小升初数学复习专题6:分数、百分数应用题专题训练(打印版)
- 格式:doc
- 大小:34.00 KB
- 文档页数:4
15.分数、百分数问题知识要点梳理一、数量关系式在分数(百分数)应用题中存在着三个量,即标准量(单位“1”的量)、比较量(部分量)和分率(百分率)。
分数(百分数)应用题基本的数量关系式:标准量(单位“1”的量)×分率(百分率)=比较量(部分量)比较量(部分量)÷标准量(单位“1”的量)=分率(百分率)比较量(部分量)÷分率(百分率)=标准量(单位“1”的量)二、基本类型解题思路和方法:一般有三种基本类型:1.求一个数是另一个数的几分之几(百分之几);2.已知一个数,求它的几分之几(百分之几)是多少;3.已知一个数的几分之几(百分之几)是多少,求这个数。
解答分数、百分数应用题的关键是:首先要分清哪个量是标准量(单位“1”的量),哪个是比较量(部分量),然后找出与之相对的分率。
三、出勤率与发芽率出勤率=出勤人数÷总人数×100%发芽率=发芽粒数÷总的粒数×100%考点精讲分析典例精讲考点1 求分率(百分率)【例1】一本书100页,读了60页,剩下这本书的百分之几没看?【精析】根据已知条件,把这本书的总页数看作单位“1”,先计算出剩下的页数,再用剩下的页数除以总页数。
【答案】(100-60)÷100×100%=40%答:剩下这本书的40%没看。
【归纳总结】先确定单位“1”,再根据部分量除以单位“1”的量计算对应的百分率。
考点2 求部分量【例2】 参加“六一”儿童节联欢活动的少先队员中,女队员占全体少先队员的47,男队员比女队员的23多40人,问女队员有多少人?【精析】 以全体少先队员为单位“1”。
男队员占全体少先队员的1-47=37,男队员比全体少先队员的47×23=821多40人。
那么全体少先队员的(37-821)是40人,全体少先队员是40÷(37-821)=840(人),女队员有840×47=480(人)。
分数、百分数应用题专题训练温馨提示:做题前从题中标出单位“1”、比较量类型一:一般的分数、百分数应用题例1、某工程队修一条路,已经修了280米,是还没有修的2.5倍。
还没有修的占整条路的几分之几?例2、河西乡去年计划造林60公顷,实际造林90公顷,实际造林比原计划增加了百分之几?练习:小明上月支出120元,比计划节约30元,节约百分之几?类型二、百分率应用题(增长率、合格率、出勤率……)例3、对一批种子进行发芽试验,第一次取出80粒,发芽72粒,第二次取出50粒,发芽45粒。
求这批种子的发芽率?类型三、求一个数的几分之几(百分之几)是多少例4、建筑工地上有水泥360吨,第一次用去总数的61,第二次用去余下的41,工地上还剩下多少吨水泥?练习:水果店有420千克苹果,三天卖出了全部苹果的72,还剩下多少千克的苹果?类型四、已知一个数的几分之几(百分之几)是多少,求这个数例5、某化肥厂四月份计划生产一批化肥,实际上旬完成了计划的31,中旬完成了计划的40%,下旬生产了40吨,结果超额完成了154。
这个厂四月份计划生产化肥多少吨?练习:一桶油,第一次用去51,第二次比第一次多用去20千克,用两次后,还剩下16千克,这桶油原有多少千克?(综合)例6、实验小学去年植树800棵,成活率为90%,今年的成活率为95%,已知去年植的树比今年多死20棵。
问:两年一共活了多少棵树?练习:小明读一本故事书,第一天读了24页,占全书的51,第二天读了全书的37.5%,还剩多少页没读?类型五、税率、利率问题例7、明明的爸爸2008年存了年利率为4.68%的两年定期存款,到期后扣除了5%的利息税,实得利息刚好为明明买了一个111.15元的计算器,明明的爸爸存入银行多少钱?练习:李老师写了一本科普故事书,得稿费3400元,按规定,超出800元以上的部分按14%缴纳个人所得税。
李老师应缴纳税款多少元?类型六、利润问题例8、某商店同时卖出两件商品,每件各得120元,但其中一件赚20%,另一件亏本20%,问:这个商店卖这两件商品是赚钱还是亏本?练习、服装店计划采购一批服装。
小升初数学复习专题6:分数百分数应用题专题训练(打印版)小升初数学复习专题6:分数、百分数应用题专题训练(打印版)印刷版分数、百分数应用题例1一所学校一年级有150名学生。
二年级的学生人数比一年级少20%。
一年级和二年级学生人数的三分之一占学校学生总数的10%。
学校有多少人?练习:1.王刚买回了一块缩水后长2.4米的布料,缩水率为4%。
他买回了多少米?2、体操队里男队员有45人,若女队员减少10%,就恰好与男队员人数的3/5相等。
求女队员人数.3.铜和银的合金重440克,其中铜的重量比银的25%轻10克。
这种合金含有多少克铜?4、六年级有三个班,一、二班人数占全年级人数的2/3,一、三两班人数占全年级人数的60%,六年级一班有40人.全年级有学生多少名?例2一个书架有两层书,上层的书占总数的%40%,若从上层取48本放入下层,这时下层的书占总数的75%.这个书架共有多少本书?实践:一、一辆公共汽车到达一个停车站后,全体乘客中有4/7的人下车,又上来34名乘客,这时车上的乘客是原来的5/6.车上原有乘客多少人?2、小华从家去车站,行到全程的8/9处是邮局,他从车站往家走,行到全程的1/3的地方已超过邮局0.42千米.小华家距车站多少千米?例3一辆汽车从a地到B地行驶了全程的1/5;另外50公里将是6公里,不到整个行程的2/3。
找到a和B之间的距离练习:1.小明看书。
第一天,他读了整本书的1/8,共16页。
第二天,他读了不到2页,占整本书的1/6,剩下88页。
这本书有多少页?2、某小学今年6月份六年级毕业离校学生数比全校人数的1/6多20人,新学期9月份招收一年级新生350人,且无其他转入或转出学生,这样比原来全校的学生人数增加了20%.原来全校学生有多少名?3.联合运输14天后,两个运输队a和B分别接受相同数量的货物运输任务,a队剩余64吨,B队剩余484吨。
众所周知,B队的工作效率是a队的60%。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至第1页/共5页宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
分数百分数应用题专题训练一、基本常识:1.甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。
乙、丙两桶哪桶水多?2.之几?二、单位“1”及“量”、“率”间对应关系3.迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总产量就超过计划产量的16%,那么,原计划生产插秧机多少台?4.某小学五年级有三个班,一班和二班人数相等,三班的人数占全年级5.的还多10个。
问:原来篮里有多少个鸡蛋?6.等候公共汽车的人整齐地排成一排,小明也在其中。
他数了数人数,小明排在第几名?7.8.乘客?9.的数量是分给甲、乙二人数量差的2倍,这时还剩下11支铅笔。
问:甲分到几支铅笔?三、单位“1”的变化10.少个桃?11.该厂工人总数。
12.上只剩下2个桃。
问:树上原有多少个桃?13.一根木杆,第一次截去了全长的12,第二次截去所剩木杆的13,第三次截去所剩木杆的14,第四次截去所剩木杆的15,这时量得所剩木杆长为6厘米。
问:木杆原来的长是多少厘米?四、抓住“不变量”14.:五年级二班有多少学生?15.工人数是男工人数的2 倍。
问:现在厂里共有多少工人?16. 有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%。
