九年级数学(上)综合水平测试(A)附答案
- 格式:doc
- 大小:187.50 KB
- 文档页数:5
人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。
九年级上册测试卷(时间:100分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1.在下列几何体中,三视图都是圆为(D)2.已知x=1是方程x2+px+1=0的一个实数根,则p的值是(D) A.0B.1C.2D.-23.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l 2,l3于点D,E,F,AC与DF相交于点H,则下列式子不正确的是(D)AB DE AB BC AB DE AB BEA.=B.=C.=D.=BC EF DE EF AC DF BC CF第3题图第7题图第9题图第10题图94.若关于x的方程kx2-3x-=0有实数根,则实数k的取值范围是(C)4A.k=0B.k≥-1且k≠0C.k≥-1D.k>-15.下列命题中,是假命题的是(B)A.分别有一个角是110°的两个等腰三角形相似B.如果两个三角形相似,则它们的面积比等于相似比x8C.若5x=8y,则=y5D.一个角相等的两个菱形相似6.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是(B)1215A. B. C. D.33667.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为(A)A .10米B .12米C .15米D .22.5米kb 8.反比例函数y =的图象如图所示,则一次函数y =kx +b (k ≠0)的图象大致是(D )x9.如图,菱形ABCD 的边长为4,对角线交于点O ,∠ABC =60°,点E ,F 分别为AB ,AO 的中点,则EF 的长度为(A )A.3B .3C .23D .410.如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是(C )A .①③B .②③C .①④D .②④二、填空题(本大题6小题,每小题4分,共24分)a +c a c 11.若==3(b +d ≠0),则=3.b d b +d12.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元,设平均每次降价的百分率为x ,则根据题意可列方程为100(1-x )2=81.13.若y =(m -3)xm 2-2m -4是反比例函数,则m =-1.14.如图,在矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE ⊥AC 交AD 于点E ,则AE 的长是3.4.第14题图第15题图第16题图15.如图,Rt △ABC 中,∠ACB =90°,直线EF ∥BD 交AB 于点E ,交AC 于点G ,交1CF 1AD 于点F .若S △AEG =S 四边形EBCG ,则=.3AD 216.如图,正方形ABCD 的边长为8,M 在CD 上,且DM =2,N 是AC 上的一个动点,则DN +MN 的最小值为10.17.解方程:(1)2(x -3)2=x 2-9;(2)3x (x -1)=2(1-x ).2解:x 1=3,x 2=9解:x 1=1,x 2=-3k 18.如图,直线y =-x +2与反比例函数y =的图象只有一个交点,求反比例函数的表x达式.k k 解:由=-x +2得x 2-2x +k =0,∵直线y =-x +2与y =只有一个交点,则Δ=0.x x1解得k =1.∴反比例函数的表达式为y =x19.一张长为30cm ,宽20cm 的矩形纸片,如图①所示,将这张纸片的四个角各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图1所示,如果折成的长方体纸盒的底面积为264cm 2,求剪掉的正方形纸片的边长.解:设剪掉的正方形纸片的边长为x cm .由题意,得(30-2x )(20-2x )=264.整理,得x 2-25x +84=0,解方程,得x 1=4,x 2=21(不符合题意,舍去).答:剪掉的正方形的边长为4cm20.已知关于x 的一元二次方程(m -2)x 2+2mx +m +3=0有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.解:(1)由题意知,Δ=(2m )2-4(m -2)(m +3)>0,解得m <6,又m -2≠0,即m ≠2,则m <6且m ≠2(2)由(1)知m =5,则方程为3x 2+10x +8=0,即(x +2)(3x +4)=0,解得x 1=4-2,x 2=-321.如图,在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF =AE .(1)求证:四边形BECF 是菱形;(2)若四边形BECF 为正方形,求∠A 的度数.解:(1)∵EF 垂直平分BC ,∴CF =BF ,BE =CE ,∠BDE =90°,BD =CD ,又∵∠ACB =90°,∴EF ∥AC ,∴BE ∶AB =DB ∶BC =1∶2∴点E 为AB 的中点,即BE =AE .∵CF =AE ,∴CF =BE .∴CF =FB =BE =CE .∴四边形BECF 是菱形(2)∵四边形BECF 是正方形,∴∠CBA =45°.∵∠ACB =90°,∴∠A =45°22.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y .(1)计算由x ,y 确定的点(x ,y )在函数y =-x +5的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若x ,y 满足xy >6则小明胜,若x ,y 满足xy <6则小红胜,这个游戏公平吗?请说明理由.若不公平,请写出公平的游戏规则.解:(1)画树状图:∵共有12种等可能的结果,在函数y =-x +5的图象上的有:(1,4),(2,3),(3,2),(4,1),∴点(x ,y )在函数y =-x +5的图象上的概率为41=(2)∵x ,y 满足xy >6有:(2,1234),(3,4),(4,2),(4,3)共4种情况,x ,y 满足xy <6有(1,2),(1,3),(1,4),(2,1),416111(3,1),(4,1)共6种情况,∴P (小明胜)==,P (小红胜)==.∵≠,∴游戏不公平.公12312232平的游戏规则为:若x ,y 满足xy ≥6,则小明胜,若x ,y 满足xy <6,则小红胜五、解答题(三)(本大题3小题,每小题9分,共27分)k 23.如图,函数y =的图象y =-2x +8交于点A (1,a ),B (b ,2).xk (1)求函数y =的解析式以及A ,B 的坐标;xk (2)观察图象,直接写出不等式>-2x +8的解集;x(3)若点P 是y 轴上的动点,当P A +PB 取得最小值时,直接写出点P 的坐标.6解:(1)反比例函数解析式为y =,A (1,6),B (3,2)(2)0<x <1或x >3(3)作点B x关于y 轴的对称点B ′(-3,2),连接AB ′交y 轴于点P ,则PB ′=PB ,所以AP +BP =AP +B ′P =AB ′,即AP +BP 的最小值为线段AB ′的长度.设直线AB ′的解析式为y =mx +n ,∵A (1,⎧⎧⎪m +n =6,⎪m =1,6),B ′(-3,2),∴⎨解得⎨∴直线AB ′的解析式为y =x +5,当x =0时,⎪⎪-3m +n =2,n =5,⎩⎩y =5,∴点P 的坐标为(0,5)24.如图,四边形ABCD 是正方形,AB =4,E 是边CD 上的点,F 是DA 延长线上的点且CE =AF ,将△BCE 沿BE 折叠,得到△BC ′E ,延长BC ′交AD 于G .(1)求证:△BCE ≌△BAF ;(2)若DG =1,求FG 的长;(3)若∠CBE =30°,点B 和点H 关于DF 的对称,求证:四边形FHGB 是菱形.解:(1)在正方形ABCD 中,BA =BC ,∠C =∠BAD =∠BAF =90°,∵AF =CE ,∴△BCE≌△BAF(2)由(1)知,∠AFB=∠BEC,∠FBA=∠CBE,∠ABC=90°,∴∠FBE =90°,∴∠FBG=90°-∠CBE=∠GFB,∴FG=BG,∵AD=AB=4,DG=1,∴AG=3,BG=5,∴FG=BG=5(3)∵∠CBE=30°,∴∠ABF=∠CBE=∠ABG=30°,∵点B关于DA的对称点为H,∴BF=HF,GH=GB,∠ABF=∠AHF=30°=∠ABG=∠GHA,∴BF∥GH,FH∥BG,∴四边形FHGB是平行四边形,∵BH⊥GF,∴FHGB是菱形25.如图,在Rt△ABC中,∠C=90°,AC=33cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s,点Q由A点出发沿AC方向向点C匀速运动,速度为3cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.解:(1)在Rt△ACB中,∠C=90°,AC=33cm,BC=3cm,∴AB=6,由运动知,AC AP336-2t3 BP=2t,AQ=3t,∴AP=6-2t,∵△APC∽△ACB,∴=,∴=,∴t=AB AC6433(2)存在,理由:过点P作PM⊥AC,由运动知,BP=2t,AQ=3t,∴AP=6-2t,CQ=33113-3t,∵点P在QC的垂直平分线上,∴QM=CM=CQ=(33-3t)=(3-t),∴AM22213AP BP=AQ+QM=3t+(33-3t)=(t+3).∵∠ACB=90°,∴PM∥BC,∴=,22AM CM∴2t=,∴t=1(3)不存在,理由:由运动知,BP=2t,AQ=3t,∴AP 33(t+3)(3-t)226-2t=6-2t,假设线段BC上是存在一点G,使得四边形PQGB为菱形,∴PQ∥BG,PQ=BG,6-2tAP AQ PQ3t PQ33∴△APQ∽△ABC,∴==,∴==,∴t=,PQ=,∴BP=2t=3,AB AC BC622333∴PQ≠BP,∴四边形PQGB不可能是菱形.即:线段BC上不存在一点G,使得四边形PQGB 为菱形。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 已知等腰三角形底边长为8cm,腰长为10cm,则其面积为()A. 32cm²B. 40cm²C. 48cm²D. 80cm²3. 下列函数中,一次函数是()A. y = 2x² - 3x + 1B. y = √x + 1C. y = 2x + 3D. y = 3/x4. 已知一元二次方程x² - 5x + 6 = 0,则其解为()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = 6, x₂ = 1D. x₁ = 1, x₂ = 65. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)6. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 4,7,10,137. 若直角三角形的两条直角边长分别为3cm和4cm,则斜边长为()A. 5cmB. 6cmC. 7cmD. 8cm8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a² > b²D. 若a > b,则ac > bc9. 已知正方形的边长为a,则其对角线长为()A. aB. √2aC. 2aD. a√210. 在等腰三角形ABC中,若底边BC=8cm,腰AB=AC=10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm二、填空题(每题4分,共40分)11. 分数 3/4 与 -1/2 的差是 ________。
2022-2023学年新人教版初中数学九年级上册期末综合素养评价测试卷一、选择题(共12小题,满分24分,每小题2分)1.(2分)(2022秋•盱眙县期中)下列方程中是一元二次方程的是( ) A .x +y =2B .2x 2+1=0C .x 2+2x +1=x 2D .xy ﹣9=02.(2分)(2022秋•新抚区期中)下列方程中,关于x 的一元二次方程是( ) A .x 2﹣x (x +3)=0 B .ax 2+bx +c =0 C .x 2﹣2y ﹣1=0D .x 2﹣2x +3=03.(2分)(2022秋•大田县期中)用公式法解方程x 2﹣2x =3时,求根公式中的a ,b ,c 的值分别是( ) A .a =1,b =﹣2,c =3 B .a =1,b =2,c =﹣3 C .a =1,b =2,c =3D .a =1,b =﹣2,c =﹣34.(2分)(2022秋•丹江口市期中)如果m 、n 是一元二次方程x 2﹣x =5的两个实数根,那么多项式m 2﹣mn +n +1的值是( ) A .12B .10C .7D .55.(2分)(2022秋•江夏区期中)抛物线y =12x 2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是( ) A .y =12(x +1)2﹣2 B .y =12(x +1)2+2 C .y =12(x ﹣1)2﹣2D .y =12(x ﹣1)2+26.(2分)(2022秋•西湖区校级期中)关于二次函数y =ax 2+bx +c ,自变量x 与函数y 的对应值如表,下列说法正确的是( )x … ﹣3 ﹣2 0 1 … y…7﹣2﹣27…A .图象与y 轴的交点坐标为(0,2)B .图象的对称轴是直线x =1C .y 的最小值为﹣5D.图象与x轴有且只有一个交点7.(2分)(2022秋•江夏区期中)在下列图案中,属于中心对称图形的是()A.B.C.D.8.(2分)(2022秋•法库县期中)以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率12D.小明做了3次掷均匀硬币的实验,其中有1次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是129.(2分)(2022秋•开福区校级期中)如图,圆锥的底面半径为5,高为12,则该圆锥的侧面积为()A.30πB.60πC.65πD.90π10.(2分)(2022秋•市中区期中)若点A(﹣2,1)在反比例函数y=kx的图象上,则k的值是()A.12B.−12C.2D.﹣211.(2分)(2022秋•肇源县期中)如图四个由小正方体拼成的立体图形中,从正面看是的是()A.B.C.D.12.(2分)(2022秋•奉贤区期中)已知在Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中正确的是()A.tan A=23B.cot A=23C.sin A=23D.cos A=23二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•招远市期中)在平面直角坐标系中,一次函数y=6x与反比例函数y=kx(k>0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是.14.(3分)(2022秋•新抚区期中)已知二次函数y=x2﹣2x+1,当﹣5≤x<3时,y的取值范围是.15.(3分)(2022秋•前郭县期中)如图所示的图形绕其中心至少旋转度就可以与原图形完全重合.16.(3分)(2022秋•源汇区校级月考)如图,在正五边形ABCDE中,在AB,BC边上分别取点M,N,使AM=BN,连接AN,EM交于点O,则∠EOA =.17.(3分)(2022秋•惠山区校级期中)如图,在平面直角坐标系xOy 中,点A 、B 、P 的坐标分别为(1,0),(2,3),(3,1).若点C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心,则点C 的坐标为 .18.