【精准解析】山东省潍坊市昌乐二中2019-2020学年高一上学期第二次调研考试语文试题
- 格式:pdf
- 大小:569.67 KB
- 文档页数:24
山东省潍坊市2019-2020学年高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量(1,2),(3,1)a b =-=-r r,则( )A .a r∥b rB .a r⊥b rC .a r∥(a b -rr)D .a r⊥( a b -rr)【答案】D 【解析】 【分析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论. 【详解】∵向量a =r(1,﹣2),b =r(3,﹣1),∴a r和b r的坐标对应不成比例,故a r、b r不平行,故排除A ;显然,a r •b =r 3+2≠0,故a r 、b r不垂直,故排除B ;∴a b -=rr(﹣2,﹣1),显然,a r和a b -rr的坐标对应不成比例,故a r和a b -rr不平行,故排除C ; ∴a r•(a b -rr)=﹣2+2=0,故 a r⊥(a b -rr),故D 正确, 故选:D. 【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题. 2.若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c bC .a c <b cD .c a >c b【答案】B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.3.已知非零向量a v ,b v 满足||a b v v |=|,则“22a b a b +=-v vv v ”是“a b ⊥v v ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:【答案】C 【解析】 【分析】根据向量的数量积运算,由向量的关系||02|2|a b a b a a b b +=-⇔⋅⇔=⊥r r r r r r r r,可得选项.【详解】222222||||22224444a b a b a b a b a a b b a a b b -⇔⇔++-+⋅+-⋅+r r r r r r r r r r r r r r r r ===,||||0a b =≠r r Q ,∴等价于0a b a b ⋅=⇔⊥r r r r,故选:C. 【点睛】本题考查向量的数量积运算和命题的充分、必要条件,属于基础题. 4.计算2543log sin cosππ⎛⎫⎪⎝⎭等于( ) A .32-B .32C .23-D .23【答案】A 【解析】 【分析】利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值. 【详解】原式2221log cos 2log cos log 332πππ⎤⎤⎤⎛⎫⎛⎫=-==⎥⎥⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦3223log 22-==-. 故选:A 【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.5.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在[250,350]内的学生人数为( )A .800B .1000C .1200D .1600【答案】B 【解析】 【分析】由图可列方程算得a ,然后求出成绩在[250,350]内的频率,最后根据频数=总数×频率可以求得成绩在[250,350]内的学生人数.【详解】由频率和为1,得(0.0020.00420.002)501a +++⨯=,解得0.006a =, 所以成绩在[250,350]内的频率(0.0040.006)500.5=+⨯=, 所以成绩在[250,350]内的学生人数20000.51000=⨯=. 故选:B 【点睛】本题主要考查频率直方图的应用,属基础题.6.已知实数x ,y 满足约束条件2211x y y x y kx +≥⎧⎪-≤⎨⎪+≥⎩,若2z x y =-的最大值为2,则实数k 的值为( )A .1B .53C .2D .73【答案】B 【解析】 【分析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解k 即可. 【详解】可行域如图中阴影部分所示,22,111B k k ⎛⎫+⎪--⎝⎭,421,2121k C k k -⎛⎫ ⎪++⎝⎭,要使得z 能取到最大值,则1k >,当12k <≤时,x 在点B 处取得最大值,即2221211k k ⎛⎫⎛⎫-+=⎪ ⎪--⎝⎭⎝⎭,得53k =;当2k >时,z 在点C 处取得最大值,即421222121k k k -⎛⎫⎛⎫-= ⎪ ⎪++⎝⎭⎝⎭,得76k =(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.7.定义在[]22-,上的函数()f x 与其导函数()f x '的图象如图所示,设O 为坐标原点,A 、B 、C 、D 四点的横坐标依次为12-、16-、1、43,则函数()xf x y e=的单调递减区间是( )A .14,63⎛⎫-⎪⎝⎭ B .1,12⎛⎫-⎪⎝⎭C .11,26--⎛⎫⎪⎝⎭D .()1,2【答案】B 【解析】 【分析】先辨别出图象中实线部分为函数()y f x =的图象,虚线部分为其导函数的图象,求出函数()xf x y e=的导数为()()xf x f x y e'='-,由0y '<,得出()()f x f x '<,只需在图中找出满足不等式()()f x f x '<对应的x 的取值范围即可. 【详解】若虚线部分为函数()y f x =的图象,则该函数只有一个极值点,但其导函数图象(实线)与x 轴有三个交点,不合乎题意;若实线部分为函数()y f x =的图象,则该函数有两个极值点,则其导函数图象(虚线)与x 轴恰好也只有两个交点,合乎题意. 对函数()xf x y e=求导得()()xf x f x y e'='-,由0y '<得()()f x f x '<,由图象可知,满足不等式()()f x f x '<的x 的取值范围是1,12⎛⎫-⎪⎝⎭, 因此,函数()xf x y e =的单调递减区间为1,12⎛⎫- ⎪⎝⎭.故选:B. 【点睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.8.已知实数x ,y 满足10260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,则22z x y =+的最大值等于( )A .2 B.C .4D .8【答案】D 【解析】 【分析】画出可行域,计算出原点到可行域上的点的最大距离,由此求得z 的最大值. 【详解】画出可行域如下图所示,其中()51,,2,22A C ⎛⎫ ⎪⎝⎭,由于OA ==OC =,所以OC OA >,所以原点到可行域上的点的最大距离为所以z 的最大值为()2228=.故选:D【点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题. 9.已知复数为纯虚数(为虚数单位),则实数( ) A .-1 B .1C .0D .2【答案】B 【解析】 【分析】 化简得到,根据纯虚数概念计算得到答案.【详解】为纯虚数,故且,即.故选:. 【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力. 10. “tan 2θ=”是“4tan 23θ=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A 【解析】首先利用二倍角正切公式由4tan 23θ=-,求出tan θ,再根据充分条件、必要条件的定义判断即可; 【详解】解:∵22tan 4tan 21tan 3θθθ==--,∴可解得tan 2θ=或12-, ∴“tan 2θ=”是“4tan 23θ=-”的充分不必要条件.故选:A 【点睛】本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题. 11.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数12()4324x x f x -=-⋅+(02x <<),则函数[]()y f x =的值域为( ) A .13,22⎡⎫-⎪⎢⎣⎭B .{}1,0,1-C .{}1,0,1,2-D .{}0,1,2【答案】B 【解析】 【分析】利用换元法化简()f x 解析式为二次函数的形式,根据二次函数的性质求得()f x 的取值范围,由此求得[]()y f x =的值域.【详解】 因为12()4324x x f x -=-⋅+(02x <<),所以()21241324232424x x x x y =-⋅+=-⋅+,令2x t =(14t <<),则21()342f t t t =-+(14t <<),函数的对称轴方程为3t =,所以min 1()(3)2f t f ==-,max 3()(1)2f t f ==,所以13(),22f x ⎡⎫∈-⎪⎢⎣⎭,所以[]()y f x =的值域为{}1,0,1-. 故选:B 【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.12.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .4根据等差数列的求和公式即可得出. 【详解】 ∵a 1=12,S 5=90, ∴5×12+542⨯ d=90, 解得d=1. 故选C . 【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
山东省潍坊市2019-2020学年高考第二次质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数x,y满足约束条件2211x yy xy kx+≥⎧⎪-≤⎨⎪+≥⎩,若2z x y=-的最大值为2,则实数k的值为()A.1 B.53C.2 D.73【答案】B【解析】【分析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解k即可.【详解】可行域如图中阴影部分所示,22,111Bk k⎛⎫+⎪--⎝⎭,421,2121kCk k-⎛⎫⎪++⎝⎭,要使得z能取到最大值,则1k>,当12k<≤时,x在点B处取得最大值,即2221211k k⎛⎫⎛⎫-+=⎪ ⎪--⎝⎭⎝⎭,得53k=;当2k>时,z在点C 处取得最大值,即421222121kk k-⎛⎫⎛⎫-=⎪ ⎪++⎝⎭⎝⎭,得76k=(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.2.30x y m-+=过双曲线C:22221(0,0)x ya ba b-=>>的左焦点F,且与双曲线C在第二象限交于点A,若||||FA FO=(O为坐标原点),则双曲线C的离心率为A.2B.31C5D51【答案】B【解析】【分析】【详解】0y m -+=的倾斜角为π3,易得||||FA FO c ==.设双曲线C 的右焦点为E ,可得AFE △中,90FAE ∠=o ,则||AE =,所以双曲线C 的离心率为1e =.故选B .3.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知4cos sin b B C =,则B =( ) A .6π或56π B .4π C .3π D .6π或3π 【答案】D【解析】【分析】根据正弦定理得到4sin cos sin B B C C =,化简得到答案.【详解】由4cos sin b B C =,得4sin cos sin B B C C =,∴sin 2B =23B π=或23π,∴6B π=或3π. 故选:D【点睛】 本题考查了正弦定理解三角形,意在考查学生的计算能力.4.已知角a 的终边经过点()()4,30P m m m -≠,则2sin cos a a +的值是( )A .1或1-B .25或25-C .1或25-D .1-或25 【答案】B【解析】【分析】根据三角函数的定义求得sin ,cos a a 后可得结论.【详解】由题意得点P 与原点间的距离5r m ==.①当0m >时,5r m =, ∴3344sin ,cos 5555m m a a m m -====-, ∴3422sin cos 2555a a +=⨯-=. ②当0m <时,5r m =-,3344m m -∴3422sin cos 2555a a ⎛⎫+=⨯-+=- ⎪⎝⎭. 综上可得2sin cos a a +的值是25或25-. 故选B .【点睛】 利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x ,纵坐标y ,该点到原点的距离r ,然后再根据三角函数的定义求解即可. 5.函数()()sin f x A x =+ωϕ(其中0A >,0>ω,2πϕ<)的图象如图,则此函数表达式为( )A .()3sin 24f x x π⎛⎫=+ ⎪⎝⎭ B .()13sin 24f x x π⎛⎫=+ ⎪⎝⎭ C .()3sin 24f x x π⎛⎫=-⎪⎝⎭ D .()13sin 24πf x x ⎛⎫=- ⎪⎝⎭ 【答案】B【解析】 【分析】 由图象的顶点坐标求出A ,由周期求出ω,通过图象经过点3,02π⎛⎫⎪⎝⎭,求出ϕ,从而得出函数解析式. 【详解】解:由图象知3A =,534422T πππ⎛⎫=-= ⎪⎝⎭,则2142ωπ==π, 图中的点3,02π⎛⎫ ⎪⎝⎭应对应正弦曲线中的点(,0)π, 所以1322πϕπ⨯+=,解得4πϕ=, 故函数表达式为()13sin 24f x x π⎛⎫=+⎪⎝⎭. 故选:B.本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.6.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( )A .5B .7C -D .9- 【答案】D【解析】【分析】设x θ=,sin y θ=,去绝对值,根据余弦函数的性质即可求出.【详解】因为实数x ,y 满足2212x y +„,设x θ=,sin y θ=,222222222|2||67||2cos sin 2||2cos sin 7||sin |x y x y x θθθθθθ∴+-++-+=+-++-+=-+2|cos 8|θθ-+,22cos 8(cos 100θθθ-+=-->Q 恒成立,222222|2||67|sin cos 899x y x y x θθθθ∴+-++-+=+-+=--…故则2222|2||67|x y x y x +-++-+的最小值等于9-.故选:D .【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.7.已知函数31()sin ln 1x f x x x x +⎛⎫=++ ⎪-⎝⎭,若(21)(0)f a f ->,则a 的取值范围为( ) A .1,2⎛⎫+∞ ⎪⎝⎭ B .()0,1 C .1,12⎛⎫ ⎪⎝⎭ D .10,2⎛⎫ ⎪⎝⎭【答案】C【解析】【分析】求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.由101x x +>-得11x -<<, 在(1,1)x ∈-时,3y x =是增函数,sin y x =是增函数,12ln ln(1)11x y x x+==-+--是增函数,∴31()sin ln 1x f x x x x +⎛⎫=++ ⎪-⎝⎭是增函数, ∴由(21)(0)f a f ->得0211a <-<,解得112a <<. 故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.8.函数2sin 1x x y x +=+的部分图象大致为( ) A .B .C .D .【答案】B【解析】【分析】 图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。