那么,这堆糖果中有奶糖多少块?五、处理好量与量间的相等关系。
17. 有甲、乙两桶油,甲桶油比乙桶油多12千克,从两桶中各取出5千18.六、单位“1”的取整计算19.20.个零件?其中优质品多少个?21. 小明和小刚共有一百多本书。
如果小明给小刚x本书,则小明的书比22. 是二级品,其余的91个是三级品。
问:共有多少个乒乓球?说明:经济浓度问题也属于分数百分数应用题的范畴,但因为这两类题较为抽象,并且有其典型的解题方法,因此,我们准备将这两章内容分在以后的时间分专题为大家提供。
分数百分数应用题专题训练你还能想出别的解法吗?一、基本常识:1.甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。
1单元一巧求单位“1”一、选择题1.林场去年种植了10000棵树苗,年底抽查了其中的1000棵,死亡率是2%,你预计一下,林场种植的这批树苗的成活率是( )。
A.20%B.80%C.2%D.98%2.如果甲数的小数点向左移动两位后比乙少35,则原来甲数是乙数的( )。
A.60倍 B.50倍 C.40倍 D.30倍3.水结成冰后体积增加了111,冰融化成水后,体积减少( )。
A.111 B.112 C.211 D.3224.2015年2月份,阴天比晴天少13,雪天比晴天少45,这个月晴天有( )。
A.15天B.10天C.20天D.25天5.一个奇怪的动物庄园里住着猫和狗,狗比猫多180只,有20%的狗错认为自己是猫.有20%的猫错认为自己是狗,在所有的猫和狗中,有32%认为自己是猫,那么狗有( )。
A.240只 B.248只 C.420只 D.842只二、填空题1.两桶油共重340千克,第一桶用去它的14,第二桶用去它的13后,所剩的油相等,第一桶原有油______千克。
2.有甲、乙两根绳子,从甲绳上剪去全长的25,余下绳子再接上25米,从乙绳上先剪去25米,再剪去余下绳子的25,这时两根绳子所剩下的长度相等,则原来乙绳比甲绳长_____米。
3.六年级共有学生425人,若男生增加25人,女生减少10%,则总人数增加5人,那么六年级有男生_____人。
24.某小学的戏剧社有学生126名,从中选男生人数的19和7名女生去参加演出,剩下的男、女生人数恰好相等,则该戏剧社共有男生_____名。
5.乘火车从甲城到乙城,1998年初需要19.5小时,1998年后火车第一次提速30%,第二次提速25%,第三次提速20%,经过这三次提速后,从甲城到乙城乘火车只需_____小时。
6.一个有弹性的球从A 点落到地面,弹起到B 点后又落到高20厘米的平台上,再弹起到C 点,最后落到地面(如图2-1所示),每次弹起的高度都是落下高度的80%,已知A 点离地面比C 点离地面高出68厘米,那么A 点离地面的高度是_____厘米。
(应用题专题)百分数(一)六大类型应用题(小升初专项练习)六年级数学小考总复习(含答案)类型一、求百分率的问题(1)求百分率就是求一个数是另一个数的百分之几。
(2)常用公式:成活率=成活数÷种植总数×100%;合格率=合格产品数÷产品总数×100%;出勤率=出勤人数÷总人数×100%;发芽率=发芽数÷种植总数×100%;正确率=正确题数÷总题数×100%;通过率=通过人数÷总人数×100%;【例1】林园里种了500棵树苗,其中成活了485棵树苗,那么树苗的成活率是多少?【解题分析】(1)采用公式:成活率=成活数÷种植总数×100%;(2)百分率表示两个数的比,所以不带单位名称。
【解答】485÷500×100%=0.97×100%=97%答:树苗的成活率是95%。
1、生产一批洗衣液1250瓶,其中有180瓶不合格,那么这批洗衣液是合格率是多少?2、果园里种植了800棵苹果树,其中成活了780棵苹果树,那么树苗的不成活率是多少?3、六(1)班有28人参加校运动会的50米短跑比赛的淘汰赛,其中有13人第一轮就被淘汰,第二轮又淘汰了8人,剩下的人都通过,那么这次短跑比赛淘汰赛的通过率是多少?4、小琳做了30道竖式计算练习题,做对了27道,这次练习她的正确率是多少?5、生产一批螺丝的合格率是85%,那么360个螺丝就有多少个不合格?合格的螺丝数量比不合格的数量多多少个?6、豆芽发芽培植试验,用300颗绿豆做试验,结果有15颗绿豆没有发芽,本次试验豆芽的发芽率约为百分之几?7、信仪电子厂有200名员工,元旦假期后第一周的出勤情况如下图:(1)求周三的出勤率是多少?(2)如果出勤率是97.5%,那么这一天共有多少人上班?类型二、求一个数的百分之几是多少所求量=一个数(单位“1”)×百分率。
小学数学小升初分数百分数应用题1.某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?2.光明小学今年春天共植杨树、柳树12010棵,杨树有多少棵?3.一瓶油第一次吃去了0.50.2千克,问原来瓶内有多少千克油?4144人,缝纫机厂共有职工多少人?542米,全部完工。
问水渠有多长?6.有两筐鸡蛋,甲筐里的鸡蛋比乙筐少18个.如果从甲筐里拿出6个放入乙筐中,这求出原来的甲乙两筐中各有多少个鸡蛋?7.一桶柴油,第一次用了全桶的20%,第二次用去20千克,第三次用了前两次的和,这时桶里还剩8千克油.问这桶油有多少千克?8100公亩。
求乙耕地多少亩?9.甲、乙、丙三人合作生产一批机器零件,甲生产的零件数量的一半与乙生产的零件数量的五分之三相等,又等于丙生产的零件数量的四分之三,已知乙比丙多生产50个零件,问:这批零件共有多少个?参考答案1.减产1%【解析】一定会有同学认为三月份比元月份不增不减,这对吗?工厂二月份比元月份增产10%,我们就要将元月份产量看作1(标准量),二月份产量就为1+10100=1110。
三月份比二月份减产10%,那就要把二月份的产量作为标准量,三月份产量为二月份产量的1-10 100=9 10。
因此三月份相对元月的产量就为1110×910=99100,由此可见三月份比元月份是减产了。
解:将元月份产量看作1,则二月份产量为1×(1+10%)=1×1110=1110。
三月份比二月份减产10%,则三月份产量为1110×(1-10%)=1110×910=99100。
所以三月份比元月份减产1-99%=1%。
答:三月份比元月份减产1%。
总结:分数百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法。
因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法同时,不断地开拓解题思路。
小升初典型应用题:分数与百分数问题试卷说明:本试卷试题精选自全国各地市近两年2022年和2023年六年级下学期小升初期末真题试卷,难易度均衡,适合全国各地市使用苏教版教材的六年级学生小升初期末考、择校考、分班考等复习备考使用!1.某书店运来一批连环画.第一天卖出1800本,第二天卖出的本数比第一天多19,余下总数的37正好第三天全部卖完,这批连环画共有多少本?2.张亮从甲城到乙城,第一天行了全程的40%,第二天行了全程的920,距乙城还有18千米,甲、乙两城相距多少千米?3.袋子里有红、黄、蓝三种颜色的球,黄球个数是红球的45,蓝球个数是红球的23,黄球个数的34比蓝球少2个.袋中共有多少个球?4.袋子里原有红球和黄球共104个.将红球增加38,黄球减少25后,红球和黄球的总数变为112个.原来袋子里有红球和黄球各多少个?5.水果店运来苹果和香梨一共210千克,香梨的质量是苹果的25.运来香梨有多少千克?6.甲、乙两个书架,甲书架上的书是乙书架的813.若从乙书架取出75本放入甲书架,两个书架上的书相等.原来两书架各有书多少本?7.在希望学校学生阅览室里,女生占全室人数的49,后来又进来两名女生,这时女生占全教室人数的919.问阅览室里原来有多少人?8.某人到商品买红、蓝两种笔,红笔定价5元,蓝笔定价9元.由于买的数量较多,商店就给打折扣.红笔按定价85%出售,蓝笔按定价80%出售.结果他付的钱就少了18%.已知他买了蓝笔30支,问红笔买了几支?9.三种动物赛跑,已知狐狸的速度是兔子的70%,兔子的速度是松鼠的2倍,一分钟内松鼠比狐狸少跑16米,那么半分钟内兔子比狐狸多跑多少米?10.李大娘把养的鸡分别关在东、西两个院内。