(3分)(2022秋•城阳区期中)在一个不透明的袋子中装有除颜色外其余均相同的n 个小球,其中15个黑球,从袋中随机摸出一球,记下其颜色,之后把它放回袋中,这称为一次摸球试验.搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 摸球试验次数 100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出n 的值是 . 三、解答题(共9小题,满分78分)19.(8分)(2022秋•大田县期中)解下列方程: (1)x 2﹣2x ﹣8=0; (2)(x ﹣1)2=2x (x ﹣1).20.(8分)(2022秋•漳州期中)已知关于x 的方程x 2﹣2x +m ﹣2=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若3x 1+3x 2﹣x 1x 2=5,求m 值.21.(9分)(2022秋•鄞州区校级期中)如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若BE是△AEC外接圆的切线,求∠C的大小;(2)当AB=4,BC=8时,求△DEC外接圆的半径.22.(9分)(2022秋•莱芜区期中)北京时间2022年6月5日10时44分,神舟十四号载人飞船在酒泉发射升空,为弘扬航天精神,某校在教学楼上从楼顶位置悬挂了一幅励志条幅GF.如图,已知楼顶到地面的距离GE为18.5米,当小亮站在楼前点B处,在点B正上方点A处测得条幅顶端G的仰角为37°,然后向教学楼方向前行15米到达点D处(楼底部点E与点B,D在一条直线上),在点D正上方点C处测得条幅底端F的仰角为42°,若AB,CD均为1.7米(即四边形ABDC为矩形),请你帮助小亮计算:(1)当小亮站在B处时离教学楼的距离BE;(2)求条幅GF的长度.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(8分)(2022秋•如东县期中)某汽车4S店销售A,B两种型号的轿车,具体信息如下表:每辆进价(万元)每辆售价(万元)每季度销量(辆)A60x﹣x+100B50y﹣2y+150(注:厂家要求4S店每季度B型轿车的销量是A型轿车销量的2倍.)根据以上信息解答下列问题:(1)用含x的代数式表示y;(2)今年第三季度该4S店销售A,B两种型号轿车的利润恰好相同(利润不为0),试求x的值;(3)求该4S店第四季度销售这两种轿车能获得的最大利润.24.(9分)(2022秋•李沧区期中)如图所示为某商场的一个可以自由转动的转盘,商场规定顾客购物满100元即可获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品,如表是活动进行中的统计数据:50100200500800100020005000转动转盘的次数227110931247361211933004落在“纸巾”区的次数根据以上信息,解析下列问题:(1)请估计转动该转盘一次,获得纸巾的概率是;(精确到0.1)(2)现有若干个除颜色外都相同的白球和黑球,根据(1)的结论,在保证获得纸巾和免洗洗手液概率不变的情况下,请你设计一个可行的摸球抽奖规则,详细说明步骤;(3)小明和小亮都购买了超过100元的商品,均获得一次转动转盘的机会,根据(2)中设计的规则,利用画树状图或列表的方法求两人都获得纸巾的概率.25.(9分)(2022秋•南召县期中)如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A 1为位似中心,请你帮小明在图中画出△A 1B 1C 1的位似图形△A 2B 2C 2,且△A 1B 1C 1与△A 2B 2C 2的位似比为2:1. (3)直接写出(2)中C 2点的坐标.26.(9分)(2022秋•宁波期中)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B . (1)求证:∠DF A =∠ECD ;(2)△ADF 与△DEC 相似吗?为什么?(3)若AB =4,AD =3√3,AE =3,求AF 的长.27.(9分)(2022秋•招远市期中)如图,一次函数y =kx +b 与反比例函数y =12x(x >0)的图象交于A (m ,6),B (n ,3)两点. (1)求一次函数的解析式;(2)若M 是x 轴上一点,S △MOB =S △AOB ,求点M 的坐标; (3)当x >0时,根据图象直接写出kx +b −12x>0时,x 的取值范围.参考答案一、选择题(共12小题,满分24分,每小题2分)1.B;2.D;3.D;4.A;5.B;6.C;7.A;8.D;9.C;10.D;11.C;12.B;二、填空题(共6小题,满分18分,每小题3分)13.014.0≤y≤1615.4516.72°17.(4,3)或(5,0)或(5,2)18.30;三、解答题(共9小题,满分78分)19.解:(1)∵x2﹣2x﹣8=0,∴(x+2)(x﹣4)=0,则x+2=0或x﹣4=0,解得x1=﹣2,x2=4;(2)∵(x﹣1)2=2x(x﹣1),∴(x﹣1)2﹣2x(x﹣1)=0,∴(x﹣1)(﹣x﹣1)=0,则x﹣1=0或﹣x﹣1=0,解得x1=1,x2=﹣1.20.解:(1)∵关于x的方程x2﹣2x+m﹣2=0有两个实数根x1、x2,∴Δ=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3;(2)由题意得:x1+x2=2,x1•x2=m﹣2,∵3x1+3x2﹣x1x2=5,∴6﹣(m﹣2)=5,∴m=3.21.解:(1)设DC的中点为O,连接OE,∵DE垂直平分AC,∴∠DEC=90°,∴DC是△AEC外接圆的的直径,∵BE是⊙O的切线,∴∠OEB=90°,∴∠EBO+∠BOE=90°,在Rt△ABC中,E为斜边AC的中点,∴BE=EC=AE=12AC,∴∠EBO=∠C,由圆周角定理得:∠BOE=2∠C,∵∠EBO+∠BOE=90°,∠EBO=∠C,∴∠C+2∠C=90°,∴∠C=30°;(2)在Rt△ABC中,AC=√AB2+BC2=√42+82=4√5,则BE=12AC=2√5,∵∠CED=∠CBA=90°,∠ECD=∠BCA,∴△CED∽△CBA,∴CECB =CDCA,即2√58=4√5,解得:CD=5,则△DEC外接圆的半径为52.22.解:(1)延长AC交EG于H,则AB=CD=EH=1.7米,AC=BD,AH=BE,∵GE=18.5米,∴HG=EG﹣HE=18.5﹣1.7=16.8(米),在Rt△AGH中,∠GAH=37°,∴tan37°=GHAH =16.815+CH≈0.75,∴CH=7.4,∴BE=AH=15+7.4=22.4(米),答:小亮站在B处时离教学楼的距离BE为22.4米;(2)由(1)知CH=7.4米,在Rt△FCH中,∵∠FCH=42°,∴tan42°=FHCH =FH7.4≈0.90,∴FH=6.66,∴FG=GH﹣FH=16.8﹣6.66≈10.1(米),答:条幅GF的长度约为10.1米.23.解:(1)根据题意得:﹣2y+150=2(﹣x+100),整理得:y=x﹣25;(2)根据题意得:(x﹣60)(﹣x+100)=(y﹣50)(﹣2y+150),由(1)知,y=x﹣25,∴(x﹣60)(﹣x+100)=(x﹣75)(﹣2x+200),整理得:x2﹣190x+9000=0,解得x1=90,x2=100,∵x=100时利润为0,∴x的值为90;(3)设该4S店第四季度销售这两种轿车能获得的利润为w万元,则w=(x﹣60)(﹣x+100)+(y﹣50)(﹣2y+150)=(x﹣60)(﹣x+100)+(x﹣75)(﹣2x+200)=﹣3x2+510x﹣21000=﹣3(x﹣85)2+675,∵﹣3<0,∴当x=85时,w有最大值,最大值为675,答:该4S店第四季度销售这两种轿车能获得的最大利润为675万元.24.解:(1)估计转动该转盘一次,获得纸巾的概率约是0.6(精确到0.1);故答案为:0.6;(2)摸球抽奖规则:把3个白球和2个黑球放入一个不透明的袋子(5个球除颜色外都相同),顾客购物满100元即可获得一次摸球的机会,当摸到白球时奖品为纸巾,摸到黑球时奖品为免洗洗手液;(3)画树状图为:共有25种等可能的结果数,其中两人都获得纸巾的结果数为9,.所以两人都获得纸巾的概率为92525.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠ECD=180°,∵∠AFE =∠B ,∴∠AFE +∠ECD =180°,∵∠AFE +∠AFD =180°,∴∠DF A =∠ECD .(2)解:相似,理由如下:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,CD =AB =4,∴∠ADF =∠CED ,又∵∠DF A =∠ECD ,∴△ADF ∽△DEC .(3)解:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵AE ⊥BC ,∴AE ⊥AD ,在Rt △EAD 中,DE =√AE 2+AD 2=√32+(3√3)2=6, ∵△ADF ∽△DEC ,∴AD DE =AF DC ,即3√36=AF 4. ∴AF =2√3.27.解:(1)把点A 代入y =12x 得:6=12m , 解得m =2,把点A 代入y =12x 得3=12n , 解得n =4,∴A (2,6),B (4,3),设要求的一次函数的表达式为y =kx +b ,由题意得:{6=2k +b 3=4k +b, 解之得:{k =−32b =9,∴一次函数的表达式为y=−32x+9;(2)设直线AB交x轴于点P,则0=−32x+9,∴x=6,∴P(6,0),∴S△AOB =S△AOP﹣S△BOP=12×6×6−12×6×3=18−9=9,∴S△MOB=9,设点M的坐标为(m,0),∴OM=|m|,∴12×3×|m|=9,∴|m|=6,∴m=±6,∴点M的坐标为(6,0)或(﹣6,0);(3)观察图象可知,kx+b−12x>0时x的取值范围是2<x<4.。
1 / 9 苏科版九年级数学上册综合检测试卷(全册)考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 9 小题 ,每小题 3 分 ,共 27 分 )1.下列方程是一元二次方程的是( ) A.x 2+3x −2y =5 B.1x 2−2x =1C.(x −1)2+1=x 2D.√5x 2−8=√3x2.如图,PA ,PB 分别是⊙O 的切线,A ,B 分别为切点,点E 是⊙O 上一点,且∠AEB =60∘,则∠P 为( )A.120∘B.60∘C.30∘D.45∘3.如图,AB 是⊙O 直径,弦CD ⊥AB 于点E ,G 是弧AC 上任意一点,延长AG ,与DC 的延长线相交于点F ,连结AD ,GD ,CG ,则与∠AGD 相等的角有( )A.2个B.3个C.4个D.5个4.如图,AD 是⊙O 的切线,D 为切点,过点A 引⊙O 的割线ABC ,依次交⊙O 于点B 和点C ,若AC =4,AD =2,则AB 等于( )A.12B.1C.√2D.2 5.下列各数是方程13(x 2+2)=2解的是( )A.6B.2C.4D.0 6.用配方法解下列方程时,配方有错误的是( )A.2m 2+m −1=0化为(m +14)2=916B.x 2−6x +4=0化为(x −3)2=5C.2t 2−3t −2=0化为(t −32)2=2516D.3y 2−4y +1=0化为(y −23)2=197.5个红球、4个白球放入一个不透明的盒子里,从中摸出6个球,恰好红球与白球都摸到,这件事情属( )A.不可能发生B.可能发生C.很可能发生D.必然发生8.一个点到圆的最小距离为3cm,最大距离为6cm,则该圆的直径是()A.1.5cmB.1.5cm或4.5cmC.4.5cmD.3cm或9cm9.一个扇形半径是5cm,面积是15πcm2,这个扇形的周长是()A.5πcmB.6πcmC.5cmD.6cm二、填空题(共 11 小题,每小题 3 分,共 33 分)10.方程:(2x+1)(x−1)=8(9−x)−1的根为________.11.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为________.12.从一幅扑克牌(去掉大、小王)中,任意抽出一张,则抽到方块的概率是________.13.直角三角形的一直角边长为3,外接圆的半径为2.5,则该直角三角形的面积是________.14.用一个圆心角为180∘,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为________,该圆锥的高为________.15.如图,点A、B、C都在⊙O上,OC⊥OB,点A在劣弧BC^上,且OA=AB,则∠ABC=________.16.一个圆柱的侧面积为120πcm2,高为10cm,则它的底面圆的半径为________.17.如图,已知A、B、C分别是⊙O上的点,∠B=120∘,P是直径CD的延长线上的一点,且AP=AC,PD=2,求AP的长为________.18.已知一组数据−2,−1,0,x,1的平均数是0,那么这组数据的方差是________.19.如图,CD是⊙O的直径,弦AB⊥CD,P为垂足,AB=8cm,PD=2cm,则CP=________cm.20.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是________元.三、解答题(共 8 小题,共 60 分)21.(12分) 用适当的方法解下列方程(1)x2−4x+1=0 (2)(5x−3)2+2(3−5x)=0(3)(2x+1)2=(x−1)2(4)4x2+2=7x.22.(6分)如图,在△ABC中,BC=2+2√3,∠B=30∘,∠C=45∘,当以A 为圆心的⊙A与直线BC:①相切;②相交;③相离时,分别求⊙A的半径r.23.(7分) 已知关于x的方程kx2+(2k−1)x+k−1=0只有整数根,且关于y 的一元二次方程(k−1)y2−3y+m=0有两个实数根y1和y2(1)当k为整数时,确定k的值;(2)在(1)的条件下,若m≥−2的整数,试求m的最小值.3 / 924.(7分)如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,B为切点,弦BC // OA,连接AC,求阴影部分的面积.(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?=8,S乙2=1.8,S甲2=1.2,根据上述信息完成下列问题:且x乙(1)乙运动员射击训练成绩的众数是________,中位数是________.(2)求甲运动员射击成绩的平均数,并判断甲、乙两人在本次射击成绩的稳定性.5 / 927.(7分) 如图所示,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6;(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为23.28.(7分) 如图,正方形ABCD 中,有一直径为BC 的半圆,BC =2cm ,现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1cm/s 的速度向点A 运动,点F 沿折线A −D −C 以2cm/s 的速度向点C 运动,设点E 离开点B 的时间为t (秒).(1)当t 为何值时,线段EF 与BC 平行?(2)设1<t <2,当t 为何值时,EF 与半圆相切?(3)1≤t <2时,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP:PC 的值.答案1.D2.B3.A4.B5.B6.C7.D8.D9.B10.−8或9211.(π2−1)a 212.1413.614.22√315.15∘16.6cm17.2√318.219.820.1321.