2019-2020学年山东省昌乐县第二中学新高考化学模拟试卷一、单选题(本题包括15个小题,每小题4分,共60分.每小题只有一个选项符合题意)1.某种新型热激活电池的结构如图所示,电极a的材料是氧化石墨烯(CP)和铂纳米粒子,电极b的材料是聚苯胺(PANI),电解质溶液中含有Fe3+和Fe2+。
加热使电池工作时电极b发生的反应是PANI-2e-=PANIO (氧化态聚苯胺,绝缘体)+2H+,电池冷却时Fe2+在电极b表面与PANIO反应可使电池再生。
下列说法不正确的是A.电池工作时电极a为正极,且发生的反应是:Fe3++e-—Fe2+B.电池工作时,若在电极b周围滴加几滴紫色石蕊试液,电极b周围慢慢变红C.电池冷却时,若该装置正负极间接有电流表或检流计,指针会发生偏转D.电池冷却过程中发生的反应是:2Fe2++PANIO+2H+=2Fe3++ PANI【答案】C【解析】【分析】根据b上发生氧化反应可知b为负极,再由题中信息及原电池原理解答。
【详解】A.根据b极电极反应判断电极a是正极,电极b是负极,电池工作时电极a上的反应是Fe3++e-=Fe2+,A 正确;B.电池工作时电极b发生的反应是PANI-2e-=PANIO(氧化态聚苯胺,绝缘体)+2H+,溶液显酸性,若在电极b周围滴加几滴紫色石蕊试液,电极b周围慢慢变红,B正确;C.电池冷却时Fe2+是在电极b表面与PANIO反应使电池再生,因此冷却再生过程电极a上无电子得失,导线中没有电子通过,C错误;D.电池冷却时Fe2+是在电极b表面与PANIO反应使电池再生,反应是2Fe2++ PANIO+2H+ =2Fe3++PANI,D 正确;答案选C。
【点睛】挖掘所给反应里包含的信息,判断出正负极、氢离子浓度的变化,再联系原电池有关原理进行分析解答。
2.25℃时,向20. 00 mL 0.1 mol/L H2X溶液中滴入0.1 mo1/L NaOH溶液,溶液中由水电离出的c水(OH-)的负对数[一lgc水(OH-)]即pOH水-与所加NaOH溶液体积的关系如图所示。
山东省潍坊市2019-2020学年高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( ).A .26B .4C .23D .22【答案】A 【解析】 【分析】作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可. 【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且2AD AB ==,4BC =,PA ⊥平面ABCD ,且2PA =,∴22222PB =+=222222PD =+=,22CD =2242026PC PA AC =+=+= ∴这个四棱锥中最长棱的长度是26 故选A . 【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.2.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是().金牌(块)银牌(块)铜牌(块)奖牌总数24 5 11 12 2825 16 22 12 5426 16 22 12 5027 28 16 15 5928 32 17 14 6329 51 21 28 10030 38 27 23 88A.中国代表团的奥运奖牌总数一直保持上升趋势B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C.第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D.统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.5【答案】B【解析】【分析】根据表格和折线统计图逐一判断即可.【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D. 统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为545956.52+=,不正确;故选:B【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.3.过抛物线()2:20E x py p =>的焦点F 作两条互相垂直的弦AB ,CD ,设P 为抛物线上的一动点,(1,2)Q ,若111||||4AB CD +=,则||||PF PQ +的最小值是( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】设直线AB 的方程为2p y kx =+,代入22x py =得:2220x pkx p --=,由根与系数的关系得2A B x x pk +=,2A B x x p =-,从而得到()2||21AB p k =+,同理可得21||2(1)CD p k=+,再利用111||||4AB CD +=求得p 的值,当Q ,P ,M 三点共线时,即可得答案. 【详解】根据题意,可知抛物线的焦点为(0,)2p,则直线AB 的斜率存在且不为0, 设直线AB 的方程为2p y kx =+,代入22x py =得:2220x pkx p --=. 由根与系数的关系得2A B x x pk +=,2A B x x p =-,所以()2||21AB p k=+.又直线CD 的方程为12p y x k =-+,同理21||2(1)CD p k=+, 所以221111111||||2(1)242(1)AB C p k p kD p +=+==++,所以24p =.故24x y =.过点P 作PM 垂直于准线,M 为垂足, 则由抛物线的定义可得||||PF PM =.所以||||||||||3PF PQ PM PQ MQ +=+≥=,当Q ,P ,M 三点共线时,等号成立. 故选:C. 【点睛】本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.4.已知函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,则1(())f f e =( )A .32B .1C .-1D .0【答案】A 【解析】 【分析】由函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,求得11()ln 1f e e ==-,进而求得1(())f f e 的值,得到答案.【详解】由题意函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,则11()ln 1f e e ==-,所以1313(())(1)2(1)2f f f e -=-=--=,故选A. 【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.5.已知函数()sin f x a x x =的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( )A .3π-B .0C .3π D .23π 【答案】D 【解析】 【分析】运用辅助角公式,化简函数()f x 的解析式,由对称轴的方程,求得a 的值,得出函数()f x 的解析式,集合正弦函数的最值,即可求解,得到答案. 【详解】由题意,函数()sin )(f x a x x x θθ==+为辅助角), 由于函数的对称轴的方程为56x π=,且53()622a f π=+,即322a +=1a =,所以()2sin()3f x x π=-, 又由12()()4f x f x ⋅=-,所以函数必须取得最大值和最小值,所以可设11152,6x k k Z ππ=+∈,2222,6x k k Z ππ=-∈, 所以1212222,3x x k k k Z πππ+=++∈,当120k k ==时,12x x +的最小值23π,故选D. 【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 6.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC 、直角边AB AC 、,已知以直角边AC AB 、为直径的半圆的面积之比为14,记ABC α∠=,则2cos sin 2αα+=( )A .35B .45C .1D .85【答案】D 【解析】 【分析】根据以直角边AC AB 、为直径的半圆的面积之比求得12AC AB =,即tan α的值,由此求得sin α和cos α的值,进而求得所求表达式的值. 【详解】由于直角边AC AB 、为直径的半圆的面积之比为14,所以12AC AB =,即1tan 2α=,所以sin 55αα==2cos sin 2αα+=4825555+=. 故选:D【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题. 7.设01p <<,随机变量ξ的分布列是ξ1-0 1P1(1)3p - 2313p 则当p 在(,)34内增大时,( )A .()E ξ减小,()D ξ减小B .()E ξ减小,()D ξ增大C .()E ξ增大,()D ξ减小 D .()E ξ增大,()D ξ增大【答案】C 【解析】 【分析】1121()(1)(1)3333E p p p ξ=-⨯-+=-,22()()()D E E ξξξ=-,判断其在23(,)34内的单调性即可.【详解】解:根据题意1121()(1)(1)3333E p p p ξ=-⨯-+=-在23,34p ⎛⎫∈ ⎪⎝⎭内递增, 22111()(1)(1)333E p p ξ=-⨯-+=222221121442411()()()(1)()3333999923D E E p p p p p p ξξξ⎛⎫=-=-+--=-++=-- ⎪+⎝⎭,是以12p =为对称轴,开口向下的抛物线,所以在23,34⎛⎫⎪⎝⎭上单调递减,故选:C . 【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题. 8.已知集合{2,3,4}A =,集合{},2B m m =+,若{2}A B =I ,则m =( ) A .0 B .1C .2D .4【答案】A 【解析】 【分析】根据2m =或22m +=,验证交集后求得m 的值. 【详解】因为{2}A B =I ,所以2m =或22m +=.当2m =时,{2,4}A B =I ,不符合题意,当22m +=时,0m =.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.9.已知函数2log (1),1()3,1x x x f x x -->⎧=⎨≤⎩,则[](2)f f -=( )A .1B .2C .3D .4【答案】C 【解析】【分析】结合分段函数的解析式,先求出(2)f -,进而可求出[](2)f f -. 【详解】由题意可得2(2)39f -==,则[]2(9)log (913(2))f f f =-==-.故选:C. 【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题. 10.已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ). A .0 B .1 C .2 D .3【答案】C 【解析】 【分析】设切点为()00x ,y ,则300y x =,由于直线l 经过点()1,1,可得切线的斜率,再根据导数的几何意义求出曲线在点0x 处的切线斜率,建立关于0x 的方程,从而可求方程. 【详解】若直线与曲线切于点()()000x ,y x 0≠,则32000000y 1x 1k x x 1x 1x 1--===++--, 又∵2y'3x =,∴200y'x x 3x ==,∴2002x x 10--=,解得0x 1=,01x 2=-, ∴过点()P 1,1与曲线3C :y x =相切的直线方程为3x y 20--=或3x 4y 10-+=, 故选C . 【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题. 11.已知双曲线C 的两条渐近线的夹角为60°,则双曲线C 的方程不可能为( )A .221155x y -=B .221515x y -=C .221312y x -=D .221217y x -=【答案】C 【解析】 【分析】判断出已知条件中双曲线C 的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项. 【详解】两条渐近线的夹角转化为双曲渐近线与x 轴的夹角时要分为两种情况.依题意,双曲渐近线与x 轴的夹角为30°或60°,双曲线C 的渐近线方程为3y x =±或y =.A 选项渐近线为3y x =±,B 选项渐近线为y =,C 选项渐近线为12y x =±,D 选项渐近线为y =.所以双曲线C 的方程不可能为221312y x -=.故选:C 【点睛】本小题主要考查双曲线的渐近线方程,属于基础题. 12.某个命题与自然数n 有关,且已证得“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A .当8n =时,该命题不成立 B .当8n =时,该命题成立 C .当6n =时,该命题不成立 D .当6n =时,该命题成立【答案】C 【解析】 【分析】写出命题“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断. 【详解】由逆否命题可知,命题“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”的逆否命题为“假设当()1n k k N*=+∈时该命题不成立,则当n k =时该命题也不成立”,由于当7n =时,该命题不成立,则当6n =时,该命题也不成立,故选:C. 【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。