已知东院养鸡40只;现在把西院养鸡总数的14卖给商店,13卖给加工厂,再把剩下的鸡与东院全部的鸡相加,其和恰好等于原来东、西两院养鸡总数的50%。
原来东、西两院一共养鸡多少只?11.某运输队运一批大米。
六年级分数、百分数应用题分类总结一、知识点概述分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系。
二、怎样找准分数应用题中单位“1”(一)、部分数和总数:(二)、两种数量比较:(口诀:“的”前“比”后)。
在另外一种没有比字的两种量相比的时候,我们通常找到有分率的句子,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量:原来的量与现在的量做比较,原数量是单位“1”三、常见的数量关系:1.单位“1”已知,用乘法解,用单位“1”乘份率。
求比单位“1”多的量,要加上多的。
求比单位“1”少的量,要减去少的。
数量关系:单位“1”×分率=分量;单位“1”×(1+分率)=分量;单位“1”×(1-分率)=分量2.求单位“1”用方程或除法解,已知量比单位“1”多几分之几的要加上多的,比单位“1”少几分之几的要减去少的。
数量关系:分量÷分率=单位“1”;分量÷(1+分率)=单位“1”;分量÷(1-分率)=单位“1”3.如何求分率?数量关系:分量÷单位“1”=分率;相差数÷单位“1”=多出的分率4.常见的百分率公式分数和百分数应用题典型解法一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
(完整版)六年级分数、百分数应用题专项训练及答案分数、百分数应用题专项训练1、一桶油第一次拿出总数的10%,第二次拿出剩下的20%,两次共拿出28 升。
这桶油共有多少升?2、一桶柴油,第一次用了全桶的20%,第二次用去20 千克,第三次用了前两次的和,这时桶里还剩8 千克油.问这桶油有多少千克?3、服饰厂一车间人数占全厂的25%,二车间人数比一车间少`1/5` ,三车间人数比二车间多`3/10` ,三车间是 156 人,这个服饰厂全厂共有多少人?4、加工一批部件,甲乙二人合作需没达成 . 已知甲每日比乙少加工12 天达成;现由甲先工作4 个,这批部件共有多少个?3 天,而后由乙工作2 天还剩这批部件的`4/5`5、某商铺同时卖出两件商品,每件各得60 元,但此中一件赚20%,另一件赔本20%,问这个商铺卖出这两件商品是赚钱仍是赔本?赚多少,亏多少?6、甲、乙两只装有糖水的桶,甲桶有糖水60 千克,含糖率4%,乙桶有糖水40 千克,含糖率为20%,两桶相互互换多少千克才能使两桶糖水的含糖率相等?7、现有浓度为10%的盐水 20 千克,再加入多少千克浓度为30%的盐水,能够获取浓度为22%的盐水?8、在浓度为40%的酒精溶液中加入 5 千克水,浓度变成30%,再加入多少千克酒精,浓度变成50%?9、一批商品,按希望获取 50 %的收益来订价。
结果只销掉 70 决定按订价打折扣销售。
这样所获取的所有收益,是本来希望收益的%的商品。
为尽早销掉剩下的商品,商铺91%,问:打了多少折扣10、一列火车从甲地开往乙地,假如将车速提升 20%,能够比原计划提早 1 小时抵达;假如先以原速度行驶 240 千米后,再将速度提升 25%,则可提早 40 分钟抵达 . 求甲、乙两地之间的距离及火车本来的速度。
分数、百分数复合应用题典题探究例1.某打字员打一份稿件,第一天打了这份稿件的25%,第二天打了这份稿件的,第二天比第一天多打了2万字.这份稿件共多少字?例2.两桶油共重130千克,从甲桶取出25%倒入乙桶后,甲桶相当于乙桶的,甲、乙两桶原来各有油多少千克?例3.文具店以每枝10元的批发价购进一批钢笔,加上批发价的40%(毛利润)作为零售价出售,当卖出这批钢笔的时获毛利240元.这批钢笔共有_________枝,卖完一共可获毛利_________元.例4.有甲、乙两箱水果,从甲箱拿出放入乙箱后,两箱水果的重量相等,那么原来乙箱水果是甲箱水果的_________%.例5.甲、乙两仓库共存粮95 吨,现从甲仓库运出存粮的,从乙仓库运出存粮的40%,这时甲、乙两仓库剩下的粮同样多,甲、乙两仓库原来各存粮多少吨?例6.小红是个小统计迷,他在统计五①班和五②班的人数后,告诉他的爸爸说:“我们这两个班的人数恰好相同,五①班的男生人数比五②班的女生少20%,五②班的男生人数与五①班的女生人数比为5:7,五班②有女生30人,你知道这两个班共有多少人吗?”你能帮小红的爸爸算出这两个班的总人数吗?演练方阵A档(巩固专练)一.选择题(共8小题)1.某班男生比全班人数的少4人,女生比全班人数的40%多6人,那么该班男生比女生少()人.A.5B.3C.9D.102.一条高速公路全长240千米,先修了全长的20%,又修了千米,还剩下()千米没修.A . 240×(1﹣20%﹣)B . 240÷(1﹣20%﹣)C . 240×(1﹣20%)﹣D . 240÷(1﹣20%)﹣3.小红第一天读了全书的,第二天读了35页,再读7页,两天恰好读了全书的40%,这本书一共有( )页.A . 280B . 140C . 70D . 5604.有5吨大米,卖出30%后,又卖出总数的,还剩( )吨.A . 0.5B . 2.5C . 50%D . 250%5.一本故事书,小明第一天看了全书的,第二天看了余下的25%,还剩下全书的( )没有看.A .B .C .D .6.(•旅顺口区)男生人数的75%是女生人数的,女生有40人,男生有( )人.A . 50B . 45C . 32D . 24 7.(•北海模拟)一个数的比它的25%多5,这个数是( )A . 15.75B . 12C . 608.(•宜兴市)如果甲堆煤的重量比乙堆煤少,那么下列说法正确的有( ) ①乙堆的重量比甲堆多20%.②甲、乙两堆重量的比是6:7.③如果从乙堆中取出给甲堆,那么两堆煤的重量就同样多.④甲堆占两堆煤总重量的. A . ①②③ B . ①②④ C . ①③④ D .②③④二.填空题(共15小题)9.某小学四、五、六年级的同学分别给边疆地区的小朋友写信,六年级的同学写了159封信,比五年级的同学多写了6%,四年级的同学写的是五年级的同学的,则四年级的同学写了 _________ 封信,五年级的同学写了 _________ 封信.10.某商场将一种商品按标价的九折售出,仍可获利润10%.若此商品的标价为33元,那么该商品的进货价为_________.11.某厂改进生产技术后,生产人员减少,而生产量却增加了40%,那么改进技术后的生产效率比改进前提高了_________%.12.把甲班学生的调入乙班后,两班人数相等,原来甲班比乙班多50%._________(判断对错)13.