解:(1)x 2−4x +4=3, (x −2)2=3,x −2=±√3,所以x 1=2+√3,x 2=2−√3;(2)(5x −3)(5x −3−2)=0,5x −3=0或5x −3−2=0,所以x 1=35,x 2=1;(3)2x +1=±(x −1),所以x 1=0,x 2=−2;(4)4x 2−7x +2=0,△=(−7)2−4×4×2=17,x =7±√172×4, 所以x 1=7+√178,x 2=7−√178.22.解:过点A 作AD ⊥BC 于点D ,设AD =x ,∵∠B =30∘,∠C =45∘,∴DC=x,BD=√3x,∴x+√3x=2+2√3,解得:x=2,即AD=2,当①相切,⊙A的半径r=2,当②相交,⊙A的半径r>2,当③相离,⊙A的半径r<2.23.解:(1)当k=0时,方程kx2+(2k−1)x+k−1=0化为−x−1=0,x=−1,方程有整数根,当k≠0时,方程(1)可化为(x+1)(kx+k−1)=0解得x1=−1,x2=−k+1k =−1+1k;∵方程(1)的根是整数,所以k为整数的倒数.∵k是整数∴k=±1此时△=(2k−1)2−4k(k−1)=1>0但当k=1时,(k−1)y2−3y+m=0不是一元二次方程∴k=1舍去∴k=0,k=−1;(2)当k=0时,方程(2)化为−y2−3y+m=0∵方程(2)有两个实数根∴△=9+4m≥0,即m≥−94,若m≥−2∴当m≥−2时,∴m的最小值为−2;当k=−1时,方程(2)化为−2y2−3y+m=0,方程有两个实数根∴△=9+8m≥0,即m≥−98∵m≥−2,∴m≥−98,∵m为整数∴此时m的最小值为−1.24.解:连接OB,OC,∵AB是圆的切线,∴∠ABO=90∘,在直角△ABO中,OB=2,OA=4,∴∠OAB=30∘,∠AOB=60∘,∵OA // BC,7 / 9∴∠CBO =∠AOB =60∘,且S 阴影部分=S 扇形△BOC ,∴△BOC 是等边三角形,边长是2,∴S 阴影部分=S 扇形△BOC =60π×22360=2π3,即图中阴影部分的面积是2π3.25.解:(1)平均数x =110(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理. 26.77.5(2)甲运动员成绩的平均数为110×(8+9+7+9+8+6+7+8+10+8)=8.2(发);∵S 乙2=1.8>S 甲2=1.2, ∴甲在本次射击成绩的较稳定.27.自由转动转盘,当它停止转动时,指针指向奇数区的概率是12;(2)方法一:如图所示,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为23; 方法二:自由转动转盘,当它停止时,指针指向的数字不大于4时,指针指向的区域的概率是23.28.解:(1)设E 、F 出发后运动了t 秒时,有EF // BC (如图1)则BE =t ,CF =4−2t ,即有t =4−2t ,t =43;∴当t 为43秒时,线段EF 与BC 平行.(2)设E 、F 出发后运动了t 秒时,EF 与半圆相切(如图2),过F 点作KF // BC 交AB 于K ,则BE=t,CF=4−2t,EK=t−(4−2t)=3t−4,EF=EB+FC=t+(4−2t)=4−t.又∵EF2=EK2+FK2,∴(4−t)2=(3t−4)2+22.即2t2−4 t+1=0,解得t=2±√22,∵1<t<2,∴t=2+√22;∴当t为2+√22秒时,EF与半圆相切,(3)当1≤t<2时,E、F出发后运动了t秒时,EF位置如图3所示,则BE=t,AE=2−t,CF=4−2t,∴AE FC =2−t4−2t=12,又∵AB // DC,∴△AEP∽△CFP.∴AP PC =AEFC=12;即点P位置与t的取值无关.∴当1≤t<2时,点P的位置不会发生变化,且AP:PC的值为12.9 / 9。
九年级上册综合测评卷 时间:100分钟满分:120分一.选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意) 1.下列说法正确的是( )A.明天会下雨是必然事件B.随机事件发生的概率为12 C.概率很小的事件不可能发生 D.不可能事件发生的概率为0 2.下列二次根式中,与√3是同类二次根式的是 ( )A.√8 B .√12C.√18 D .√163.已知一元二次方程x 2-3x-3=0的两根分别为α与β,则1α+1β的值为 ( )A.-1B.1C.-2D.24.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长度至少为( )A.8米B.8√3米C.8√33米 D.4√33米 5.如图,DE 是△ABC 的中位线,若四边形BDEC 的面积是60,则△ADE 的面积为 ( )A.20B.40C.50D.606.若6<x<9,则化简√x 2-12x +36+√x 2-18x +81的结果是 ( )A.2x-15B.-15C.2x-3D.37.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为 ( )A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=1758.有5名自愿献血者,其中3人血型为O 型,2人血型为A 型,现从他们当中随机挑选2人参与献血,抽到的两人均为O 型血的概率为( )A.25B.38C.310D.379.在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F,若EC=2BE,则BFFD 的值是( )A.12 B.13 C.14 D.1510.如图,在△ABC 中,AB=AC=a,点D 是边BC 上的一点,且BD=a,AD=DC=1,则a 等于 ( )A.1+√52 B.1−√52C.1±√52D .2二.填空题(共5小题,每小题3分,共15分) 11.计算:√80-√45= .12.若x=-1是关于x 的一元二次方程ax 2+bx-2=0的一个根,则2 021-2a+2b 的值等于 . 13.如图,在△ABC 中,AD 为中线,点E,F,G 为AD 的四等分点,在△ABC 内任意抛一粒豆子,豆子落在阴影部分的概率为 .(第13题) (第14题)14.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在点C 处测得建筑物AB 的顶点A 的仰角为30°,然后向建筑物AB 前进10 m 到达点D 处,此时测得点A 的仰角为60°(点C,D,B 在同一条直线上),那么建筑物AB 的高度为 m.15.在等腰直角三角形ABC 中,∠BAC=90°,AB=AC=2,直角三角板含45°角的顶点P 在边BC 上移动(点P 不与点B,C 重合),如图,直角三角板的一条直角边始终经过点A,斜边与边AC 交于点Q.当△ABP 为等腰三角形时,CQ 的长为 .三.解答题(共8小题,共75分)16.(共2小题,每小题5分,共10分)解答下列各题.-2sin 45°.(1)计算:√8-2×√12(2)用配方法解方程:2x2-3x-5=0.17.(8分)如图,△ABC的三个顶点坐标分别是A(0,3),B(1,0),C(3,1).(1)以原点O为位似中心,在y轴左侧画出△A1B1C1,使得△A1B1C1与△ABC的相似比为2∶1;(2)△ABC的内部一点M的坐标为(a,b),则点M在△A1B1C1中的对应点M1的坐标是多少?18.(8分)如图,在△ABC中,∠BAC=90°,∠C=30°,点D,E,F分别为AB,AC,BC的中点,连接DE,AF.求证:DE=AF=AB.19.(8分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个三位数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请用画树状图的方法求所有可能得到的三位数;(2)甲、乙两人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.20.(8分)已知关于x的方程(c+b)x2+2ax+c-b=0,其中a,b,c是△ABC的三边.(1)若x=-1是方程的一个根,则△ABC是;(2)若方程有两个相等的实数根,则△ABC是;(3)若△ABC是等边三角形,试求方程(c+b)x2+2ax+c-b=0的根.21.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的试验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,最后在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=60°.(1)求AB的长.(结果保留根号)(2)已知本路段对校车限速为50千米/时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:√3≈1.7,√2≈1.4)22.(11分)“美好”汽车销售公司4月份销售某品牌汽车,在一定范围内,每辆汽车的进价与销售量之间有如下关系:若当月仅售出1辆汽车,则该辆汽车的进价为13.5万元,每多售出1辆,所有售出的汽车的进价每辆均降低0.05万元.月底汽车生产厂家根据销售公司的销售量一次性返利给销售公司:若当月销售量在10辆以内(含10辆),每辆返利0.25万元;若当月销售量在10辆以上,每辆返利0.5万元.(1)若“美好”公司当月销售3辆汽车,则每辆汽车的进价为万元;(2)如果“美好”公司把该品牌汽车的售价定为14万元/辆,并计划当月盈利6万元,那么需要销售多少辆汽车?(提示:盈利=销售利润+返利)23.(12分)如图,在平面直角坐标系中,直线AB分别交x轴于点B、交y轴于点A,已知点B(-2,0),点C是线段AB的中点,tan∠ABO=√3,点P是y轴上的一动点.(1)求点A的坐标;(2)如果以点A,C,P为顶点的三角形与△AOB相似,求点P的坐标;(3)平面上是否存在点M,使得以点A,B,P,M为顶点的四边形是菱形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.九年级上册综合测评卷1 2 3 4 5 6 7 8 9 10D B A C A D D C B A11.√512.2 017 13.3814.5√315.1或2√2-21.D 明天会下雨是随机事件;随机事件发生的概率在0到1之间;概率很小的事件也有可能发生;不可能事件发生的概率为0.故选D.2.B √8=2√2,√12=2√3,√18=3√2,√16=4.故选B.3.A 根据题意得α+β=3,αβ=-3,所以1α+1β=α+βαβ=3-3=-1.故选A.4.C 设梯子的长度为x 米.由题意可知,sin 60°≥4x,所以x≥8√33.故选C.5.A 因为DE 是△ABC 的中位线,所以DE ∥BC,DE BC =12.易知△ADE ∽△ABC,所以S △ADE S △ABC =(12)2.故S △ADE S △ADE +60=14,所以S △ADE =20.故选A.6.D 原式=√(x -6)2+√(x -9)2=(x-6)+[-(x-9)]=3.故选D.7.D 因为平均每月的增长率为x,所以二月份工业产值为50(1+x)亿元,三月份工业产值为50(1+x)2亿元,依题意得50+50(1+x)+50(1+x)2=175.故选D. 8.C 画树状图如下:由树状图可知,共有20种等可能的结果,抽到的两人均为O 型血的结果有6种,所以抽到的两人均为O 型血的概率为620=310.故选C.9.B 如图,∵AD ∥BC,∴△BEF ∽△DAF.又EC=2BE,∴AD=BC=3BE,∴BF FD =BE AD =13.故选B.10.A∵AB=AC,∴∠B=∠C.∵DA=DC,∴∠DAC=∠C,∴∠DAC=∠B.∵∠C=∠C,∴△CDA ∽△CAB,∴CD CA =CACB,∴CA 2=C D·CB.∵CA=a,BD=a,CD=1,∴CB=1+a,∴a 2=1·(1+a),∴a 2-a-1=0,解得a 1=1+√52,a 22=1-√52(不合题意,舍去),故选A.11.√5 【解析】原式=4√5-3√5=√5. 12.2 017 【解析】将x=-1代入方程,得a-b-2=0,所以a-b=2,所以2 021-2a+2b=2 021-2(a-b)=2 021-2×2=2 021-4=2 017. 13.38 【解析】由题易知,阴影部分面积占△ABC 面积的38,故所求概率为38.14.5√3 【解析】设DB=x m,在Rt △ADB 中,AB=x· tan 60°=√3x m.在Rt △ACB 中, tan 30°=√3xx+10,即√3xx+10=√33, 整理得3x=x+10,解得x=5,所以AB=5√3 m.15.1或2√2-2 【解析】易证△PCQ ∽△ABP,∴CQ BP =PCAB,即CQ BP =2√2-BP 2,∴CQ=(2√2-BP)·BP2.当△ABP 为等腰三角形时,BP=√2或2,代入上式,得CQ=1或2√2-2.16.【参考答案】(1)原式=2√2-2×√22-2×√22=0. (5分)(2)方程两边同时除以2,得x2-32x-52=0,即x2-32x=52, (2分)变形,得x2-32x+(34)2=52+(34)2, (3分)所以(x-34)2=4916,开方得x-34=74或x-34=-74,解得x1=52,x2=-1. (5分) 17.【参考答案】(1)如图所示,△A1B1C1即为所求.(6分) (2)△ABC的内部一点M的坐标为(a,b),则点M在△A1B1C1中的对应点M1的坐标是(-2a,-2b). (8分)18.【解题思路】由直角三角形斜边上的中线等于斜边的一半,可得AF=12BC,根据中位线定理可得DE=12BC,由直角三角形中30°角对应直角边等于斜边的一半,得AB=12BC,即可求证.【参考答案】证明:∵AF是Rt△ABC的斜边BC上的中线,∴AF=12BC. (2分) ∵DE是△ABC的中位线,∴DE=12BC. (4分) ∵∠BAC=90°,∠C=30°,∴AB=12BC.∴DE=AF=AB. (8分) 19.【参考答案】(1)根据题意画树状图如下:(2分)由树状图可得,所有可能得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432. (4分) (2)这个游戏不公平. (5分) 理由如下:组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个, (6分)∴甲胜的概率为13, ∴乙胜的概率为1-13=23. (7分)∵13≠23,∴这个游戏不公平. (8分) 20.【解题思路】(1)把x=-1代入方程(c+b)x 2+2ax+c-b=0即可判断△ABC 的形状;(2)根据方程(c+b)x 2+2ax+c-b=0有两个相等的实数根,可得Δ=0,进而找出三边关系即可判断△ABC 的形状;(3)根据△ABC 是等边三角形得a=b=c,再把a=b=c 代入方程(c+b)x 2+2ax+c-b=0即可得解. 【参考答案】(1)等腰三角形 (2分) 解法提示:由题意,得(c+b)×(-1)2+2a×(-1)+c-b=0, 解得a=c,故△ABC 是等腰三角形. (2)直角三角形 (4分) 解法提示:∵方程(c+b)x 2+2ax+c-b=0有两个相等的实数根, ∴(2a)2-4(c+b)(c-b)=4a 2-4c 2+4b 2=0, ∴a 2-c 2+b 2=0,即a 2+b 2=c 2, ∴△ABC 是直角三角形. (3)∵△ABC 是等边三角形, ∴a=b=c,∴原方程可变形为2ax 2+2ax+a-a=0, ∴x 2+x=0,分解因式,得x(x+1)=0, ∴x=0或x+1=0, ∴x 1=0,x 2=-1. (8分) 21.【解题思路】 (1)分别在Rt △ADC 与Rt △BDC 中利用正切函数求得AD 与BD 的长,即可求得AB 的长;(2)由从A 到B 用时2秒,即可求得这辆校车的速度,与50千米/时比较大小,即可确定这辆校车是否超速. 【参考答案】(1)由题意得,在Rt △ADC 中,tan 30°=CD AD =24AD, 解得AD=24√3.(2分)在Rt △BDC 中,tan 60°=CD BD =24BD, 解得BD=8√3,所以AB=AD-BD=24√3-8√3=16√3(米).(5分) (2)校车从A 到B 用时2秒,所以速度为16√3÷2≈13.6(米/秒), (7分) 因为13.6米/秒=48.96千米/时<50千米/时, 所以此校车没有超速. (10分) 22.【参考答案】(1)13.4 (2分)(2)设需要销售x 辆汽车,由题意可知,每辆汽车的销售利润为14-[13.5-0.05(x-1)]=0.05x+0.45. (4分) 当1≤x≤10时,根据题意,得 x·(0.05x+0.45)+0.25x=6, 整理,得x 2+14x-120=0,解得x 1=-20(不符合题意,舍去),x 2=6. (7分) 当x>10时,根据题意,得 x·(0.05x+0.45)+0.5x=6, 整理,得x 2+19x-120=0,解得x 1=-24(不符合题意,舍去),x 2=5.因为x=5不在x>10的范围内,所以x 2=5舍去. 答:需要销售6辆汽车. (11分) 23.【解题思路】(1)根据三角函数可求得OA 的长,即可求得点A 的坐标.(2)分△ACP ∽△ABO 和△ACP ∽△AOB 两种情况讨论即可.(3)分AB 为对角线和边两种情况讨论,然后再依据菱形的性质画图求解即可. 【参考答案】(1)∵tan ∠ABO=√3,点B 的坐标为(-2,0), ∴OB=2,OA=OB·tan ∠ABO=2×√3=2√3, ∴点A 的坐标为(0,2√3).(3分)(2)如图(1)所示,满足条件的点P 有2个. 易知AB=2OB=4.当CP ∥OB 时,如图(1)中点P 1所示,△ACP 1∽△ABO, ∴AC AB =AP 1AO. ∵点C 是AB 的中点,∴AC=2,点P 1是AO 的中点, 此时点P 1的坐标为(0,√3).当CP ⊥AB 时,如图(1)中点P 2所示,△ACP 2∽△AOB. ∴AC OA =AP 2AB ,即2√3=AP24, ∴AP 2=4√33, ∴OP 2=OA-AP 2=2√3-4√33=2√33, 此时点P 2的坐标为(0,2√33). 综上可知,点P 的坐标为(0,√3)或(0,2√33). (8分)图(1) 图(2)),(0,2√3-4),(0,2√3+4)或(0,-2√3).(12分) (3)存在,如图(2)所示.符合条件的点P的坐标为(0,2√33。