山东省潍坊市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2﹣8x﹣2=0,配方的结果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=142.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( ) A.B.C.D.3.如图所示的工件,其俯视图是()A.B.C.D.4.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.7105.如果a﹣b=5,那么代数式(22a bab+﹣2)•aba b-的值是()A.﹣15B.15C.﹣5 D.56.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(32,0)B.(2,0)C.(52,0)D.(3,0)7.1.桌面上放置的几何体中,主视图与左视图可能不同的是( ) A.圆柱B.正方体C.球D.直立圆锥8.如图,直线a,b被直线c所截,若a∥b,∠1=50°,∠3=120°,则∠2的度数为()A.80°B.70°C.60°D.50°9.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8 B.﹣8 C.﹣12 D.1210.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=42,则点G 到BE的距离是()A.165B.362C.322D.18511.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.13912.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.2B.4 C.32D.2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是_________.(写出一个即可)14.函数y=213x x +-的自变量x 的取值范围是_____. 15.如图的三角形纸片中,8,6,5AB cm BC cm AC cm ===,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则ADE ∆的周长为__________.16.方程1125x x ++-=的根为_____.17.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为____m.18.反比例函数y=2m x-的图象是双曲线,在每一个象限内,y 随x 的增大而减小,若点A (–3,y 1),B (–1,y 2),C (2,y 3)都在该双曲线上,则y 1、y 2、y 3的大小关系为__________.(用“<”连接)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在顶点为P 的抛物线y=a (x-h )2+k (a≠0)的对称轴1的直线上取点A (h ,k+14a ),过A 作BC ⊥l 交抛物线于B 、C 两点(B 在C 的左侧),点和点A 关于点P 对称,过A 作直线m ⊥l .又分别过点B ,C 作直线BE ⊥m 和CD ⊥m ,垂足为E ,D .在这里,我们把点A 叫此抛物线的焦点,BC 叫此抛物线的直径,矩形BCDE 叫此抛物线的焦点矩形.(1)直接写出抛物线y=14x 2的焦点坐标以及直径的长. (2)求抛物线y=14x 2-32x+174的焦点坐标以及直径的长. (3)已知抛物线y=a (x-h )2+k (a≠0)的直径为32,求a 的值. (4)①已知抛物线y=a (x-h )2+k (a≠0)的焦点矩形的面积为2,求a 的值.②直接写出抛物线y=14x 2-32x+174的焦点短形与抛物线y=x 2-2mx+m 2+1公共点个数分别是1个以及2个时m 的值.20.(6分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).21.(6分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形.22.(8分)豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.(2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论:.(写一条即可)(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为公里.(直接写出结果,精确到个位)23.(8分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S阴影=S1+S6=S1+S2+S3=.24.(10分)已知二次函数y=x2-4x-5,与y轴的交点为P,与x轴交于A、B两点.(点B在点A的右侧)(1)当y=0时,求x的值.(2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线MP与x轴交于点C,求cot∠MCB的值.25.(10分)某同学报名参加学校秋季运动会,有以下5 个项目可供选择:径赛项目:100m、200m、1000m (分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).(1)该同学从5 个项目中任选一个,恰好是田赛项目的概率P 为;(2)该同学从5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.26.(12分)如图,直线y=kx+b(k≠0)与双曲线y=mx(m≠0)交于点A(﹣12,2),B(n,﹣1).求直线与双曲线的解析式.点P在x轴上,如果S△ABP=3,求点P的坐标.27.(12分)如图,已知点A(1,a)是反比例函数y1=mx的图象上一点,直线y2=﹣1122x 与反比例函数y1=mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.Cx2-8x=2,x2-8x+16=1,(x-4)2=1.故选C.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.2.A【解析】根据轴对称图形的概念求解.解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A.“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B【解析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.4.D【解析】【分析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:7 10.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.5.D【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(22a bab+﹣2)•aba b-=222·a b ab abab a b+--=()2·a b ab ab a b--=a-b,当a-b=5时,原式=5,故选D.6.C【解析】【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.7.B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.考点:简单几何体的三视图.8.B【解析】【分析】直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案.【详解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠4的度数是解题关键.9.D【解析】【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故选D.【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.10.A【解析】【分析】根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得△BEG与△AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离.【详解】连接GB、GE,由已知可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB ∥GE .∵,AB 与GE 间的距离相等,∴GE=8,S △BEG =S △AEG =12S AEFG =1. 过点B 作BH ⊥AE 于点H ,∵AB=2,∴BH =AH∴HE =.∴BE =设点G 到BE 的距离为h .∴S △BEG =12•BE•h =12×h =1.∴h即点G 到BE 故选A .【点睛】本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解.11.B【解析】【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a ,b .【详解】∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.故选B .【点睛】本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键. 12.B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1【解析】试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k<1,b<1,随便写出一个小于1的b 值即可.∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<1,b<1.考点:一次函数图象与系数的关系14.x≥﹣12且x≠1【解析】分析:根据被开方数大于等于0,分母不等于0列式求解即可.详解:根据题意得2x+1≥0,x-1≠0,解得x≥-12且x≠1.故答案为x≥-12且x≠1.点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.15.7cm【解析】【分析】由折叠的性质,可知:BE=BC ,DE=DC ,通过等量代换,即可得到答案.【详解】∵沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,∴BE=BC ,DE=DC ,∴ADE ∆的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm ,故答案是:7cm【点睛】本题主要考查折叠的性质,根据三角形的周长定义,进行等量代换是解题的关键.16.﹣2或﹣7【解析】【分析】把无理方程转化为整式方程即可解决问题.【详解】两边平方得到:,,∴(x+11)(2-x )=36,解得x=-2或-7,经检验x=-2或-7都是原方程的解.故答案为-2或-7【点睛】本题考查无理方程,解题的关键是学会把无理方程转化为整式方程.17.3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴,CD DE FN MN AB BE FB AB ==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD ==++-, 解得:AB=3m ,答:路灯的高为3m.考点:中心投影.18.y2<y1<y1.【解析】【分析】先根据反比例函数的增减性判断出2-m的符号,再根据反比例函数的性质判断出此函数图象所在的象限,由各点横坐标的值进行判断即可.【详解】∵反比例函数y=2-mx的图象是双曲线,在每一个象限内,y随x的增大而减小,∴2−m>0,∴此函数的图象在一、三象限,∵−1<−1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案为y2<y1<y1.【点睛】本题考查的知识点是反比例函数图像上点的坐标特征,解题的关键是熟练的掌握列反比例函数图像上点的坐标特征.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)4(1)4(3)23(4)①a=±12;②当22时,1个公共点,当2<m≤1或5≤m<2时,1个公共点,【解析】【分析】(1)根据题意可以求得抛物线y=14x1的焦点坐标以及直径的长;(1)根据题意可以求得抛物线y=14x1-32x+174的焦点坐标以及直径的长;(3)根据题意和y=a(x-h)1+k(a≠0)的直径为32,可以求得a的值;(4)①根据题意和抛物线y=ax1+bx+c(a≠0)的焦点矩形的面积为1,可以求得a的值;②根据(1)中的结果和图形可以求得抛物线y=14x1-32x+174的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值.【详解】(1)∵抛物线y=14x1,∴此抛物线焦点的横坐标是0,纵坐标是:0+1144⨯=1,∴抛物线y=14x1的焦点坐标为(0,1),将y=1代入y=14x1,得x1=-1,x1=1,∴此抛物线的直径是:1-(-1)=4;(1)∵y=14x1-32x+174=14(x-3)1+1,∴此抛物线的焦点的横坐标是:3,纵坐标是:1+1144⨯=3,∴焦点坐标为(3,3),将y=3代入y=14(x-3)1+1,得3=14(x-3)1+1,解得,x1=5,x1=1,∴此抛物线的直径时5-1=4;(3)∵焦点A(h,k+14a),∴k+14a=a(x-h)1+k,解得,x1=h+12a,x1=h-12a,∴直径为:h+12a-(h-12a)=1a=32,解得,a=±23,即a的值是23±;(4)①由(3)得,BC=1 a,又CD=A'A=12a.