3.AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过点E 作⊙O的切线交AC于点D,试判断△AED的形状,并 说明理由.
练一练
4、如图,∠APC=50°,PA、PC、DE都为⊙O的切线,
则∠DOE为 65° 。 变式:改变切线DE的位置,
C D
则∠DOE= 6;5°
CD
F
O
P
F
E
O
P
A
E
A
归纳:只要∠APC的大小不变,∠DOE也不变.
切线的性质3、4、5可归纳为:已知直线满 足a、过圆心,b、过切点,c、垂直于切线中任 意两个,便得到第三个结论。
试一试
1、如图,直线l切⊙O于点P,弦AB∥l,请说明 AP=PB
的理由
圆的切线垂直于经过切点的半径 T
C
O
A
B
BOA
P
l
2、如图,AT切⊙O于点A,AB⊥AT,交⊙O于点B,BT
交⊙O于点C。已知∠B=300,AT= 3 。求⊙O的直径
如图,直线AB与⊙O相切于点C,射线AO交⊙O于点D,E, 连结CD,CE.
1)求证: ∠ACD=∠AEC
2)找出图中的一对相似三角形,并说明理由。
E O
D
A
C
B
弦切角
弦切角定义:
顶点在圆上,一边与圆相交,另一边与 圆相切的角叫弦切角.
C
∠BAC的特征:
(1) 顶点在圆上;
B
(2) 一边和圆相交; A B (3) 一边和圆相切。
练一练
练习1、判别下列图形中的角是不是弦切角, 并说明理由。(图中AB与圆相切于A)( D)
A
B
C
D
弦切角