第二十一章综合测试答案解析一、 1.【答案】D【解析】由()()230x x -+=,得20x -=或30x +=,解得12x =,23x =-. 2.【答案】A【解析】269140x x ++-=,即()2314x +=. 3.【答案】B【解析】因为()()()222241444213k k k k k ∆=--=+=-+-,所以无论k 为任何实数,都有3∆≥,方程都有两个不相等的实数根. 4.【答案】C【解析】把1x =代入方程得2210p p -+=,即()210p -=,即1p =,故选C . 5.【答案】D【解析】移项提取公因式()3x -,得()()3110x x -+-=,解得13x =,20x =. 6.【答案】A【解析】根据根与系数的关系可知12=5bx x a+-=. 7.【答案】D【解析】设年平均增长率为x ,那么2012年的房价为()40001x +,2013年的房价为()2400015500x +=.二、8.【答案】1-【解析】根据题意得()()2240m --⨯-=,解得1m =-. 9.【答案】2x =-【解析】设另一个根为1x ,根据根与系数的关系得112x ⋅=-,所以12x =-. 10.【答案】1【解析】因为()22214a b ++=,所以2212a b ++=±,所以2212a b +=-±,所以223a b +=-或221a b +=.因为220a b +≥,所以223a b +=-(舍去),故221a b +=.11.【答案】3-和4-【解析】若设其中一个数为x ,则另一个数为()7x --.根据题意得()712x x -=-,解得13x =-,24x =-.当3x =-时,74x --=-;当4x =-时,73x --=-,所以这两个数分别为3-和4-. 12.【答案】直角【解析】解出方程的两个根分别为6和8,由于2226810+=,通过勾股定理的逆定理知该三角形是直角三角形. 13.【答案】(1)13(2)8 (3)5【解析】(1)由题意知3103m -=,所以13m =. (2)由题意知513m -=,所以8m =. (3)由题意知50m -=,所以5m =.三、14.【答案】(1)()()315x x +-=,所以2235x x +-=,2280x x +-=,所以()()420x x +-=,所以40x +=或20x -=,所以14x =-,22x =. (2)2237x x +=,所以2273x x -=-,27322x x -=-,2749349216216x x -+=-+,所以2725416x ⎛⎫-= ⎪⎝⎭,所以7544x -=±,所以157344x =+=,2571442x =-+=.(3)移项得()()232320x x ---=,因式分解得()()323210x x ---=,所以320x -=或330x -=,所以123x =,21x =. 15.【答案】由题意可知=0∆,即()()24410m --=-,解得5m =.原方程化为²440x x -+=.解得122x x ==.所以原方程的根为122x x ==.16.【答案】(1)因为方程有实数根,所以()22410k ∆=-+≥,解得0k ≤,所以k 的取值范围是0k ≤.(2)根据根与系数的关系得12+2x x =-,121x x k =+,所以()121221x x x x k +-=--+.由已知,得211k ----<,解得2k ->.又由(1)得0k ≤,所以20k -<≤.因为k 为整数,所以k 的值为1-或0.17.【答案】(1)解方程131x x +=-,得2x =,经检验2x =是原方程的解. 因为方程220x kx +-=的一个解与方程131x x +=-的解相同,所以2x =是方程220x kx +-=的解.把2x =代入方程220x kx +-=得220k +=,解得1k =-.(2)设方程220x kx +-=的另一个解为1x ,根据根与系数的关系得122x =-,所以11x =-.故方程的另一个解为1x =-.18.【答案】设蔬菜温室的宽为 m x ,则长为2 m x , 根据题意得()()23111288x x ----=,解这个方程,得114x =,210x =-(不合题意,舍去). 所以14x =,228x =.答:当矩形温室的长为28 m ,宽为14 m 时,蔬菜种植区域的面积是2288m .19.【答案】(1)设平均每次下调的百分率为x ,则()2600014860x -=.解得10.1x =,2 1.9x =(舍去).所以平均每次下调的百分率为10%.(2)方案①可优惠:()486010010.989720⨯⨯-=(元), 方案②可优惠:100808000⨯=(元).所以方案①更优惠.第二十一章综合测试一、选择题(每小题3分,共21分)1.(2013·河南中考)方程()()230x x -+=的解是( ) A .2x =B .3x =-C .12x =-,23x =D .12x =,23x =-2.方程2650x x +-=的左边配成完全平方的形式后所得方程为( ) A .()2314x +=B .()2314x -=C .()21+62x =D .以上答案都不对3.关于x 的方程2210x kx k ++-=的根的情况描述正确的是( ) A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种4.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值为( ) A .4B .0或2C .1D .1-5.方程()()313x x x -+=-的解是( ) A .0x =B .3x =C .13x =,21x =-D .13x =,20x =6.若一元二次方程2560x x -+=的两根分别为1x ,2x ,则12+x x 等于( ) A .5B .6C .5-D .6-7.某市2011年平均房价为每平方米4000元,连续两年增长后,2013年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .()2550014000x +=B .()2550014000x -= C .()2400015500x -=D .()2400015500x +=二、填空题(每空4分,共24分)8.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值为________. 9.已知1x =是方程220x bx +-=的一个根,则方程的另一个根是________.10.已知()22214a b ++=,则22a b +=________.11.若两数的和为7-,积为12,则这两个数分别为________.12.若三角形的一边长为10,另两边长是方程214480x x -+=的两个实数根,则这个三角形是________三角形.13.已知关于x 的方程()233150x m x m --+-=. (1)当m =________时,方程两根互为相反数; (2)当m =________时,方程两根互为倒数; (3)当m =________时,方程有一根为0. 三、解答题(共55分) 14.(15分)解方程: (1)()()315x x +-=; (2)2237x x +=;(用配方法)(3)()23232x x -=-.15.(6分)已知关于x 的一元二次方程2410x x m -+-=有两个相等的实数根,求m 的值及方程的根.16.(8分)关于x 的一元二次方程2210x x k +++=的实数解是1x 和2x . (1)求k 的取值范围;(2)如果12121x x x x +--<,且k 为整数,求k 的值.17.(8分)已知关于x 的方程220x kx +-=的一个解与方程131x x +=-的解相同. (1)求k 的值;(2)求方程220x kx +-=的另一个解.18.(8分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3 m 宽的空地,其他三侧内墙各保留1 m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288 2m ?19.(10分)某市一楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售. (1)求平均每次下调的百分率.(2)某人准备以开盘时的均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?第二十二章综合测试一、选择题(每小题4分,共36分) 1.下列式子表示y 是x 的二次函数是( ) A .2210x y +-= B .()()()2111y x x x =+--- C .232y x x =+D .23340x y +-=2.抛物线()212y x =-+的顶点坐标是( ) A .()1,2-B .()1,2--C .()1,2-D .()1,23.对于抛物线223y x x =-+-而言,下列结论正确的是( )A .与x 轴有两个交点B .开口向上C .与y 轴的交点坐标是()0,3D .顶点坐标是()1,2-4.将二次函数223y x x =-+化为()2y x h k =-+的形式,结果为( )A .()214y x =++B .()214y x =-+ C .()212y x =++D .()212y x =-+5.已知一元二次方程230x bx +-=的一根为3-,在二次函数23y x bx =+-的图像上有三点14,5y ⎛⎫- ⎪⎝⎭,25,4y ⎛⎫-⎪⎝⎭,31,6y ⎛⎫ ⎪⎝⎭则1y ,2y ,3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<6.抛物线()20y ax bx c a =++≠的图像如图所示,则下列说法正确的是( )A .240b ac -<B .0abc <C .12ba--< D .0a b c -+<7.在平面直角坐标系中,如果抛物线22y x =不动,而把x 轴、y 轴分别向上、向右平移2个单位长度,那么在新坐标系下抛物线的解析式是( ) A .()2222y x =-+B .()2222y x =+- C .()2222y x =--D .()2222y x =++8.已知二次函数()20y ax bx c a =++≠的图像如图所示,则一次函数()y b c x a =++的大致图像是( )ABCD9.如图所示,函数2y x bx c =-++的部分图像与x 轴、y 轴的交点分别为()1,0A ,()0,3B 对称轴是1x =-,在下列结论中错误的是( )A .顶点坐标是()1,4-B .函数解析式为223y x x =--+C .当0x <时,y 随x 的增大而增大D .抛物线与x 轴的另一交点是()3,0-二、填空题(每空4分,共28分)10.若抛物线()2213y x k x =+-+的顶点在y 轴右侧,则k 的取值范围是________. 11.抛物线2y ax bx c =++中上部分点的横坐标x 、纵坐标y 的对应值如下表:从上表可知,下列说法中正确的是________.(填写序号) ①抛物线与轴的一个交点为()3,0 ②函数2y ax bx c =++的最大值为6 ③抛物线的对称轴为12x =④在对称轴左侧,y 随x 的增大而增大12.若抛物线2y ax bx c =++经过()0,1和()2,3-两点,且开口向下,对称轴在y 轴左侧,则a 的取值范围是________.13.在平面直角坐标系中,将二次函数()222y x =-+的图像向左平移2个单位长度,所得图像对应的函数解析式为________.14.抛物线2y x bx c =-++的部分图像如图所示,若0y >,则x 的取值范围是________.15.如图所示,在平面直角坐标系中,点A 是抛物线()23y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一个点,且AB x P 轴,则以AB 为边的等边三角形ABC 的周长为________.16.如图所示,济南建邦大桥有一段抛物线形的拱梁,抛物线的解析式为2y ax bx =+.小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10 s 时和26 s 时拱桥梁的高度相同,则小强骑自行车通拱梁部分的桥面OC 共需________s .三、解答题(共36分)17.(10分)已知函数261y mx x =-+(m 是常数).(1)求证:不论m 为何值,该函数的图像都经过y 轴上的一个定点; (2)若该函数的图像与x 轴只有一个交点,求m 的值.18.(12分)如图所示,抛物线223y x x =--+与x 轴交于点A 和点B ,与y 轴交于点C .(1)求点A ,B ,C 的坐标; (2)求直线AC 的解析式;(3)设点M 是第二象限内抛物线上的一点,且6MAB S =△,求点M 的坐标.19.(14分)如图所示,小河上有一条拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形三边AE ,ED ,DB 组成,已知河底ED 是水平的,16ED =m ,8AE =m ,抛物线的顶点C 到ED 的距离是11 m ,以ED 所在直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.(1)求抛物线解析式;(2)已知从某时刻开始的40 h 内,水面与河底的距离点h (单位:m )随时间t (单位:h )的变化满足函数关系()21198128h t =--+(040t ≤≤),且当水面到顶点C 的距离不大于5 m 时,须禁止船只通行.请通过计算说明在这一时段内,需禁止船只通行多少小时?第二十二章综合测试 答案解析一、 1.【答案】D【解析】先将式子进行恒等变形转化为用x 的代数式表示y 的形式,再根据二次函数的定义进行判断. 2.【答案】D【解析】根据抛物线()2y a x h k =-+的顶点坐标为(),h k 可直接得出. 3.