研,记随机抽的3人中,年龄在[40,50)以内的人数为X,则X的可能取值为0,1,2,3,P(X=0),P(X=1),P(X=2),P(X=3),∴X的分布列为:X0 1 2 3PEX.19.(2019•香坊区校级二模)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(1)现从去年的消费金额超过3200元的消费者中随机抽取2人,求至少有1位消费者,其去年的消费者金额在(3200,4000]的范围内的概率;(2)针对这些消费者,该健身机构今年欲实施入会制,详情如表:会员等级消费金额普通会员2000银卡会员2700金卡会员3200预计去年消费金额在(0,1600]内的消费者今年都将会申请办理普通会员,消费金额在(1600,3200]内的消费者都将会申请办理银卡会员,消费金额在(3200,4800]内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.方案二:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立)请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.【解答】解:(1)去年的消费金额超过3200元的消费者有12人,其中去年的消费金额在(3200,4000]的消费者有8人,去年的消费金额在(4000,4800]的消费者有4人,现从去年的消费金额超过3200元的消费者中随机抽取2人,基本事件总数n66,至少有1位消费者,其去年的消费者金额在(3200,4000]的范围内包含的基本事件个数:m38,∴至少有1位消费者,其去年的消费者金额在(3200,4000]的范围内的概率为:p.(2)方案一:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励,则“幸运之星”中的普通会员、银卡会员、金卡会员的人数分别为:,,,∴根据方案一的奖励的金额为:ξ1=7×500+15×600+3×800=14900元,方案二:设η表示参加一次摸奖游戏所获的奖励金,则η的可能取值分别为0,200,300,摸到红球的概率为P,P(η=0),P(η=200),P(η=300),η的分布列为:η0 200 300P∴Eη76.8元,∴按照方案二奖励金的金额为:ξ2=(28+2×60+3×12)×76.8=14131.2元,∵方案一奖励的总金额ξ1>方案二的奖励金额ξ2,∴预计方案二的投资较小.20.(2020•江西模拟)冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.出现在湖北武汉的新型冠状病毒(nCoV)是从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检测血液中的指标A.现从采集的血液样品中抽取500份检测指标A的值,由测量结果得如图频率分布直方图:(1)求这500份血液样品指标A值的平均数和样本方差s2(同一组数据用该区间的中点值作代表,记作x i(i=1,2,…,7));(2)由频率分布直方图可以认为,这项指标A的值X服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.在统计学中,把发生概率小于3‰的事件称为小概率事件(正常条件下小概率事件的发生是不正常的).该医院非常关注本院医生健康状况,随机抽取20名医生,独立的检测血液中指标A的值,结果发现4名医生血液中指标A的值大于正常值20.03,试根据题中条件判断该院医生的健康率是否正常,并说明理由.附:参考数据与公式:,3.46;若x~N(μ,σ2),则①P(μ﹣σ<x≤μ+σ)=0.6826;②P(μ﹣2σ<x≤μ+2σ)=0.9545;③P(μ﹣3σ<x≤μ+3σ)=0.9973.0.15874≈0.006,0.15876≈0.000016,0.841314≈0.0890,0.841316≈0.0630.【解答】解:(1),.(2)由题意知:X~N(17.4,6.92),20.03=μ+σ,.随机抽取20名医生独立检测血液中指标A的值,就相当于进行了20次独立重复试验,记“20名医生中出现4名医生血液中指标A的值大于正常值20.03”为事件B,则=4845×0.0006×0.0630=0.183141>3%,所以从血液中指标A的值的角度来看:该院医生的健康率是正常的.21.(2019秋•河南月考)某社区100名居民参加2019年国庆活动,他们的年龄在30岁至80岁之间,将年龄按[30,40),[40,50),[50,60),[60,70),[70,80]分组,得到的频率分布直方图如图所示:(1)求a的值,并求该社区参加2019年国庆活动的居民的平均年龄(每个分组取中间值作代表);(2)现从年龄在[50,60),[70,80]的人员中按分层抽样的方法抽取8人,再从这8人中随机抽取3人进行座谈,用X表示参与座谈的居民的年龄在[70,80]的人数,求X的分布列和数学期望;(3)若用样本的频率代替概率,用随机抽样的方法从该地30岁至80岁之间的市民中抽取20名进行调查,其中有k名市民的年龄在[30,50)的概率为P k(k=0,1,2,…,20),当P k最大时,求k的值.【解答】解:(1)由频率分布直方图得:(0.005+0.010+0.030+0.035)×10=1,解得a=0.02,∴该社区参加2019年国庆活动的居民的平均年龄为:(0.005×35+0.035×45+0.030×55+0.020×65+0.010×75)×10=54.5.(2)年龄在[50,60)的人数为0.030×10×100=30,年龄在[70,80)的人数为0.010×10×100=10,根据分层抽样,可知年龄在[50,60)的抽取6人,年龄在[70,80)的抽取2人,∴X的可能取值为0,1,2,P(X=0),P(X=1),P(X=2),∴X的分布列为:X0 1 2P∴数学期望E(X).(3)设在抽取的20名市民中,年龄在[30,50)内的人数为Y,则Y服从二项分布,由频率分布直方图得年龄在[30,50)的频率为:(0.005+0.035)×10=0.4,∴Y~B(20,0.4),∴P(Y=k),(k=0,1,2,…,20),设t,当t>1时,k<8.4,P(Y=k﹣1)<P(Y=k),当t<1时,k>8.4,P(Y=k﹣1)>P(Y=k),∴当k=8时,P(Y=k)最大,即当P(Y=k)最大时,k=8.。
一、选择题1.下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则P(A ∪B)=P(A)+P(B);③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A ,B 满足P(A)+P(B)=1,则A 与B 是对立事件. 其中正确命题的个数是( ) A .1B .2C .3D .42.某次战役中,狙击手A 受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A 每次射击,命中机首、机中、机尾的概率分别为0.2、0.4、0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 至多射击两次,则他能击落敌机的概率为( ) A .0.23B .0.2C .0.16D .0.13.下列命题正确的是( )A .用事件A 发生的频率()n f A 估计概率()P A ,重复试验次数n 越大,估计的就越精确.B .若事件A 与事件B 相互独立,则事件A 与事件B 相互独立.C .事件A 与事件B 同时发生的概率一定比A 与B 中恰有一个发生的概率小.D .抛掷一枚均匀的硬币,如前两次都是反面,那么第三次出现正面的可能性就比反面大. 4.随机抛掷一枚质地均匀的骰子,记正面向上的点数为a ,则函数()224f x x ax =++至多有一个零点的概率为( ) A .13B .12C .23D .565.在如图所示的电路中,5个格子表示保险匣,格子中所示数据表示通电时保险丝被熔断的概率,则当开关合上时,电路畅通的概率是( )A .2936B .551720C .2972D .291446.某城市有连接8个小区A 、B 、C 、D 、E 、F 、G 、H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率是( )A.13B.23C.14D.347.如图茎叶图表示的是甲.乙两人在5次综合测评中的成绩,其中乙中的两个数字被污损,且已知甲,乙两人在5次综合测评中的成绩中位数相等,则乙的平均成绩低于甲的概率为()A.29B.15C.310D.138.袋中装有白球3个,黑球4个,从中任取3个,下列各对事件中互为对立事件的是()A.恰有1个白球和全是白球B.至少有1个白球和全是黑球C.至少有1个白球和至少有2个白球D.至少有1个白球和至少有1个黑球9.从1,2,3,4,5这5个数中任取两数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③10.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13,那么甲、乙两人至少有一人拿到该技能证书的概率是()A.1315B.1115C.23D.3511.《易经》是中国传统文化中的精髓,如图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),现有3人各自随机的从八卦中任取两卦,恰有2人两卦的六根线中有四根阳线和两根阴线的概率为()A.297 2744B.992744C.67521952D.2252195212.如图所示,1,2,3表示三个开关,若在某段时间内它们每个正常工作的概率都是0.9,那么此系统的可靠性是()A.0.999 B.0.981 C.0.980 D.0.72913.自新型冠状病毒爆发以来,全国各地医护人员勇当“逆行者”支援湖北.重庆第一批共派出甲、乙、丙、丁4支医疗队分成三组奔赴三个地方,每组至少一支医疗队,则甲、乙分在同一组的概率为()A.13B.12C.29D.16二、解答题14.在新高考中我市采用了“3+1+2”模式,对化学、生物、地理和政治等四门选考科目,制定了计算转换T分(即记入高考总分的分数)的“等级转换赋分规则”(详见附1和附2),具体的转换步骤为:①原始分Y等级转换;②原始分等级内等比例转换赋分.我校高二年级在期末考试后,政治、化学两选考科目的原始分分布如表:等级A B C D E比例约15%约35%约35%约13%约2%政治学科各等级对应的原始分区间[81,98][72,80][66,71][63,65][60,62]化学学科各等级对应的原始分区间[90,100][77,89][69,76][66,68][63,65]政治:64,72,66,92,78,66,82,65,76,67,74,80,70,69,84,75,68,71,60,79化学:72,79,86,75,83,89,64,98,73,67,79,84,77,94,71,81,74,69,91,70并根据上述数据制作了如下的茎叶图:(1)茎叶图中各序号位置应填写的数字分别是:①应填___________,②应填___________,③应填___________,④应填___________,⑤应填___________,⑥应填___________.(2)甲同学选考政治学科,其原始分为82分,乙同学选考化学学科,其原始分为91分.基于新高考实测的转换赋分模拟,试分别探究这两位同学的转换分,并从公平性的角度谈谈你对新高考这种“等级转换赋分法”的看法.(3)若从我校政治、化学学科等级为A 的学生中,随机挑选2人次(两科都选,且两科成绩都为A 等的学生,可有两次被选机会),试估计这2人次挑选,其转换分都不少于91分的概率.附1:等级转换的等级人数占比与各等级的转换分赋分区间. 等级A B C D E 原始分从高到低排序的等级人数占比约15% 约35%约35%约13% 约2% 转换分T 的赋分区间[86,100][71,85] [56,70][41,55][30,40]附2:计算转换分T 的等比例转换赋分公式:2211Y Y T TY Y T T --=--(其中:Y 1,Y 2别表示原始分Y 对应等级的原始分区间下限和上限;T 1,T 2分别表示原始分对应等级的转换分赋分区间下限和上限.T 的计算结果按四舍五入取整).15.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为帮助某村巩固扶贫成果,该村的结对帮扶共建企业在该村建立了一座精米加工厂,并对粮食原料进行深加工,研发出一种新产品,已知该产品的质量以某项指标值()60100k k ≤<为衡量标准,质量指标的等级划分如表: 质量指标值k 90100k ≤< 8090k ≤<7080k ≤<6070k ≤<产品等级ABCD件产品的指标值,得到如下的产品质量指标值的频率分布直方图;设M =频率组距,当[)()10,101068,k n n n n N∈+≤≤∈时,满足52200nM-=.(1)试估计样本质量指标值k的中位数m;(2)从样本质量指标值不小于80的产品中采用分层抽样的方法抽取7件产品,然后从这7件产品中任取2件产品,求至少有1件A级品的概率.16.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把四个小球逐个随机放入四个盒子里.(1)小球全部放入盒子中有多少种不同的放法?(2)在(1)的条件下求恰有一个盒子没放球的概率?(3)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?17.某医院首批援鄂人员中有2名医生,3名护士和1名管理人员.采用抽签的方式,从这六名援鄂人员中随机选取两人在总结表彰大会上发言.(Ⅰ)写出发言人员所有可能的结果构成的样本空间;(Ⅱ)求选中1名医生和1名护士发言的概率;(Ⅲ)求至少选中1名护士发言的概率.18.2018年2月9~25日,第23届冬奥会在韩国平昌举行,4年后,第24届冬奥会将在中国北京和张家口举行,为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看奥运会开幕式进行了问卷调查,统计数据如下:收看没收看男生6020女生2020(1)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(2)现从参与收看了开幕式的学生中,采用分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.①问男、女学生各选取多少人?②若从这8人中随机选取2人到校广播站宣传冬奥会,求恰好选到一名男生为主播一名女生为副播的概率P .附:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥ 0.1000.050 0.025 0.010 0.005 0k2.7063.8415.0246.6357.87919.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩,这50名学生的成绩都在[50,100]内,按成绩分为[50,60),[60,70),[70,80),[80,90),[90,100]五组,得到如图所示的频率分布直方图.(1)求图中的a 值;(2)根据频率分布直方图估计该校高一年级本次考试成绩的中位数;(3)用分层抽样的方法从成绩在[80,100]内的学生中抽取6人,再从这6人中随机抽取2名学生进行调查,求月考成绩在[90,100]内至少有1名学生被抽到的概率.20.