把若干个兵乓球分装在四个盒子里,其中放入甲盒,放入乙盒放入丙盒的乒乓球是甲、乙两盒乒乓球总数的75%,丁盒放入10个乒乓球,乒乓球共有_________个.14.一条路长20千米,第一周修了,第二周修了25%,还剩_________千米.15.一根2米长的电线,第一次用去全长的25%,第二次用去米,剩下_________米.16.粮站原有大米占粮食总量的60%,又运进28吨大米后,大米占现在粮食总量的,问这个粮站原有大米_________吨.17.某部队为扩收新兵做准备,将原来的两个连重新编为三个连,将原一连的与原二连的25%编成新一连,将原一连的25%与原二连的编成新二连,余下的120人编成新三连,若新一连比新二连人数多10%,问原一连有_________人.18.甲、乙、丙三人赛跑,已知甲速比乙速快,而乙速又比丙速快10%,则甲速比丙速快_________%.19.张阿姨的服装店卖给一顾客两套服装,结果一套赚了20%,另一套赔了20%,两套衣服都卖了120元.小刚说张阿姨这笔生意正好不赔不赚._________.20.原有男、女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人,那么现有男同学_________人.21.(•彭州市模拟)一块布长40米,先剪去它的40%,再剪去米,还剩下_________米.22.(•鲁山县模拟)我校去年参加各种体育兴趣小组的同学中,20%是女生.为迎接2008年奥运会,今年参加各种体育兴趣小组的学生增加了,其中女生人数占总人数的.那么今年女生参加各种体育兴趣小组的人数比去年增加百分之_________.23.100千克增加它的30%后,再减少30%,剩下_________千克.三.解答题(共5小题)24.一桶油,用去20%后连桶重27千克.用去后连桶共重18千克.这桶油原来有多少千克?25.某城市修地铁,一期工程完成全部的35%,二期工程完成了全部的,还剩下26千米没有修完.该城市修地铁的总长是多少千米?26.一个工厂要运一批零件,第一天运走,正好是60件,第二天运走这批零件的20%,第二天运走多少件?27.新亚服装厂有3个车间,第一车间的人数占全厂职工总数的30%,第二、三车间的人数比是3:2,第二车间比第一车间多30人,这个厂共有职工多少人?28.(•阆中市)小红看一本故事书,第一天看了45页,第二天看了全书的,第二天看的页数恰好比第一天多20%,这本书一共有多少页?B档(提升精练)一.选择题(共15小题)1.有含水量90%的盐水2000Kg,在外面被太阳晒了一天后,测得的含水量比原来减少了,这时盐水的重量是()千克.A.1600 B.1800 C.1200 D.14002.玲玲有红、蓝两色彩球共95个,红球的50%与蓝球的一样多,则两种球相差()个.A.16 B.17 C.18 D.193.某厂上半月完成计划的75%,下半月完成计划的,这个月增产()A.25% B.45% C.30% D.20%4.一些钱用去60%后剩下280元.如果用去,应剩下多少元?正确的算式是( )A . 280÷(1﹣60%)×(1﹣)B . 280÷(1﹣60%)÷(1﹣)C . 280÷(1﹣60%)÷(1+)5.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,原来这堆糖果中奶糖有( )块.A . 6B . 7C . 8D . 96.数a 的20%与数b 的相等,则( )A . 数a 等于数bB . 数a 大于数bC . 数a 小于数b7.今年植树2400棵,去年植树1800棵,通过2400÷1800﹣100%这个算式可以求出( )A . 今年植树棵数是去年的百分之几B . 去年植树棵数是今年的百分之几C . 今年比去年增加百分之几D . 今年比去年减少百分之几8.(•郯城县)一根钢管,截去部分是剩下部分的,剩下部分是原钢管长的( )%.A . 75B . 400C . 80D . 259.悬磁浮列车是一种科技含量很高的新型交通工具,它每个座位的平均能耗仅为飞机每个座位平均能耗的,是汽车每个座位平均能耗的70%,那么汽车每个座位的平均能耗是飞机每个座位平均能耗的( )A .B .C .D .10.一辆汽车从甲地开往乙地,第一小时行了全程的,第二小时行了余下路程的40%,第三小时行了36千米,正好到达乙地.甲、乙两地相距多少千米?列算式是( )A .B .C .11.一个油桶,装的油占全桶容积的,卖出16千克后,还剩原有油的60%,这个油桶最多能装多少千克油?正确列式是( )A . 16×(1﹣60%)×B . 16×(1﹣60%)÷C . 16÷(1﹣60%)÷D . 16÷(1﹣60%)×12.(•淮阴区模拟)苏果超市和华联超市以同样的价格卖同一种品牌的洗发液.为了促销,两家超市打出优惠广告(如图).下面的4种说法中,正确的是…( )A.苏果超市的便宜,应买苏果超市的B.华联超市的便宜,应买华联超市的C.两家超市的折扣相同,到哪家超市买都可以D.两家超市折扣相同,但在苏果超市要买3瓶以上才有优惠,应买华联超市的13.(•郑州模拟)一只油桶,装的油占全桶装油量的,卖出18千克以后,还剩原有油的60%,这只油桶能装多少千克油?正确的列式为()A.18×(1﹣60%)×B.18×(1﹣60%)÷C.18÷(1﹣60%)×D.18÷(1﹣60%)÷14.(•长沙模拟)某种皮衣定价是1150元,以8折售出仍可以盈利15%,某顾客再在8折的基础上要求再让利150元,如果真是这样,商店是盈利还是亏损?()元?A.亏50 B.盈40 C.亏30 D.盈2015.(•宜兴市)如果甲堆煤的重量比乙堆煤少,那么下列说法正确的有()①乙堆的重量比甲堆多20%.②甲、乙两堆重量的比是6:7.③如果从乙堆中取出给甲堆,那么两堆煤的重量就同样多.④甲堆占两堆煤总重量的.A.①②③B.①②④C.①③④D.②③④二.填空题(共13小题)16.(•彭州市模拟)一块布长40米,先剪去它的40%,再剪去米,还剩下_________米.17.(•广州模拟)一个长方形的长是12分米,如果把长增加它的,要使长方形面积不变,宽应当减少_________%.18.(•游仙区模拟)甲数相当于乙数的,乙数比甲数多_________%.19.(•延庆县)某服装专卖店同时出售了两件服装,售价都是300元.其中一件是时令服装,可盈利20%,另一件是过时服装,要亏损20%.就这两件服装而言,该店_________元.(赚了记作“+,赔了记作“﹣”)20.(•张家港市)商店以每枝10元的价格购进一批钢笔,加上40%的利润以后定价出售,当卖出这批钢笔的时就已经获利240元.这批钢笔共有_________枝;买完这批钢笔,共可获利_________元.21.(•宜宾县模拟)根据如图的信息回答,剩下的糖果是原来糖果重量的_________.22.(•宝应县模拟)一批货物计划按5:7分配给甲乙两个运输队.实际乙队运了840吨,完成本车队任务的80%,后因另有任务调走,其余的全部由甲队运完,甲队实际运了_________吨.23.(•慈溪市模拟)为庆“六•一”,学校舞蹈队购买了红、黄、蓝三种颜色的彩带若干根,其中20%是红色的,是黄色的,其余81根是蓝色的.学校三种彩带共买了_________根.24.(•武汉)某厂改进生产技术后,生产人员减少,而生产量却增加了40%,那么改进技术后的生产效率比改进前提高了_________%.25.(•郑州模拟)箱子里放了许多同一种机器零件,其中五分之三是一等品,25%是二等品,其余51个是三等品,箱子中的零件一等品有_________个.26.(•广州一模)一件衣服如果售价72元,就会亏本20%,现在要使利润率为20%,每件应该卖_________.27.