所以,S=BC•CD=1a•12a=212a=1.解得,a=±12;②当时,1个公共点,当<m≤1或5≤m<1个公共点,理由:由(1)知抛,物线y=14x1-32x+174的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,或,过C(5,3)时,(舍去)或,∴当时,1个公共点;当<m≤1或5≤m<时,1个公共点.由图可知,公共点个数随m的变化关系为当m<当1个公共点;当<m≤1时,1个公共点;当1<m<5时,3个公共点;当5≤m<时,1个公共点;当1个公共点;当m>时,无公共点;由上可得,当或1个公共点;当<m≤1或5≤m<时,1个公共点.【点睛】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.20.CD的长度为17cm.【解析】【分析】在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案. 【详解】解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=BE EC,∴BE=ECtan30°(cm);∴CF=AE=34+BE=(cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,则CD=FC﹣FD=34+173﹣51=173﹣17,答:CD的长度为173﹣17cm.【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.21.(1)见解析;(2)见解析.【解析】【分析】(1)根据题意作图即可;(2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.【详解】(1)解:如图所示:E点即为所求;(2)证明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD为AC边上的中线,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四边形ABCE是平行四边形,∵∠ABC=90°,∴平行四边形ABCE是矩形.【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.22.(1)见解析;(2)步行距离越大,燃烧脂肪越多;(3)1.【解析】【分析】(1)依据手机图片的中的数据,即可补全表格;(2)依据步行距离与燃烧脂肪情况,即可得出步行距离越大,燃烧脂肪越多;(3)步行距离和卡路里消耗数近似成正比例关系,即可预估她一天步行距离.【详解】解:(1)由图可得,4月5日的步行数为7689,步行距离为5.0公里,卡路里消耗为142千卡,燃烧脂肪18克;4月6日的步行数为15638,步行距离为1.0公里,卡路里消耗为234千卡,燃烧脂肪30克;(2)由图可得,步行距离越大,燃烧脂肪越多;故答案为:步行距离越大,燃烧脂肪越多;(3)由图可得,步行时每公里约消耗卡路里25千卡,故豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为1公里.故答案为:1.【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.23.S1,S3,S4,S5,1【解析】【分析】利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.【详解】由题意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1+S3=1.故答案为S1,S3,S4,S5,1.考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题. 24.(1)15=x ,21x =-;(2)1cot 2MCB ∠=【解析】【分析】(1)当y=0,则x 2-4x-5=0,解方程即可得到x 的值.(2) 由题意易求M ,P 点坐标,再求出MP 的直线方程,可得cot ∠MCB.【详解】(1)把0y =代入函数解析式得2450x x --=,即()()510x x -+=,解得:15x =,21x =-.(2)把()6,M m 代入245y x x =--得7m =,即得()6,7M , ∵二次函数245y x x =--,与y 轴的交点为P ,∴P 点坐标为()0,5P -.设直线MP 的解析式为y kx b =+,代入()0,5P -,()6,7M 得576b k b -=⎧⎨=+⎩解得=5=2b k -⎧⎨⎩, ∴25y x =-,∴点C 坐标为5,02C ⎛⎫ ⎪⎝⎭, 在Rt POC ∆中1cot 2OC OCP OP ∠==,又∵OCP MCB ∠=∠ ∴1cot 2MCB ∠=. 【点睛】 本题考查的知识点是抛物线与x 轴的交点,二次函数的性质,解题的关键是熟练的掌握抛物线与x 轴的交点,二次函数的性质.25.(1)25;(1)35 ;(3)310; 【解析】【分析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P 1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P 1.解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1==.故答案为.考点:列表法与树状图法.26.(1)y=﹣2x+1;(2)点P的坐标为(﹣32,0)或(52,0).【解析】【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出122x-=,解之即可得出结论.【详解】(1)∵双曲线y=mx(m≠0)经过点A(﹣12,2),∴m=﹣1.∴双曲线的表达式为y=﹣1x.∵点B(n,﹣1)在双曲线y=﹣1x上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣12,2),B(1,﹣1),∴1k b=22k b=1⎧-+⎪⎨⎪+-⎩,解得k=2b=1-⎧⎨⎩∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=12,∴点C(12,0).设点P的坐标为(x,0),∵S△ABP=3,A(﹣12,2),B(1,﹣1),∴12×3|x﹣12|=3,即|x﹣12|=2,解得:x1=﹣32,x2=52.∴点P的坐标为(﹣32,0)或(52,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出122x-=.27.(1)反比例函数的解析式为y=﹣3x;(2)D(﹣2,32);﹣2<x<0或x>3;(3)P(4,0).【解析】试题分析:(1)把点B(3,﹣1)带入反比例函数1myx=中,即可求得k的值;(2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D坐标,观察图象可得相应x的取值范围;(3)把A(1,a)是反比例函数1myx=的解析式,求得a的值,可得点A坐标,用待定系数法求得直线AB的解析式,令y=0,解得x的值,即可求得点P的坐标.试题解析:(1)∵B(3,﹣1)在反比例函数1myx=的图象上,∴-1=m3,∴m=-3,∴反比例函数的解析式为3yx =-;(2)31122yxy x⎧=-⎪⎪⎨⎪=-+⎪⎩,∴3x-=1122x-+,x2-x-6=0,(x-3)(x+2)=0,x 1=3,x 2=-2,当x=-2时,y=32, ∴D (-2,32); y 1>y 2时x 的取值范围是-2<x<0或x>32; (3)∵A (1,a )是反比例函数1m y x =的图象上一点, ∴a=-3,∴A (1,-3),设直线AB 为y=kx+b, 331k b k b +=-⎧⎨+=-⎩, ∴14k b =⎧⎨=-⎩, ∴直线AB 为y=x-4, 令y=0,则x=4,∴P(4,0)。
山东省潍坊市2019-2020学年第二次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设命题p :,a b R ∀∈,a b a b -<+,则p ⌝为 A .,a b R ∀∈,a b a b -≥+ B .,a b R ∃∈,a b a b -<+ C .,a b R ∃∈,a b a b ->+ D .,a b R ∃∈,a b a b -≥+【答案】D 【解析】 【分析】直接利用全称命题的否定是特称命题写出结果即可. 【详解】因为全称命题的否定是特称命题,所以,命题p :,a b R ∀∈,a b a b -<+,则p ⌝为:,a b R ∃∈,a b a b -≥+.故本题答案为D. 【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.2.过抛物线()220y px p =>的焦点F 的直线与抛物线交于A 、B 两点,且2AF FB =u u u r u u u r,抛物线的准线l 与x 轴交于C ,ACF ∆的面积为AB =( )A .6B .9C.D.【答案】B 【解析】 【分析】设点()11,A x y 、()22,B x y ,并设直线AB 的方程为2px my =+,由2AF FB =u u u r u u u r 得122y y =-,将直线AB 的方程代入韦达定理,求得1y ,结合ACF ∆的面积求得p 的值,结合焦点弦长公式可求得AB . 【详解】设点()11,A x y 、()22,B x y ,并设直线AB 的方程为x my p =+,将直线AB 的方程与抛物线方程联立222p x my y px⎧=+⎪⎨⎪=⎩,消去x 得2220y pmy p --=,由韦达定理得122y y pm +=,212y y p =-,11,2p AF x y ⎛⎫=-- ⎪⎝⎭u u u r ,22,2p FB x y ⎛⎫=- ⎪⎝⎭u u u r ,2AF FB =uu u r uu r Q ,122y y ∴-=,122y y ∴=-,221222y y y p ∴=-=-,可得22y p =,122y y ==, 抛物线的准线l 与x 轴交于,02p C ⎛⎫-⎪⎝⎭, ACF ∆的面积为212p p ⨯==4p =,则抛物线的方程为28y x =, 所以,2221212524988py y AB x x p p +=++=+=+=. 故选:B. 【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题. 3.给出下列四个命题:①若“p 且q ”为假命题,则p ﹑q 均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题0:p x R ∃∈,200x ≥,则命题:p x R ⌝∀∈,20x <;④设集合{}1A x x =>,{}2B x x =>,则“x A ∈”是“x B ∈”的必要条件;其中正确命题的个数是( )A .1B .2C .3D .4【答案】B 【解析】 【分析】 ①利用p ∧q 真假表来判断,②考虑内角为90o ,③利用特称命题的否定是全称命题判断,④利用集合间的包含关系判断. 【详解】若“p 且q ”为假命题,则p ﹑q 中至少有一个是假命题,故①错误;当内角为90o 时,不是象限角,故②错误;由特称命题的否定是全称命题知③正确;因为B A ⊆,所以x B ∈⇒x A ∈,所以“x A ∈”是“x B ∈”的必要条件, 故④正确. 故选:B. 【点睛】本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题. 4.一艘海轮从A 处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .62海里B .63海里C .82海里D .83海里【答案】A 【解析】 【分析】先根据给的条件求出三角形ABC 的三个内角,再结合AB 可求,应用正弦定理即可求解. 【详解】由题意可知:∠BAC =70°﹣40°=30°.∠ACD =110°,∴∠ACB =110°﹣65°=45°, ∴∠ABC =180°﹣30°﹣45°=105°.又AB =24×0.5=12.在△ABC 中,由正弦定理得4530AB BCsin sin =︒︒,1222BC=,∴62BC =故选:A. 【点睛】本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.5.复数2(1)41i z i -+=+的虚部为( )A .—1B .—3C .1D .2【答案】B【解析】 【分析】对复数z 进行化简计算,得到答案. 【详解】()()2421(1)44213112i i i i z i i i ---+-====-++ 所以z 的虚部为3- 故选B 项. 【点睛】本题考查复数的计算,虚部的概念,属于简单题. 6.若复数52z i=-(i 为虚数单位),则z =( ) A .2i + B .2i -C .12i +D .12i -【答案】B 【解析】 【分析】根据复数的除法法则计算z ,由共轭复数的概念写出z . 【详解】55(2)10522(2)(2)5i i z i i i i ++====+--+Q , ∴2z i =-,故选:B 【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.7.已知直线l :310kx y k --+=与椭圆22122:1(0)x yC a b a b+=>>交于A 、B 两点,与圆2C :()()22311x y -+-=交于C 、D 两点.若存在[]2,1k ∈--,使得AC DB =u u u r u u u r,则椭圆1C 的离心率的取值范围为( )A .⎣⎦B .C .D . 【答案】A 【解析】 【分析】由题意可知直线过定点即为圆心,由此得到,A B 坐标的关系,再根据点差法得到直线的斜率k 与,A B 坐标的关系,由此化简并求解出离心率的取值范围. 