【答案】D【解析】因为()()224241380b ac -=-⨯-⨯-=-<,所以抛物线与x 轴无交点,所以A 错误;因为10a =-<,所以抛物线的开口向下,所以B 错误;当0x =时,3y =-,所以抛物线与y 轴的交点坐标为()0,3-,所以C 错误;因为()()22223211312y x x x x x =-+-=--++--=---,所以抛物线的顶点坐标为()1,2-,所以D 正确. 4.【答案】D【解析】()2222321212y x x x x x =-+=-++=-+,故选D . 5.【答案】A【解析】因为一元二次方程230x bx +-=的一根为3-,所以()23330b ---=,所以2b =,所以二次函数解析式为223x x +-.所以当45x =-时,24499235525y ⎛⎫⎛⎫=-+⨯--=- ⎪ ⎪⎝⎭⎝⎭;当54x =-时,25563234416y ⎛⎫⎛⎫=-+⨯--=-⎪ ⎪⎝⎭⎝⎭;当16x =时,21195236636y ⎛⎫⎛⎫=-+⨯--=- ⎪ ⎪⎝⎭⎝⎭.因为996395251636---<<,所以123y y y <<.6.【答案】C【解析】因为抛物线与x 轴有两个交点,所以240b ac ->,所以A 错误.因为抛物线的开口向下,所以0a <.因为抛物线的对称轴在y 轴左侧,所以02ba-<,所以0b <.又因为抛物线与y 轴的交点在y 轴的正半轴上,所以0c >.所以0ab >,所以B 错误.由图像可知,抛物线的对称轴在1x =-的左边,所以12ba--<,所以C 正确.因为抛物线上的横坐标为1-的点在x 轴的上方,所以当1x =-时,0y a b c =-+>,所以D 错误.7.【答案】B【解析】把x 轴、y 轴分别向上、向右平移2个单位长度,即把抛物线22y x =分别向下、向左平移2个单位长度,故平移后的解析式为()2222y x =+-. 8.【答案】A【解析】因为抛物线开口向下,所以0a >.由二次函数图像知1x =时,0y >,即0a b c ++>,所以直线()y b c x a =++经过第一、三、四象限. 9.【答案】C【解析】因为抛物线与x 轴、y 轴的交点分别为()1,0A ,()0,3B ,所以103b c c -++=⎧⎨=⎩,解得23b c =-⎧⎨=⎩,所以函数解析式为()222314y x x x =--+=-++,故A ,B 正确;因为点()1,0A关于对称轴1x =的对称点为()3,0-,所以D 正确;因为当0x <时,y 随x 的增大应先增大后减小,所以C 错误. 二、10.【答案】1k <【解析】要使抛物线的顶点在y 轴的右侧,就是使对称轴在y 轴的右侧,所以02ba->,即()2102k -->,解得1k <.11.【答案】①③④【解析】由表中x 、y 的值可知,抛物线的对称轴为01122x +==,抛物线与x 轴的一个交点为()2,0-,此点关于对称轴的点为()3,0,即①③正确;由表中数据可知,抛物线开口向下,抛物线的最高点是顶点,即函数2y ax bx c =++的最大值是当12x =时的函数值,故②错误;在对称轴的左侧,y 随x 的增大而增大,故④正确. 12.【答案】10a -<<【解析】因为抛物线2y ax bx c =++经过()0,1和()2,3-两点,所以1,423,c a b c =⎧⎨++=-⎩所以22b a =--.又因为抛物线开口向下,在对称轴y 轴的左侧,所以0,0,2a ba ⎧⎪⎨-⎪⎩<<即0,220,2a a a⎧⎪+⎨⎪⎩<<所以10a -<<.13.【答案】22y x =+【解析】()222y x =-+向左平移2个单位长度为()2[22]2y x =-++,即22y x =+ 14.【答案】31x -<<【解析】根据抛物线的对称性可知该抛物线与x 轴的另一交点是()3,0-,观察图像可得当31x -<<时,0y >.15.【答案】18【解析】因为抛物线()23y a x k =-+的对称轴为3x =,且AB x P 轴,所以236AB =⨯=,所以等边ABC △的周长为3618⨯=. 16.【答案】36【解析】设在10 s 时到达A 点,在26 s 时到达B 点,因为10 s 时和26 s 时拱梁的高度相同,所以A ,B 两点关于对称轴对称.O 点到A 点需要10 s ,则从B 点到C 点需要10 s ,所以从O 点到C 点需要()261036s +=三、17.答案:(1)证明:因为当0x =时,1y =,所以不论m 为何值,函数261y mx x =-+的图像都经过y 轴上的定点()0,1.(2)①当0m =时,函数61y x =-+的图像与x 轴只有一个交点;②当0m ≠时,若函数261y mx x =-+的图像与x 轴只有一个交点,则方程2610mx x -+=有两个相等的实数根,所以()2640m ∆=--=,所以9m =.综上,若函数261y mx x =-+的图像与x 轴只有一个交点,则m 的值为0或9.18.【答案】(1)令2230x x --+=,即()()310x x +-=,故13x =-,21x =-,故()3,0A -,()1,0B .令0x =,则3y =,故()0,3C .(2)设直线AC 的解析式为y kx b =+,由题意得30,3,k b b -+=⎧⎨=⎩解得1,3,k b =⎧⎨=⎩故3y x =+.(3)设点M 的坐标为()2,23x x x --+,因为点M 在第二象限,所以2230x x --+>. 又因为4AB =,所以()2142362x x ⨯⨯--+=,解得0x =或2x =-. 当0x =时,3y =(不合题意); 当2x =-时,3y =, 所以点M 的坐标为()2,3-.19.【解析】(1)设抛物线的解析式为211y ax =+,由题意的()8,8B ,所以64118a +=,解得3,64a =-所以231164y x =-+. (2)水面到顶点C 的距离不大于5 m 时,即水面与河底ED 的距离h 至少为6 m , 令()236198128t =--+, 解得135t =,23t =,所以()35332h -=. 答:需禁止船只通行32 h .第二十三章综合测试一、选择题(每小题4分,共28分)1.如图所示,在等腰直角三角形ABC 中,90B ∠=︒,48C ∠=︒,如果将ABC △绕顶点A 逆时针方向旋转60︒后得到AB C ''△,那么BAC '∠等于( )A .60︒B .102︒C .120︒D .132︒2.如图所示,ABC △和BCD △都为等腰直角三角形,若ABC △经旋转后能与BCD △重合,下列说法正确的是( )A .旋转中心为点C ,旋转角为45︒B .旋转中心为点B ,旋转角为45︒C .旋转中心为点C ,旋转角为90︒D .旋转中心为点B ,旋转角为90︒3.正方形ABCD 在平面直角坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90︒后,B 点的对应点的坐标为( )A .()2,2-B .()4,1C .()3,1D .()4,04.如图所示,把ABC △绕点C 顺时针旋转30︒得到A B C ''△,其中A B ''与AC 交于点D ,若90A DC '∠=︒,则A ∠为( )A .90︒B .60︒C .30︒D .无法确定5.已知点()11,1P a -和()22,1Pb -关于原点对称,则ba 的值为( ) A .0 B .1 C .1- D .1±6.将如图所示的图案绕正六边形的中心旋转n ︒时与原图案完全重合,那么n 的最小值是( )A .60B .90C .120D .1807.下列说法正确的是( ) A .中心对称的两个图形一定是全等形B .中心对称图形是旋转90︒后能与自身重合的图形C .两个形状、大小完全相同的图形一定中心对称D .中心对称图形一定是轴对称图形 二、填空题(每空5分,共20分)8.若ABC △绕点A 旋转能与ADE △重合,其中AB 与AD 重合,AC 与AE 重合.若120EAD ∠=︒,则CAB ∠=________;若35CAE ∠=︒,则BAD ∠=________.9.在平面直角坐标系中,已知点0P 的坐标为()1,0,将点0P 绕原点O 逆时针旋转60︒得点1P ,延长1OP 到点2P ,使212OP OP =,再将点2P 绕原点O 逆时针旋转60︒得点3P ,则点3P 的坐标是________.10.如图所示,用两块完全相同的矩形拼成“L ”形,则ACF ∠的大小是________,ACF △的形状是________.11.已知点()221,25P a a a --+在y 轴上,则点P 关于原点O 对称的点的坐标为________. 三、解答题(共52分)12.(12分)如图所示,画出四边形ABCD 绕点A 逆时针旋转90︒后的图形.13.(12分)如图所示,ABC △绕点A 旋转得到ADE △,恰好使点C 旋转后落在直线BC 上的点E 处,已知105ACB ∠=︒,10CAD ∠=︒,求DFE ∠和B ∠的度数.14.(14分)用四块如左图所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在右图①②③中各画出一种拼法(要求三种拼法各不相同),且其中至少有一种既是轴对称图形又是中心对称图形.15.(14分)在如图所示的网格中按要求画出图形,并回答问题:(1)先画出ABC △向下平移5格后的111A B C △,再画出ABC △以点O 为旋转中心顺时针旋转90︒后的222A B C △;(2)在与同学交流时,你打算如何描述(1)中所画的222A B C △的位置?第二十三章综合测试答案解析一、 1.【答案】B【解析】因为90B ∠=︒,48C ∠=︒,所以42BAC ∠=︒.又CAC '∠是旋转角,所以60CAC '∠=︒.所以4260102BAC BAC CAC ''∠=∠+∠=︒+︒=︒.2.【答案】D【解析】因为点B 始终没有改变位置,所以点B 为旋转中心,旋转角为90ABC ∠=︒. 3.【答案】D【解析】作出旋转后的图形,结合旋转的性质可得点B 的对应点的坐标为()4,0. 4.【答案】B【解析】由题意知,旋转角为30ACA '∠=︒,所以903060A '∠=︒-︒=︒.由旋转性质得60A A '∠=∠=︒.5.【答案】B【解析】由题意得120a -+=,110b -+=,解得1a =-,0b =.所以()011b a =-=. 6.【答案】C【解析】观察图形的组成特点可以发现图形外围的图案至少旋转120︒后可以与原来的图案重合,内部的图案在旋转120︒后也和原来的图案重合,故选C . 7.【答案】A 二、8.【答案】120︒ 35︒【解析】由能互相重合的边得到对应边,从而确定对应角是解题关键.题中AB 与AD 重合,AC 与AE 重合,EAD ∠与CAB ∠是对应角,CAE ∠与BAD ∠是旋转角.9.【答案】(-【解析】画图确定点3P 的位置,过该点作x 轴、y 轴的垂线段,得到直角三角形,可求出点3P 的坐标.解答此题结合图形比较简便.10.【答案】90︒ 等腰直角三角形【解析】矩形FGCE 可以看作是由矩形ABCD 绕点C 顺时针旋转90︒得到的,则90ACF ∠=︒,AC FC =,所以ACF △是等腰直角三角形.11.【答案】()0,8-或()0,4-【解析】因为点()221,25P a a a --+在y 轴上,所以210a -=,所以1a =或1a =-.当1a =时,2254a a -+=,当1a =-时,2258a a -+=,所以点P 的坐标为()0,8-或()0,4-,所以点P 关于原点O 对称的点的坐标为()0,8-或()0,4-. 三、12.【答案】如图所示.13.【答案】因为105ACB ∠=︒,所以18010575ACF ∠=︒-︒=︒. 又因为10CAD ∠=︒,所以180751095AFC ∠=︒-︒-︒=︒. 所以95DFE AFC ∠=∠=︒. 又ABC ADE △≌△,所以AC AE =,105AED ACB ∠=∠=︒,B D ∠=∠, 所以75AEC ACE ∠=∠=︒.所以1057530DEF AED AEC ∠=∠-∠=︒-︒=︒. 所以180180953055D DFE DEF ∠=︒-∠-∠=︒-︒-︒=︒. 所以55B D ∠=∠=︒.14.【答案】答案不唯一,如图所示,三种拼法仅供参考.15.【答案】(1)如图所示.(2)建立如图所示的平面直角坐标系,222A B C △各顶点的坐标分别为()25,2A ,()21,4B ,()23,1C .第二十四章综合测试一、选择题(每小题4分,共28分)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) A .4个B .3个C .2个D .1个2.如图所示,AB 是O e 的直径,AC 是O e 的切线,A 为切点,连接BC 交O e 于点D ,连接AD .若45ABC ∠=︒,则下列结论正确的是( )A .12AD BC =B .12AD AC =C .AB AC >D .DC AD >3.如图所示,AB 是O e 的直径,C 是O e 上的一点,若8AC =,10AB =,OD BC ⊥于点D ,则BD 的长为( )A .1.5B .3C .5D .64.如图所示,AB 是O e 的弦,半径OC AB ⊥于点D ,且6AB =cm ,4OD =cm ,则DC 的长为( )A .5 cmB .2.5 cmC .2 cmD .1 cm5.如图所示,圆锥侧面展开图的扇形面积为265 cm π,扇形的弧长为10πcm ,则圆锥的母线长是( )A .5 cmB .10 cmC .12 cmD .13cm6.如图所示,O e 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( )A 2πB 23π C .2πD .23π 7.如图所示,有一长为4 cm ,宽为3 cm 的长方形木板在桌面上无滑动翻滚(顺时针方向),木板上的顶点A 的位置变化为12A A A →→,其中第二次翻滚被桌面上一小木块挡住,使木板边沿2A C 与桌面成30︒角,则点A 翻滚到2A 时,共走过的路径长为( )A .10πcmB .3.5πcmC .4.5πcmD .2.5πcm二、填空题(每空5分,共30分)8.在半径为1________度.9.如图所示,PB 为O e 的切线,A 为切点,2cm OB =,30B ∠=︒,则AB =_____________.10.如图所示,AB 是O e 的直径,点D 在O e 上,130AOD ∠=︒,BC OD ∥交O e 于点C ,则A ∠=________.11.在边长为3 cm ,4 cm ,5 cm 的三角形白铁皮上剪下一个最大圆,则此圆的半径为________cm .12.过圆上一点引两条互相垂直的弦,若圆心到两条弦的距离分别是2和3,则这两条弦的长分别是________.13.如图所示,三角尺ABC 中,90ACB ∠=︒,30ABC ∠=︒,6BC =,三角尺绕直角顶点C 逆时针旋转,当点A 的对应点A '落在AB 边上时即停止转动,则点B 转过的路径长为________.三、解答题(共42分)14.(10分)如图所示,AB 是O e 的一条弦,OD AB ⊥于点C ,交O e 于点D ,点E 在O e 上.(1)若52AOD ∠=︒,求DEB ∠的度数. (2)若3OC =,5OA =,求AB 的长.15.(10分)如图所示,在ABC △中,D 是AB 边上一点,O e 过D ,B ,C 三点,290DOC ACD ∠=∠=︒.(1)求证:直线AC 是O e 的切线;(2)如果75ACB ∠=︒,O e 的半径为2,求BD 的长.16.(10分)如图所示,线段AB 与O e 相切于点C ,连接OA ,OB ,OB 交O e 于点D ,已知6OA OB ==,AB =. (1)求O e 的半径; (2)求图中阴影部分的面积.17.(12分)如图所示,PA ,PB 分别与O e 相切于点A ,B ,点M 在PB 上,且OM AP ∥,MN AP ⊥,垂足为N .(1)求证:OM AN =;(2)若O e 的半径3R =,9PA =,求OM 的长.第二十四章综合测试答案解析一、 1.【答案】B【解析】①③④正确.三点共线时过三点不能作圆,故②错误. 2.【答案】A【解析】因为AC 是O e 的切线,所以BA AC ⊥.