(•榆林模拟)一种商品原价75元,提价10%后又降价10%,结果售价还是75元_________.28.(•成都)甲数的与乙数的75%相等,甲比乙多12,甲、乙之和为_________.C档(跨越导练)一.填空题(共1小题)1.(•大安区)文具店以每枝10元的批发价购进一批钢笔,加上批发价的40%(毛利润)作为零售价出售,当卖出这批钢笔的时获毛利240元.这批钢笔共有_________枝,卖完一共可获毛利_________元.二.解答题(共13小题)2.(•徐州)小明看一本故事书,第一天看了全书的,第二天看了全书的25%,他发现第二天比第一天多看了8页,同学们你知道这本故事书有多少页?3.(•河池)一个体水果摊运来柑子、苹果和梨一共290千克,柑子的质量是苹果的,梨的质量是苹果的10%.运来的柑子比梨多多少千克?4.(•扬州)学校举行庆“六一”男女生大合唱,原计划合唱队中女生人数占合唱队总人数的60%,后来考虑到合唱效果,将增加了5名男生,这时女生与男生人数的比是6:5.合唱队原有男生多少名?5.(•江都市)某厂计划六月份生产零件2000个,上半月已完成了计划的,再生产多少个就能增产25%?6.(•陕县)小英读一本书,上午读了10%,下午比上午多读6页,这时已读的页数与未读的页数的比是1:3,这本书共有多少页?7.(•沙县)我校有10名运动员参加2008年“驾驭未来”福建省青少年车辆模型大赛,比赛共有16个项目.值得骄傲的是,每个项目我校均获奖.其中获三等奖的项目占总项目数的50%,获一、二等奖的项目的比是3:1.我校有多少个项目获一等奖?8.(•武义县)为了支援地震灾区,某厂要赶制一批帐篷,第一天完成总量的,第二天做了400顶,这时还剩下总量的40%没有完成.这批帐篷一共有多少顶?还剩下多少顶没有完成?9.(•扬州)一个数的40%比这个数的少120,这个数是多少?(用方程解)10.(•靖江市)图书馆新进一批图书,分别放在甲、乙两个书架上,甲书架放了这批书图书的60%,若从甲书架拿出200本放在乙书架上,那么甲、乙两个书架放的图书本书比是2:3,这批图书有多少本?11.(•广东)在社会主义新农村建设中,筑路队修一条环村道路,第一天修了全长的20%,第二天比第一天多修了720米,这时已修的与未修的比是5:3,这条环村道路全长多少米?12.(•金堂县)某县组织2011年的科技作品大赛,计划评出一、二等奖共72名,一、二等奖的评奖比例为l:8.在评选过程中发现与往年比优秀作品增多了,经评委会讨论,增补了一些二等奖.实际评出的二等奖占一、二等奖总数的90%.实际获一、二等奖的共有几人?13.(•浦城县)小明读一本故事书,第一天读了24页,占全书的,第二天读了全书的37.5%,还剩多少页没有读?14.(•金沙县)甲、乙两个书架,甲书架有120本书,从甲书架拿24本到乙书架,则乙书架的正好是甲书架的75%,乙书架原来有多少本书?分数、百分数复合应用题答案典题探究例1.某打字员打一份稿件,第一天打了这份稿件的25%,第二天打了这份稿件的,第二天比第一天多打了2万字.这份稿件共多少字?考点:分数、百分数复合应用题;分数四则复合应用题;百分数的实际应用.分析:这份稿件的总量是单位“1”,第一天打的分数减去第二天打的分数就是第二天比第一天多打的分数,它对应的数量是2万,求单位“1”用除法.解答:解:2÷(﹣25%),=2÷,=4.8(万字);答:这分稿件共4.8万字.点评:解答此类问题,首先找清单位“1”,进一步理清解答思路,列式的顺序,从而较好的解答问题.例2.两桶油共重130千克,从甲桶取出25%倒入乙桶后,甲桶相当于乙桶的,甲、乙两桶原来各有油多少千克?考点:分数、百分数复合应用题.专题:分数百分数应用题.分析:本题可列方程解答,设甲桶原有x千克,则乙桶原有130﹣x千克,从从甲桶取出25%倒入乙桶后,则此时甲桶还有(1﹣25%)x千克,乙桶有130﹣x+25%x千克,又此时甲桶相当于乙桶的,由此可得方程:(1﹣25%)x=(130﹣x+25%x).解此方程求出甲桶的数量后即能求出乙桶原有多少千克.解答:解:设甲桶原有x千克,则乙桶原有130﹣x千克,可得:(1﹣25%)x=(130﹣x+25%x)75%x=(130﹣75%x)75%x=﹣×75%x×75%x=x=80130﹣80=50(千克)答:甲桶原有80千克,乙桶原有50千克.点评:本题为含有两个未知数的题目,能过设其中一个为x,别一个未知数用含有x式子表示列出方程是完成本题的关键.例3.文具店以每枝10元的批发价购进一批钢笔,加上批发价的40%(毛利润)作为零售价出售,当卖出这批钢笔的时获毛利240元.这批钢笔共有80枝,卖完一共可获毛利320元.考点:分数、百分数复合应用题.专题:压轴题.分析:根据“每枝钢笔的批发价为10元,加上批发价的40%作为零售价”,可先求出每枝钢笔的零售价;再根据卖出这批钢笔的的毛利价去掉这批钢笔的的批发价,就是获得毛利价240元,设这批钢笔共有x枝,列并解方程求出钢笔的总枝数;进一步求得卖完一共可获毛利价格即可.解答:解:每枝钢笔的零售价:10×(1+40%)=14(元),设这批钢笔共有x枝,由题意得,14×x﹣10×x=240,3x=240,x=80;卖完一共可获毛利:(14﹣10)×80=320(元).答:这批钢笔共有80枝,卖完一共可获毛利320元.故答案为:80,320.点评:此题的数量间的关系比较复杂,解决此题关键是先根据题意求出每枝钢笔的零售价,再列方程求出钢笔的总枝数,最后求得卖完一共可获毛利价格即可.例4.有甲、乙两箱水果,从甲箱拿出放入乙箱后,两箱水果的重量相等,那么原来乙箱水果是甲箱水果的60%.考点:分数、百分数复合应用题.专题:分数百分数应用题.分析:因从甲箱拿出放入乙箱后,两箱水果的重量相等,则甲箱水果的重量比乙箱水果多了甲箱水果的(),然后用乙箱水果占甲箱水果多少的除以甲箱水果,就是乙箱水果比甲箱水果多百分之几.据此解答.解答:解:[1﹣()]÷1,=[1﹣]÷1,=÷1,=60%..答:原来乙箱水果占甲箱水果的60%.故答案为:60%..点评:本题的关键是先求出乙箱水果占甲箱水果的几分这几,再根据除法的意义求出乙箱水果占甲箱水果的百分之几.例5.甲、乙两仓库共存粮95 吨,现从甲仓库运出存粮的,从乙仓库运出存粮的40%,这时甲、乙两仓库剩下的粮同样多,甲、乙两仓库原来各存粮多少吨?考点:分数、百分数复合应用题.专题:压轴题;分数百分数应用题.分析:甲运出存粮的,还剩下1﹣=;乙运出存粮的40%,还剩1﹣40%=60%;这时把甲仓存粮总数看做单位“1”,那么乙仓是甲仓的÷60%=,甲原来有:95÷[1+(1﹣)÷(1﹣40%)],计算即可,乙仓原来存粮就好求了.解答:解:甲原来有:95÷[1+(1﹣)÷(1﹣40%)],=95÷[1+],=95÷,=57(吨);乙仓原来有:95﹣57=38(吨).答:甲仓库原来存粮57吨,乙仓库原来存粮38吨.点评:解决此题的关键是把甲仓存粮总数看做单位“1”,根据关系式“甲仓×(1﹣)=乙仓×(1﹣60%)”,求出乙仓存粮是甲仓的几分之几,进而找出95吨所占甲仓的分率,解决问题.例6.小红是个小统计迷,他在统计五①班和五②班的人数后,告诉他的爸爸说:“我们这两个班的人数恰好相同,五①班的男生人数比五②班的女生少20%,五②班的男生人数与五①班的女生人数比为5:7,五班②有女生30人,你知道这两个班共有多少人吗?”你能帮小红的爸爸算出这两个班的总人数吗?考点:分数、百分数复合应用题.专题:压轴题;分数百分数应用题.