随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑电视.为了了解某高校学生平均每天使用手机的时间与性别是否有关,某调查小组随机抽取了30名男生,20名女生进行为期一周的跟踪调查,调查结果如表所示:平均每天使用手机超过3小时 平均每天使用手机不超过3小时 合计 男生 25 5 30 女生 10 10 20 合计351550(1)能否在犯错误的概率不超过0.01的前提下认为学生使用手机的时间长短与性别有关?(2)在这20名女生中,调查小组发现共有15人使用国产手机,在未使用国产手机的人中,平均每天使用手机不超过3小时的共有2人.从未使用国产手机的人中任意选取3人,求至多有一人使用手机不超过3小时的概率.()20P K k ≥ 0.500 0.400 0.250 0.150 0.100 0.050 0.025 0.010 0k0.4550.7081.3232.0722.7063.8415.0246.635参考公式:()()()()()22n ad bc K a c b d a b c d -=++++(n a b c d =+++).21.为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图.若尺寸落在区间(2x s -,2x s +)之外,则认为该零件属“不合格”的零件,其中x ,s ,分别为样本平均数和样本标准差,计算可得:15s ≈(同一组中的数据用该组区间的中点值作代表).(1)若一个零件的尺寸是97cm ,试判断该零件是否属于“不合格”的零件;(2)工厂利用分层抽样的方法从样本的前3组中抽出6个零件,标上记号,并从这6个零件中再抽取2个,求再次抽取的2个零件中恰有1个尺寸不超过50cm 的概率. 22.为普及抗疫知识、弘扬抗疫精神,某学校组织防疫知识竞赛.比赛共分为两轮,每位参赛选手均须参加两轮比赛,若其在两轮比赛中均胜出,则视为赢得比赛.已知在第一轮比赛中,选手甲、乙胜出的概率分别为35,34;在第二轮比赛中,甲、乙胜出的概率分别为23,25.甲、乙两人在每轮比赛中是否胜出互不影响. (1)从甲、乙两人中选取1人参加比赛,派谁参赛赢得比赛的概率更大? (2)若甲、乙两人均参加比赛,求两人中至少有一人赢得比赛的概率.23.某组织在某市征集志愿者参加志愿活动,现随机抽出60名男生和40名女生共100人进行调查,统计出100名市民中愿意参加志愿活动和不愿意参加志愿活动的男女生比例情况,具体数据如图所示.(1)完成下列22⨯列联表,并判断是否有99%的把握认为愿意参与志愿活动与性别有关?愿意 不愿意 总计男生 女生 总计(2)现用分层抽样的方法从愿意参加志愿活动的市民中选取7名志愿者,再从中抽取2人作为队长,求抽取的2人至少有一名女生的概率. 参考数据及公式:()20P K k ≥ 0.1 0.05 0.025 0.010k2.7063.8415.0246.635()()()()()()22n ad bc K n a b c d a b c d a c b d -==+++++++.24.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出200人,并将这200人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图如图所示:(1)求出样本的平均数(同一组数据用该区间的中点值作代表);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组中抽到2人的概率.25.北京市政府为做好APEC 会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.(1)求该海产品不能销售的概率.(2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有该海产品4件,记一箱该海产品获利X 元,求X 的分布列,并求出数学期望()E X .26.某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[)25,30,第2组[)30,35,第3组[)35,40,第4组[)40,45,第5组[]45,50,得到的频率分布直方图如图所示. 区间 [)25,30 [)30,35 [)35,40 [)40,45 []45,50人数5050a150b(1)上表是年龄的频数分布表,求正整数,a b 的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.A解析:A【分析】根据互斥之间和对立事件的概念,及互斥事件和对立事件的关系和概率的计算,即可作出判断,得到答案.【详解】由题意①中,根据对立事件与互斥事件的关系,可得是正确;②中,当A与B是互斥事件时,才有P(A∪B)=P(A)+P(B),对于任意两个事件A,B满足P(A∪B)=P(A)+P(B)-P(AB),所以是不正确的;③也不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A={摸到红球或黄球},事件B={摸到黄球或黑球},显然事件A与B不互斥,但P(A)+P(B)=+=1.【点睛】本题主要考查了互斥事件和对立事件的基本概念、互斥事件与对立时间的关系及其应用,其中熟记互斥事件和对立事件的概念和关系是解答的关键,着重考查了推理与论证能力,属于基础题.2.A解析:A【解析】A每次射击,命中机首、机中、机尾的概率分别为0.20.40.1、、,未命中敌机的概率为0.3,且各次射击相互独立,若A射击一次就击落敌机,则他击中利敌机的机尾,故概率为0.1;若A射击2次就击落敌机,则他2次都击中利敌机的机首,概率为0.20.20.04⨯=;或者A第一次没有击中机尾、且第二次击中了机尾,概率为0.90.1?0.09⨯=,若A至多射击两次,则他能击落敌机的概率为0.1?0.04?0.09?0.23++= ,故选A.3.B解析:B【分析】根据概率的定义,事件的独立性概念判断各选项.【详解】在相同的条件下做大量重复试验,一个事件A出现的次数和总的试验次数n之比,称为事件A在这n次试验中出现的频率.当试验次数n很大时,频率将稳定在一个常数附近. n越大,频率偏离这个常数较大的可能性越小.这个常数称为这个事件的概率,并不是说n越大,估计的精度越精确,A错;事件A与事件B相互独立,即A是否发生与B是否发生无关,∴事件A是否发生与事件B是否发生也无关,它们相互独立,B正确;抛一枚骰子,出现的点数不大于5记为事件A,出现的点为不小于2记为事件B,则事件A与事件B同时发生是指点数为2,3,4,5,概率为4263=,而事件A与B中恰有一个发生是指点为1或6,概率为212633=<.C 错; 抛掷一枚均匀的硬币,如前两次都是反面,那么第三次出现正面的可能性与出现反面的可能性还是一样.D 错. 故选:B . 【点睛】本题考查概率的定义,考查事件的独立性.掌握概念的定义是解题关键.4.A解析:A 【分析】由函数()f x 至多有一个零点,求得22a -≤≤,得到a 的取值有1,2,共2个可能结果,结合古典概型及概率的计算公式,即可求解. 【详解】由题意,抛掷一枚质地的均匀的骰子,正面向上的点数包含6个可能结果,又由函数()224f x x ax =++至多有一个零点,则24160a ∆=-≤,解得22a -≤≤,又因为a 为正整数,故a 的取值有1,2,共2个可能结果, 所以函数()224f x x ax =++至多有一个零点的概率为13. 故选:A . 【点睛】本题主要考查的是古典概型及其概率计算公式,解题时准确找出试验包含的基本事件的个数,求得函数至多一个零点所包含的的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.A解析:A 【分析】先求出A 至B 畅通的概率,再求出B 至C 畅通的概率,再利用独立事件的概率求法求出电路通畅的概率. 【详解】当开关合上时,电路畅通即表示A 至B 畅通且B 至C 畅通,A 至B 畅通的概率1111511114236P ⎡⎤⎛⎫⎛⎫=-⨯--⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, B 至C 畅通的概率2112915630P =-⨯=, 所以电路畅通的概率125292963036P PP =⨯==, 故选:A. 【点睛】本题考查求独立事件的概率,需要学生有一定的计算分析能力,属于中档题.6.B解析:B 【分析】列举出所有的基本事件,记“此人经过市中心O ”为事件M ,确定事件M 所包含的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】此人从小区A 前往H 的所有最短路径为:A B C E H →→→→,A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,A D F G H →→→→,共6条.记“此人经过市中心O ”为事件M ,则M 包含的基本事件为:A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,共4条.()4263P M ∴==,即他经过市中心的概率为23. 故选:B. 【点睛】本题考查概率的应用,是中等题.解题时要认真审题,仔细解答,注意列举法的灵活运用.7.A解析:A 【解析】 【分析】根据茎叶图分别求出甲、乙的中位数,平均数,得到模糊成绩的值,利用古典概型求解即可 【详解】由题意可得:甲的成绩为:84、86、91、98、98;中位数为91,平均数为4575; 乙的成绩为:86,88,90+x ,90+y ,99 (x ≤y ); ∵甲,乙中位数相同;∴90+x =91⇒x =1; 乙的平均数为4545y+; ∵乙的平均成绩低于甲; ∴1≤y <3;⇒y =1或2. ∴乙的平均成绩低于甲的概率p 29=; 故选:A . 【点睛】本题考查了茎叶图,以及中位数、平均数的性质及古典概型,考查了学生的计算能力,属于基础题.8.B解析:B【分析】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,进而可分析四个事件的关系;【详解】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,故①恰有1个白球和全是白球,是互斥事件,但不是对立事件,②至少有1个白球和全是黑球是对立事件;③至少有1个白球和至少有2个白球不是互斥事件,④至少有1个白球和至少有1个黑球不是互斥事件,故选B.【点睛】本题考查互斥事件和对立事件的关系,对于题目中出现的两个事件,观察两个事件之间的关系,这是解决概率问题一定要分析的问题,本题是一个基础题.9.C解析:C【解析】【分析】依照对立事件的概念,依次判断即可.【详解】∵在①恰有一个是偶数和恰有一个是奇数中,这两个事件是同一个事件,在②至少有一个是奇数和两个都是奇数中,至少有一个是奇数包括两个都是奇数,在③至少有一个是奇数和两个都是偶数中,至少有一个是奇数包括有一个奇数和有两个奇数,同两个都是偶数是对立事件,在④至少有一个是奇数和至少有一个是偶数中,都包含一奇数和一个偶数的结果,∴只有第三所包含的事件是对立事件故选C.【点睛】本题主要考查对立事件的概念,意在考查学生的数学抽象能力.10.D解析:D【分析】由已知先求得甲取得证书的概率,再求得甲,乙两人都取不到证书的概率,由对立事件的概率公式可得选项.【详解】由已知得甲拿到该技能证书的概率为412525⨯=,则甲,乙两人都没有拿到证书的概率为:21211535⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以甲、乙两人至少有一人拿到该技能证书的概率是23155-=, 故选:D. 【点睛】方法点睛:在解决含有“至少”,“至多”等一类问题的概率问题时,正面求解时情况较复杂,可以求其对立事件的概率,再用1减去所求的对立事件的概率,就是所求的概率.11.A解析:A 【分析】求出3人每个人任取2卦的方法总数,确定3人中哪一个人的两卦中六根线不是4阳2阴,并求出方法数,另外2人分别取两卦且满足题意的方法,相乘可得基本事件的个数,从而可得概率. 【详解】8卦可分为四类:1阳3阴共3个,3阳1阴共3个,3阳共1个,3阴共1个,3人各取2卦的法为222388828C C C =,2卦的六根线中有四根阳线和两根阴线的方法数为21336C C +=,因此3人中恰有2人两卦的六根线中有四根阳线和两根阴线方法为123338(6)662311C C ⨯-⨯⨯=⨯⨯,∴所求概率为3332311297282744P ⨯⨯==. 故选:A . 【点睛】方法点睛:本题考查古典概型,解题关键是求茁基本事件的个数.解题步骤:第一步分清8卦中阳线和阴线的条件,同类(相同阴线和阳线)的个数,第二步求出任取两卦时,两卦的六根线中有四根阳线和两根阴线方法,第三步用分步乘法原理求出3人中恰有2人两卦的六根线中有四根阳线和两根阴线方法数.这样条理清晰,不易出错.12.B解析:B 【分析】求出开关1、2均正常工作的概率及开关3正常工作的概率,由相互独立事件概率公式、对立事件的概率公式即可得解. 【详解】由题意,开关1、2在某段时间内均正常工作的概率10.90.90.81P =⨯=, 开关3正常工作的概率20.9P =,故该系统正常工作的概率()()()()12111110.8110.90.981P P P =---=--⨯-=,所以该系统的可靠性为0.981.故选:B.13.D解析:D【分析】列出所有分成三组的情况,共有6种,进而可得概率.【详解】4支队伍分成三组,有(甲乙、丙、丁),(甲丙、乙、丁),(甲丁、乙、丙),(乙丙、甲、丁),(乙丁、甲、丙),(丙丁、甲、乙),共6种情况,而甲乙在一组共1种情况,∴16P=.故选: D.【点睛】本题考查了古典概型,考查了计算能力,属于一般题目.二、解答题14.(1)①6,②7,③8,④9,⑤8,⑥9;(2)甲乙两位同学的转换分都为87分,看法答案见解析;(3)1 5 .【分析】(1)根据已知数据与茎叶图的关系得出答案.(2)根据高考实测的转换赋分模拟公式及结果得出答案.(3)列举法写出所有基本事件,然后按概率公式计算.【详解】解:(1)由题意知①6②7③8④9⑤8⑥9(2)甲同学选考政治学科可以的等级A,根据等比例转换赋分公式:9882100 828186TT--=--得T=87乙同学选考化学学科可以的等级A,根据等比例转换赋分公式:10091100 919086TT--=--得T=87故甲乙两位同学的转换分都为87分.从公平性的角度谈谈你对新高考这种“等级转换赋分法”的看法:一,从茎叶图可得甲乙同学原始分都排第三,转换后都是87分,因此高考这种“等级转换赋分法”具有公平性与合理性.二,甲同学与乙同学原始分差9分,但转换后都是87分,高考这种“等级转换赋分法”对尖子生不利.(3)政治学科等级为A的学生有82,84,92根据等比例转换赋分公式:87,88,95该校化学学科等级为A 的学生有91,94,98根据等比例转换赋分公式:87,92,97 设转换分都不少于91分为M法一:(列举法)所有基本事件:(82,84)(82,92)(82,91)(82,94))(82,98)(84,92)(84,91)(84,94)(84,98)(92,91)(92,94)(92,98)(91,94) (91,98)(94,98)共15个基本事件,时间M 包含3个基本事件 所以P (M )=31155= 法二:政治学科等级为A 的学生有82,84,92三人,转换分不少于91分有1人;政治学科等级为A 的学生有91,94,98三人,转换分不少于91分有2人.