【详解】设()()1122,,,A x y B x y ,且线:310l kx y k --+=过定点()3,1即为2C 的圆心, 因为AC DB =u u u r u u u r,所以1212236212C D C D x x x x y y y y +=+=⨯=⎧⎨+=+=⨯=⎩,又因为2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,所以()()2222221212b x x a y y -=--, 所以2121221212y y x x b x x a y y -+=-⋅-+,所以[]2232,1b k a=-∈--,所以2212,33b a ⎡⎤∈⎢⎥⎣⎦,所以22212,33a c a -⎡⎤∈⎢⎥⎣⎦,所以()2121,33e ⎡⎤-∈⎢⎥⎣⎦,所以33e ∈⎣⎦.故选:A. 【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.8.小张家订了一份报纸,送报人可能在早上6:307:30-之间把报送到小张家,小张离开家去工作的时间在早上7.008:00-之间.用A 表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为x ,小张离开家的时间为y ,(,)x y 看成平面中的点,则用几何概型的公式得到事件A 的概率()P A 等于( )A .58B .25C .35D .78【答案】D 【解析】 【分析】这是几何概型,画出图形,利用面积比即可求解. 【详解】解:事件A 发生,需满足x y ≤,即事件A 应位于五边形BCDEF 内,作图如下:()1111722218P A -⨯⨯== 故选:D 【点睛】考查几何概型,是基础题.9.已知集合{}2lgsin 9A x y x x==-,则()cos22sin f x x x x A =+∈,的值域为( )A .31,2⎡⎤⎢⎥⎣⎦B .31,2⎛⎤ ⎥⎝⎦C .11,2⎛⎤- ⎥⎝⎦D .22⎫⎪⎪⎝⎭【答案】A 【解析】 【分析】先求出集合(]0,3A =,化简()f x =22sin 2sin 1x x -++,令sin x t =(]0,1∈,得()2221g t t t =-++由二次函数的性质即可得值域. 【详解】由2sin 00390x x x >⎧⇒<≤⎨-≥⎩,得(]0,3A = ,()cos22sin f x x x =+=-22sin 2sin 1x x ++,令sin x t =, (]0,3x ∈Q ,(]0,1t ∴∈,所以得()2221g t t t =-++ ,()g t 在10,2⎛⎫ ⎪⎝⎭ 上递增,在1,12⎛⎫⎪⎝⎭上递减,()1311,22g g ⎛⎫== ⎪⎝⎭ ,所以()31,2g t ⎡⎤∈⎢⎥⎣⎦,即 ()f x 的值域为31,2⎡⎤⎢⎥⎣⎦故选A 【点睛】本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题 10.把函数sin()6y x π=+图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移3π个单位,那么所得图象的一个对称中心为( ) A .(,0)3πB .(,0)4πC .(,0)12πD .(0,0)【答案】D【详解】试题分析:把函数sin()6y x π=+图象上各点的横坐标伸长为原来的2倍(纵坐标不变),可得1sin()26y x π=+的图象;再将图象向右平移3π个单位,可得11sin[()]sin 2362y x x ππ=-+=的图象,那么所得图象的一个对称中心为(0,0),故选D. 考点:三角函数的图象与性质.11.如图是一个几何体的三视图,则该几何体的体积为( )A .23B .43C .23D .43【答案】A 【解析】 【分析】根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积. 【详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,2AD =,3AE =2AB =.∴该几何体的体积为1232232V =⨯=本题考查三视图及棱柱的体积,属于基础题. 12.已知x 与y 之间的一组数据:若y 关于x 的线性回归方程为$ 2.10.25y x =-,则m 的值为( ) A .1.5 B .2.5C .3.5D .4.5【答案】D 【解析】 【分析】利用表格中的数据,可求解得到 2.5,x =代入回归方程,可得5y =,再结合表格数据,即得解. 【详解】利用表格中数据,可得 2.5,x = 又 2.10.25,5y x y =-∴=,3.24.87.520m ∴+++=.解得 4.5m = 故选:D 【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
山东省潍坊市高一上学期第二次段考化学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共21题;共42分)1. (2分)下列装置工作原理与氧化还原反应无关的是()A . 臭氧消毒柜B . 甲烷燃料电池C . 太阳能集热器D . 燃气灶2. (2分) (2018高一下·晋江期末) 下列物质之间的相互关系错误的是()A . CH3CH2OH和CH3OCH3互为同分异构体B . 干冰和冰为同一种物质C . CH3CH3和CH3CH2CH3互为同系物D . O2和O3互为同素异形体3. (2分)已知K2Cr2O7在酸性溶液中易被还原成Cr3+。
PbO2、K2Cr2O7、Cl2、FeCl3、Cu2+的氧化性依次减弱。
下列反应在水溶液中不可能发生的是()A . Cu+2Fe3+= Cu2++2Fe2+B . PbO2+ 2Cl-+4H+= Pb2++ Cl2↑+2H2OC . 6C1-+ K2Cr2O7+14H+=2Cr3++3Cl2↑+7H2OD . 3Pb2++Cr2O72-+2H+= 3PbO2+2Cr3++H2O4. (2分) (2019高一上·哈密期末) 下列化学反应中,不属于氧化还原反应的是()A . Mg+2HCl=MgCl2+H2↑B . 2NO+O2=2NO2C . CuO+H2 Cu+H2OD . CaCl2+Na2CO3=CaCO3↓+2NaCl5. (2分) (2015高一上·莆田月考) 下列实验能达到实验目的且符合安全要求的是()A . 利用排空法收集CO2B . 收集氧气C . 制备并检验氢气的可燃性D . 浓硫酸稀释6. (2分) (2017高一上·温州期中) 实现下列变化,一定要加入其它物质作氧化剂的是()A . Zn→ZnCl2B . Cl2→HClOC . CaCO3→CO2D . CuO→CuSO47. (2分)一定能在下列溶液中大量共存的离子组是()A . 在强碱溶液中:Na+、K+、Cl-、SO32-B . 使酚酞变红色的溶液:Na+、Cu2+、HCO3-、NO3-C . 0.1 mol/L AgNO3溶液:K+、H+、Cl-、SO42-D . 0.1 mol/L Na2CO3溶液:K+、Ba2+、NO3-、Cl-8. (2分)不能使湿润的碘化钾淀粉试纸变蓝的是()A . 氯水B . 碘水C . 溴水D . 氯化钾溶液9. (2分)下列离子方程式书写正确的是()A . 钠和冷水反应: Na+2H2O=Na++2OH-+H2↑B . 金属铝溶于氢氧化钠溶液: Al+2OH-=AlO2-+H2C . 铁跟稀硫酸反应:2Fe+6H+=2Fe3++3H2D . 铜和硝酸银溶液反应: Cu + 2Ag+ = 2Ag + Cu2+10. (2分)下列物质按照纯净物、混合物、强电解质、弱电解质和非电解质顺序排列的是()A . 纯盐酸X、Y、水煤气、硫酸、醋酸、干冰B . 冰醋酸、福尔马林、硫酸钡、氢氟酸、氯气C . 单甘油脂、混甘油脂、苛性钾、氢硫酸、三氧化硫D . 胆矾、漂白粉、氯化钾、次氯酸、乙醇11. (2分)下列反应既属于氧化还原反应,又是吸热反应的是()A . 锌粒与稀硫酸的反应B . 灼热的氧化铜与CO的反应C . 甲烷在空气中燃烧的反应D . Ba(OH)2•8H2O晶体与NH4Cl晶体的反应12. (2分)下列操作中,不会发生明显颜色变化的是()A . FeSO4溶液中滴加NaOH浓液B . 碳酸氢钠溶液中滴加稀盐酸溶液C . 硫酸铁溶液中滴加硫氰化钾溶液D . 氯化铁溶液中加入还原性铁粉13. (2分)只用胶头滴管和试管,不能区别的溶液是()A . CaCl2和Na2CO3B . 稀盐酸和Na[Al(OH)4]C . 稀盐酸和Na2CO3D . NaOH和AlCl314. (2分)已知M2On2-离子可与R2-离子反应,R2-被氧化为R单质,M2On2-的还原产物中M为+3价;又已知100mL c(M2On2-)=0.2 mol·L-1的溶液可与100mL c(R2-)=0.6 mol·L-1的溶液恰好完全反应,则n值为()A . 4B . 7C . 6D . 515. (2分)(2015·奉新模拟) 将某些化学知识用数轴表示,可以收到直观、简明、易记的效果.用数轴表示的下列知识正确的是()A . 硫及其化合物的化合价与氧化还原反应的关系:B . 分散系的分类:C . AlCl3溶液与NaOH溶液反应后铝元素的存在形式:D . CO2与NaOH溶液反应后的产物16. (2分)下列相关离子方程式书写正确的是()A . 泡沫灭火器工作原理:2A13++3CO32-+3H2O=2Al(OH)3↓+3CO2↑B . Fe(OH)3溶于HI溶液:Fe(OH)3+3H+=Fe3++3H2OC . 往Ba(OH)2溶液中滴加KHSO4溶液至溶液呈中性: Ba2++OH-+H++SO42-=BaSO4+H2OD . 酸性高锰酸钾溶液与草酸溶液混合:2MnO4-+5H2C2O42-+6H+=2Mn2++10CO2↑+8H2O17. (2分)已知常温下在溶液中可发生如下两个离子反应Ce4++Fe2+=Fe3++Ce3+ ,Sn2++2Fe3+=2Fe2++Sn4+ .由此可以确定Fe2+、Ce3+、Sn2+ 三种离子的还原性最强和最弱的离子分别是()A . Sn2+ 和Ce3+B . Sn2+ 和Fe2+C . Ce3+和Sn2+D . Fe2+和Ce3+18. (2分) (2016高一下·太谷期中) 下列物质能使品红溶液褪色,且褪色原理基本相同的是()①活性炭②氯水③二氧化硫④臭氧⑤过氧化钠⑥双氧水.A . ①②④B . ②③⑤C . ②④⑤⑥D . ③④⑥19. (2分) (2020高一下·诸暨期中) 由相同条件下的三个反应:①2NaA +B2 =2NaB +A2;②2NaC +A2 =2NaA +C2;③2NaB +D2 =2NaD +B2;可判断()A . 氧化性:A2>B2>C2>D2B . 还原性:C->A->B->D-C . 2NaD +A2 =2NaA +D2可进行D . 2NaC+B2 =2NaB+C2不能进行20. (2分) (2016高一下·武城期末) 一定条件下,由A、B两种有机物组成的气态混合物,无论A、B含量如何改变,完全燃烧一定体积的混合物,消耗O2的量不会改变的是()A . C2H4、C6H6B . C2H4、C2H6OC . C3H8、C4H8OD . C2H4O、C3H6O21. (2分)在光照条件下,CH4能与Cl2发生取代反应.若1mol CH4与一定的量的Cl2完全反应,反应后有四种取代产物生成,且四种产物物质的量相等,则消耗的Cl2为()A . 4 molB . 2.5 molC . 2 molD . 0.5 mol二、填空题 (共7题;共41分)22. (6分) (2019高二下·易县期末) 现有下列物质:①稀硫酸②小苏打③氨水④二氧化碳⑤FeCl3固体⑥稀NaOH溶液⑦硝酸亚铁溶液。
山东省潍坊市昌乐县第二中学2019-2020学年高一上学期期中考试模拟试卷一、选择题(40分)本大题共10题,每小题4分。
第1~5题只有一项符合题目要求;第6~10题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分。
1. 以下各组物理量都是矢量的是()A. 速度、位移、质量B. 速度变化量、加速度、平均速度C. 路程、时间、加速度D. 速率、位移、加速度『答案』B『解析』『详解』A.速度、位移是矢量,质量是标量,选项A错误;B.速度变化量、加速度、平均速度都是矢量,选项B正确;C.路程、时间是标量,加速度是矢量,选项C错误;D.速率是标量;位移、加速度是矢量,选项D错误。
故选B。
2. 在某段公路上,分别有图示的甲、乙两块告示牌,告示牌上面数字的意思分别是()A. 甲是指位移,乙是平均速率B. 甲是指路程,乙是平均速率C. 甲是指路程,乙是瞬时速率D. 甲是指位移,乙是瞬时速率『答案』C『解析』『详解』AD.甲图告示牌是里程牌,表示路程,故AD错误;BC.乙图限速标志,表示最大瞬时速率不能超过100km/h,故B错误,C正确。
故选C。
3. 一石子从h 高处自由下落,落到地面时的速度为ν;当它下落到2h处时,速度为( )A. 2vB.22v C.12v D. 3v『答案』B 『解析』『详解』根据自由落体运动的速度位移关系可知22v gh =,'222h v g =⋅,解得'22v v =,故选B 。
4. 关于速度和加速度,以下说法中正确的是( ) A. 速度是表示物体位置变化的大小和方向的物理量 B. 加速度是表示物体速度变化的大小和方向的物理量 C. 物体的速度改变量越大,加速度一定越大 D. 物体的加速度为正值,其速度可能减小『答案』D 『解析』『详解』A.速度是表示物体位置变化快慢和方向的物理量,位移是表示物体位置变化的大小和方向的物理量,故A 错误.B.加速度是描述速度变化快慢和方向的物理量,速度变化快慢vt∆∆和速度变化大小v ∆不是同一个量,故B 错误. C.根据∆=∆va t知,速度变化量越大,加速度不一定大,故C 错误. D.加速度方向与速度方向相同时,物体做加速运动;加速度方向与速度方向相反时,物体减速;加速度为正,加速度方向与速度方向不一定相同,故D 正确. 5. 关于自由落体运动,下列说法正确的是( ) A. 自由落体运动的物体不受任何外力的作用 B. 忽略空气阻力在空中的运动就是自由落体运动 C. 自由落体运动中,连续相等时间内发生的位移都相同 D. 自由落体运动中,任意相等时间内的速度变化量都相同『答案』D『详解』A.自由落体运动的物体只受重力的作用,选项A错误;B.忽略空气阻力在空中由静止开始的运动就是自由落体运动,选项B错误;C.自由落体运动中,连续相等时间内的位移逐渐变大,选项C错误;D.根据∆v=gt,则自由落体运动中,任意相等时间内的速度变化量都相同,选项D正确。