分析:先把五②的女生人数看成单位“1”,那么五①班的男生人数就是它的(1﹣20%),用五①班的男生人数就是30×(1﹣20%)=24人;设一个班的人数是x人,那么五②班的男生人数就是(x﹣30)人;五①班的女生人数就是(x﹣24)人,根据五②班的男生人数与五①班的女生人数比为5:7列出比例,解这个比例即可.解答:解:设一个班的人数是x人,由题意得:五①班的男生人数:30×(1﹣20%)=24(人);(x﹣30):(x﹣24)=5:7,(x﹣30)×7=(x﹣24)×5,7x﹣210=5x﹣120,2x=90,x=45;两个班的总人数就是45+45=90(人);答:两个班共有90人.点评:先理解题意,计算出可以求出的数量,再根据比例关系,列出方程求解.演练方阵A档(巩固专练)一.选择题(共8小题)1.某班男生比全班人数的少4人,女生比全班人数的40%多6人,那么该班男生比女生少()人.A.5B.3C.9D.10考点:分数、百分数复合应用题.专题:分数百分数应用题.分析:男生比全班人数的少4人,即女生人数为全班的1﹣=多4人,又女生比全班人数的40%多6人,则6﹣2人占全班人数的﹣40%,则全班人数为(6﹣4)÷(﹣40%)人,进而求得该班男生比女生少多少人.解答:解:全班:(6﹣4)÷(1﹣﹣40%)=2÷,=45(人);男生有:45×﹣4=25﹣4=21(人);男生比女生少:45﹣21﹣21=3(人);答:该班男生比女生少3人.故选:B .点评: 由题意明确女生人数为全班的1﹣=多4人是完成本题的关键.2.一条高速公路全长240千米,先修了全长的20%,又修了千米,还剩下( )千米没修.A . 240×(1﹣20%﹣)B . 240÷(1﹣20%﹣)C . 240×(1﹣20%)﹣D . 240÷(1﹣20%)﹣考点: 分数、百分数复合应用题.专题: 分数百分数应用题.分析: 根据题意要把这条路的全长看作是单位“1”,第一天修完剩下全长的(1﹣20%),再减去第二天修的,就是还剩下的米数.据此解答.解答: 解:240×(1﹣20%)﹣=240×0.8﹣0.2=192﹣0.2=191.8(千米)答:还剩下191.8千米没修.故选:C .点评: 本题的易错点是第二天修的是千米,不是修了全程的.3.小红第一天读了全书的,第二天读了35页,再读7页,两天恰好读了全书的40%,这本书一共有( )页.A . 280B . 140C . 70D . 560考点: 分数、百分数复合应用题.专题: 分数百分数应用题.分析: 把这本书的总页数看做单位“1”,根据“第一天读了全书的 ,第二天读了35页,如果再读12页,两天恰好读完这本书的40%”,可先求出(35+7)页对应的单位“1”的分率是多少,根据已知一个数的百分之几是多少,求这个数,用除法解答.解答:解:(35+7)÷(40%﹣),=42÷(0.4﹣0.1),=42÷0.3,=140(页);答:这本书一共有140页.故选:B..点评:此题属于分数、百分数除法应用题的基本类型:解答关键是确定单位“1”,根据已知一个数的几分之几(或百分之几)是多少,求这个数,用除法解答.4.有5吨大米,卖出30%后,又卖出总数的,还剩()吨.A.0.5 B.2.5 C.50% D.250%考点:分数、百分数复合应用题.专题:分数百分数应用题.分析:由题意可知,把5吨看作单位“1”,先卖出5吨的30%,又卖出5吨的,先求出剩下的占总数(5吨)的几分之几(或百分之几),然后根据一个数乘分数(百分数)的意义,用乘法解答.解答:解:5×(1﹣30%﹣),=5×(1﹣0.3﹣0.2),=5×0.5,=2.5(吨);答:还剩2.5吨.故选:B.点评:此题解答关键是确定单位“1”,先求出剩下的占单位“1”的几分之几或百分之几,再根据一个数乘分数(百分数)的意义解答.5.一本故事书,小明第一天看了全书的,第二天看了余下的25%,还剩下全书的()没有看.A.B.C.D.考点:分数、百分数复合应用题.专题:分数百分数应用题.分析:将总页数当作单位“1”,则小明第一天看了全书的,则还剩下全部的1﹣,第二天看了余下的25%,根据分数乘法的意义,第二天看了全书的(1﹣)×25%,则用单位“1”分别减去第一天与第二天看的占全部的分率,即得还剩下全书的几分之几没有看.解答:解:1﹣﹣(1﹣)×25%=﹣×25%=﹣=即还剩下全书的没有看.故选:A.点评:完成本题要注意第二天看了剩下的25%,而不是全部的25%.6.(•旅顺口区)男生人数的75%是女生人数的,女生有40人,男生有()人.A.50 B.45 C.32 D.24考点:分数、百分数复合应用题.专题:分数百分数应用题.分析:女生有40人,根据分数乘法的意义可知,其是40×人,男生人数的75%是女生人数的,根据分数除法的意义可知,男生有40×÷75%人.解答:解:40×÷75%=24÷75%,=32(人).答:男生有32人.故选:C.点评:首先根据分数乘法的意义求出女生的是多少人为完成本题的关键.7.(•北海模拟)一个数的比它的25%多5,这个数是()A.15.75 B.12 C.60考点:分数、百分数复合应用题;整数、分数、小数、百分数四则混合运算.分析:首先分清和25%都是把这个数看做单位“1”,再由一个数×﹣这个数×25%=5,设这个数为x,列方程解答即可.解答:解:设这个数为x,由题意列方程得,x﹣25%x=5,x=5,x=60;答:这个数为60.故选C.点评:此题主要是正确分析单位“1”,找出题目中蕴含的数量关系,正确选择合理的方法解决问题.8.(•宜兴市)如果甲堆煤的重量比乙堆煤少,那么下列说法正确的有()①乙堆的重量比甲堆多20%.②甲、乙两堆重量的比是6:7.③如果从乙堆中取出给甲堆,那么两堆煤的重量就同样多.④甲堆占两堆煤总重量的.A.①②③B.①②④C.①③④D.②③④考点:分数、百分数复合应用题;求比值和化简比.专题:压轴题.分析:根据“甲堆煤的重量比乙堆煤少”,可以知道:乙堆煤的重量为单位“1”,甲堆煤的重量是乙堆煤的1﹣,也即甲堆煤的重量对应的分率为,两堆煤总重量对应的分率为(1+),据此把所给选项逐个分析后,再选择正确的选项.解答:解:A、乙堆的重量比甲堆多:(1﹣)÷=×=20%,此句正确;B、甲、乙两堆重量的比是::1=5:6,不是6:7,原句错误;C、从乙堆中取出给甲堆,乙堆还剩:1﹣=,甲堆现有:+=,两堆煤的重量就同样多,此句正确;D、甲堆占两堆煤总重量的:÷(1+)=×=,此句正确;所以①、③、④句正确.故选:C.点评:解决此题关键是找准单位“1”,根据题意可以得出哪些有用信息,再根据这些信息将所有选项逐个分析后,进而选择正确的选项即可.二.填空题(共15小题)9.某小学四、五、六年级的同学分别给边疆地区的小朋友写信,六年级的同学写了159封信,比五年级的同学多写了6%,四年级的同学写的是五年级的同学的,则四年级的同学写了125封信,五年级的同学写了150封信.考点:分数、百分数复合应用题.专题:应用题.分析:六年级的同学写了159封信,比五年级的同学多写了6%,则六年级同学写的是五年级同学写的1+6%.所以五年级同学写了159÷(1+6%)=150封;四年级的同学写的是五年级的同学的,根据分数乘法的意义可知,四年级同学写了150×封.解答:解:年级同学写了:159÷(1+6%)=159÷106%,=150(封);四年级同学写了:150×=125(封).答:四年级的同学写了125封信,五年级的同学写了150封信.故答案为:125,150.点评:完成本题要注意是将五年级的人数当做单位“1”进行解答.10.某商场将一种商品按标价的九折售出,仍可获利润10%.若此商品的标价为33元,那么该商品的进货价为27.考点:分数、百分数复合应用题.专题:分数百分数应用题.分析:商品按标价的九折售出,即按标价的90%的出售,则售价为33×90%元,由于此时,仍可获利润10%,即此时售价是进价的1+10%,则进价为33×90%÷(1+10%)元.解答:解:33×90%÷(1+10%)=33×90%÷110%,=27(元);答:该商品的进货价为27元.故答案为:27.点评:在求出售价的基础上,根据利润率=(售价﹣进价)÷进价×100%进行解答是完成本题的关键.11.某厂改进生产技术后,生产人员减少,而生产量却增加了40%,那么改进技术后的生产效率比改进前提高了75%.考点:分数、百分数复合应用题.专题:分数百分数应用题.分析:设原来人数为1,产量为1,则现在人数为1﹣,产量为1+40%=140%,所以现。