由古典概型23261()5C P M C ==.【点睛】思路点睛:此题是概率统计综合题,需要理清题目信息,正确理解相关概念. 15.(1)85m =;(2)57. 【分析】(1)计算出各产品等级的频率,利用中位数左边的矩形面积之和为0.5可求得m 的值; (2)计算得出7件产品中A 级品共3件,分别记为1A 、2A 、3A ,B 级品共4件,分别记为1B 、2B 、3B 、4B ,列举出所有的基本事件,并确定事件“所抽的2件产品中至少有1件A 级品”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)当6n =时,[)60,70k ∈,1100M =,频率为11100.1100p =⨯=; 当7n =时,[)70,80k ∈,150M =,频率为21100.250p =⨯=; 当8n =时,[)80,90k ∈,125M =,频率为31100.425p =⨯=. 各产品等级的频率如下表所示:0.10.20.50.10.20.4+<<++,80,90m ∴∈,所以,800.10.20.40.510m -++⨯=,解得85m =; (2)所抽取的7件产品中,A 级品的数量为0.3730.30.4⨯=+,分别记为1A 、2A 、3A ,B 级品的数量为4,分别记为1B 、2B 、3B 、4B ,从这7件产品中任取2件产品,所有的基本事件有:12A A 、13A A 、11A B 、12A B 、13A B 、14A B 、23A A 、21A B 、22A B 、23A B 、24A B 、31A B 、32A B 、33A B 、34A B 、12B B 、13B B 、14B B 、23B B 、24B B 、34B B ,共21个基本事件,其中,事件“所抽的2件产品中至少有1件A 级品”包含15个基本事件, 因此,所求事件的概率为155217P ==. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法; (2)列表法; (3)数状图法; (4)排列组合数的应用. 16.(1)256种;(2)916;(3)23种. 【分析】(1)用分步乘法计数原理计算,考虑每个球的放法可得;(2)选取2球放在一起作为一个球,共3个球放到3个盒子中,用排列求得放法后由古典概型概率公式可计算出概率;(3)4个球的全排列数减去编号全相同的排法1即可得. 【详解】(1)每个球都有4种方法,故有4444256⨯⨯⨯=种(2)从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有2344144C A =种不同的放法.概率为:144925616= (3)每个盒子不空,共有4424A =,24123-=种.【点睛】关键点点睛:本题考查计数原理,古典概型,排列的应用.难点是事件“4个盒子中恰有一个盒子没放球”,解题关键是确定完成这件事的方法,4个球放到3个盒子中,其中有一个盒子中必有2个球,由此可选取2个球放在一起作为一个球,4个球看作3个球放入4个盒子中的3个中,用排列知识可求解. 17.(Ⅰ)样本空间见解析;(Ⅱ)25;(Ⅲ)45. 【分析】(Ⅰ)给6名医护人员进行编号,使用列举法得出样本空间;(Ⅱ)列举出符合条件的基本事件,根据古典概型的概率公式计算概率; (Ⅲ)列举出对立事件的基本事件,根据对立事件概率公式计算概率. 【详解】。
一、选择题1.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数 2.若a b 、为非零实数,则以下四个命题都成立:①10a a+≠;②()2222a b a ab b +=++;③若a b ,=则a b =±;④若2a ab =,则a b ,=则对于任意非零复数a b 、,上述命题中仍为真命题的个数为( )个. A .1 B .2 C .3 D .43.213(1)i i +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 4.下列各式的运算结果为纯虚数的是A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i) 5.“复数3i ia z -=在复平面内对应的点在第三象限”是“0a ≥”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( ) A .10101010i -- B .10111010i -- C .10111012i -- D .10111010i - 7.已知复数z 满足()()()1212i z i i -=++,则z 的共轭复数为( )A .1i --B .1i +C .55i +D .55i - 8.复数51i i-的虚部是( ) A .12 B .2i C .12- D .2i - 9.已知复数z 满足()2z i i i -=+,则z =( )A B C D 10.若11i ai ++是纯虚数(其中i 为虚数单位),则实数a 等于( ) A .1B .1-C .2D .2- 11.已知复数z 满足|z |=1,则|z +1-2i |的最小值为( )A 1BC .3D .212.设i 为虚数单位,a R ∈,“复数2202021a i z i =--不是纯虚数“是“1a ≠”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.设复数z 满足341z i --=,则z 的最大值是_______.14.设复数z 满足1z =,且使得关于x 的方程2230zx zx ++=有实根,则这样的复数z 的和为______.15.化简:2020201921i z i i ⎛⎫=+= ⎪ ⎪+⎝⎭________.16.在复平面内,复数(3)2a a z i =-+表示的点在直线y x =上,则z =_______. 17.在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C 上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:()111222121212z a bi z a b i a a b b R z z =+=+∈,,,,,>当且仅当“12a a >”或“12a a =”且“12b b >”.按上述定义的关系“>”,给出以下四个命题:①若12z z >,则12z z >;②若1223z z z z >,>,则13z z >;③若12z z >,则对于任意12z C z z z z ∈++,>;④对于复数0z >,若12z z >,则12zz zz >.其中所有真命题的序号为______________.18.设b R ∈,i 是虚数单位,已知集合{}|2A z z i =-≤,{}11|1,B z z z bi z A ==++∈,若A B ⋂≠∅,则b 的取值范围是________. 19.已知复数z =a +3i 在复平面内对应的点位于第二象限,且|z|=2,则复数z 等于________.20.如果复数z 的模不大于1,而z 的虚部的绝对值不小于,则复平面内复数z 的对应点组成图形的面积是___.三、解答题21.已知m R ∈,复数2(1i)(5i 3)(46i)z m m =+-+-+,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?(4)z 在复平面内对应的点在第四象限?22.已知1z i =+,i 为虚数单位.(1)若234z z ω=+-,求ω;(2)若2211z az b i z z ++=--+,求实数a ,b 的值.23.已知复数z 满足|z |=z 的实部、虚部均为整数,且z 在复平面内对应的点位于第四象限.(1)求复数z ;(2)若()22m m n i z --=,求实数m ,n 的值.24.已知复数z 满足z =,2z 的虚部为2,(1)求复数z ;(2)设22,,z z z z -在复平面上对应点分别为,,A B C ,求ABC ∆的面积. 25.已知复数z 使得2z i R +∈,2z R i∈-,其中i 是虚数单位. (1)求复数z 的共轭复数z ; (2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围. 26.i 是虚数单位,且2(1)2(5)3i i a bi i-+++=+(,a b ∈R ). (1)求,a b 的值;(2)设复数1()z yi y R =-+∈,且满足复数()a bi z +⋅在复平面上对应的点在第一、三象限的角平分线上,求||z .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.2.B解析:B【解析】【分析】根据复数的概念和性质,利用复数的代数形式的运算法则,即可得出正确选项.【详解】解:对于①,当a i =时,10a a+=,即①不成立, 对于②,根据复数代数形式的运算法则,满足乘法公式,即②在正确,对于③,在复数C 中,1i =,则1,a b i ==时,a b ≠±,即③错误,对于④,根据复数代数形式的运算法则可得,若2a ab =,则a b ,=即④正确, 综上可得上述命题中仍为真命题的序号为②④,故选B.【点睛】本题考查了复数的概念和性质及复数的代数形式的运算法则,属基础题.3.A解析:A【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果.【详解】 ()21313312221ii i i i ++==-+, 故选A.【点睛】该题考查的是有关复数的运算,属于简单题目.4.A【分析】利用复数的四则运算,再由纯虚数的定义,即可求解.【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确;对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确;对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确;对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题. 5.A解析:A【详解】 因为33ai z a i i-==--,所以由题设可得00a a -<⇒>,因此0a >是0a ≥的充分不必要条件,故应选答案A . 6.B解析:B【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题. 7.A解析:A化简得到1z i =-+,再计算共轭复数得到答案.【详解】()()()1212i z i i -=++,故()()()()()()()()()121212131211212125i i i i i i i z i i i i +++++++====-+--+,故1z i =--. 故选:A .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.8.A解析:A【解析】【分析】由题意首先化简所给的复数,然后确定其虚部即可.【详解】 由复数的运算法则可知:51i i -()()()1111122i i i i i +==-+-+, 则复数51i i-的虚部是12. 本题选择A 选项.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A【分析】首先求得复数z ,然后求解其共轭复数并确定模即可.【详解】 由题意可得:2211i z i i i i i +=+=-++=-,则1,z i z =+=故选A .【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力. 10.B解析:B设11i bi ai+=+,化简后利用复数相等列方程求解即可. 【详解】 设()1,,1i bi a b R ai+=∈+, 所以()11i bi ai ab bi +=⋅+=-+,所以11ab b -=⎧⎨=⎩, 解得11a b =-⎧⎨=⎩, 故选:B .【点睛】本题主要考查复数的乘法运算,考查复数相等的性质,属于基础题.11.A解析:A【分析】 根据1z =分析出z 在复平面内的轨迹方程,再根据12z i +-的几何意义以及圆外一点到圆上点的距离最小值求法求解出结果.【详解】因为|||i |1z x y =+==,所以221x y +=,即z 在复平面内表示圆O :221x y +=上的点;又|12i ||(1)(2)i |z x y +-=++-,所以|12i |z +-表示圆O 上的动点到定点(12)A -,的距离,所以min |12i |z +-为||1OA r -=,故选:A .【点睛】 关键点点睛:解答本题的关键是理解1z =对应的轨迹方程以及掌握12z i +-的几何意义,将复数模的最值问题转化为点到点的距离最值问题. 12.A解析:A【分析】先化简z ,求出a ,再判断即可.【详解】()()2202022211112121211222a i a a i a z i i i i i +=-=-=-=-----+,z 不是纯虚数,则21022a -≠,所以21≠a ,即1a ≠±, 所以1a ≠±是1a ≠的充分而不必要条件.故选:A .【点睛】本题主要考查根据复数的类型求参数,考查充分条件和必要条件的判断,考查逻辑思维能力和计算能力,属于常考题.二、填空题13.6【解析】分析:先找到复数z 对应的点的轨迹再求的最大值详解:设复数则所以复数对应的点的轨迹为(34)为圆心半径为1的圆所以的最大值是故答案为6点睛:(1)本题主要考查复数中的轨迹问题意在考查学生对这 解析:6【解析】分析:先找到复数z 对应的点的轨迹,再求z 的最大值.详解:设复数(,)z x yi x y R =+∈,则22341,(3)(4)1x yi i x y +--=∴-+-=, 所以复数对应的点的轨迹为(3,4)为圆心半径为1的圆,所以z 1516=+=.故答案为6点睛:(1)本题主要考查复数中的轨迹问题,意在考查学生对这些基础知识的掌握水平和数形结合的思想方法.(2)z a bi r ++=表示以点(a,b)为圆心r 为半径的圆,不要死记硬背,直接化成直角坐标,就一目了然. 14.【分析】首先设(且)代入方程化简为再分和两种情况求验证是否成立【详解】设(且)则原方程变为所以①且②;(1)若则解得当时①无实数解舍去;从而此时或3故满足条件;(2)若由②知或显然不满足故代入①得所 解析:74- 【分析】首先设z a bi =+ (a ,b ∈R 且221a b +=),代入方程,化简为()()222320ax ax bx bx i +++-=,再分0b =和0b ≠两种情况求,a x 验证是否成立.【详解】设z a bi =+,(a ,b ∈R 且221a b +=) 则原方程2230zx zx ++=变为()()222320ax ax bx bx i +++-=.所以2230ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去;从而1a =-,2230x x --=此时1x =-或3,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得38a =-,8b =±,所以838z =-±.综上满足条件的所以复数的和为3371884⎛⎫⎛⎫-+-++--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 故答案为:74-【点睛】思路点睛:本题考查复系数二次方程有实数根问题,关键是设复数z a bi =+后代入方程,再进行整理转化复数的代数形式,注意实部和虚部为0,建立方程求复数z . 