山东省潍坊市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于x 的一元二次方程x 2﹣2x+k+2=0有实数根,则k 的取值范围在数轴上表示正确的是( ) A .B .C .D .2.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A .众数是5B .中位数是5C .平均数是6D .方差是3.63.已知等边三角形的内切圆半径,外接圆半径和高的比是( )A .1:2:3B .2:3:4C .1:3:2D .1:2:34.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断5.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )A .15,0.125B .15,0.25C .30,0.125D .30,0.256.已知e r 是一个单位向量,a r 、b r 是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a =v v vD .11a b a b=v v v v 7.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作弧AC 、弧CB 、弧BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I 为对称轴的交点,如图2,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE=2π,将它沿等边△DEF 的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是( )A .18πB .27πC .452πD .45π8.若关于x 的分式方程的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3 B .1,2 C .1,3 D .2,39.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A 、B 、C 都在格点上,点D 在过A 、B 、C 三点的圆弧上,若E 也在格点上,且∠AED=∠ACD ,则∠AEC 度数为 ( )A .75°B .60°C .45°D .30°10.如图,ABC V 内接于O e ,若A 40∠=o ,则BCO (∠= )A .40oB .50oC .60oD .80o11.如图是抛物线y 1=ax 2+bx+c (a≠0)图象的一部分,其顶点坐标为A (﹣1,﹣3),与x 轴的一个交点为B (﹣3,0),直线y 2=mx+n (m≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②不等式ax 2+(b ﹣m )x+c ﹣n <0的解集为﹣3<x <﹣1;③抛物线与x 轴的另一个交点是(3,0);④方程ax 2+bx+c+3=0有两个相等的实数根;其中正确的是( )A .①③B .②③C .③④D .②④12.方程x 2﹣3x+2=0的解是( )A .x 1=1,x 2=2B .x 1=﹣1,x 2=﹣2C .x 1=1,x 2=﹣2D .x 1=﹣1,x 2=2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm ,则截面圆的半径为 cm .14.计算:82-=_______________.15.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.16.直线y=2x+1经过点(0,a),则a=________.17.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.18.如图,点P(3a,a)是反比例函kyx=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)20.(6分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=kx(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.(1)如图,若m=﹣52,n=152,点B的纵坐标为52,①求k的值;②作线段CD,使CD∥AB且CD=AB,并简述作法;(2)若四边形ABCD为矩形,A的坐标为(1,5),①求m,n的值;②点P(a,b)是双曲线y=kx第一象限上一动点,当S△APC≥24时,则a的取值范围是.21.(6分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE 交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.22.(8分)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.(1)若点A的坐标为(1,0).①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.23.(8分)如图,点O 是△ABC 的边AB 上一点,⊙O 与边AC 相切于点E ,与边BC ,AB 分别相交于点D ,F ,且DE=EF .求证:∠C=90°;当BC=3,sinA=35时,求AF 的长.24.(10分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点.在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段11A B (点A ,B 的对应点分别为11A B 、).画出线段11A B ;将线段11A B 绕点1B 逆时针旋转90°得到线段21A B .画出线段21A B ;以112A A B A 、、、为顶点的四边形112AA B A 的面积是 个平方单位.25.(10分)如图①,有两个形状完全相同的直角三角形ABC 和EFG 叠放在一起(点A 与点E 重合),已知AC=8cm ,BC=6cm ,∠C=90°,EG=4cm ,∠EGF=90°,O 是△EFG 斜边上的中点.如图②,若整个△EFG 从图①的位置出发,以1cm/s 的速度沿射线AB 方向平移,在△EFG 平移的同时,点P 从△EFG 的顶点G 出发,以1cm/s 的速度在直角边GF 上向点F 运动,当点P 到达点F 时,点P 停止运动,△EFG 也随之停止平移.设运动时间为x (s ),FG 的延长线交AC 于H ,四边形OAHP 的面积为y (cm 2)(不考虑点P 与G 、F 重合的情况).(1)当x 为何值时,OP ∥AC ;(2)求y 与x 之间的函数关系式,并确定自变量x 的取值范围;(3)是否存在某一时刻,使四边形OAHP 面积与△ABC 面积的比为13:24?若存在,求出x 的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16) 26.(12分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于1.27.(12分)如图,点A ,B 在O e 上,直线AC 是O e 的切线,OC OB ^.连接AB 交OC 于D .(1)求证:AC DC =(2)若2AC =,O e 5OD 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】由一元二次方程有实数根可知△≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】∵关于x 的一元二次方程x 2−2x+k+2=0有实数根,∴△=(−2)2−4(k+2)⩾0,解得:k⩽−1,在数轴上表示为:故选C.【点睛】本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.2.D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.3.D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.考点:正多边形和圆.4.B【解析】比较OP与半径的大小即可判断. 【详解】r5Q=,d OP6==,d r∴>,∴点P在Oe外,故选B.【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设Oe的半径为r,点P到圆心的距离OP d=,则有:①点P在圆外d r⇔>;②点P在圆上d r⇔=;①点P在圆内d r⇔<.5.D【解析】分析:根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,又∵被调查学生总数为120人,∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.综上所述,选项D中数据正确.故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.6.B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.7.B【解析】【分析】先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可. 【详解】如图1中,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=2 1203360π⋅=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故选B.【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.8.C【解析】试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知关于x的分式方的解为正数,得m=1,m=3,故选C.考点:分式方程的解.9.B【解析】【分析】将圆补充完整,利用圆周角定理找出点E 的位置,再根据菱形的性质即可得出△CME 为等边三角形,进而即可得出∠AEC 的值.【详解】将圆补充完整,找出点E 的位置,如图所示.∵弧AD 所对的圆周角为∠ACD 、∠AEC ,∴图中所标点E 符合题意.∵四边形∠CMEN 为菱形,且∠CME=60°,∴△CME 为等边三角形,∴∠AEC=60°.故选B.【点睛】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E 的位置是解题的关键.10.B【解析】【分析】根据圆周角定理求出BOC ∠,根据三角形内角和定理计算即可.【详解】解:由圆周角定理得,BOC 2A 80∠∠==o ,OB OC =Q ,BCO CBO 50∠∠∴==o ,故选:B .【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.11.D【解析】【分析】①错误.由题意a >1.b >1,c <1,abc <1;②正确.因为y 1=ax 2+bx+c (a≠1)图象与直线y 2=mx+n (m≠1)交于A ,B 两点,当ax 2+bx+c <mx+n 时,-3<x <-1;即不等式ax 2+(b-m )x+c-n <1的解集为-3<x <-1;故②正确;③错误.抛物线与x 轴的另一个交点是(1,1);④正确.抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点,方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.【详解】解:∵抛物线开口向上,∴a >1,∵抛物线交y 轴于负半轴,∴c <1,∵对称轴在y 轴左边,∴-2b a<1, ∴b >1,∴abc <1,故①错误.∵y 1=ax 2+bx+c (a≠1)图象与直线y 2=mx+n (m≠1)交于A ,B 两点,当ax 2+bx+c <mx+n 时,-3<x <-1;即不等式ax 2+(b-m )x+c-n <1的解集为-3<x <-1;故②正确,抛物线与x 轴的另一个交点是(1,1),故③错误,∵抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点,∴方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.故选:D .【点睛】本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.12.A【解析】【分析】将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【详解】解:原方程可化为:(x ﹣1)(x ﹣1)=0,∴x 1=1,x 1=1.故选:A .【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=r,则OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=x,则OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案为1.142【解析】【分析】82.【详解】82=222.2.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.15.1或1【解析】【分析】由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.【详解】∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,∴这两圆内切,∴若大圆的半径为4,则另一个圆的半径为:4-3=1,若小圆的半径为4,则另一个圆的半径为:4+3=1.故答案为:1或1【点睛】此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.16.1【解析】【分析】根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.【详解】∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1.故答案为1.17.6.4【解析】【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.18.y=12 x【解析】设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:14πr2=10π解得:r=.∵点P(3a ,a)是反比例函y=k x (k>0)与O 的一个交点, ∴3a 2=k. 22(3)a a r +=∴a 2=21(210)10⨯=4. ∴k=3×4=12, 则反比例函数的解析式是:y=12x . 