又因为45B ∠=︒,所以45C ∠=︒,所以AB AC =.又因为AB 是直径,所以AD BC ⊥.所以BD CD =(三线合一),所以12AD BC =. 3.【答案】B【解析】因为AB 是直径,所以90ACB ∠=︒.在Rt ACB △中,6BC =.因为OD BC ⊥,所以132BD BC ==(垂径定理). 4.【答案】D【解析】连接AO (图略),由垂径定理知132AD AB ==cm ,所以在Rt AOD △中,5AO ==(cm ),所以541DC OC OD OA OD =-=-=-=(cm ).5.【答案】D【解析】圆锥的母线长l 即为圆锥侧面展开图扇形的半径.由圆锥的侧面积公式,得110652l ππ⨯⨯=,所以13l =cm .6.【答案】A【解析】因为六边形ABCDEF 是正六边形,所以60AOB ∠=︒.又因为OA OB =,所以OAB △是等边三角形,02OA B AB ===.设点G 为AB 与O e 的切点,OA ,OB 分别交O e 于M ,N 两点,连接OG (图略),则OG AB ⊥.在Rt OAG △中,2OA =,1AG =,根据勾股定理得OG ==2601223602OAB OMN S S S ππ⨯⨯=-=⨯=△阴影扇形.7.【答案】B【解析】整条路径分两部分,从A 到1A 是以BA 长为半径,绕B 点旋转90︒;从1A 到2A 是以1CA 长为半径,绕C 点旋转60︒.总路径长为9056033.5180180πππ⨯⨯⨯⨯+=(cm ). 二、 8.【答案】909.cm【解析】因为AB 是O e 的切线,所以OA AB ⊥.又因为30B ∠=︒,所以112OA OB == cm在Rt AOB △中,由勾股定理得AB =cm ). 10.【答案】40︒【解析】18013050BOD ∠=︒-︒=︒,由BC OD ∥得50B BOD ∠=∠=︒.由AB 是O e 的直径可得90ACB ∠=︒,所以90905040A B ∠=︒-∠=︒-︒=︒. 11.【答案】1【解析】由勾股定理的逆定理可得,边长为3 cm ,4 cm ,5 cm 的三角形是直角三角形,其内切圆半径3+4512r -==(cm ). 12.【答案】6,4【解析】因为两垂直弦的夹角为90︒,所以两弦的非公共端点的连线是直径.由垂径定理和三角形中位线的性质定理,可得两弦长分别为6,4. 13.【答案】2π【解析】由题意得60BCB ∠=︒,¼'6062180B Bl ππ⨯==. 三、14.【答案】(1)因为OD AB ⊥,所以AC BC =,»»AD BD=.所以11522622DEB AOD ∠=∠=⨯︒=︒.(2)在Rt OAC △中,4AC ===,所以28AB AC ==.15.【答案】(1)证明:因为OD OC =,90DOC ∠=︒,所以45ODC OCD ∠=∠=︒.因为290DOC ACD ∠=∠=︒,所以45ACD ∠=︒.所以90ACD OCD OCA ∠+∠=∠=︒.因为点C在O e 上,所以直线AC 是O e 的切线.(2)解:因为2OD OC ==,90DOC ∠=︒,所以CD =因为75ACB ∠=︒,45ACD ∠=︒,所以30BCD ∠=︒.如图所示,过点D 作DE BC ⊥于点E ,则90DEC ∠=︒.所以12DE CD ==.因为45B ACD ∠=∠=︒,所以2BD =.16.【答案】解:(1)连接OC (图略).因为AB 切O e 于点C ,所以OC AB ⊥.因为OA OB =,所以12AC BC AB ===Rt AOC △中,3OC ,所以O e 的半径为3.(2)因为在Rt OCB △中,12OC OB =,所以60COD ∠=︒,所以26033==3602OCD S ππ⨯⨯扇形,所以133=222OCB OCD S S S OC CB ππ=--=-g △阴影扇形.【解析】(1)连接OC ,在Rt AOC △中,利用勾股定理求得OC ;(2)OCB OCD S S S =-△阴影扇形.17.【答案】(1)证明:如图所示,连接OA ,则OA AP ⊥.因为MN AP ⊥,所以MN OA ∥.因为OM AP ∥,所以四边形ANMO 是矩形.所以OM AN =.(2)解:连接OB ,则OB BP ⊥.因为OA MN =,OA OB =,OM AP ∥,所以OB MN =,OMB NPM ∠=∠.所以Rt Rt OBM MNP △≌△,所以OM MP =.设OM x =,则9NP x =-.在Rt MNP △中,有()22239x x =+-,所以5x =,即5OM =.【解析】(1)连接OA,证四边形ANMO是矩形,得OM AN=;(2)连接OB,可证OM MP=,设OM x=,则9NP x=-,在Rt MNP△中利用勾股定理列方程求x.第二十五章综合测试一、选择题(每小题4分,共32分)1.下列事件是必然事件的是()A.太阳从西边升起B.抛掷一枚质地均匀的硬币,正面朝上C.一天24小时D.打开电视机正在播放新闻联播2.用长为4 cm,5 cm,6 cm的三条线段能围成三角形是()A.随机事件B.必然事件C.不可能事件D.以上都不是3.一个不透明的布袋装有4个只有颜色不同的球,其中2个红球、1个白球、1个黑球,搅匀后从布袋里摸出1个球,摸到红球的概率是()A.12B.13C.14D.164.一个十字路口的交通信号灯每分钟红灯亮30 s,绿灯亮25 s,黄灯亮5 s,当你抬头看信号灯时,是绿灯的概率是()A.14B.13C.512D.125.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为号,那么袋中球的总个数为()A.15B.12C.9D.36.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的7.在标有数字1~9的9张同样的卡片中,抽出一张是7(不放回),那么再抽出一张是奇数的概率是()A.12B.13C.14D.588.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()A.1925B.1025C.625D.525二、填空题(每小题4分,共24分)9.图中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖的标志,则随机翻动一块木牌中奖的概率为________.10.掷一枚均匀正方体骰子,出现点数为4的概率为________,出现点数为2的概率为________,出现点数大于3的概率为________,出现点数大于2的概率为________.11.在100张奖券中,设一等奖1个,二等奖2个,三等奖3个.若从中任取一张奖券,则不中奖的概率是________.12.某暗箱中放有10个球,其中有红球3个,白球和蓝球若干,从中任取一个球是白球的概率是12,则白球和蓝球的个数分别是________,________.13.如图所示,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为________.14.一套书共有上、中、下三册,将它们任意摆放到书架的同一层上,这三册书从左到右恰好成上、中、下顺序的概率为________.三、解答题(共44分)15.(10分)一个袋中共有5个除颜色外其他均相同的红球和白球,若任意摸出一球为红球的概率是25.(1)袋中红球、白球各有多少个?(2)任意摸出两个球,它们均为红球的概率有多大?16.(10分)将A ,B ,C ,D 四人随机分成甲、乙两组参加羽毛球比赛,每组两人. (1)A 在甲组的概率是多少? (2)A ,B 都在甲组的概率是多少?17.(12分)一个桶里有500个球(除颜色不同外其他均相同),下面是每次从桶中拿出球的个数和其中是红球的个数的记录:(1)把表填写完整.(2)拿出红球的频率约是多少?估计从桶中拿出一球是红球的概率是多少? (3)计算桶中红球的个数.18.(12分)在一副扑克牌中,拿出红桃2、红桃3、红桃4、红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x ,然后放回并洗匀,再由小华从中随机摸出一张,记下牌面上的数字为y ,组成一对数(),x y .(1)用列表法或画树状图表示出(),x y 的所有可能出现的结果;(2)求小明、小华各摸一次扑克牌所确定的一对数是方程5x y +=的解的概率.第二十五章综合测试答案解析一、 1.【答案】C【解析】A 是不可能事件,B 是随机事件,D 是随机事件. 2.【答案】B【解析】因为456+>,所以由三角形三边关系得一定能围成三角形.3.【答案】A【解析】所有等可能的情况共有4种,其中摸到红球的可能有2种.所以()21=42P =摸到红球.4.【答案】C 【解析】()255==6012P 绿灯. 5.【答案】A【解析】设袋中球的总个数为x ,则()31=5P x =摸到红球,所以15x =. 6.【答案】A【解析】抛一枚均匀硬币,正面朝上的概率是12,即在实际操作中,大量重复这种操作,出现正面朝上的频率约为12,但连续抛两次不一定有一次正面朝上,故选A . 7.【答案】A【解析】因为在1~9中,奇数有5个,当抽出一张7后,共有8张卡片,且标有奇数的有4张,故()41=82P =抽到奇数. 8.【答案】C 二、9.【答案】13【解析】()21==63P 中奖.10.【答案】16 16 12 2311.【答案】4750【解析】()1001239447=10010050P ---==不中奖. 12.【答案】5 2【解析】白球:11052⨯=(个),蓝球:10532--=(个).13.【答案】19【解析】首先根据题意面出树状图,然后由树状图求得所有等可能的结果与两辆汽车经过该路口都向右转的结果,继而利用概率公式即可求得答案. 画树状图,如图所示.。
人教版九年级上学期数学综合能力测试题(附答案)一.选择题(每题3分,共18分)1.计算12718123--的结果是( )A .1B .1-C .32-D .23-2.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,A e 的半径为2.下列说法中不正确...的是( ) A .当5a <时,点B 在A e 内 B .当15a <<时,点B 在A e 内 C .当1a <时,点B 在A e 外 D .当5a >时,点B 在A e 外 3.如图,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P ’BA ,则∠PBP ’的度数是( )A .45°B .60°C .90°D .120°4.如图,在ABCD Y 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD Y 的周长为( )A .422+B .1262+C .222+D .221262+或 5.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( ) A .1米 B .1.5米 C .2米 D .2.5米6.在Rt △ABC 中,∠ABC =90°,AB =8cm,BC =6cm ,分别以A,C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为( )cm 2.A .2524π4-B .25π4C .524π4-D .2524π6-二.填空题(每空3分,共36分)7.3最接近的整数是__,232的倒数是____,已知n -12是正整数,则实数n 的最大值为__。
8.点(35)p ,-关于原点对称的点的坐标为____;点A 的坐标为(2,0),把点A 绕着坐标原点顺时针旋转135º到点B ,那么点B 的坐标是 _______.ADCE B9.如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k = .若两个实数根的平方和为3,则k =___;若两个实数根的倒数和为2,则k =___。
浙教版九年级数学上册综合检测试卷(全册)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.甲乙两人做游戏,同时掷两枚相同的硬币,双方约定:同面朝上甲胜,异面朝上则乙胜,则这个游戏对双方()A.公平B.对甲有利C.对乙有利D.无法确定公平性2.两个相似多边形对应边之比等于,那么这两个相似多边形面积之比等于()A. B. C. D.3.将二次函数的图象先向右平移个单位,再向上平移个单位后得到的抛物线的函数表达式为()A. B.C. D.4.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆5.如图,的两弦、相交于点,,是的中点,,则A. B. C. D.6.已知二次函数,当时,的最大值和最小值是()A.,B.,C.,D.,7.如图,、、、四点在同一个圆上.下列判断正确的是()A. B.当为圆心时,C.若是的中点,则一定是此圆的圆心D.8.先作半径为的圆的内接正方形,接着作上述内接正方形的内切圆,再作上述内切圆的内接正方形,…,则按以上规律作出的第个圆的内接正方形的边长为()A. B. C. D.9.把二次函数化成(其中、是常数)的形式的结果为()A. B.C. D.10.如图,将腰长为的等腰绕点旋转至的位置,使、、三点在同一条直线上,则点经过的最短路线长是()A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.若二次函数的图象如图所示,则________;方程的根是________,________,对称轴是________.12.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过分钟旋转了________.13.已知二次函数的图象如图所示,则关于的一元二次方程的根为________;不等式的解集是________;当________时,随的增大而减小.14.如图,在四边形中,,将绕点顺时针旋转后,点的对应点恰好与点重合,得到,若,,则________(提示:可连接)15.如图,直线和抛物线都经过点,,不等式的解集为________.16.某种商品每件的进价为元,在某段时间内若以每件元出售,可卖出件,设这种商品的利润为元,则与的函数关系式为________(化成一般式).17.飞机着陆后滑行的距离(米)关于滑行的时间(秒)的函数解析式是.则飞机着陆后滑行到停下来滑行的距离为________米.18.如图所示,顶角为的第一个黄金三角形的腰,底边与腰之比为,三角形为第二个黄金三角形,依此类推,第个黄金三角形的周长为________.19.如图,中,,,,,则________.20.如图,长方形中,,,是边上一点(不与、重合),是边上一点(不与、重合).若和是相似三角形,则________.三、解答题(共 8 小题,共 60 分)21.(4分) 在平面直角坐标系中,的顶点坐标分别是,,.作出关于原点成中心对称的;以点为位似中心,在的同侧作出相似比为,放大后的.22.(8分) 如图,是的内接三角形,,是上一点,的延长线交于点.(1)与相似吗?为什么?图中还有哪几对相似三角形?23.(8分) 如图,在四边形中,,,是延长线上一点,若,,连接,.求证:;试求出线段的长.24.(8分)中央电视台“幸运”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在个商标牌中,有个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?25.(8分)如图,为半圆直径,为上一点,分别在半圆上取点、,使,,过作的垂线,交半圆于.求证:平分.26.(8分)已知:如图所示,要在高,底边的三角形余料中截出一个正方形板材.求正方形的边长.27.(8分)给你枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现、、、、、向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测枚骰予的质量.28.(8分) 如图,在中,,以点为圆心,长为半径的圆交于点,的延长线交于点,连接,,是上一点,点与点位于两侧,且,连接.(1)证:;(2),,求的长及的值.答案1.A2.A3.D4.D5.B6.B7.B8.A9.A10.B11.12.13.或14.15.16.17.18.19.20.或21.解:如图所示:,即为所求;如图所示:,即为所求..22.解:∵,∴,∴,,∴;解:,,相似三角形有:,,.23.解:证明:在四边形中,∵,∴,∴,又∵,∴,在和中,,∴;∴,∵∴,∵,∴.解:∵,∴,,∵,∴,∴是等腰直角三角形,∵,∴,∴.24.解:∵个商标中个已翻出,还剩张,张中还有张有奖的,∴第三次翻牌获奖的概率是:.25.证明:如图,分别过点、作的垂线,、为垂足,连、.易知:,.二式相减得:,或.于是:,或.∴.显然,.故平分.26.解:设正方形的边长为,∵四边形是正方形,∴,,∴,∴,∵,,,∴,∴,∴正方形的边长为.27.解:填表如下:28.∵,∴,∵是的直径,∴,∴,∵,∴,∴,∵,,∴,∴,∵,,∴,,∴,在中,,∴,,过点作于,∵,,∴,∴,∵,∴,,∴,过点作于,∴,∵,∴,∴,∴四边形是矩形,∴,,∴,在中,,在中,.。