15.【分析】利用的幂的性质化简即可得答案【详解】所以原式故答案为:【点睛】本题考查复数的计算合理利用常见结论可使计算简便如等等解析:1i --【分析】利用i 的幂的性质化简即可得答案.【详解】2019201633i i i i i =⋅==-,()1010202010102101010082222i 2i i i i 11i 2i 1i ⎡⎤⎛⎫-⎛⎫====⋅==-⎢⎥ ⎪ ⎪ ⎪+⎝⎭+⎢⎥⎝⎭⎣⎦,所以原式=1i --.故答案为:1i --.【点睛】 本题考查复数的计算.合理利用常见结论可使计算简便,如4i 1n =,41i i n +=,42i 1n +=-,43i i n +=-,()21i 2i +=,()21i 2i -=-,1i i=-等等. 16.【分析】根据复数几何意义列方程解方程得再根据共轭复数概念得结果【详解】解:由题意可得解得∴∴故答案为:【点睛】本题考查复数几何意义以及共轭复数概念考查基本分析求解能力属基础题解析:66i -【分析】根据复数几何意义列方程,解方程得9a =,再根据共轭复数概念得结果.【详解】解:由题意可得3a =-,解得9a =,∴66z i =+,∴66z i =-.故答案为:66i -【点睛】本题考查复数几何意义以及共轭复数概念,考查基本分析求解能力,属基础题. 17.②③【分析】根据新定义序的关系对四个命题逐一分析由此判断出真命题的序号【详解】对于①由于所以或且当满足但所以①错误对于②根据序的关系的定义可知复数的序有传递性所以②正确对于③设由所以或且可得或且即成解析:②③【分析】根据新定义“序”的关系,对四个命题逐一分析,由此判断出真命题的序号.【详解】对于①,由于12z z >,所以“12a a >”或“12a a =且12b b >”. 当121,2a a =-=-,满足12a a >但12z z <,所以①错误.对于②,根据“序”的关系的定义可知,复数的“序”有传递性,所以②正确.对于③,设z c di =+,由12z z >,所以“12a a >”或“12a a =且12b b >”,可得“12a c a c +>+”或“12a c a c +=+且12b d b d +>+”,即12z z z z +>+成立,所以③正确.对于④,当123,2,2z i z i z i ===时,126,4zz zz =-=-,12zz zz <,故④错误. 故答案为:②③【点睛】本小题主要考查新定义复数“序”的关系的理解和运用,考查分析、思考与解决问题的能力,属于基础题.18.【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(01)为圆心半径为2的圆及内部;集合B 表示圆的圆心移动到了(11+b );两圆面有交点即可求解b 的取值范围【详解】由题意集解析:b ≤≤【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示圆的圆心移动到了(1,1+b );两圆面有交点即可求解b 的取值范围.【详解】由题意,集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部; 集合B 表示点的轨迹为以(1,1+b )为圆心,半径为2的圆及内部∵A∩B≠∅,说明,两圆面有交点;∴4≤.可得:b ≤≤,故答案:b ≤≤,【点睛】本题考查复数几何意义,圆与圆的位置关系,体现了数学转化思想方法,明确A.B 集合的意义是关键,是中档题19.【分析】由题意可得a <0由|z|=2可得a 的方程解出即得【详解】∵z=a+i 在复平面内对应的点位于第二象限∴a <0由|z|=2得=2解得a=﹣1或1(舍去)∴z=﹣1+i 故答案为﹣1+i 【点睛】该题解析:【分析】由题意可得a <0,由|z|=2,可得a 的方程,解出即得.【详解】∵i 在复平面内对应的点位于第二象限,∴a <0,由|z|=2,解得a=﹣1或1(舍去),∴z=﹣.故答案为﹣【点睛】该题考查复数的模、复数代数形式的表示及其几何意义,属基础题.20.【解析】分析:先根据复数的模以及复数的虚部列不等式再根据扇形面积减去三角形面积得弓形面积详解:设则如图因此复平面内复数z 的对应点组成图形为两个弓形其面积为扇形面积减去三角形面积是点睛:本题重点考查复解析:2-32π 【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积得弓形面积.详解:设(,)z x yi x y R =+∈11,2y ≤≥ ,如图,2.3AOB π∠=因此复平面内复数z 的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是21212232(111sin )232332πππ⨯⋅-⨯⨯⨯=- 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 22a b +(,)a b 、共轭为.-a bi三、解答题21.(1)6m =或1m =-(2)6m ≠且1m ≠-(3)4m =(4)46m <<【分析】由题意得解得22(34)(56)z m m m m i =--+--,(1)由2560m m --=,求出m 即可;(2)2560m m --≠,即可得出m ; (3)由22340560m m m m ⎧--=⎨--≠⎩,解得m 范围; (4)根据象限特征,由22340560m m m m ⎧-->⎨--<⎩,解得m 范围. 【详解】解:()()()21i 5i 346i z m m =+-+-+=()()223456i m m m m --+--, (1)由2560m m --=得6m =或1m =-,即当6m =或1m =-时,z 为实数;(2)由2560m m --≠得6m ≠且1m ≠-,即当6m ≠且1m ≠-时,z 为虚数;(3)由22340{560m m m m --=--≠,,得4m =, 即当4m =时,z 为纯虚数;(4)由22340{560m m m m -->--<,,解得46m <<, 即当46m <<时,z 在复平面内对应的点在第四象限.【点睛】本题考查复数的有关概念及其运算法则、方程与不等式的解法,考查推理能力与计算能力.22.(1)ω;(2)12a b =-⎧⎨=⎩【分析】(1)求出1z i =+的共轭复数,代入234z z ω=+-化简,再求ω; (2)根据2211z az b i z z ++=--+,得到()()21a b a i i +++=+,列方程组即可求解. 【详解】(1)已知1z i =+,1z i ∴=-,()()213141i i i ω=++--=--∴,ω∴=(2)()()22211a b a z az b i z z i i+++++==--+, ()()21a b a i i ∴+++=+,121a b a +=⎧∴⎨+=⎩,解得12a b =-⎧⎨=⎩. 【点睛】此题考查复数的基本运算,涉及共轭复数,复数的模长,根据两个复数相等列方程组求解. 23.(1) 12z i =-或2i z =-.(2) 3m =±,5n =.【分析】(1)利用已知条件,设出复数z ,通过225(,)a b a b +=∈Z 及所对点所在位置求出即可复数z ;(2)利用(1),结合复数的乘法运算求解m ,n 的值【详解】(1)设(,)z a bi a b =+∈Z ,则225(,)a b a b +=∈Z ,因为z 在复平面内对应的点位于第四象限,所以0a >,0b <,所以12a b =⎧⎨=-⎩或21a b =⎧⎨=-⎩, 所以12z i =-或2i z =-.(2)由(1)知12z i =-或2i z =-,当12z i =-时,234z i =--;当2i z =-时234z i =-.因为()22m m n i z --=,所以234m m n =±⎧⎨-=⎩,解得3m =±,5n =. 【点睛】本题考查复数的模长公式,考查复数的乘法运算,考查计算能力,是基础题24.(1)1i +或1i --;(2)1【分析】(1)设z =a +bi (a ,b ∈R ),由已知列关于a ,b 的方程组,求解可得复数z ; (2)分类求得A 、B 、C 的坐标,再由三角形面积公式求解.【详解】解:(1)设z =a +bi (a ,b ∈R ),由已知可得:22ab ==⎪⎩2221a b ab ⎧+=⎨=⎩, 解得11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩. ∴z =1+i 或z =﹣1﹣i ;(2)当z =1+i 时,z 2=2i ,z ﹣z 2=1﹣i ,∴A (1,1),B (0,2),C (1,﹣1),故△ABC 的面积S 12=⨯2×1=1; 当z =﹣1﹣i 时,z 2=2i ,z ﹣z 2=﹣1﹣3i ,∴A (﹣1,﹣1),B (0,2),C (﹣1,﹣3),故△ABC 的面积S 12=⨯2×1=1. ∴△ABC 的面积为1.【点睛】 本题考查复数的乘方和加减运算,考查复数相等的条件和复数的几何意义,以及三角形的面积的求法,考查运算能力,属于中档题.25.(1)42i +;(2)()2,2-.【分析】(1)根据2z i R +∈、2z R i∈-,结合复数的加法、除法运算即可求出z ,进而由共轭复数的概念求得z ;(2) 复数()2z mi +在复平面上对应的点在第四象限,即对应复数的实部、虚部都小于0,解不等式即可求得m 的范围【详解】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--, ∴4x = 综上,有42z i =- ∴42z i =+(2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦ ∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<< 故,实数m 的取值范围是()2,2-【点睛】本题考查了复数,利用复数的四则运算及共轭复数的概念求复数,另外依据复数所处的象限求参数范围26.(1)3,1a b ==-(2【解析】分析:(1)由复数的四则运算可化简复数,再由复数相等可知实部与虚部都要相等,可求得,a b .(2)由复数的乘法运算可化简复数式为标准式,再由复数在第一、三象限的角平分线上可知复数实部等于虚部,求得参数y,再由复数模公式求得复数模.详解:(1)∵()()21253i i a bi i -+++=+ 1033i i==-+ , 又∵,a b R ∈ ∴3,1a b ==-(2)()()()31a bi z i yi +⋅=--+()()331y y i =-+++由题意可知:331y y -+=+,解得2y =-∴z ==点睛:本题主要考查复数四则运算与乘方综合运算和复数相等,及复数与坐标对应关系,及复数的模.。
黑龙江省哈尔滨六中08-09学年高二上学期期中考试生物试题考试时间 90 分钟试卷总分 100 分命题人郭晓然一、选择题(每小题1分,每题只选一个正确的选项)1. 在DNA的分子组成中,下列哪一项具有物种特异性A.A/TB.G/CC.(A+T)/(G+C)D.(A+G)/(T+C)2.某生物的体细胞含有42条染色体,在减数第一次分裂前期,细胞内含有的染色单体、染色体和DNA分子数依次是A.42、84、84B.84、42、84C.84、42、42D.42、42、843.基因型为Rr的雄性动物,在形成精子的过程中,基因Rr、RR,rr的分开发生在①次级精母细胞形成精细胞的过程中②初级卵母细胞形成次级卵母细胞的过程中③次级卵母细胞形成卵细胞的过程中④初级精母细胞形成次级精母细胞的过程中A.④①①B.②③②C.①④①D.③②③4. 二倍体植物的花粉发育成的植株,其体细胞中染色体的形态、大小A.全都相同B.各不相同C.大部分相同D.大部分不同5. 基因型为AaBb和AaBb的两个个体杂交(遵循自由组合规律)产生的子代中有四种表现型, 其比例应是A. 9: 3: 3: 1B. 3: 1: 3: 1C. 1: 1: 1: 1D. 1 : 2 : 16. 遗传密码子是指A.DNA上特定的碱基排列顺序B.信使RNA上决定一个氨基酸的三个相邻的碱基C.蛋白质上氨基酸的排列顺序D.转移RNA上三个特定碱基排列顺序7. 某DNA分子共有碱基100万个,其中A占30%,如连续复制3次需要G的数目为A.210万B.140万C.280万D.420万8. 一个转移RNA 的一端3个碱基是AAG,此RNA 转运的氨基酸是:A.苏氨酸(ACC)B.赖氨酸(AAG)C.丝氨酸(UCC)D.苯丙氨酸(UUC)9. 用四倍体马铃薯的花粉培育的植株是A.单倍体B.二倍体C.四倍体D.多倍体10. 某DNA分子中含有1000个碱基对(P元素只是32P)。
09年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n k n n P k C P P k n -=-=,,, 一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[u (A B )中的元素共有 (A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ +=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i(3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