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.52【解析】【分析】根据楼高和山高可求出EF ,继而得出AF ,在Rt △AFC 中表示出CF ,在Rt △ABD 中表示出BD ,根据CF=BD 可建立方程,解出即可.【详解】如图,过点C 作CF ⊥AB 于点F.设塔高AE=x ,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m ,在Rt △AFC 中,∠AC F=36°52′,AF=(x+29)m ,则29411636520.7533AF x CF x tan +=≈=+︒', 在Rt △ABD 中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD ,∴41165633x x +=+, 解得:x=52,答:该铁塔的高AE 为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般. 20.(1)①k= 5;②见解析,由此AO 交双曲线于点C ,延长BO 交双曲线于点D ,线段CD 即为所求;(2)①16m n =-⎧⎨=⎩;②0<a <1或a >5 【解析】【分析】(1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO 交双曲线于点C ,延长BO 交双曲线于点D ,线段CD 即为所求;(2)①求出A ,B 两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC 的面积=24时a 的值,即可判断.【详解】 (1)①∵52m =-,152n =, ∴直线的解析式为51522y x =-+, ∵点B 在直线上,纵坐标为52, ∴5515222x =-+, 解得x =2 ∴5(2)2B ,,∴5k =;②如下图,由此AO 交双曲线于点C ,延长BO 交双曲线于点D ,线段CD 即为所求;(2)①∵点(15)A ,在k y x=上, ∴k =5,∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∴A ,B 关于直线y =x 对称,∴(51)B ,, 则有:551m n m n +=⎧⎨+=⎩,解得16m n =-⎧⎨=⎩; ②如下图,当点P 在点A 的右侧时,作点C 关于y 轴的对称点C′,连接AC ,AC′,PC ,PC′,PA .∵A ,C 关于原点对称,(15)A ,, ∴(1,5)C --,∵PAC ACC AC P PCC S S S S '''+-V V V V =,当24PAC S V =时, ∴111521010(1)2(5)24222a a⨯⨯+⨯⨯--⨯⨯+=, ∴252450a a --=,∴a =5或1-(舍弃),当点P 在点A 的左侧时,同法可得a =1,∴满足条件的a 的范围为01a <<或5a >.【点睛】本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.21.见解析【解析】试题分析:(1)2AD DE DF =⋅,ADF EDA ∠∠= ,可得ΔADF ∽ΔEDA ,从而得F DAE ∠∠=, 再根据∠BDF=∠CDA 即可证;(2)由ΔBFD ∽ΔCAD ,可得BF DF AC AD =,从而可得BF AD AC DE=,再由ΔBFD ∽ΔCAD ,可得B C ∠∠=从而得AB AC =,继而可得BF AD AB DE= ,得到BF DE AB AD ⋅=⋅.试题解析:(1)∵2AD DE DF =⋅,∴AD DF DE AD =, ∵ADF EDA ∠=∠ ,∴ADF ∆∽EDA ∆ ,∴F DAE ∠=∠,又∵∠ADB=∠CDE ,∴∠ADB+∠ADF=∠CDE+∠ADF ,即∠BDF=∠CDA ,∴BFD ∆∽CAD ∆;(2)∵BFD ∆∽CAD ∆ ,∴BF DF AC AD =, ∵AD DF DE AD = ,∴BF AD AC DE=, ∵BFD ∆∽CAD ∆,∴B C ∠=∠,∴AB AC =, ∴BF AD AB DE = , ∴BF DE AB AD ⋅=⋅. 【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.22.(1)①当1<x <3或x >5时,函数ƒ的值y 随x 的增大而增大,②P (,);(2)当3≤h≤4或h≤0时,函数f 的值随x 的增大而增大.【解析】试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B 的坐标,根据图象写出函数ƒ的值y 随x 的增大而增大(即呈上升趋势)的x 的取值;②如图2,作辅助线,构建对称点F 和直角角三角形AQE ,根据S △ABQ =2S △ABP ,得QE=2PD ,证明△PAD ∽△QAE ,则,得AE=2AD ,设AD=a ,根据QE=2FD 列方程可求得a 的值,并计算P 的坐标;(2)先令y=0求抛物线与x 轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h 的取值.试题解析:(1)①把A (1,0)代入抛物线y=(x ﹣h )2﹣2中得:(x ﹣h )2﹣2=0,解得:h=3或h=﹣1,∵点A 在点B 的左侧,∴h >0,∴h=3,∴抛物线l 的表达式为:y=(x ﹣3)2﹣2,∴抛物线的对称轴是:直线x=3,由对称性得:B (5,0),由图象可知:当1<x <3或x >5时,函数ƒ的值y 随x 的增大而增大;②如图2,作PD ⊥x 轴于点D ,延长PD 交抛物线l 于点F ,作QE ⊥x 轴于E ,则PD ∥QE ,由对称性得:DF=PD,∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵点F、Q在抛物线l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)当y=0时,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,∴3≤h≤4,②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+2≤2,h≤0,综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.23.(1)见解析(2)5 4【解析】【分析】(1)连接OE,BE,因为DE=EF,所以¶DE=¶FE,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=3,55OE rOA r==-从而可求出r的值.【详解】解:(1)连接OE,BE,∵DE=EF,∴¶DE=¶FE∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=35,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=3,55 OE rOA r==-∴15,8 r=∴15552.84 AF=-⨯=【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.24.(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=224225+=,所以四边形AA1 B1 A2的面积为:()225=20,故答案为20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.25.(1)1.5s;(2)S=625x2+175x+3(0<x<3);(3)当x=52(s)时,四边形OAHP面积与△ABC面积的比为13:1.【解析】【分析】(1)由于O是EF中点,因此当P为FG中点时,OP∥EG∥AC,据此可求出x的值.(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO 的面积.三角形AHF中,AH的长可用AF的长和∠FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长).三角形OFP中,可过O作OD⊥FP于D,PF的长易知,而OD 的长,可根据OF的长和∠FOD的余弦值得出.由此可求得y、x的函数关系式.(3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值.【详解】解:(1)∵Rt△EFG∽Rt△ABC∴EG FGAC BC=,即486FG=,∴FG=468⨯=3cm∵当P为FG的中点时,OP∥EG,EG∥AC∴OP∥AC∴x=121FG=12×3=1.5(s)∴当x为1.5s时,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴EG EF FGAH AF FH==,∴AH=45(x+5),FH=35(x+5)过点O作OD⊥FP,垂足为D∵点O为EF中点∴OD=12EG=2cm ∵FP=3﹣x ∴S 四边形OAHP =S △AFH ﹣S △OFP=12•AH•FH ﹣12•OD•FP =12•45(x+5)•35(x+5)﹣12×2×(3﹣x ) =625x 2+175x+3(0<x <3). (3)假设存在某一时刻x ,使得四边形OAHP 面积与△ABC 面积的比为13:1则S 四边形OAHP =1324×S △ABC ∴625x 2+175x+3=1324×12×6×8 ∴6x 2+85x ﹣250=0解得x 1=52,x 2=﹣503(舍去) ∵0<x <3∴当x=52(s )时,四边形OAHP 面积与△ABC 面积的比为13:1. 【点睛】本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x 的取值范围,而很多试题往往不写,要记住自变量x 的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决.26.(1)()P =两数相同13;(2)()10P =两数和大于49. 【解析】【分析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率.【详解】第二次第一次6﹣2 7 6(6,6) (6,﹣2) (6,7) ﹣2(﹣2,6) (﹣2,﹣2) (﹣2,7) 7 (7,6) (7,﹣2)(7,7) (1)P (两数相同)=.(2)P (两数和大于1)=.【点睛】本题考查了利用列表法、画树状图法求等可能事件的概率.27.(1)证明见解析;(2)1.【解析】【分析】(1)连结OA ,由AC 为圆的切线,利用切线的性质得到∠OAC 为直角,再由OC OB ^,得到∠BOC 为直角,由OA=OB 得到OAB OBA ∠=∠,再利用对顶角相等及等角的余角相等得到CAD CDA ∠=∠,利用等角对等边即可得证;(2)在Rt OAC △中,利用勾股定理即可求出OC ,由OC=OD+DC ,DC=AC ,即可求得OD 的长.【详解】(1)如图,连接OA ,∵AC 切O e 于A ,∴OA AC ⊥,∴1290∠+∠=︒又∵OC OB ^,∴在Rt BOD V 中:390B ∠+∠=︒∵OA OB =,∴2B ∠=∠,∴13∠=∠,又∵34∠=∠,∴14∠=∠,∴AC DC =;(2)∵在Rt OAC ∆中:2AC =, 5OA 由勾股定理得:22OC AC OA =+222(5)3=+=, 由(1)得:2DC AC ==, ∴321OD OC DC =-=-=.【点睛】此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键.。
2019年山东省潍坊市昌乐第二中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设x0是方程lnx+x=4的解,则x0属于区间()A.(3,4)B.(2,3)C.(1,2)D.(0,1)参考答案:B【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】设f(x)=lnx+x﹣4,则由题意可得x0是函数f(x)的零点,再由f(2)f (3)<0 得到x0所在的区间.【解答】解:设f(x)=lnx+x﹣4,由于x0是方程lnx+x=4的解,则x0是函数f(x)的零点.再由f(2)=ln2﹣2<0,f(3)=ln3﹣1>0,f(2)f(3)<0,可得x0属于区间(2,3),故选B.【点评】本题考查零点与方程的根的关系,以及函数零点判定定理的应用,属于基础题.2. 的值是()A.B. C.D. 2.已知f(x)参考答案:D3. 计算sin+tan的值为()A.B.C. +D. +参考答案:D【考点】三角函数的化简求值.【分析】直接由特殊角的三角函数求值即可得答案.【解答】解:sin+tan=,故选:D.4. 函数的部分图像如图所示,则其解析式可以是()A. B.C. D.参考答案:B略5. 已知平面向量的夹角为且,则()A. B. C. D.参考答案:B6. 若非零向量满足,,则与的夹角是()A.30° B.60° C.120° D.150°参考答案:C略7. 在等比数列中,,则().A. 4B. 16C. 8D. 32参考答案:B等比数列的性质可知,故选.8. 已知数列{a n}满足a n+1+a n=n,若a1=1,则a8﹣a4=( )A.﹣1 B.1 C.2 D.4参考答案:C考点:数列递推式.专题:等差数列与等比数列.分析:由数列递推式得到a n+a n﹣1=n﹣1(n≥2),和原递推式作差后得到a n+1﹣a n﹣1=1,由已知求出a2,则依次可求得a4,a6,a8,则答案可求.解答:解:由a n+1+a n=n,得a n+a n﹣1=n﹣1 (n≥2),两式作差得:a n+1﹣a n﹣1=1 (n≥2),由a1=1,且a n+1+a n=n,得a2=﹣a1+1=0.则a4=a2+1=1,a6=a4+1=2,a8=a6+1=1+2=3,∴a8﹣a4=3﹣1=2.故选:C.点评:本题考查了数列递推式,解答的关键是由已知递推式得到n取n﹣1时的递推式,作差后得到数列的项之间的关系,属中档题.9. 一个水平放置的三角形的斜二测直观图是如图等腰直角三角形A′B′O′,若O′B′=1,那么原△ABO的面积是()A.B.C.D.参考答案:C10. 设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠?,则a的取值范围是()A.a<2 B.a>﹣2 C.a>﹣1 D.﹣1<a≤2参考答案:C【考点】集合关系中的参数取值问题.【分析】A={x|﹣1≤x<2},B={x|x<a},若A∩B≠?,两个集合有公共元素,得到两个集合中所包含的元素有公共的元素,得到a与﹣1的关系.【解答】解:∵A={x|﹣1≤x<2},B={x|x<a},若A∩B≠?,∴两个集合有公共元素,∴a要在﹣1的右边,∴a>﹣1,故选C.二、填空题:本大题共7小题,每小题4分,共28分11. 不等式的解集为____________。