新人教版_九年级数学上册全册内容综合测试题(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版_九年级数学上册全册内容综合测试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版_九年级数学上册全册内容综合测试题(含答案)(word版可编辑修改)的全部内容。
九年级(上) 期末数学测试卷(总分:120分,时间:120分钟)一、填空题(每题3分,共30分)x+中自变量x的取值范围是________.1.函数y=22.2+8—18=_______.3.已知方程x2+kx+1=0的一个根为2-1,则另一个根为_____,k=_______.4.有四张不透明的卡片4,22/7,π,3,除正面的数不同外,其余都相同,将它们背面朝上洗匀后,从中随机抽取一张卡片记下数字,再在余下的三张卡片中再抽取一张,•那么抽取的卡片都是无理数的概率为______.5.如图1,矩形ABCD与圆心在AB上的⊙O交于G,B,F,E,GB=8cm,•AG=•1cm,•DE=2cm,则EF=_______cm.图1 图2 图3 图46.如图2,粮仓的顶部是锥形,这个圆锥底面周长为32m,母线长7m,为防雨,需要在粮仓顶部铺上油毡,则共需油毡______m2.7.以25m/s的速度行驶的列车,紧急制动后,匀减速地滑行,经10s停止,则在制运过程中列车的行驶路程为______.8.如图3,PA,PB是⊙O的两条切线,A、B是切点,CD切劣弧AB于点E,•已知切线PA的长为6cm,则△PCD的周长为______cm.9.已知点A,点B均在x轴上,分别在A,B为圆心的两圆相交于M(3,-2),N(a,b )两点,则a b 的值为_______.10.某人用如下方法测一钢管内径:将一小段钢管竖直放在平台上,•向内放入两个半径为5cm 的钢球,测得上面一个钢球顶部高DC=16cm (钢管的轴截面如图4),则钢管的内直径AD 长为______cm . 二、选择题(每题4分,共40分) 11.下列各式计算正确的是( )A2 B .2=│a │ C 5= D .a=2 12.关于x 的一元二次方程(a —1)x 2+x+a 2-1=0的一个根为0,则a 的值为( )A .1B .-1C .1或-1D .1213.关于x 的一元二次方程x 2—2(m —2)x+m=0有两个不相等的实数根,则m•的取值范围为( )A .m 〉1B .m<1C .m>-1D .m<-114.有两名男生和两名女生,王老师要随机地,两两一对地为他们排座位,一男一女排在一起的概率为( )A .14B .13C .12D .2315.⊙I 是△ABC 的内切圆,且∠C=90°,切点为D ,E ,F,若AF ,BE 的长是方程x 2—13x+30=0的两个根,则S △ABC 的值为( ) A .30 B .15 C .60 D .13 16.图5中的4个图案,是中心对称图形的有( )A .①②B .①③C .①④D .③④图5 图6 图7 17.如图6,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC,•垂足是P,DH⊥BH,垂足是H,下列结论:①CH=CP;②AD=DB;③AP=BH;④DH为圆的切线.•其中一定成立的是( )A.①②④ B.①③④ C.②③④ D.①②③18.如图7,Rt△ABC中,AB=AC=4,以AB为直径的圆交AC于D,则图中阴影部分的面积为()A.2π B.π+1 C.π+2 D.4+4π1922x xx x=--成立的x的取值范围是()A.x≠2 B.x≥0 C.x〉2 D.x≥220.如果f(x)=221xx+并且f1)表示当1时的值,1)22(1)1(1)+12,表示当12时的值,即12221()211()2+13.那么f1)+f212311()3f n fn+++的值是()A.n-12B.n-32C.n-52D.n+12三、解答题(共50分)21.(8分)已知33,求下列各式的值:(1)x2+2xy+y2; (2)x2—y222.(10分)如图末—8,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连结AF,BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想.(2)若将正方形CDEF绕点C顺时针方向旋转,使正方形CDEF的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.23.(10分)一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m,n,若把m,n作为点A的横,纵坐标,那么点A(m,n)•在函数y=2x的图象上的概率是多少?24.(10分)如图末—9,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种草坪,要使草坪的面积为540m2,求道路的宽.25.(12分)如图末-10,在平面直角坐标系中,直线y=x+1与y轴交于点A,与x•轴交于点B,点C和点B关于y轴对称.(1)求△ABC内切圆的半径;(2)过O、A两点作⊙M,分别交直线AB、AC于点D、E,求证:AD+AE是定值,•并求其值.答案:5.6 6.112 1.x≥-2且x≠1 2.0 32,2.167.125m 8.12 9.9 10.18 11.C 12.B 13.B 14.D 15.A 16.B 17.D 18.C 19.C 20.A21.解:(1)x2+2xy+y2=(x+y)2331)2=(3)2=12.(2)x2—y2=(x—y)(x+y)=2×3322.解:(1)AF=BD且AF⊥BD,只需证△BCD≌△ACF即可.(2)略23.略24.解:如图所示,设路宽为xm,则种草坪的矩形长为(32—x )m ,宽为(20-x)m,•即(32-x )(20—x )=540,整理得x 2—52x+100=0,解得x 1=2,x 2=50(舍去), 所以道路宽为2m .25.解:(1)由直线AB 的解析式求得OA=OB=OC=1,由于△ABC 为Rt △,2,∴r=2AB AC BC+-21.(2)连结OD ,OE ,DE ,∵∠BAC=90°,∴DE 为直径.∴∠DOE=90°. 又∵∠AOB=90°,∴∠DOB=∠AOE . 又∵∠OAE=∠OBD=45°,且OA=OB .∴△AOE ≌△BOD .故AE=BD .∴2。
人教版九年级数学上册 期末综合素质评价一、选择题(每题3分,共30分)1.【教材P 67练习T 2改编】下列图案中,既是轴对称图形又是中心对称图形的是( )2.【教材P 17习题T 4变式】一元二次方程4x 2-2x -1=0的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定3.【教材P 41习题T 7改编】已知二次函数y =-x 2+2x +1,若y 随x 的增大而增大,则x 的取值范围是( )A .x <1B .x >1C .x <-1D .x >-14.【教材P 133练习T 2变式】一个不透明袋子中装有6个黑球、3个白球,这些球除颜色外,形状、大小、质地等完全相同,随机地从这个袋子中摸出一个球,摸到白球的概率为( ) A.19 B.13 C.12 D.235.如图,将Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC ,连接AD ,若∠B =65°,则∠ADE 等于( )A .30°B .25°C .20°D .15°(第5题) (第8题) (第9题)6.已知圆锥侧面展开图的面积为65π cm 2,弧长为10π cm ,则圆锥的母线长为( )A .5 cmB .10 cmC .12 cmD .13 cm7.在同一平面直角坐标系内,将函数y =2x 2+4x -3的图象先向右平移2个单位长度,再向下平移1个单位长度得到的图象的顶点坐标是( )A.(-3,-6) B.(1,-4) C.(1,-6) D.(-3,-4) 8.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC 的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°9.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC 的延长线于点P,则P A的长为()A.2 B. 3 C. 2 D.1 210.已知抛物线y=x2+bx+c与x轴只有一个交点,且过A(x1,m),B(x1+n,m)两点,则m,n的关系为()A.m=12n B.m=14n C.m=12n2D.m=14n2二、填空题(每题3分,共24分)11.【教材P70习题T4改编】若点A(3,n)与点B(-m,5)关于原点对称,则m+n=________.12.若抛物线y=ax2+bx+c与x轴的交点为(5,0)与(1,0),则抛物线的对称轴为直线x=__________.13.【教材P140习题T3改编】一个不透明的袋子里有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球,则两次摸出的球都是红球的概率是________.14.【教材P89习题T8拓展】如图为一个玉石饰品的示意图,A,B为外圆上的两点,且AB与内圆相切于点C,过点C作CD⊥AB交外圆于点D,测得AB =24 cm,CD=6 cm,则外圆的直径为________cm.(第14题)(第16题)(第17题)(第18题) 15.【教材P26复习题T10拓展】某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,则3月份到5月份营业额的月平均增长率为________.16.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为________.17.如图,已知⊙P的半径为2,圆心P在抛物线y=12x2-1上运动,当⊙P与x轴相切时,圆心P的坐标为________________.18.如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC=MD =AC,连接AD.现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120°.其中正确的结论是________(填序号).三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.解下列方程:(1)x2-4x-8=0;(2)3x-6=x(x-2).20.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,4),B(4,1),C(4,3).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出将△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并写出点B2的坐标.21.在一个不透明的口袋中装有4个分别写有数字1,2,3,4的小球,它们除数字外其他都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,上面的数字不小于2的概率为________;(2)从中随机摸出一个小球不放回,再随机摸出一个小球,请用列表或画树状图的方法,求两次摸出的小球上的数字之和恰好是奇数的概率.22.如图所示,在平面直角坐标系xOy中,已知顶点为P(0,2)的二次函数图象与x轴交于A,B两点,点A的坐标为(2,0).(1)求该二次函数的解析式,并写出点B的坐标;(2)点C在该二次函数的图象上,且在第四象限,当△ABC的面积为12时,求点C的坐标.23.如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若AC=10,CD=6,求DE的长.24.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要赢利1 200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?25.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(-1,0),C(0,-3).(1)求该抛物线的函数解析式.(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标.(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.答案一、1.D 2.B 3.A 4.B 5.C 6.D7.C8.B9.B10.D 点思路:由抛物线y=x2+bx+c与x轴只有一个交点,得b2-4c=0,即b2=4c.由题意知点A,B关于直线x=-b2对称,则A ⎝ ⎛⎭⎪⎫-b 2-n 2,m , B (-b 2+n 2,m ).将A 点坐标代入函数解析式,得m =(-b 2-n 2)2+(-b 2-n 2)b +c =n 24-b 24+c .又b 2=4c ,所以m =14n 2.二、11.-2 12.3 13.49 14.30 15.20% 16.2512π17.(6,2)或(-6,2) 18.①②③④三、19.解:(1)x 2-4x -8=0,x 2-4x +4=4+8,(x -2)2=12,∴x -2=±2 3.∴x 1=2+23,x 2=2-2 3.(2)3x -6=x (x -2),3(x -2)=x (x -2),3(x -2)-x (x -2)=0,(x -2)(3-x )=0,∴x -2=0或3-x =0.∴x 1=2,x 2=3.20.解:(1)△A 1B 1C 1如图所示:(2)△A 2B 2C 2如图所示,点B 2的坐标为(1,-4).21.解:(1)34(2)所有可能出现的结果列表如下(也可选择画树状图):由上表可知,两次摸球后共有12种等可能的结果,摸出的两个小球上的数字之和为奇数的有8种,∴P(和为奇数)=812=23.22.解:(1)设该二次函数的解析式为y=ax2+2.把(2,0)代入解析式,解得a=-1 2.∴该二次函数的解析式为y=-12x2+2,∴点B的坐标为(-2,0).(2)过点C作CH⊥x轴,垂足为H.设点C横坐标为m,则CH=12m2-2.由题意,得12×[2-(-2)]×⎝⎛⎭⎪⎫12m2-2=12,解得m=±4.∵点C在第四象限,∴m=4,∴点C的坐标为(4,-6).23.(1)证明:连接OD.∵AB=AC,∴∠B=∠ACD.∵OC=OD,∴∠ODC=∠OCD,∴∠B=∠ODC,∴OD∥AB.∵DE⊥AB,∴EF⊥OD.又∵OD是⊙O的半径,∴EF是⊙O的切线.(2)解:连接AD.∵AC为⊙O的直径,∴∠ADC =90°,∴AD ⊥BC .∵AB =AC ,∴BD =CD =6.在Rt △ACD 中,AC =10,CD =6,∴AD =A C 2-CD 2=102-62=8.又∵DE ⊥AB ,AB =AC =10,∴S △ABD =12AB ·DE =12AD ·BD ,即12×10×DE =12×8×6,∴DE =4.8.24. 