第六章限时检测本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,时间90分钟.第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.(江西金溪一中08~09学年高一下学期月考)下面说法中正确的有()A.第一宇宙速度是人造地球卫星绕地球飞行的最小速度B.经典力学只适用于高速运动和宏观世界C.海王星是人们依据万有引力定律计算的轨道而发现的D.牛顿在《自然哲学的数学原理》中发表了万有引力定律并给出了引力常量的值答案:C2.(四川绵阳南山中学08~09学年高一下学期期中)我们在推导第一宇宙速度时,需要做一些假设.例如:(1)卫星做匀速圆周运动;(2)卫星的运转周期等于地球自转周期;(3)卫星的轨道半径等于地球半径;(4)卫星需要的向心力等于它在地面上的重力.上面的四种假设正确的是()A.(1)(2)(3)B.(2)(3)(4)C.(1)(2)(4)D.(1)(3)(4)答案:D3.“和平号”飞船(如图所示)历经15年的太空非凡表演,终于在2001年3月23日北京时间14时2分谢幕.为使“和平号”退出舞台,科学家在“合适的时间,合适的地点”进行了三次“点火”,终于使其准确地坠落在南太平洋的预定区域,关于“点火”的作用()A.由GM/r=v2可知,卫星在近地轨道的速度大,为使“和平号”高度下降,就使其速度增加,故点火时喷“火”方向应与“和平号”运动方向相反B.“点火”时喷火方向应沿背离地心方向,这样才能由于反冲,迫使“和平号”降低高度C.“点火”时喷火方向应与“和平号”运动方向相同,使“和平号”减速,由GM/r =v2知,当速度减小时,由于万有引力大于“和平号”运动时所需的向心力,故“和平号”将降低高度D.“和平号”早已失去控制,“点火”只不过是按先前编制的程序而动作.喷火的方向无关紧要,其作用是使“和平号”运动不稳定,从而增大与空气的阻力答案:C解析:只有使速度减小能使其落回地面,减小速度的方法是向原速度的方向喷火.4.北京时间2005年7月4日下午1时52分(美国东部时间7月4日凌晨1时52分)探测器成功撞击“坦普尔一号”彗星,投入彗星的怀抱,实现了人类历史上第一次对彗星的“大对撞”,如图所示.假设“坦普尔一号”彗星绕太阳运行的轨道是一个椭圆,其运动周期为5.74年,则关于“坦普尔一号”彗星的下列说法中正确的是()A.绕太阳运动的角速度不变B.近日点处线速度大于远日点处线速度C.近日点处加速度大于远日点处加速度D .其椭圆轨道半长轴的立方与周期的平方之比是一个与太阳质量有关的常数答案:BCD解析:由开普勒第二定律知近日点处线速度大于远日点处线速度B 正确,由开普勒第三定律可知D 正确.由万有引力提供向心力得C 正确.5.2005年我国成功地发射了历史上的第二艘载人宇宙飞船——“神舟”六号.飞船于2005年10月12日9时0分在中国酒泉卫星发射场用长征2号F 运载火箭发射成功,飞船返回舱于2005年10月17日4时33分成功着陆.飞船共飞行115小时32分钟,绕地球飞行77圈,行程约325万公里.下列论述正确的是( )A .飞船由火箭承载升空过程中,飞船中的宇航员处于超重状态B .飞船返回舱打开减速伞下降的过程中,飞船中的宇航员处于失重状态C .“神舟”六号飞船绕地球飞行速度比月球绕地球运行的速度要小D .“神舟”六号飞船绕地球飞行周期比月球绕地球运行的周期要大答案:A解析:飞船由火箭承载升空过程处于加速上升是超重,A 正确.减速下降加速度向上也是超重,B 错.飞船的运行轨道比月球的轨道低,故运行速度大,周期短,C 、D 错.6.下图是“嫦娥一号奔月”示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测,下列说法正确的是( )A .发射“嫦娥一号”的速度必须达到第三宇宙速度B .在绕月圆轨道上,卫星周期与卫星质量有关C .卫星受月球的引力与它到月球中心距离的平方成反比D .在绕月圆轨道上,卫星受地球的引力大于受月球的引力答案:C解析:“嫦娥一号”卫星没有摆脱太阳引力束缚,不需达到第三宇宙速度,A 错.在绕月轨道上有:Gm 月m 卫r 2=m 卫r 4π2T 2,可见两侧卫星质量m 卫抵消,T 与m 卫无关,B 错.由万有引力定律知F =G m 月m 卫r 2,F 与r 2成反比,C 对.卫星绕月球旋转,被月球捕获,受月球引力大些,D 错.7.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造卫星,相对自己静止不动,则这两位观察者的位置以及两颗人造卫星到地球中心的距离可能是( )A .一人在南极,一人在北极,两卫星到地球中心的距离一定相等B .一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍C .两人都在赤道上,两卫星到地球中心的距离一定相等D .两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍答案:C解析:由题意可知,这两颗卫星均为地球同步卫星,因此必位于赤道上空,且与地心距离相等,因此C 正确.8.三颗人造地球卫星A 、B 、C 绕地球做匀速圆周运动,如图所示,已知m A =m B <m C ,则三颗卫星的( )A .线速度关系v A >vB =v CB .周期关系T A <T B =T CC .向心力关系F A =F B <F CD .半径与周期关系R 3A T 2A =R 3B T 2B =R 3C T 2C答案:ABD解析:由v =GM r可知A 正确.又T =2πr v ∴B 正确 由万有引力定律知C 错由开普勒三定律知D 正确.9.一飞船在某行星表面附近沿圆轨道绕该行星飞行.认为行星是密度均匀的球体.要确定该行星的密度,只需要测量( )A .飞船的轨道半径B .飞船的运行速度C .飞船的运行周期D .行星的质量答案:C解析:万有引力充当向心力,G Mm r 2=m (2πT )2r ,由此求出星球的质量M =4π2r 3GT2(r 为飞船的轨道半径).星球密度ρ=M43πR 3(R 为星球的半径).因为飞船在该星球表面附近沿圆轨道绕该行星飞行,飞船的轨道半径r 等于星球的半径R ,ρ=4π2r 3GT 243πR 3=3πr 3GT 2R 3=3πGT 2. 10.(东北师大附中08~09学年高一下学期期中)如图所示,从地面上的A 点发射一枚远程弹道导弹,在引力作用下沿着ACB 椭圆轨道飞行击中地面上的目标B 点,C 点为轨道的远地点,C 点距地面高度为h .已知地球半径为R ,地球质量为M ,万有引力常量为G .设离地面高度为h 的圆形轨道上的卫星运动的周期为T 1,沿着椭圆轨道运动的导弹的周期为T 2,下面论述正确的是( )A .导弹在C 点的速度小于GM R +hB .导弹在C 点的加速度等于GM (R +h )2C .地球球心为导弹椭圆轨道的一个焦点D .它们的周期大小关系为T 1>T 2答案:ABCD第Ⅱ卷(非选择题 共60分)二、填空题(共3小题,每小题6分,共18分.把答案直接填在横线上)11.请将图中三位科学家的姓名按历史年代先后顺序排列:________、________、________,任选其中两位科学家,简要写出他们在物理学上的主要贡献各一项:____________________________________.答案:伽利略 牛顿 爱因斯坦伽利略:望远镜的早期发明,将实验方法引进物理学等.牛顿:发现运动定律、万有引力定律等.爱因斯坦:光电效应、相对论等.12.如图甲所示是人造卫星两条轨道示意图,其中a 是地球同步卫星的轨道,b 是极地卫星的轨道.(轨道平面与赤道所在平面垂直)2001年4月1日,美国的一架军用侦察机在我国空域侦察飞行时,将我国一架战斗机撞毁,导致飞行员牺牲,并非法降落在我国海南岛,激起我国人民的极大愤慨.图乙是在海南岛上空拍摄的停在海南陵水机场美机的情形.假如此照片是图甲所示中的两种卫星之一拍摄的,则拍摄此照片的卫星是________,简要说明你的判断理由________________________________________________.答案:极地卫星b 此照片是在海南岛上空拍摄的,地球同步卫星不可能在海南岛上空,极地卫星可以经过海南岛上空.13.2003年10月15日9时整,中国第一艘载人飞船“神舟五号”由“长征2号F ”运载火箭从甘肃酒泉卫星发射中心发射升空,10分钟后,成功进入预定轨道,中国首位航天员杨利伟,带着中国人的千年企盼梦圆浩瀚太空,中国成为世界上第三个能够独立开展载人航天活动的国家.(1)火箭在加速上升过程中宇航员处于________状态(选填“超重”或“失重”).由于地球在自西向东不停地自转,为节省燃料,火箭在升空后,应向________方向飞行(选填“偏东”、“偏西”).(2)在飞船的返回舱表面涂有一层特殊的材料,这种材料在遇高温时要熔化,汽化而________大量的热量,从而防止返回地面时与大气层摩擦而被烧坏.(3)目前中国正在实施“嫦娥一号”登月工程,已知月球表面没有空气,没有磁场,引力为地球的16,假如登上月球,你能够________(填代号) A .用指南针判断方向B .轻易跃过3米高度C .乘坐热气球探险D .做托里拆利实验时发现内外水银面高度差为76cm答案:超重 偏东 吸收 B三、论述·计算题(共4小题,42分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位)14.(10分)某人在一星球上以速率v 竖直上抛一物体,经时间t 物体以速率v 落回手中,已知该星球的半径为R ,求这星球上的第一宇宙速度.答案:2v R t解析:根据匀变速运动的规律可得,该星球表面的重力加速度为g =2v t该星球的第一宇宙速度,即为卫星在其表面附近绕它做匀速圆周运动的线速度,该星球对卫星的引力(重力)提供卫星做圆周运动的向心力,则mg =m v 21R该星球表面的第一宇宙速度为v 1=gR =2v R t. 15.(10分)某小报登载:×年×月×日,×国发射了一颗质量为100kg ,周期为1h 的人造环月球卫星.一位同学记不住引力常量G 的数值且手边没有可查找的材料,但他记得月球半径约为地球的14,月球表面重力加速度约为地球的16,经过推理,他认定该报道是则假新闻,试写出他的论证方案.(地球半径约为6.4×103km)证明:因为G Mm R 2=m 4π2T2R 所以T =2πR 3GM ,而g =GM R2 故T min =2πR 3GM =2πR 月g 月=2π14R 地16g 地 =2π3R 地2g 地=2π3×6.4×1062×9.8s =6.2×103s ≈1.72h. 环月卫星最小周期约为1.72h ,故该报道是则假新闻.16.(10分)(江苏常熟市09~10学年高一下学期期中)发射地球同步卫星时,可认为先将卫星发射至距地面高度为h 1的圆形近地轨道上,在卫星经过A 点时点火(喷气发动机工作)实施变轨进入椭圆轨道,椭圆轨道的近地点为A ,远地点为B .在卫星沿椭圆轨道运动经过B 点再次点火实施变轨,将卫星送入同步轨道(远地点B 在同步轨道上),如图所示.两次点火过程都是使卫星沿切向方向加速,并且点火时间很短.已知同步卫星的运动周期为T ,地球的半径为R ,地球表面重力加速度为g ,求:(1)卫星在近地圆形轨道运行接近A 点时的加速度大小;(2)卫星在椭圆形轨道上运行接近A 点时的加速度大小;(3)卫星同步轨道距地面的高度.答案:(1)R 2g (R +h 1)2 (2)R 2g (R +h 1)2(3)3gR 2T 24π2-R 解析:(1)设地球质量为M ,卫星质量为m ,万有引力常量为G ,卫星在近地圆轨道运动接近A 点时加速度为a A ,根据牛顿第二定律G Mm (R +h 1)2=ma A 可认为物体在地球表面上受到的万有引力等于重力G Mm R2=mg 解得a A =R 2(R +h 1)2g (2)根据牛顿第二定律F 万=ma 得:加速度a =R 2(R +h 1)2g (3)设同步轨道距地面高度为h 2,根据牛顿第二定律有:G Mm (R +h 2)2=m 4π2T 2(R +h 2) 由上式解得:h 2=3gR 2T 24π2-R 17.(12分)天文探测上的脉冲星就是中子星,其密度比原子核还要大.中子星表面有极强的磁场,由于处于高速旋转状态,使得它发出的电磁波辐射都是“集束的”,像一个旋转的“探照灯”,我们在地球上只能周期性地接收到电磁波脉冲(如图所示).设我们每隔0.1s 接收一次中子星发出的电磁波脉冲,万有引力常量G =6.67×10-11N·m 2/kg 2,球的体积V =43πr 3.(1)为保证该中子星赤道上任意质点不会飞出,求该中子星的最小密度;(2)在(1)中条件下,若该中子星半径为r =10km ,求中子星上极点A 的重力加速度g .答案:(1)1.4×1013kg/m 3 (2)3.91×107m/s 2解析:(1)该脉冲星半径为r ,质量为M ,赤道上质点m 所受万有引力提供向心力,则有G Mm r 2=m (2πT)2r 该星球密度为ρ=M 43πr 3 解得ρ=1.4×1013kg/m 3.(2)A 处的重力等于万有引力,有G Mm r 2=mg 解得g =3.91×107m/s 2.友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
专题09 化学实验综合题专项训练SO的性质,按如图所示装置进行实验。
1.某化学兴趣小组为探究2请回答下列问题:(1)装置A中盛放亚硫酸钠的仪器名称是_______。
(2)A中发生反应的化学方程式为_______。
SO具有_______性;装置C中反应的化学方程式(3)实验过程中,装置B中的现象是_______,该现象说明2为_______。
SO与品红作用的可逆性,请写出实验操作及现象_______。
(4)装置D的目的是探究22.实验室里研究不同价态硫元素之间的转化。
(1)盛装浓硫酸仪器的名称是___________;(2)装置A中发生反应的化学方程式为___________;(3)上述实验体现SO2的性质有漂白性、氧化性和___________;(4)若将装置D中的氯水换为酸性KMnO4溶液,则发生反应的离子方程式为___________;(5)下列叙述正确的是___________。
a.装置A中反应说明浓硫酸具有酸性和强氧化性b.为确认装置A中CuSO4生成,向A中加水,观察溶液的颜色c.装置C中无明显现象d.装置E的作用是吸收SO2尾气,防止污染环境3.为了验证木炭可被浓H2SO4氧化成CO2,选用下图所示仪器(内含物质)组装成实验装置。
(1)如按气流由左向右流向,连接上述装置的正确顺序是(填各接口字母):A接___________,___________接___________,___________接B。
___________(2)确认CO2存在时,乙、丙的实验现象分别是乙:___________,丙:___________。
(3)丁中酸性KMnO4溶液的作用是___________。
(4)甲中反应的化学方程式是___________。
4.甲、乙两组同学用不同的方法制备SO2并探究其性质(夹持装置已略去)I.甲组同学设计的实验装置如图所示,回答下列问题:(1)试管①中反应的化学方程式.....为_______。
(人教版)高中数学必修二(全册)单元测试卷汇总、阶段通关训练(一)(60分钟 100分)一、选择题(每小题5分,共3。
分)1・已知某几何体的三视图如图所示,那么这个几何体是□ □便視囲A. 长方体 C.匹棱锥【解析】选A.该几何体是长方体,如图所示» 入城商中目字必零二01 :酚俭1王训停 爺人椒版為中教学宕偌2!; &馈通关训号 信,奴薮版快9E 必偌二好:阶段遑关训澤 司:人馭艇苣中数猝偌二桂測:跻蜀■美训遂 琼人板版毫中gtl 修二窗I ;樓埃蜃量怦估 S 人会版毎中數⑴ C 2) Word 版言眾忻 Word 版合解忻 W 。