密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版小升初复习专项《分数、百分数应用题》能力达标卷六年级 数学(满分:100分 时间:60分钟)一、细心考虑,正确填写。
1.一个数的20%是48,这个数是( )。
(2分)2.一箱苹果的质量等于它自身质量的65%加上7千克,这箱苹果重( )千克。
(2分)3.把3米长的绳子平均分成5段,每段占全长的( ),是( )米。
(2分)4.85的分数单位是( ),再加( )个这样的分数单位就能得到最小的质数。
(2分)5. 甲数是乙数的40%,乙数减去甲数的差是15,甲数是( ),乙数是( )。
(2分)6.一件衣服原价120元,打完折后是96元,这是打( )折,比原价便宜了( )%。
(1分)7.在67,0.83,0.83,84%和0.83三中,最大的数是( ),最小的数是( )。
(2分)8.某校学生参加防震演练活动的出勤率为98%,出勤人数与缺勤人数的比是( )。
(2分)9.给35的分子加上6,要使分数的大小不变,分母应该加上( )。
10.星光小学有500名学生,在全体学生体能达标检测中,有4名学生不合格。
星光小学学生的体能检测达标率是( )%。
(3分)11.右面是鸡蛋各部分质量占总质量百分比的统计图。
从图中我们可以看出:蛋白的质量占总质量的( )%。
如果—个鸡蛋重80克,那么这个鸡蛋中的蛋白重( )克。
(2 分)12.甲、乙两筐苹果共重56千克,从甲筐中取出29放入乙筐,两筐苹果就同样重。
甲筐原来重( )千克,乙筐原来重( )千克。
(4分)二、仔细推敲,准确判断。
(对的在括号里画“√”,错的画“×”,每题1分)1.一种商品降价30%销售,就是打三折销售。
( )密学校 班级 姓名 学号密 封 线 内 不 得 答 题2.17和18之间只有1个分数。
( )3.73100千克可以写成73%千克。
( )三、反复比较,择优录取。
(选出正确答案的序号填在括号里,每题2分)1.如右图,点A 和点B 分别是长方形长和宽的中点,阴影部分的面积是长方形面积的( )。
分数、百分数测试卷1.把5米长的铁丝平均截成6段,每段长()米,每段是5米的()。
2.把8米长的铁丝平均截成8段,每段是8米的(),其中4段长()米。
3.52的分子加上6,要使分数的大小不变,分母应加上()。
4.给分数a 7的分母乘以3,要使分数的大小不变,分子应加上()。
5.一个数的51是21,它的25%是()。
6.一条绳子剪掉61,再接上60米,结果比原来长50%,原来绳子长()米。
7.一个分数,分子减1后等于32,分子减2后是21,这个分数是()。
8.在浓度为15%的100克盐水中加入25克盐,现在盐水浓度为()。
9.一件商品的价格先提高了20%,然后降低了20%,结果与原价相比()。
A.提高了4%B.降低了4%C.不变D.无法确定10.甲、乙两件商品都以80元出售,甲盈利20%,乙亏损20%,总盈亏情况为()。
A.盈利B.亏损C.不盈不亏D.无法确定11.一种股票的价格上升10%后又上升15%,然后又下降20%,这种股票最后是()。
A.上升2.4%B.上升5%C.上升1.2%D.都不对12.一种商品如卖140元,可赚40%,如买120元可赚()。
A.20%B.25%C.30%13.一个工厂调整后,工人比原来减少了20%,产量比原来增加了20%,则工作率()。
A.提高了50%B.提高了40%C.提高了30%D.与原来一样14.一种商品先降价10%,再提价10%,现价比原价低。
()15.一种商品打九折销售,就是降价90%。
()16.一堆水泥重9吨,运走91后还剩988吨。
() 17.53吨表示把5吨,平均分成5份,取其中的3份。
() 18.1克盐溶于100克水中,盐水的含盐率是1%。
()19.生产98个零件,全部合格,我们就说这批产品的合格率是98%。
()20.真分数除以假分数的商一定比1小。
()。
六年级下册数学小升初总复习专项训练分数、百分数应用题一、填空题1.比多30%的数是390,24的3/4比的5/6少12。
2.一项工程用40天完工,比计划提前8天完成,实际时间提前了 %,工作效率提高了 %。
3.妈妈买回一段布,缩水后是2.4米,这种布的缩水率是4%,妈妈买回米布。
4.113,11011,1315,1619,…是一串有规律的数,这串数中第九个数是,如果其中某个分数的分母是1999,那么这个数的分子是。
5.把9米长的绳子平均截成5段,每段占这根绳子的,每段长米。
6.把0.803,56,0.83,0.803和22/25,这五个数按从小到大的顺序排列是 < < < < 。
7.一个最简分数,分子减去能被2,3 整除的最小的一位数,分母加上最小的质数,所得的分数的倒数是514,原来的最简分数是。
8.甲、乙两班各有200本课文书,甲给乙本后,乙的本数比甲多50°9.把3千克水加到盐水中,得到浓度为10%的盐水,再把1千克盐加到所得到的盐水中,这时盐水浓度为20%,原来的盐水浓度是。
10.有大、小两个圆纸片,小圆纸片的面积是50平万厘米,大圆纸片的直径比小圆纸片大20%,大圆纸片的面积比小圆纸片的面积大平方厘米。
二、判断题(对的打“√”,错的打“×”)1.甲数是乙数的80%,乙数就是甲数的125% ( )2.如果a>0,那么a一定大于1a( )3.六二班男生人数是女生人数的23,女生人数占全班人数的40% ( )4.王师傅加工98个零件,其中有2个不合格,合格率是98% ( )5.在含盐率10%的450克盐水中,加入50克水,新盐水的含盐率是15% ( )三、选择题(将正确答案的序号填在括号里)1.把一个分数的分子乘10,分母除以0.1,这个分数和原来相比( )A.比原数小B.比原数大C.大小不变2.一个车间改革后,人员减少20%,当工作时间增加20%后,产量比原来增加50%,工作效率( )A.提高916B.提高310C.提高54% 3.把10千克盐溶解到100千克水里,盐水的含盐率是( )A.10%B.110%C.约9.1%D.90%4.下列说法正确的是( )A.某工厂进行技术改造后,产品质量大幅提高,产品合格率达120%B.把3千克面包平均分给5个小朋友,每个小朋友分到60%千克C.甲数的12与乙数的50%一定相等D.甲数是8,乙数是5,算式(85)÷5 =60%,表示甲数比乙数多60%四、计算题(1)65×(2.25+416)÷77%−1213 (2)(4.3×2.375÷138×1043)×52(3)(145+223)÷[(4−156)÷134] (4)12+34+78+1516+3132+6364+127128+2552562.列式计算。
分数、百分数应用题
例1 某校一年级有学生150人,二年级比一年级少20%,一、二年级人数的1/3占全校人数的10%.全校有多少人?