2019-2020学年昌乐二中高三生物月考试题及答案一、选择题:本题共15小题,每小题2分,共30分。
每小题只有一个选项符合题目要求。
1. 下列在有关水和无机盐的叙述,错误的是()A.有氧呼吸和光合作用的原料中都有水B.冬季植物体内结合水/自由水的值会减小C.人流汗过多时需要补充水和无机盐,以维持其内环境的正常渗透压D.一些无机盐是重要化合物的组成成分,例如Fe是血红蛋白的组成元素2. 下列关于高等植物细胞内色素的叙述,错误的是()A.所有植物细胞中都只含有四种色素B.有的植物细胞的液泡中也含有一定量的色素C.叶绿体类囊体有巨大的膜面积,色素就位于膜上D.植物细胞内的光合色素主要包括叶绿素和类胡萝卜素两大类3. 下图为某动物性腺细胞分裂图像,相关分析错误的是()A.图甲说明该动物体细胞中含有4条染色体B.图乙发生同源染色体分离、非同源染色体自由组合C.图丙为有丝分裂中期图像,染色体最清晰D.图丁中M与m的分离是分离定律产生的原因4. 下列实例分析不正确的是()A. 某人因意外车祸而使大脑受损,其表现症状是能够看懂文字和听懂别人谈话,但却不会说。
这个人受损伤的部位是言语区的S区B. 一位病人未受外伤,能主动说话,听觉也正常,但听不懂别人说话,连自己的话也听不懂,这位病人是大脑左半球的H区有病变C. 当你专心作答试题时,参与的高级中枢主要有大脑皮层V区和S区D. 某同学正在跑步,下丘脑和脑干也参与调节5. 将家兔红细胞置于不同浓度的溶液中,水分子的跨膜运输示意图如下(箭头方向表示水分子的进出,箭头粗细表示水分子出入的多少)。
下列叙述不正确的是()A. 一段时间后,甲细胞的吸水能力会增强B. 图中乙细胞不能发生渗透作用C. 光学显微镜下无法观察到图中乙细胞有水分子的进出D. 可用家兔、鸡等常见生物材料红细胞制备纯净的细胞膜6. 下图某反射弧结构的模式图,其中乙表示神经中枢,甲、丙未知。
神经元A、B上的1、2、3、4为四个实验位点。
2019-2020学年昌乐二中高三语文二模试卷及答案解析一、现代文阅读(36分)(一)现代文阅读I(9分)阅读下面的文字,完成各题。
材料一:当下,“网红城市”之名不胫而走,“网红城市”独特的城市景观通过网络手段传播,迅速带热城市品牌,吸引大量游客蜂拥而至,也带来了大量的相关收入。
正如有些专家所言,这些“网红城市”的出现,背后反映的是地方城市的觉醒。
通过对城市的政治、经济、文化等多种资源的系统整合,找到符合市场经济规律的发展路线,通过树立城市品牌,提高城市综合竞争力,广泛吸引更多的可用社会资源,来推动城市良性发展。
以前一、二线城市会通过一些大型活动进行城市品牌营销,而如今出现的“网红城市”则是借助互联网的交互传播特点,寻找到树立城市品牌的又一支点。
(摘编自王薇薇《别让“网红城市”成为昙花一现》,《经济日报》2018年7月25日)材料二:“网红城市”的创意传播活动,契合年轻群体的喜好,同时,也提升了本地居民的认同感和幸福感。
顺应这波“网红热”,一些中西部城市政府开始有意识地突破传统的城市营销“套路”。
2019年3月起,重庆启动了为期半年的区县“晒文化·晒风景”大型文旅推介活动,借助社交媒体等平台,展示重庆“山水之城”的“颜值”与“气质”。
塑造和推广城市形象,不仅仅着眼于推动文旅产业的发展,背后其实是产业、文化、生态协同高质量发展的大文章。
作为西部的国家中心城市,成都公布了打造“三城三都”行动计划,并在全市统筹布局建设66个产业功能区,涵盖先进制造业、现代服务业和融合产业、都市现代农业等。
从统计数据看,虽然不少中西部“网红”城市GDP已经突破万亿元,在总量上与沿海发达城市相差无几,但在产业结构和经济活力上仍有差距。
“网红城市”还要加快创新转型,丰富城市内涵。
得益于优美的生活环境、较低的商务成本和充足的人才供应,小米、字节跳动、小红书等互联网公司纷纷把研发中心或相关业务总部设在武汉,这一现象被业内人士归纳为“第二总部”。
语文考生注意:1.本试卷共150分,考试时间150分钟。
2.请将各题答案填写在答题卡上。
3.本试卷主要考试内容:部编版必修上册第一至六单元。
一、现代文阅读(27分)(一)实用类文本阅读(本题共3小题,12分)阅读下面的文字,完成下面小题。
钟扬:如果种子不死陈聪四五十度的陡坡,一个八九十公斤重的人在艰难攀爬,脸庞被晒得发紫,牛仔裤和格子衬衫上溅满泥浆。
在海拔4000多米的高山上,每走一步都好似要用尽全身力气,可他走在一群年轻人前面,从不喊停,从不减速。
这就是每年平均150天在世界屋脊的漫山荒林之间穿行的钟扬。
青藏高原有将近6000个高等植物物种,占中国高等植物物种的18%。
然而这么多的物种,却从来没有人进行过彻底盘点。
带着填补历史空白的想法,钟扬一脚踏入青藏高原这片“生命禁区”,一走就是16年。
西藏大学理学院拉琼教授算了一笔账:集齐一份种子样本的5000颗种子,大概要跑500~1000公里。
16年来,他带领学生初步摸清了青藏高原生物资源的分布特点,青藏高原植物研究的的空白一点一点被填补,多个物种的遗传多样性、谱系地理等领域研究也越来越深入……无数个野外的清晨,钟扬嘴唇冻得发紫,还要忍着身体不适给学生们做早饭,“你们年轻,要多睡会儿”;早晨6点出门采集种子,到了晚饭时间还没吃上饭,最后只见钟扬带头从地里刨开土,抓起混着泥巴的萝卜往嘴里塞,还一边说:“纯天然的东西,好吃。
”两个面包、一袋榨菜、一瓶矿泉水,就是这简陋的“老三样”伴随了钟扬16年的跋涉。
时钟回拨到2001年,钟扬自主来到西藏做植物学科研,却发现西藏大学植物学专业的“三个没有”:没有教授、老师没有博士学位、申请课题没有基础。
西藏大学的老师们也并不看好钟扬:他一个从上海来的养尊处优的教授,能让西藏大学的科研改头换面?但钟扬一坚守就是整整16年。
人们发现,钟扬是个“狂人”:21:30,从上海飞往成都,住机场附近;第二天清晨6:00飞赴拉萨,直奔野外采样;结束后,17:00至19:45,审阅论文;20:0至22:00,为西藏大学理学院本科生答疑解惑;2:45至次日凌晨4:00,与青年学者讨论科考和论文;7:00,从西藏大学出发,再次奔赴……他用自己的“负重前行”换来了无数个“第一”——他指导西藏大学申请到历史上第一个国家自然科学基金项目、第一个植物学硕士点、第一个生物学教育部创新团队,帮助西藏大学培养出第一位植物学博士,填补了西藏高等教育的系列空白,将西藏大学生物多样性研究成功推向世界……与此同时,钟扬的身体正一次又一次发出预警。
2015年5月2日夜,钟扬突发脑溢血。
手术后他还在重症监护室观察,就思考提出了关于建设西藏生态安全屏障的建议,认为“建立高端人才队伍极端重要”。
2015年5月15日下午,钟扬出院,重新投入工作。
医生对钟扬下了三个禁令:不再喝酒、不坐飞机、缓去西藏。
没想到,才过一年,钟扬就再次踏上高原:“我连酒都戒了,就是戒不了西藏啊!”拉琼在西藏大学见到了眉头紧锁、吃力喘息的钟扬,他突然觉得,眼前站着的这个人是一名战士,一名与恶劣环境、与自己余生战斗的战士!没有人能劝住钟扬,因为他早已下定决心:“共产党员,就要敢于成为先锋者,也要甘于成为奉献者!”“他即使知道再进藏是死路一条,他也戒不掉,因为那是他一颗科学家初心的‘瘾’。
”科技部生物中心副主任孙燕荣说。
钟扬说,当一个物种要拓展其疆域而必须迎接恶劣环境挑战的时候,总是需要一些先锋者牺牲个体优势,以换取整个群体乃至物种新的生存空间和发展机遇。
孙燕荣说:“种子关系到千秋万代,既关系到人民能不能吃饱肚子,也关系到自然生态能否可持续发展。
在国家自然生态资源与安全层面,钟老师对国家的战略贡献一点不亚于‘两弹一星’元勋。
”钟扬身上有一种“种子精神”。
复旦大学生命科学学院王玉国这么解释“种子精神”:种子很小,但它关系到国家发展战略,种子生生不息,它有前后相继的传承。
钟老师在西藏采集种子,关乎国家战略资源安全;他致力于为每一个少数民族培养一位植物学博士,在少数民族地区种下科研的种;他也坚持做科普,在青少年的心中埋下了薪火相传的科学火种。
(摘编自《种子钟扬》) 1.下列对材料相关内容的理解,不正确的一项是A.钟扬走在海拔4000多米的高山上,虽然要艰难攀爬,但他走在年轻人前面,不喊停,不减速,这充分表现了他的冒险精神。
B.钟扬16年来一直奔走于青藏高原,为的是摸清这个地方生物资源的分布特点,填补从没有人进行过彻底盘点的历史空白。
C.西藏大学的老师们一开始并不看好钟扬,但钟扬的努力为西藏大学做出了巨大的贡献,赢得了西藏大学老师们的认可。
D.钟扬对青藏高原植物种子的研究,意义重大,既关乎自然生态的可持续性发展,也关涉资源的。
2.下列对材料相关内容的概括和分析,不正确的一项是A.文章的标题富有意蕴,“如果种子不死”既是对钟扬研究工作的高度概括,又产生悬念,吸引读者目光,同时也启人思考。
B.钟扬不仅带领学生进行专业研究,还从生活上关心爱护学生,为了让学生多睡一会儿,即使身体不适也为学生做早饭。
C.钟扬在青藏高原上的工作环境很艰苦,但他以苦为乐,把有泥巴的萝卜当晚餐也一点都不在意,还说是天然的好吃。
D.文章结尾高度评价钟扬的“种子精神”所发挥的巨大作用,同时又概括了钟扬一生的经历,还与开头形成照应,结构严谨。
3.本文多处引用了别人的话语,有什么作用?【答案】1.A 2.D3.①突出并丰富人物形象,文章引用孙燕荣的话展现了钟扬忘我工作、乐于奉献、矢志不渝的精神品格。
②充实文章内容,复旦大学王玉国的评价。
使读者更全面地了解钟扬科学研究的重大意义,提升文章阅读价值。
③增强文章的说服力和可信度.使钟扬的故事更具真实感人的力量.体现传记对真实性的要求。
【解析】【1题详解】本题考查学生筛选并整合文中的信息的能力。
这类题目首先要速读题干,明确对象及要求,解答时要整体理解文章的内容,尤其是对选文中心句的理解,要将题目材料信息带入选文比对理解,还要辨明检索区间,确定对应语句,联系上下文体会。
A项,“冒险精神”错,应是体现了他的勇于担当、不畏艰险的带头精神。
故选A。
【2题详解】本题考查学生筛选并整合文中的信息的能力。
这道题综合性比较强,既涉及到了对传主精神品质的理解,也涉及到了对文章主旨的探究。
解答这类体的方法是:①解读标,确定文体,找出传主,联系现实思考传主的人生及经历;②快速通读全篇,抓住中心句、关键句理清全文结构;③认真品读重要段落,把握传主精神品质,概括作者观点态度评价;④细致咀嚼重要语句,总结文章手法技巧;⑥将选项与原文对照,一一排除得出答案。
D项,“同时又概括了钟扬一生的经历,还与开头形成照应”分析不当,钟扬的人生经历不只有这16年,这里并没有概括其一生的经历;且开头是描绘钟扬攀登高山的状况,不存在照应。
故选D。
【3题详解】本题考查学生分析传记文中引用的作用。
答题时首先找到这些话语,结合上下文分析内容,然后从结构上分析作用。
“‘他即使知道再进藏是死路一条,他也戒不掉,因为那是他一颗科学家初心的‘瘾’。
’科技部生物中心副主任孙燕荣说”“孙燕荣说:‘种子关系到千秋万代,既关系到人民能不能吃饱肚子,也关系到自然生态能否可持续发展。
在国家自然生态资源与安全层面,钟老师对国家的战略贡献一点不亚于‘两弹一星’元勋。
’”这段引用充分表现了钟扬对国家贡献之大;“复旦大学生命科学学院王玉国这么解释‘种子精神’:种子很小,但它关系到国家发展战略,种子生生不息,它有前后相继的传承。
钟老师在西藏采集种子,关乎国家战略资源安全……”高度赞扬钟扬的“种子精神”。
这些专家话语的引用更好地塑造了钟扬的形象,使文章更加真实、准确、可信。
【点睛】解答实用类文本阅读可以从如下几个步骤进行:首先是阅读,注意整体阅读,注意抓三个方面;一是要有文体特征意识(如新闻、传记);二是要有思路分析意识(边读边概括各段落意思及段与段之间的关系);三是要有寻找中心句意识(每段的中心句,特别是文章的开头、结尾、过渡句以及标题)。
其次是审题:从题干中求启示,寻求解题的突破口,确保准确答题。
题干具有以下作用:暗示答题区域,暗示答题思路,暗示答题方法,暗示答案本身。
审题时注意;是否选准题眼(答题重点),是否选全要点(要答几个方面),是否选准角度(以谁为陈述主体),是否选好恰当的句式(要与设问的句式一致)。
组织语言时,注意“问”与“答”要照应好。
最后是答题;“规范作答”不能忘记的三个原则:(1)答案在文中(直接来源于文中或或从文中提炼);(2)选择并重组文中关键词句(注意原文表述角度与设问角度是否一致);(3)分点分条作答(高考阅卷采点给分)。
即:问什么答什么,怎么问怎么答;就近找答案,尽量抄原文;抓住关键词,短语答题目,分条来排列;要用肯定句,原文中找依据。
(二)文学类文本阅读(本题共3小题,15分)阅读下面的文字,完成下面小题。
清幽幽的猪油香王生文我读小学那年代,升初中的比例跟现在考一本差不多。
但我居然考取了,和我同时考取的还有本村的蔡新华。
蔡新华的父母自然欢喜,可我父母就不同了。
母亲接过小学校长送来的通知书,望着同样没有喜色的父亲,好一会才说:“孩子怎么就考取了?”父母深感为难是有原因的,因为除了我,我的下面还有五个梯子坎的弟妹,而蔡新华只有两个弟妹,更主要的是蔡新华有一个在县食品公司上班的姑妈。
一旁的爷爷果断地说:“家无读书子,官从何处来,考取了就一定读。
”“可是,我们比不得……”爷爷打断母亲的话:“比得的,我们家不是马上要添劳力了吗?”爷爷说的添劳力是指二叔就要结婚了。
爷爷停了停,接着说:“我不许他们闹分家,关口上得帮你们一把。
”就这样,我和蔡新华又成了初中同学。
老实说,我不愿和蔡新华同学,他长得结实,脸色红润,个子至少高出我半个头。
公社中学离家很远,我和蔡新华只能当寄宿生。
寄宿生的饭是蒸钵子饭,学校只凭票供应饭不供应菜,事实上就是供应菜我也买不起,菜只能从家里带。
其实,家里能够给我带的大多是萝卜或成菜,而且就是这样一碗菜还要保证吃三天。
蔡新华带的菜明显比我的要好,即便他偶尔也带萝卜或成莱,但揭开碗盖,上面必定有一块白莹莹的冻猪油。
这是我第一次看见蔡新华娴熟地用筷子挑出一坨猪油拌进热腾腾的饭里。
随即,一股清幽的猪油香从蔡新华的钵子里飘出来。
村里人说蔡新华肯长是吃了猪油饭,看来是对的……读初二那年,因生产队收成较好,加之又添了二婶一个劳力,年前,爷爷砍回了八斤肉五斤猪油。
猪油是母亲炼的,装在一口黄色的坛子里。
第二天,我偷着揭开坛盖一看,猪油冻结了,也是白莹莹的那种,散发出一股清幽幽的香,这香味让我眼前浮现出蔡新华拌猪油饭的情景……“快盖上,别让二婶看见了。
”母亲不知什么时候站在我身后,我赶紧合上盖,像做了回小偷似的。
因为孩子多,母亲在二婶面前有些抬不起头,每逢弟妹们一个接一个去锅里抢饭,母亲就放下碗等着,她怕二婶吃不饱,如果二婶吃过了,锅里还有剩饭,母亲再接着吃,反正收拾碗筷是她的事。