招版含解忻 (AS ) Word 板合樹ff (B 卷)WordB.圆性 D.四棱台正視图悟视图2.以钝角三角形旳较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A .两个圆锥拼桜而成的组合体B.一个圖台C.一个圆锥D . 一个圆锥挖去一个同底的小圆维【解析】选D.如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.3.已知AAB攏边长为2a的正三角形,那么△ABCE勺平面直观图△ A'B‘ C'的面积为()D.\Ga~【鮮析】选C.直观图面积S与原图面积S具有关系:S' Mfs.因为S 好芸12a)所以S …c 三•X\/3a'=^a .4- 4 4【补偿训练】某三角形的直观图是斜边长为2的等腰直角三角形,如图所示,则原三信形的面积是【解析】根据宜观图和原图形的关系可知原图形的面积为X 2vl X 2二2卮 答案:2^24. 某三梭锥的三视图如图所示,则该三検锥的体积是【解析】选B .由三视图可判断该三棱锥底面为等腰直角三角形,三 棱锥旳高为 2. RI V=x x 1 x 1 x 2=.^【补偿洲练】已知正三棱镣V-ABC 的正视图、侧视图和帽视图如图所 示,则该正三枝锥侧视图的面积是A.B. C. D.1A.v39B.6\,r 3D.6俯视C.即3【解析】选D .如图,根据三视图间的关系可得BCM3,所以侧视图 中VA 二\|铲一任X ? X 2妁七整,所以三橙锥侧视图面积S- 海=x 2V 3X 2\顶二6,故选 D.5.(2016 •蚌瑋高二检测)若一个回锥的侧面展开图是面积为 2工的半圆面,则该圆锥的体积为B.V3 X C .拓x【解析】选A.设园锥的母线长为I,底面半径为r,由题意|7苗2 = 211,vnl = 2TTT ,解得'所以圆锥的高为 h=\F —尸=寸3 , V= * r 2h= r x 12x r = L . 6.(2016 •雅安高二检测)设正方体的全面积为 24,邪么其内切球的体积是A .扼KB.兀32 D.—【解析】 选B.正方体的全面积为24,所以,设正方体的棱长为a.6 宀 24, a 二2,正方体的内切球的直径就是正方体的校长,所以球的半径为1,内切球旳体积:V = 7t . ID RC乙 第*已回刮寻詠回王曲>=s '哥USS 甲'里蛔国皿【果到】&&価91实逐刘t ¥豈我到国丑屬T 風濕&一天喔宰邕€好日-6肝里N 二縛:毒虽•*+£,W=M*£Axl X >t=S rft凰峯4 Z^A^Ax^ x=A '風刘"坦 NN 八一醇E3HI 诳乙 弟学段皿期一旧耳闻1/峯'皓也乎书屋絶三零净【爆蜴】醇車回1/溟【四'(国⑰)国隴三阳财回廿必日(脈玛二堆※困• 9L0S1-8LL :孝晶U=x 韧 N 刮’壽」三三)阜尚‘X 興覃毋号密祺[菓到】 麹*辛矣廚留丄壬至藏乌去廖犯讪目丄竺羽诲同争宙【睾里區墙】^实些阳号屛醇斟濯施*09实邊回回淮即回通士互士 .乙屿%邊国基’9L 实雙団驚勢N(G&详‘&9鲤W 辱)谴乏帯 '二=M 媛苴'務nD所以AQ=\吃,A O=R^/6.所以S丼二4兀F<=24T.答案:24 x10•圖台的底面半径分别为1和2,母线长为3,则此圖台的体积为【解析】圆台的高h= 732 - (2 - I)2 =2 <1 ,所以体积71 2 aV=y(R+Rr4-r )h=^^i(. 答案:學三、解答题(共4小题,共50分)11.(12分)如區几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面枳和体枳【韻析】圖锥侧面积为S = X rl=15r ,圖台的侧面积为缶冗(r+r ' )1二10冗,圖台的底面宜积为订’』牝,所以表面积为:S=S+S+S s=15i +10兀+4H=29X;圆锥的体积V-xr2hi=12x ,圆台的体积V:= r h2(r :+rr , +「’ 2)=^y^r ,所以体积为:V=V+U=12i------ X .312.(12分)如图是一个几何体的正视图和俯视图(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积.(3)求出该几何体的体积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的側视图如图.其中AB=AC AD^BC,且BC的长是俯视图正六边形对边的距离,即BC=v3a, AD是正六棱锥的高,即AD十3a,所以该平面图形的面积(3)没这个正六棱锥的底面积是S,体积为V,则S=6< —a=—a\4 2所以V=x三歯x JJa=a°.13.(13分)如图所示,在四边形ABC畔,Z DAB=90 , ZADCF35 ,AB二5 CD二不臣,AD二2求四边形ABC说AD旋转一周所成几何体的表面积及体积.【鮮析】S 表面二S SOFB +S Bo ma +S 四部面=it x 5~+ i x (2+5) x 5+ r X 2X 2V2=(4 克+60) x .V=V H&-V B*=z (4-r if z+Fj )h- x h148=I (25+10+4) X 4- Jt X 4X 2. x .14.(13分)(2016 ,湖北实验中学高一检测 )如图,△ ABC中,ZACB=90 , Z ABC=30* , BC%3 在三角形内挖去一个半圆(圆心。
第九章统计A(基础卷)参考答案与试题解析一.选择题(共8小题)1.(2020春•郑州期中)某中学为了了解500名学生的身高,从中抽取了30名学生的身高进行统计分析,在这个问题中,500名学生身高的全体是()A.总体B.个体C.从总体中抽取的一个样本D.样本的容量【解答】解:为了了解500名学生的身高,从中抽取了30名学生的身高进行统计分析,这500名学生身高的全体是总体.故选:A.2.(2020春•盐城期末)某校高一、高二、高三年级各有学生数分别为800、1000、800(单位:人),现用分层抽样的方法抽取一个容量为n的样本了解网课学习情况,样本中高一学生的人数为48人,那么此样本的容量n为()A.108 B.96 C.156 D.208【解答】解:∵高一、高二、高三学生的数量之比依次为800:1000:800=4:5:4,现用分层抽样的方法抽出的样本中高一学生有48人,∴由分层抽样性质,得:,解得n=156.故选:C.3.(2020•赣州模拟)从某班50名同学中选出5人参加户外活动,利用随机数表法抽取样本时,先将50名同学按01,02,……50进行编号,然后从随机数表的第1行第5列和第6列数字开始从左往右依次选取两个数字,则选出的第5个个体的编号为()(注:表为随机数表的第1行与第2行)0347 4373 8636 9647 3661 4698 6371 62977424 6792 4281 1457 2042 5332 3732 1676A.24 B.36 C.46 D.47【解答】解:由题知从随机数表的第1行第5列和第6列数字开始,由表可知依次选取43,36,47,46,24.故选:A.4.(2020•山西模拟)如图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).则甲组数据的中位数,乙组数据的平均数分别为()A.12,15 B.15,15 C.15,15.9 D.15,16.8【解答】解:由茎叶图得:甲组数据为:9,12,15,24,27,乙组数据为:8,15,18,19,24,故甲组数据的中位数是15,乙组数据的平均数是:16.8,故选:D.5.(2020•新课标Ⅲ)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01 B.0.1 C.1 D.10【解答】解:∵样本数据x1,x2,…,x n的方差为0.01,∴根据任何一组数据同时扩大几倍方差将变为平方倍增长,∴数据10x1,10x2,…,10x n的方差为:100×0.01=1,故选:C.6.(2020春•闵行区校级期中)在一次数学测试中,高二某班40名学生成绩的平均分为82,方差为10.2,则下列四个数中不可能是该班数学成绩的是()A.100 B.85 C.65 D.55【解答】解:因为S210.2,所以40×10.2=408,若存在x=55,则(x)2=(55﹣82)2=729408,则方差必然大于10.2,不符合题意,所以55不可能是所有成绩中的一个样本.故选:D.7.(2020•4月份模拟)学校为了调查学生在课外读物方面的支出(单位:元)情况,抽取了一个容量为n 的样本,并将得到的数据分成[10,20),[20,30),[30,40),[40,50]四组,绘制成如图所示的频率分布直方图,其中支出在[40,50]的同学有24人,则n=()A.80 B.60 C.100 D.50【解答】解:本题考查频率分布直方图,考查数据处理能力.由频率分布直方图可得,支出在[40,50]的频率为1﹣(0.01+0.024+0.036)×10=0.3.根据题意得,解得n=80.故选:A.8.(2020•深圳模拟)一个容量为100的样本,其数据分组与各组的频数如表:组别(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]频数12 13 24 15 16 13 7则样本数据落在(10,40]上的频率为()A.0.13 B.0.52 C.0.39 D.0.64【解答】解:由频率分布表知,样本数据落在(10,40]上的频率为:0.52.故选:B.二.多选题(共4小题)9.(2020春•启东市校级月考)为了了解参加运动会的2000名运动员的年龄情况,从中抽取了20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有()A.2000名运动员是总体B.所抽取的20名运动员是一个样本C.样本容量为20D.每个运动员被抽到的机会相等.【解答】解:由题意知,2000名运动员的年龄是总体,所以A错误;所抽取的20名运动员的年龄是一个样本,所以A错误;样本容量是20,所以C正确;每个运动员被抽到的机会相等,所以D正确.故选:CD.10.(2020•烟台一模)2020年春节前后,一场突如其来的新冠肺炎疫情在全国蔓延,疫情就是命令,防控就是责任.在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,掀起了一场坚决打赢疫情防控阻击战的人民战争.右侧的图表展示了2月14日至29日全国新冠肺炎疫情变化情况,根据该折线图,下列结论正确的是()A.16天中每新增确诊病例数量呈下降趋势且19日的降幅最大B.16天中每日新增确诊病例的中位数小于新增疑似病例的中位数C.16天中新增确诊、新增疑似、新增治愈病例的极差均大于2000D.19至29日每日新增治愈病例数量均大于新增确诊与新增疑似病例之和【解答】解:由频率分布折线图可知,16天中新增确诊病例数量整体呈下降趋势,但具体到每一天有增有减,故A错误;由每日新增确诊病例的数量大部分小于新增疑似病例的数量,则16天中每日新增确诊病例的中位数小于新增疑似病例的中位数,故B正确;由图可知,16天中新增确诊、新增疑似、新增治愈病例的极差均大于2000,故C正确;由图可知,20日的新增治愈病例数量小于新增确诊与新增疑似病例之和,故D错误.∴正确的结论是BC.故选:BC.11.(2020春•济宁月考)一组数据2x1+l,2x2+1,2x3+1,…,2x n+1的平均值为7,方差为4,记3x1+2,3x2+2,3x3+2,…,3x n+2的平均值为a,方差为b,则()A.a=7 B.a=ll C.b=12 D.b=9【解答】解:2x1+l,2x2+1,2x3+1,…,2x n+1的平均值为7,方差为4,设X=(x1,x2,x3,…,x n),E(2X+1)=2E(X)+1=7,得E(X)=3,D(2X+1)=4D(X)=4,D(X)=1,3x1+2,3x2+2,3x3+2,…,3x n+2的平均值为a,方差为b,a=E(3X+2)=3E(X)+2=11,b=D(3X+2)=9D(X)=9,故选:BD.12.(2020•淄博模拟)某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图(1)所示)后(如直方图(2)所示)的体重(单位:kg)变化情况,对比数据,关于这20名肥胖者,下面结论正确的是()A.他们健身后,体重在区间[90,100)内的人数较健身前增加了2人B.他们健身后,体重原在区间[100,110)内的人员一定无变化C.他们健身后,20人的平均体重大约减少了8kgD.他们健身后,原来体重在区间[110,120]内的肥胖者体重都有减少【解答】解:体重在[90,100)内的肥胖者由健身前的6人增加到健身后的8人,增加了2人,所以A 正确;他们健身后,体重在[100,110)内的百分比没有变,但人员组成可能改变,所以B错误;他们健身后,20人的平均体重大约减少了(0.3×95+0.5×105+0.2×115)﹣(0.1×85+0.4×95+0.5×105)=5(kg),所以C错误;因为图(2)中没有体重在[110,120)内的人员,所以原来体重在[110,120)内的肥胖者体重都有减少,所以D正确.故选:AD.三.填空题(共4小题)13.(2020•江苏模拟)某次数学测验五位同学的成绩分布茎叶图如图,则这五位同学数学成绩的方差为10.【解答】解:由图可得这五位同学考试成绩分别为122,128,129,130,131;则这五位同学数学成绩的平均数为:(122+128+129+130+131)=128,方差[(122﹣128)2+(128﹣128)2+(129﹣128)2+(130﹣128)2+(131﹣128)2]=10.故答案为:10.14.(2020•南通模拟)为了解某校学生课外阅读的情况,随机统计了1000名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示,则阅读时间在[125,150)中的学生人数为200.【解答】解:由频率分布直方图得:阅读时间在[125,150)中的频率为:1﹣(0.004+0.012+0.016)×25=0.2.∴阅读时间在[125,150)中的学生人数为:1000×0.2=200.故答案为:200.15.(2020•扬州模拟)某校在高一、高二、高三三个年级中招募志愿者50人,现用分层抽样的方法分配三个年级的志愿者人数,已知高一、高二、高三年级的学生人数之比为4:3:3,则应从高三年级抽取15名志愿者.【解答】解:∵高三年级的学生人数占的比例为,则应从高三年级抽取的人数为5015,故答案为:15.16.(2020•中卫三模)从2021个学生中选取202人志愿者,若采用下面的方法选取,先用简单随机抽样法从2021人中剔除1人,剩下的2020人按系统抽样取出202人,则每人入选的概率.【解答】解:根据抽样的性质可知,无论哪种抽样,每个个体抽到的概率都是相同的,用简单随机抽样从2021人中剔除1人,每个人被剔除的概率相等,剩下的2020人再按系统抽样的方法抽取,每个人被抽取的概率也相等,即,故答案为:.四.解答题(共5小题)17.(2020•宁德模拟)A、B两同学参加数学竞赛培训,在培训期间,他们参加了8次测验,成绩(单位:分)记录如下:A71 62 72 76 63 70 85 83B73 84 75 73 7876 85B同学的成绩不慎被墨迹污染(,分别用m,n表示).(1)用茎叶图表示这两组数据,现从A、B两同学中选派一人去参加数学竞赛,你认为选派谁更好?请说明理由(不用计算);(2)若B同学的平均分为78,方差s2=19,求m,n.【解答】解:(1)A、B两同学参加了8次测验,成绩(单位:分)茎叶图如下:由茎叶图可知,B同学的平均成绩高于A同学的平均成绩,所以选派B同学参加数学竞赛更好.(2)因为(73+84+75+73+70+m+80+n+76+85)=78,所以m+n=8,①,因为S2[52+62+32+(m﹣8)2+(n+2)2+22+72]=19,所以(m﹣8)2+(n+2)2=4,②联立①②解得,m=8,n=0.18.(2020•武侯区校级模拟)成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.【解答】解:(1)得分[20,40)的频率为0.005×20=0.1;得分[40,60)的频率为0.010×20=0.2;得分[80,100]的频率为0.015×20=0.3;所以得分[60,80)的频率为1﹣(0.1+0.2+0.3)=0.4.设班级得分的中位数为x分,于是,解得x=70.所以班级卫生量化打分检查得分的中位数为70分.(2)由(1)知题意“良”、“中”的频率分别为0.4,0.2.又班级总数为40.于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的“良”、“中”的班级个数分别为4,2.因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为A.则为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4,2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点(i,j)表示,其中1≤i<j≤6.这些点恰好为6×6方格格点上半部分(不含i=j对角线上的点),于是有种.事件仅有(5,6)一个基本事件.所以.