练习:
1、王刚买回一段布,缩水后长2.4米,缩水率为4%,他买回的布有多少米?
2、体操队里男队员有45人,若女队员减少10%,就恰好与男队员人数的3/5相等。
求女队员人数.
3、一块铜和银的合金重440克,其中铜的重量比银的25%少10克,这块合金中含铜多少克?
4、六年级有三个班,一、二班人数占全年级人数的2/3,一、三两班人数占全年级人数的60%,六年级一班有40人.全年级有学生多少名?
例 2 一个书架有两层书,上层的书占总数的40%,若从上层取48本放入下层,这时下层的书占总数的75%.这个书架共有多少本书?
练习:
1、一辆公共汽车到达一个停车站后,全体乘客中有4/7的人下车,又上来34名乘客,这时车上的乘客是原来的5/6.车上原有乘客多少人?
2、小华从家去车站,行到全程的8/9处是邮局,他从车站往家走,行到全程的1/3的地方已超过邮局0.42千米.小华家距车站多少千米?
例3 一辆汽车从甲地到乙地,已经行了全程的1/5;再向前行50千米,就比全程的2/3少6千米.求甲、乙两地的距离.
练习:
1、小明看一本书,第一天看了全书的1/8还多16页,第二天看了全书的1/6少2页,还剩下88页。
这本书共有多少页?
2、某小学今年6月份六年级毕业离校学生数比全校人数的1/6多20人,新学期9月份招收一年级新生350人,且无其他转入或转出学生,这样比原来全校的学生人数增加了20%.原来
全校学生有多少名?
3、甲、乙两个运输队分别接受同样多的运货任务.两个运输队共同运了14天后,甲队剩64吨,乙队剩484吨没运.已知乙队的工作效率是甲队的60%,甲队每天运多少吨?
例4 刘明阅读一本故事书,第一天读了全书的3/8,第二天读了剩下的1/3,第三天读了再剩下的1/5,最后还剩24页没有读.这本书共多少页?
练习:
1、玩具厂三个车间共同做一批玩具。
第一车间做了总数的2/7,第二车间做了1600个,第三车间做的个数是一、二车间总和的一半,这批玩具共有多少个?
2、水果店第一天卖出苹果20千克,第二天卖出苹果总质量的1/4,第三天卖出前两天总和的50%,这时还剩5千克没有卖.水果店原有苹果多少千克?
例5 将含盐15%的盐水30千克,稀释成含盐5%的盐水,需要加水多少千克?
练习:
1、有盐水750千克,含盐20%,加了一些水后含盐8%,加水多少千克?
2、浓度为10%的盐水300千克,蒸发掉多少水分就变成成浓度为25%的盐水?
3、在一桶含盐10%的盐水中加进5千克食盐,溶解后,桶中盐水的浓度增加到20%,桶中原来有多少千克盐?
例6 某厂生产一批机床,次品台数是正品台数的1/9.后来经过复查,发现正品机床中又有一台不合格,这时,次品台数是正品台数的3/22.这批机床一共有多少台?
练习:
1、六(1)班原有1/5的同学参加劳动,后来又有2个同学主动参加,这样实际参加人数是其余人数的1/3.六(1)班有多少人?
2、某工厂原有工人450人,其中女工占36%.因生产需要又招进一批女工,这时女工人数占全厂工人总数的40%,又招进女工多少人?
例7 水槽上安装着两个水管,单独开甲管1小时可以将水槽注满,单独开乙管20分钟可以
将水槽注满.如果甲、乙两管同时开,几小时可以注满这个水槽的3/4?
练习:
1、一项工程,由甲队单独做15天完成,由乙队单独做20天完成.甲队单独做5天后,再由甲、乙两队合作几天一共能完成全部工程的4/5?
2、挖一条水渠,甲队单独做需15天完成,乙队单独做需12天完成.如果两队分别从两端同时挖,3天后两队还相距66米,那么这条水渠全长多少米?
例8 一位老人去世后留下一笔遗产分给其三个子女.老大分得的财产是其余两人的1/2,老二分得的财产是其余两人的1/3,老三分得的财产是12000元.问:老人留下的财产是多少元?
练习:
1、甲、乙、丙三堆煤,甲堆煤重是乙、丙总重量的2/3,乙堆煤的重量是甲、丙总量的1/4,丙堆煤重360砘,甲,乙两堆煤各重多少吨?
2、甲、乙、丙合作一批零件,甲做的是乙、丙的1/2,乙比甲少做10个,丙做了50个.这批零件有多少个?
作业:
1、修一条公路,第一周修全长的1/4,第二周修余下的2/5,第二周比第一周少修150米.这条公路全长多少米?
2、某工厂计划生产一批零件,第一次完成计划的1/2,第二次完成计划的3/7,第三次完成450个,结果超过计划的1/4,计划生产零件多少个?
3、妈妈把本月工资的40%作当月家用,把另外的360元奖金和剩下的工资合在一起存入银行,存入银行的钱正好是妈妈工资的6/7.妈妈本月工资多少元?
4、工地上有一批砖,第一次用去总数的1/3,第二次用去剩下的3/4.如果第二次用去2400块,工地上原有砖多少块?
5、两车从甲、乙两站同时开出,相向而行,慢车速度是快车速度的5/7.在离中点36千米处相遇.相遇时快车行驶了多少千米?
6、一本书,某人第一天看了全书的1/4,第二天看的是第一天的6/5倍,这时还剩下22页没看.这本书共多少页?
7、在浓度为10%,重量为80克的盐水中,加入多少克水就能得到浓度为8%的盐水?
8、甲、乙、丙、丁四人共植树600棵。
甲植树的棵数是其余三人的1/2,乙植树的棵数是其余三人的1/3,丙植树的棵数是其余三人的1/4,丁植树多少棵?
9、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD 的进价是多少元?
10、购进一批凉鞋,每双售出价比购进价多15%.如果全部卖出,可赚120元.只卖80双,差64元够本.求每双购进价. *11、王涛吹肥皂泡,每分钟吹一次,每次恰好能吹100个.肥皂泡吹出之后,经过1分钟有一半破了,经过2分钟还剩下1/20没有破,经过两分半钟肥皂泡全部破了.当王涛第20次吹出100个新的肥皂泡时,没有破的肥皂泡共有多少个?。