所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为.19.(2020•甲卷三模)中国女排一直是国人的骄傲,2019年女排世界杯于9月14日﹣9月29日在日本举行,中国女排10连胜提前夺冠,获世界杯第五冠、三大赛第十冠.中国女排用胜利点燃国人的激情,女排精神成为了拼搏、不服输的代表.某校受此影响,也举办了校园排球联赛,每班各自选出12人代表队,最后甲、乙两班进入决赛,如下茎叶图所示的是对每名队员上场时间做的统计,根据茎叶图回答问题:(Ⅰ)计算甲、乙两班队员上场的平均时间,并根据茎叶图分析哪班队员上场时间更均衡(不需要计算);(Ⅱ)赛后学校在上场时间超过50分钟(包括50分钟)的队员中随机抽取2人评为最佳运动员,则两人中至少有一人来自乙班的概率是多少?【解答】解:(Ⅰ)甲班队员上场的平均时间31.25,乙班队员上场的平均时间34.5.由茎叶图分析甲班队员上场时间更均衡.(Ⅱ)上场时间超过50分钟的队员甲班有两人为A,B,乙班有3人为C,D,E.则从5人中随机抽取2人的取法有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE.共有10种,至少有一人来自乙班的有9种,故两人中至少有一人来自乙班的概率P.20.(2020春•锡山区校级期中)为了落实习主席提出“绿水青山就是金山银山”的环境治理要求,某市政府积极鼓励居民节约用水.计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年200位居民每人的月均用水量(单位:吨),将数据按照[0,1),[1,2),…,[8,9)分成9组,制成了如图所示的频率分布直方图,其中0.4a=b.(1)求直方图中a,b的值,并由频率分布直方图估计该市居民用水的平均数(每组数据用该组区间中点值作为代表);(2)设该市有40万居民,估计全市居民中月均用水量不低于2吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.【解答】解:(1)由题意得:,解得a=0.15,b=0.06.由频率分布直方图估计该市居民用水的平均数为:0.5×0.04+1.5×0.08+2.5×0.15+3.5×0.20+4.5×0.26+5.5×0.15+6.5×0.06+7.5×0.04+8.5×0.02≈4.07.(2)由频率分布直方图得:全市居民中月均用水量不低于2吨的频率为:1﹣0.04﹣0.08=0.88,∴全市居民中月均用水量不低于2吨的人数为:400000×(1﹣0.04﹣0.08)=352000.(3)∵前6组的频率之和是0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,∴5≤x<6,由0.15×(x﹣5)=0.85﹣0.73,解得:x=5.8,因此,估计月用水量标准为5.8吨时,85%的居民每月的用水量不超过标准.21.(2020•迎泽区校级模拟)2019年下半年以来,各地区陆续出台了“垃圾分类”的相关管理条例,实行“垃圾分类”能最大限度地减少垃圾处置量,实现垃圾资源利用,改善垃圾资源环境,某部门在某小区年龄处于[20,45]岁的人中随机地抽取x人,进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到如图示各年龄段人数的频率分布直方图和表中的统计数据.(1)求x,y,z的值;(2)根据频率分布直方图,估计这x人年龄的平均值(同一组数据用该区间的中点值代替,结果按四舍五入保留整数);(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,并在这9人中选取2人作为记录员,求选取的2名记录员中至少有一人年龄在[30,35]中的概率.组数分组“环保族”人数占本组频率第一组[20,25)45 0.75第二组[25,30)25 y第三组[30,35)20 0.5第四组[35,40)z0.2第五组[40,45) 3 0.1【解答】解:(1)由题意得:.(2)根据频率分布直方图,估计这x人年龄的平均值为:22.5×0.06×5+27.5×0.04×5+32.5×0.04×5+37.5×0.03×5+42.5×0.03×5=30.75≈31..(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,[25,30)中选:95人,[30,35]中选:94人,在这9人中选取2人作为记录员,基本事件总数n,选取的2名记录员中至少有一人年龄在[30,35]包含的基本事件个数:m26,∴选取的2名记录员中至少有一人年龄在[30,35]中的概率p.。
塘沽区2008--2009学年度第一学期期末质量检测 高二数学学科试卷(理)(必修2+ 选修2-1)参考答案一.选择题(1~8题每题4分,9~12题每题3分共计44分)二.填空题(每题4分满分16分) 13.(每空1分)○1 两直线不平行,同位角不相等 ,○2必要不充分 ○3.x R ∀∈,2○4.有的正方形它的四条边不相等 14. 3015.y=4x 2 16.三。
解答题 17.(本题满分8分)解:(1)方程C 可化为 m y x -=-+-5)2()1(22…1分显然 5,05<>-m m 即时时方程C 表示圆。
---------------2分 (2)由(1)知圆的圆心 C (1,2),半径 m r -=5――――4分则圆心C (1,2)到直线l:x+2y-4=0的距离5121422122=+-⨯+=d ………………………………………………6分5221,54==MN MN 则 ,有 222)21(MN d r += 225,m ∴-=+得 4=m ……………………---------8分 解18.设直线L 的方程 y=kx+2,解方程组222y kx y x =+⎧⎨=⎩消去X 得ky 2-2y+4=0---------2分 14160(0)4k k k =->⇒<≠ -------------3 分设M(x 1,y 1),N(x 2,y 2)则121224,.y y y y k k+==----------------------4分2112121222221142.(.)142x y x x y y k x y ⎧=⎪⎪⇒==⎨⎪=⎪⎩--------------------------6分1212.1..0om oN OM ON k k x x y y ⊥⇒=-∴+=---------------------8分2440k k∴+=解得k=-1 ------------------------------------------------9分 所以所求直线方程为y=-x+2,即x+y-2=0----------------------10分19(本题满分10分)证明:(⒈) 连AC ,交DB 于点O ,连结OE … 1分 在PAC ∆中, ,E O 点分别是PC 、AC 的中点∴EO 是PAC ∆的中位线EO PA //∴ ------------2分而⊂EO 平面EDB ,PA ⊄平面EDB∴ PA//平面EDB. --------------------3分解:(Ⅱ)⑴ (如图),分依题意,D (0,0,0),P (0,0,2), ,B (1,2,0),C (0,2,0),E (0,1,1),()()0,2,1,1,1,0==, ………5 分(Ⅱ)⑵设平面EBD 的法向量为()z y x n ,,=则⎩⎨⎧-=-=⇒⎩⎨⎧=+=+⇒⎪⎩⎪⎨⎧=⋅=⋅y x y z y x z y DB n 202000, 取1-=y 的()1,1,2-=n . ……… 7分 平面CBD 的法向量为()2,0,0=DP , ……… 8分cos ,⋅=n DPn DP n DP2010106⨯+-⨯+⨯===. 则二面角E —BD —C 大小的余弦值是.66………10分 20.解(Ⅰ).22222344c a b e a b a a -===∴= ○1-----------1分 22131124a b∴+= 点(, ○2-----------------------2分由○1,○2解得b 2=1,2214x y ∴+=椭圆方程为-------------------------3分 (Ⅱ).11(2,0),(0,1),(2pq AB A B F k k ==-1:(2PQ y x =-----4分解方程组22221044x y x x y ⎧=-⎪--=⎨+=⎪⎩消去得8y -----------------5分设112,212121(,),(),28p x y Q x y y y y y +==-则-------------------------6分- 12y y ∴-===-------------------------7分2121211.22PQ S F F y y =-=⨯=△F -----------------------8分 (Ⅲ) 直线AB,和CD 的方程分别为22x y +=,(0)y kx k =>.解方程组22214K 44y kx y x y =⎧+∴=⎨+=⎩消去得()x=4x43x x =-=点D,C 到AB的距离分别为1h ==,2h ==. ···································································· 10分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+12===≤即当12k =时,上式取等号.所以S的最大值为 ·················································· 12分3344()()c x kx x kx ,,D ,。
高中物理学习材料天水市一中2010—2011学年第二学期期末2009级考试题物理命题、审核:王谦校对:王植一、选择题(共16小题,每小题4分,共64分。
每小题各选项中至少有一个是正确的,请将正确的选项涂在答题卡上,全选对得4分,选对但不全得2分,错选或不选得零分)1.光导纤维的结构如图1所示,其内芯和外套材料不同,光在内芯中传播.以下关于光导纤维的说法正确的是( )图1A.内芯的折射率比外套大,光传播时在内芯与外套的界面发生全反射B.内芯的折射率比外套小,光传播时在内芯与外套的界面发生全反射C.内芯的折射率比外套小,光传播时在内芯与外套的界面发生折射D.内芯的折射率比外套相同,外套的材料有韧性,可以起保护作用2.如图2所示,a、b、c三条光线交于一点S,如果在S点前任意位置放一块平面镜M,则a、b、c三条光线的反射光线( )A.可能交于一点,也可能不交于一点 B.一定不交于一点C.一定交于平面镜前一点 D.反射光线的反向延长线交于镜后一点3.关于岸上的人看到的水中的鱼,下列说法中正确的是( ) 图2 A.人看到鱼的像是实像,比实际位置浅 B.人看到鱼的像是虚像,比实际位置浅C.鱼看到的是人的实像,位置偏低些 D.鱼看到的是人的虚像,位置偏高些4.对于光的衍射现象,下述定性分析中错误的是( )A.光的衍射是光在传播过程中绕过障碍物继续传播的现象B.光的衍射否定了光的直线传播的结论C.光的衍射现象为光的波动说提供了有力的证据D.光能发生明显衍射的条件是光的波长与孔或障碍物尺寸可比拟5.在电磁波谱中( )A.各种电磁波有明显的频率和波长区域界限 B.γ射线的频率一定高于伦琴射线的频率C.伦琴射线的波长有可能等于紫外线的波长 D.可见光波长一定比无线电波的波长短6.下列几种应用或技术中,用到光的干涉原理的是( )A.照相机镜头上的增透膜 B.透过羽毛看到白炽灯呈现彩色C.在磨制平面时,检查加工表面的平整度 D.在医疗中用X射线进行透视7.如图3所示,两光屏间放有两个偏振片,它们四者平行共轴,现让太阳光沿轴线通过光屏M上的小孔照射到固定不动的偏振片P上,再使偏振片Q绕轴匀速转动一周,则关于光屏上光的亮度变化情况,下列说法中正确的是( )A.光屏上光的亮度保持不变B.光屏上光的亮度会时亮时暗C.光屏上有两条与偏振片P、Q透振方向对应的亮线图3D.光屏上只有一条亮线随偏振片转动而转动8.在双缝干涉实验中,双缝到光屏上P点的距离之差为Δx=0.6 μm,若分别用频率为f1=5.0×1014 Hz和f2=7.5×1014 Hz的单色光垂直照射双缝,则P点出现明、暗条纹的情况是( )A.用频率为f1的单色光照射时,出现明条纹B.用频率为f2的单色光照射时,出现明条纹C.用频率为f1的单色光照射时,出现暗条纹D.用频率为f2的单色光照射时,出现暗条纹9.在如图4所示的实验中,发现用一定频率的A单色光照射光电管时,电流表指针会发生偏转,而用另一频率的B单色光照射时不发生光电效应,那么( )A.A光的频率一定等于光电管金属材料的极限频率B.B光的频率小于A光的频率C.用A光照射光电管时流过电流表G的电流方向是a流向bD.用A光照射光电管时流过电流表G的电流方向是b流向a 图410.卢瑟福的原子核式结构学说初步建立了原子结构的正确图景,能解决的问题有( )A.解释α粒子散射现象 B.用α粒子散射数据估算原子核的大小C.结合经典电磁理论解释原子的稳定性 D.结合经典电磁理论解释氢光谱11.若规定氢原子处于基态时的能量为E1=0,则其他各激发态的能量依次为E2=10.2eV、E3=12.09eV、E4=12.75eV、E5=13.06eV……在气体放电管中,处于基态的氢原子受到能量为12.8eV的高速电子轰击而跃迁到激发态,在这些氢原子从激发态向低能级跃迁的过程中( )A.总共能辐射出6种不同频率的光子B.总共能辐射出10种不同频率的光子C.辐射出波长最长的光子是从n=4跃迁到n=3能级时放出的D.辐射出波长最长的光子是从n=5跃迁到n=4能级时放出的12.氢原子的能级如图5所示.一群氢原子处于n=3的激发态,在向基态跃迁的过程中,下列说法中正确的是( )A.这群氢原子能发射出三种频率不同的光,其中从n=3跃迁到n=2所发出的光的波长最短B.这群氢原子能发射出两种频率不同的光,其中从n=3跃迁到n=1所发出的光的频率最大图5 C.用这群氢原子所发射出的光照射逸出功为2.49eV的金属钠,则从金属钠表面所发出的光电子的最大初动能可能为11.11eVD.用这群氢原子所发射出的光照射逸出功为2.49eV的金属钠,则从金属钠表面所发出的光电子的最大初动能可能为9.60eV图7图613.下列说法正确的是( )A .α射线与γ射线都是电磁波B .β射线为原子的核外电子电离后形成的电子流C .用加温、加压或改变其化学状态的方法都不能改变原子核衰变的半衰期D .原子核经过衰变生成新核,则新核的质量总等于原核的质量14.关于核衰变和核反应的类型,下列表述正确的有( )A.238 92U →234 92Th +42He 是α衰变B.14 7N +42He →17 8O +11H 是β衰变C.21H +31H →42He +10n 是轻核聚变D.8234Se →8236Kr +2 0-1e 是重核裂变15.以下是两个核反应方程:①235 92U +10n →9038Sr +135 54Xe +a ;②94Be +b →12 6C +10n ,其中a 、b 各为一个或多个粒子.关于上述两个方程,下列说法正确的是( )A .a 为1010n ,反应①不是裂变B .a 为1110n ,反应①是裂变C .b 为31H ,反应②不是聚变D .b 为42He ,反应②是聚变16.原子核A Z X 与氘核21H 反应生成一个α粒子和一个质子.由此可知( )A .A =2,Z =1B .A =2,Z =2C .A =3,Z =3D .A =3,Z =2二、实验题(每小题3分,共12分。
(精心整理,诚意制作)××市一中20xx—20xx学年第二学期期末20xx级考试题物 理命题、审核:王 谦校对:王 植一、选择题(共16小题,每小题4分,共64分。
每小题各选项中至少有一个是正确的,请将正确的选项涂在答题卡上,全选对得4分,选对但不全得2分,错选或不选得零分)1.光导纤维的结构如图1所示,其内芯和外套材料不同,光在内芯中传播.以下关于光导纤维的说法正确的是()图1A.内芯的折射率比外套大,光传播时在内芯与外套的界面发生全反射B.内芯的折射率比外套小,光传播时在内芯与外套的界面发生全反射C.内芯的折射率比外套小,光传播时在内芯与外套的界面发生折射D.内芯的折射率比外套相同,外套的材料有韧性,可以起保护作用2.如图2所示,a、b、c三条光线交于一点S,如果在S点前任意位置放一块平面镜M,则a、b、c三条光线的反射光线()A.可能交于一点,也可能不交于一点B.一定不交于一点C.一定交于平面镜前一点 D.反射光线的反向延长线交于镜后一点3.关于岸上的人看到的水中的鱼,下列说法中正确的是() 图2A.人看到鱼的像是实像,比实际位置浅B.人看到鱼的像是虚像,比实际位置浅C.鱼看到的是人的实像,位置偏低些D.鱼看到的是人的虚像,位置偏高些4.对于光的衍射现象,下述定性分析中错误的是()A.光的衍射是光在传播过程中绕过障碍物继续传播的现象B.光的衍射否定了光的直线传播的结论C.光的衍射现象为光的波动说提供了有力的证据D.光能发生明显衍射的条件是光的波长与孔或障碍物尺寸可比拟5.在电磁波谱中()A.各种电磁波有明显的频率和波长区域界限B.γ射线的频率一定高于伦琴射线的频率C.伦琴射线的波长有可能等于紫外线的波长D.可见光波长一定比无线电波的波长短6.下列几种应用或技术中,用到光的干涉原理的是()A.照相机镜头上的增透膜B.透过羽毛看到白炽灯呈现彩色C.在磨制平面时,检查加工表面的平整度D.在医疗中用X射线进行透视7.如图3所示,两光屏间放有两个偏振片,它们四者平行共轴,现让太阳光沿轴线通过光屏M上的小孔照射到固定不动的偏振片P上,再使偏振片Q绕轴匀速转动一周,则关于光屏上光的亮度变化情况,下列说法中正确的是() A.光屏上光的亮度保持不变B.光屏上光的亮度会时亮时暗C.光屏上有两条与偏振片P、Q透振方向对应的亮线 图3 D.光屏上只有一条亮线随偏振片转动而转动8.在双缝干涉实验中,双缝到光屏上P点的距离之差为Δx=0.6μm,若分别用频率为f1=5.0×1014Hz和f2=7.5×1014Hz的单色光垂直照射双缝,则P点出现明、暗条纹的情况是() A.用频率为f1的单色光照射时,出现明条纹B.用频率为f2的单色光照射时,出现明条纹C.用频率为f1的单色光照射时,出现暗条纹D.用频率为f2的单色光照射时,出现暗条纹9.在如图4所示的实验中,发现用一定频率的A单色光照射光电管时,电流表指针会发生偏转,而用另一频率的B单色光照射时不发生光电效应,那么()A.A光的频率一定等于光电管金属材料的极限频率B.B光的频率小于A光的频率C.用A光照射光电管时流过电流表G的电流方向是a流向bD.用A光照射光电管时流过电流表G的电流方向是b流向a 图410.卢瑟福的原子核式结构学说初步建立了原子结构的正确图景,能解决的问题有()A.解释α粒子散射现象B.用α粒子散射数据估算原子核的大小C.结合经典电磁理论解释原子的稳定性 D.结合经典电磁理论解释氢光谱11.若规定氢原子处于基态时的能量为E1=0,则其他各激发态的能量依次为E2=10.2eV、E3=12.09eV、E4=12.75eV、E5=13.06eV……在气体放电管中,处于基态的氢原子受到能量为12.8eV的高速电子轰击而跃迁到激发态,在这些氢原子从激发态向低能级跃迁的过程中()A.总共能辐射出6种不同频率的光子B.总共能辐射出10种不同频率的光子C.辐射出波长最长的光子是从n=4跃迁到n=3能级时放出的D.辐射出波长最长的光子是从n=5跃迁到n=4能级时放出的12.氢原子的能级如图5所示.一群氢原子处于n=3的激发态,在向基态跃迁的过程中,下列说法中正确的是()A.这群氢原子能发射出三种频率不同的光,其中从n=3跃迁到n=2所发出的光的波长最短B.这群氢原子能发射出两种频率不同的光,B.P1、P2及P3、P4之间的距离取得小些,可以提高准确度C.入射角θ1尽量大些,可以提高准确度D.入射角太大,折射光线会在玻璃砖的内表面发生全反射,使实验无法进行18.用两面平行的玻璃砖测定玻璃的折射率的实验中,已画好玻璃砖界面aa′和bb′后,不慎将玻璃砖向上平移了一些,放在图7所示的位置上,而实验中其他操作均正确,测得的折射率将()A.偏大B.偏小C.不变D.无法确定19.在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干涉条纹.若在双缝中的一缝前放一红色滤光片(只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),这时()A.只有红色和绿色的双缝干涉条纹,其他颜色的双缝干涉条纹消失B.红色和绿色的双缝干涉条纹消失,其他颜色的双缝干涉条纹依然存在C.任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮D.屏上无任何光亮20.利用图8中装置研究双缝干涉现象时,下面几种说法正确的是( )图8A.将屏移近双缝,干涉条纹间距变窄B.将滤光片由蓝色的换成红色的,干涉条纹间距变宽C.将单缝向双缝移动一小段距离后,干涉条纹间距变宽D.换一个两缝之间距离较大的双缝,干涉条纹间距变窄三、计算题(共3小题,24分。
2009年普通高等学校招生全国统一考试试题卷(全国II)答案解析第一部分英语知识运用第一节语音知识1. C reply 中的字母y发/ai/音,与所给选项一致,其余都是发短音/i/2. A 所给单词中的字母c发/s/音,A项符合,其余各项均发/k/3. D 所给单词中的字母组合ei发/i:/音,D项符合,其余各项均发/ei/4. B 所给单词中的字母i发短音/i/, B项符合,其余各项均发/ai/5.B 所给单词中的字母x发/gz/, B项符合,其余各项均发/ks/第二节语法和词汇知识6. A it is said that …句式,“据说…..”7. D 上文的alone 决定着下文只能是no one “没有人”8. C so far 就决定着本句话的时态,应该是现在完成时。
9. A 前文说了孩子们喜欢他们的旅程,所以是最喜欢骑马旅行部分。
10. D 这是一个插入语的用法。
“菜单中的菜够两到三人吃的,除非……”11. B 根据后半句话的“他们知道你在等着答复”可以判断得出答案。
12. C 此句前半句说明CDs在甩卖,所以才有下文的“买一送一”13. A “as a result of”“由于…….的原因”“作为…….的结果”所以只有他适合。
14. D 第一个空表示泛指“一本书”,第二个空要表示特指“油画”的基础知识。
15 .B 前文的leave表示离开俱乐部,那么后文就应该选择“不允许”返回来了。
16. D keep the traffic running smoothly 这里是“保持交通顺畅”的意思,running 现在分词做宾语补足语。
17. A 本句为非限制性定语从句,which指代前面整个句子所表达的内容。
18 .B 本题的关键在于long 的词性,其为形容词,那么要用副词too来修饰,much表示程度,还可以再继续修饰副词,所以选择B.19. C 根据答语的后半部分“事实上”这句话判断,那么回答者应该是也觉得有些热了,所以选择C最为恰当。
2008-2009学年度河南省开封市第二学期高二必修模块测试地理试卷本试卷分第1卷(选择题)和第Ⅱ卷(答题卷)两部分。
全卷共100分。
考试用时l00分钟。
注意事项:1.选择题每小题选出答案后,在答题卷上写出对应的答案.答在试题卷上无效2.考试结束后.只交第Ⅱ卷(答题卷)及答题卡第Ⅰ卷一、单项选择题(本大题共30小题,每小题2分,共计60分)读“我国沿32°N所作的地形剖面图”,回答l~2题。
1.关于A地形区的叙述,正确的是()A.地表崎岖多山,石灰岩广布B.气候夏季高温多雨,冬季寒冷干燥C.河流多属于内流河,其中塔里木河是我国最大的内流河D.土地利用类型以草地为主,耕地主要分布于地势较低的河谷地带2.乙所属的地势阶梯分布的主要地形是()A.山地和高原B.高原和盆地C.盆地和平原D.平原和丘陵黄河是中华民族的摇篮,被誉为中华民族的“母亲河”,是我国开发整治的重点河流之一。
读“黄河流域示意图”,回答3~4题。
3.关于黄河的叙述,正确的是()A.黄河流经四川盆地,上游多高山、峡谷B.黄河的泥沙主要来自中游的黄土高原C.从河流的长度、水龄来看,均为我国第二大河D.黄河下游为“地上河”,易决口成灾,加固防洪大堤是治理黄河的根本4.“黄河之水天上来,奔流到海不复还”,诗中的“灭”和“海”指的是()A.唐古拉山与渤海B.喜马拉雅山与东海C.昆仑山与东海D.巴颜喀拉山与渤海读某区域等高线分布图,回答5~6题。
5.图示地区可重点发展的经济作物是()A.天然橡胶B.棉花C.茶叶D.甜菜6.该区国土整治面临的主要问题是()①水土保持②防治沙漠化③酸性土壤改良④盐碱地整治A.①②B.②③C.①③D.②④7.我国西南地区交通建设较为落后的主要原因是()A.气候条件恶劣B.人口稀少,经济落后C.资源贫乏,位置偏僻D.地形地势复杂8.有关我国西南地区的叙述,正确的是()A.地壳构造活动活跃,地质灾害频发B.均为广大的高原,发育了典型的喀斯特地貌C.地处太平洋板块和亚欧板块碰撞带D.地势西高东低,大江大河均向东流读“我国华北某地区等高线图”,回答9~12题。
北京市朝阳区普通高中数学学科高二年级模块(二)试卷
2009.11
(考试时间100分钟,卷面总分:150分)
注意:本试卷分两部分。
第一部分为模块考试题,共100分。
第二部分为非模块考试题,共50分。
【第一部分模块考试题】
一、选择题(满分60分,共12小题,每题5分)
1.下列说法正确的是()
A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台
B.棱柱的底面一定是平行四边形
C.棱锥的底面一定是三角形
D.用任意一个平面去截球体得到的截面一定是一个圆面
2.给出下列几种关于投影的说法, 正确的是( )
A. 矩形的平行投影一定是矩形
B.平行直线的平行投影仍是平行直线
C.垂直于投影面的直线或线段的正投影是点
D.中心投影的投影线是互相平行的
3.如图⑴、⑵、⑶为三个几何体的三视图,根据三视图可以判断这三个几何体依次分别为()
A.三棱台、三棱柱、圆台 B. 三棱锥、圆锥、圆台
C. 四棱锥、圆锥、圆台
D.四棱锥、圆台、圆锥
4.已知两个球的半径之比为1:2,则这两个球的表面积之比为()
A. 1:2
B. 1:4
C. 1:6
D. 1:8
5.下列说法正确的是()
A.如果,a b是两条直线,且a b,那么a平行于经过b的任何平面
B.如果直线a和平面α满足a α,那么a与α内的任何直线平行
C.如果两条直线都平行于同一个平面,那么这两条直线互相平行
D. 如果两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直
6.在如图所示的正方体1111ABCD A B C D -中,
E 、
F 分别为11A B 、1BB 的中点,则异面
直线EF 与1B C 所成角为( )
A. 45
B. 60
C.90
D. 120
7.若l 为一条直线,αβγ,,为三个互不重合的平面,给出下面四个命题:
A.αγβγαβ⊥⊥⇒⊥,
B.αγβγαβ⊥⇒⊥,∥
C.l l ααββ⊥⇒⊥∥,
D.αγβγαβ⊥⊥⇒,
其中正确的命题是 ( )
8. 一条直线的倾斜角是56
π,则该直线的斜率是 ( ) A .3 B . 3- C . 33 D . 3
3- 9.设直线l 的方程为:y kx b =+,当0k <,0b <时,直线l 不通过( )
A .第一象限
B . 第二象限
C .第三象限
D .第四象限
10. 方程(1)y k x =+表示( )
A.通过点(1,0)的所有直线
B.通过点(1,0)-的所有直线
C. 通过点(1,0)-且不垂直于x 轴的直线
D. 通过点(1,0)-且除去x 轴的直线
11. 已知两圆的方程分别是22(1)(1)4x y ++-=,22(2)(1)1x y -+-=,则两圆的位置关系为( )
A .相交
B .内含
C .外切
D .内切
12.已知直线l :y x m =+与半圆C :224x y +=( 0y ≥ )有两个公共点,则实数m 的取值范围是( )
A.. 2m ≤<
B.2m <<
C. m -<
D.2m ≤≤
二、填空题(满分20分,共4小题,每小题5分)
13.已知各面都是正三角形的四面体棱长为1,则它的表面积是 .
14.一个正方体的八个顶点都在球面上,它的棱长为1,则球的半径为 .
15.过点(1,1)与直线210x y +-=垂直的直线方程为 .
16.已知点M (1,1,1)是以点O 为坐标原点的空间直角坐标系O xyz 中的一点,则 OM = ;点M 关于y 轴的对称点M '的坐标是 .
三、解答题(满分20分,共2小题)
17. (本题满分8分)
已知圆C :222440x y x y +---=.
(Ⅰ)设圆C 与x 轴交于A 、B 两个点,求线段AB 的长;
(Ⅱ) 过点(4,3)作圆C 的切线,求切线的方程.
18. (本题满分12分)
已知正方体1111ABCD A B C D -.
(Ⅰ)求1CD 与平面11ADD A 所成角;
(Ⅱ) 求证:1D C 平面1A BD ;
(Ⅲ)求证:平面11ACC A ⊥平面1A BD .
C 1
D 1
A
【第二部分非模块考试题】
四、填空题(满分30分.共6小题,每小题5分)
19.三棱柱111ABC A B C -的各棱长均为1,且1AA ⊥底面ABC ,E F 、分别是11AB AC 、的中点,则EF 的长是 .
20.若一个底面为正三角形,侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的高是_______;底面边长是_______.
21. ABC ∆中, 5AB =,4AC =,3BC =,若该三角形绕边BC 旋转一周,则所形成的几何体的体积是_______.
22.已知点P (2,2),(0,1)Q 直线l :10x y --=,则点P 关于点Q 的对称点1P 坐标是 _______;点P 关于直线l 的对称点2P 的坐标是_______.
23. 已知A (1,0)-B (1,0), 点C 、点D 满足14,()2
AC AD AB AC ==+ ,则点C 的轨迹方程是 ;点D 的轨迹方程是 .
24.已知对于圆1)1(22=-+y x 上任一点(,)P x y ,不等式0x y a ++≤恒成立,则实数a 的取值范围是 .
正视图 俯视图
侧视图
五、解答题(满分20分,共2小题)
25.(本题满分10分) 如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,
底面ABCD 为正方形,2PD DC ==,G ,F 分别是
,AD PB 的中点. (Ⅰ)求证:PA CD ⊥; (Ⅱ)证明:GF ⊥平面PCB ;
(Ⅲ)求二面角A PB C --的大小.
26. (本题满分10分)
已知圆C:22240x y x y k ++-+= (5k <).
(Ⅰ)若1k =,圆C 内有一点0(2,3)P -,经过0P 的直线l 与圆
C 交于A 、B 两点,当弦AB 恰被0P 平分时,求直线l 的方程;
(Ⅱ)若圆C 与直线10x y ++=交于P 、Q 两点,是否存在实数k ,使OP OQ ⊥(O 为原点)?如果存在,求出k 的值,如果不存在,说明理由.。