点方法:(3)中由于点P ,Q 的位置不固定,因此应分情况讨论求解.解:(1)设每件衬衫应降价x 元,根据题意,得(40-x )(20+2x )=1 200,整理,得x 2-30x +200=0,解得x 1=20,x 2=10.因为要尽量减少库存,在赢利相同的条件下,降价越多,销售越快,故每件衬衫应降价20元.答:每件衬衫应降价20元.(2)设商场平均每天赢利y 元,则y =(20+2x )(40-x )=-2x 2+60x +800=-2(x 2-30x -400)=-2[(x -15)2-625]=-2(x -15)2+1 250.∴当x =15时,y 有最大值,最大值为1 250.答:每件衬衫降价15元时,商场平均每天赢利最多.25. 点易错:(1)求得x 的值后要结合题意作出取舍.解:(1)∵抛物线y =ax 2+bx +c (a ≠0)经过点A (3,0),B (-1,0),∴设y =a (x -3)(x +1).∵抛物线y =ax 2+bx +c (a ≠0)经过点C (0,-3),∴-3=a (0-3)(0+1),解得a =1.∴该抛物线的函数解析式为y =(x -3)·(x +1),即y =x 2-2x -3.(2)过点A 作AM ⊥BC ,垂足为点M ,AM 交y 轴于点N ,∴∠BAM +∠ABM =90°.在Rt △BCO 中,∠BCO +∠ABM =90°,∴∠BAM =∠BCO .∵点A ,B ,C 的坐标分别为(3,0),(-1,0),(0,-3),∴AO =CO =3,OB =1.又∵∠BAM =∠BCO ,∠AON =∠BOC =90°,∴△AON ≌△COB .∴ON =OB =1.∴点N 的坐标为(0,-1).设直线AM 的函数解析式为y 1=kx +b ′(k ≠0).把点A (3,0),N (0,-1)的坐标分别代入,得⎩⎨⎧0=3k +b ′,-1=b ′,解得⎩⎪⎨⎪⎧k =13,b ′=-1.∴直线AM 的函数解析式为y 1=13x -1.同理可求得直线BC 的函数解析式为y 2=-3x -3.联立方程组⎩⎪⎨⎪⎧y =13x -1,y =-3x -3,解得⎩⎪⎨⎪⎧x =-35,y =-65.∴切点M 的坐标为⎝ ⎛⎭⎪⎫-35,-65. (3)存在以点B ,C ,Q ,P 为顶点的平行四边形.设点Q 的坐标为(t ,0),点P 的坐标为(m ,m 2-2m -3),分三种情况考虑: ①当四边形BCQP 为平行四边形时,-1+t =0+m ,0+0=-3+m 2-2m -3,解得⎩⎨⎧m =1+7,t =2+7,或⎩⎨⎧m =1-7,t =2-7. 当m =1+7时,m 2-2m -3=8+27-2-27-3=3,即点P 的坐标为(1+7,3);当m =1-7时,m 2-2m -3=8-27-2+27-3=3,即点P 的坐标为(1-7,3).②当四边形BCPQ 为平行四边形时,-1+m =0+t ,0+m 2-2m -3=-3+0,解得⎩⎨⎧m =0,t =-1,(舍去)或⎩⎨⎧m =2,t =1.当m =2时,m 2-2m -3=22-2×2-3=-3, 即点P 的坐标为(2,-3).③当四边形BQCP 为平行四边形时,-1+0=m +t ,0+(-3)=0+m 2-2m -3,解得⎩⎨⎧m =0,t =-1,(舍去)或⎩⎨⎧m =2,t =-3. 当m =2时,m 2-2m -3=-3,即点P 的坐标为(2,-3).综上,存在以点B ,C ,Q ,P 为顶点的平行四边形. 点P 的坐标为(2,-3)或(1+7,3)或(1-7,3).。
【期末专题复习】人教版九年级数学上册期末综合检测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知关于的方程的一个根是,则实数的值是()A. B. C. D.2. 若二次函数(、为常数)的图象如图,则的值为()A. B. C. D.3. 已知,中,∠,斜边上的高为,以点为圆心,为半径的圆与该直线的交点个数为()A.个B.个C.个D.个4. 如图,是等边三角形的外接圆,的半径为,则等边三角形的边长为()A. B. C. D.5. 某商品的进价为每件元.当售价为每件元时,每星期可卖出件,现需降价处理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件.现在要使利润为元,每件商品应降价()元.A. B. C. D.6. 如图,抛物线与轴交于点,顶点坐标为,与轴的交点在、之间(包含端点).有下列结论:①当时,;②;③;④.其中正确的有()A.个B.个C.个D.个7. 用配方法解方的配方过程正确是()A.将原方程配方B.将原方程配方C.将原方程配方D.将原方程配方8. 如图,将边长为的正六边形,在直线上由图的位置按顺时针方向向右作无滑动滚动,当第一次滚动到图位置时,顶点所经过的路径的长为()A. B.C. D.9. 已知二次函数的图象如图所示,对称轴为直线,则下列结论正确的是()A. B.方程的两根是,C. D.当时,随的增大而减小10. 如图,中,∠,,以为直径的圆交于点,则图中阴影部分的面积为()A. B. C. D.二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 方程:的解是:________.12. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留宽的门.已知计划中的材料可建墙体(不包括门)总长为,则能建成的饲养室面积最大为________.13. 有一扇形的铁皮,其半径为,圆心角为,若用此扇形铁皮围成一个圆锥形的教具(不计接缝),则此圆锥的高是________.14. 小华和小丽做游戏:抛掷两枚硬币,每人各抛掷次,小华在次抛掷中,成功率为,则她成功了________次,小丽成功率为,则她成功了________次.15. 钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过分钟旋转了________ 度.16. 某射手在一次射击中,射中环、环、环的概率分别是、、,那么,这个射手在这次射击中,射中环或环的概率为________;不够环的概率为________.17. 如图,将绕点逆时针旋转,得到′′,使′恰好经过点,连接′,则∠′的度数为________.18. 一个不透明的塑料袋中有个小球,其中个红球和个白球,它们除颜色外其余都相同,摸出一个球记下颜色后放回,再摸出一个小球,则两次摸出的小球恰好颜色不同的概率是________.19. 如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转,得到,那么点的坐标为________.20. 已知二次函数的图象如图所示,下列结论:①;②;③;④与都是负数,其中结论正确的序号是________.三、解答题(本题共计 9 小题,共计60分,)21.(12分) 解下列方程:(1)(3)22.(5分) (原创题)如图所示,轴,且,点坐标为,若:(1)写出,坐标;(2)你发现,,,坐标之间有何特征?23.(5分) 已知函数是二次函数.(1)求的值;(2)写出这个二次函数图象的对称轴和顶点坐标.24. (5分)如图已知直线的函数解析式为,点从点开始沿方向以个单位/秒的速度运动,点从点开始沿方向以个单位/秒的速度运动.如果、两点分别从点、点同时出发,经过多少秒后能使的面积为个平方单位?25. (5分)如图,是的直径,是的弦,直径过的中点.求证:.26.(7分) 对于抛物线.对于抛物线.它与轴交点的坐标为________,与轴交点的坐标为________,顶点坐标为________;利用以上信息解答下列问题:若关于的一元二次方程(为实数)在的范围内有解,则的取值范围是________.27. (7分)某童装店在服装销售中发现:进货价每件元,销售价每件元的某童装每天可售出件.为了迎接“六一儿童节”,童装店决定采取适当的促销措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价元,那么每天就可多售出件.(1)如果童装店想每天销售这种童装盈利元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?(2)每件童装降价多少元时,童装店每天可获得最大利润?最大利润是多少元?28. (7分)如图,是的内接三角形,∠是的一个外角,∠,∠的平分线分别交与点、.若连接,则与有怎样的位置关系?为什么?29.(7分) 某商场购进一种每件价格为元的新商品,在商场试销发现:销售单价(元/件)与每天销售量(件)之间满足如图所示的关系:(1)求出与之间的函数关系式;(2)如果商店销售这种商品,每天要获得元利润,那么每件商品的销售价应定为多少元?(3)写出每天的利润与销售单价之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?参考答案与试题解析【期末专题复习】人教版九年级数学上册期末综合检测试卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】一元二次方程的解【解析】把代入方程,得到的一元一次方程,解出的值即可.2.【答案】C【考点】二次函数图象上点的坐标特征【解析】根据图象开口向下可知,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于的一元二次方程即可.3.【答案】A【考点】直线与圆的位置关系【解析】根据直线和圆的位置关系与数量之间的联系进行判断.若,则直线与圆相交;若,则直线于圆相切;若,则直线与圆相离.4.【答案】C【考点】正多边形和圆【解析】首先连接,,过点作于,由是等边的外接圆,即可求得∠的度数,然后由三角函数的性质即可求得的长,又由垂径定理即可求得等边的边长.5.【答案】A【考点】一元二次方程的应用【解析】设售价为元时,每星期盈利为元,那么每件利润为,原来售价为每件元时,每星期可卖出件,所以现在可以卖出件,然后根据盈利为元即可列出方程解决问题.6.【答案】C【考点】二次函数图象与系数的关系【解析】①由抛物线的顶点坐标的横坐标可得出抛物线的对称轴为,结合抛物线的对称性及点的坐标,可得出点的坐标,由点的坐标即可断定①正确;②由抛物线的开口向下可得出,结合抛物线对称轴为,可得出,将代入中,结合即可得出②不正确;③由抛物线与轴的交点的范围可得出的取值范围,将代入抛物线解析式中,再结合即可得出的取值范围,从而断定③正确;④结合抛物线的顶点坐标的纵坐标为,结合的取值范围以及的取值范围即可得出的范围,从而断定④正确.综上所述,即可得出结论.7.【答案】D【考点】解一元二次方程-配方法【解析】配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为;等式两边同时加上一次项系数一半的平方.8.【答案】A【考点】弧长的计算旋转的性质【解析】连,,,作,利用正六边形的性质分别计算出,,而当第一次滚动到图位置时,顶点所经过的路径分别是以,,,,为圆心,以,,,,为半径,圆心角都为的五条弧,然后根据弧长公式进行计算即可.9.【答案】B【考点】二次函数图象与系数的关系抛物线与x轴的交点【解析】根据抛物线的开口方向,对称轴,与轴、轴的交点,逐一判断.10.【答案】C【考点】扇形面积的计算【解析】从图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】,【考点】解一元二次方程-因式分解法【解析】通过提取公因式对等式的左边进行因式分解,然后解方程.12.【答案】【考点】二次函数的应用【解析】设垂直于墙的材料长为米,则平行于墙的材料长为,表示出总面积即可求得面积的最值.13.【答案】【考点】圆锥的计算【解析】根据题目提供的数据求出扇形的弧长,根据扇形的弧长等于圆锥地面的周长求出圆锥的半径,然后在圆锥的高、母线和底面半径构造的直角三角形中求圆锥的高.14.【答案】,【考点】概率的意义【解析】用抛掷次数乘以成功率即可.15.【答案】【考点】生活中的旋转现象【解析】根据钟表面的知识,钟表上分针走过一个小格转过的度数是,走过分钟,乘以,计算即可得解.16.【答案】,【考点】概率公式【解析】“射中环或环”意思就是射中环和射中环的总和,由此可得到所求的概率;“不够环”意思就是射中、、、、、、环,我们可以从反面入手,求出射中、、环的概率,然后再用减去这个概率,得到所求的概率.17.【答案】【考点】旋转的性质【解析】先根据旋转的性质得到∠∠′′,于是得到∠′∠∠′′.18.【答案】【考点】列表法与树状图法【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球恰好颜色不同的情况,再利用概率公式即可求得答案.19.【答案】【考点】坐标与图形变化-旋转【解析】抓住旋转的三要素:旋转中心,旋转方向顺时针,旋转角度,通过画图得.20.【答案】②③【考点】二次函数图象与系数的关系【解析】根据函数的开口方向,对称轴以及与轴的交点即可确定,,的符号,从而判断①;根据对称轴的位置即可判断②;根据二次函数与轴的交点的坐标,即可确定的范围,确定与的大小,从而判断的符号;根据和时,点的坐标的符号判断④.三、解答题(本题共计 9 小题,共计60分)21.【答案】解:(1)因式分解,得,所以或,解得,或;(2)移项得,,变形得,,因式分解,得,解得,或;(3)移项得,,因式分解得,,解得或;(4)化简得:即解得或.【考点】解一元二次方程-因式分解法换元法解一元二次方程【解析】(1)方程左边可以利用十字相乘法进行因式分解,因此应用因式分解法解答.(2)先移项,然后把因式分解为,然后再提取公因式,因式分解即可.(3)先移项,然后用提取公因式法对左边进行因式分解即可.(4)把看作是一个整体,然后套用公式,进行进一步分解,故用因式分解法解答.22.【答案】解:(1)∵轴,点坐标为,点,∴点、的纵坐标分别是,,∵,∴,.(2)∵,横、纵坐标互为相反数,∴关于原点对称,同理,,关于原点对称.【考点】关于原点对称的点的坐标【解析】(1)根据平行于轴的直线的特点、以及得出,坐标;(2)对比的坐标得出他们之间的特征.23.【答案】解:(1)由是二次函数,得且.解得;(2)当时,二次函数为,,,,对称轴为,11试卷第!异常的公式结尾页,总14页12顶点坐标为.【考点】二次函数的定义二次函数的性质【解析】(1)根据二次函数的定义:是二次函数,可得答案;(2)根据的对称轴是,顶点坐标是,可得答案.24.【答案】解:∵直线的函数解析式为,∴点,点.设运动时间为,则,,根据题意,得:,解得:,,(舍去),.∴经过秒、秒或秒后能使的面积为个平方单位【考点】一元二次方程的应用【解析】根据直线的解析式可得出点、的坐标,设运动时间为,则,,根据三角形的面积即可得出关于的一元二次方程,解方程即可得出结论.25.【答案】证明:连接,∵,为中点,∴,∵过,∴弧弧弧,∵∠∠,∴弧弧,∴.【考点】垂径定理【解析】连接,根据等腰三角形性质得出,根据垂径定理求出弧弧弧,求出弧弧,即可得出答案.26.【答案】,,,【考点】抛物线与x轴的交点二次函数的图象二次函数的性质【解析】据正方形的性质可以确坐标,先出的解析式,再由的标就可求的析;如图、图作,于,根据定理就可以求出点的纵坐标从而点的坐,根据直角三性质就可以∠的度数,平行性就可以得∠的度数.当在轴的方时如同可以得结论.27.【答案】童装店应该降价元.(2)设每件童装降价元,可获利元,根据题意,得,化简得:∴答:每件童装降价元童装店可获得最大利润,最大利润是元【考点】一元二次方程的应用二次函数的应用【解析】(1)设每件童装降价元,利用童装平均每天售出的件数每件盈利每天销售这种童装利润列出方程解答即可;(2)设每件童装降价元,可获利元,利用上面的关系列出函数,利用配方法解决问题.28.【答案】解:垂直平分.理由如下:∵平分∠,平分∠,∴∠∠,∠∠,∴∠∠∠∠,即∠,∴为的直径,∵平分∠,∴∠∠,∴,13试卷第!异常的公式结尾页,总14页14∴垂直平分.【考点】圆周角定理圆心角、弧、弦的关系【解析】先利用角平分线定义和平角定义计算出∠,则利用圆周角定理的推论得到为的直径,由平分∠得∠∠,根据圆周角定理得,于是根据垂径定理的推论可得垂直平分.29.【答案】设与之间的函数关系式为,由所给函数图象可知:,解得:.故与的函数关系式为;根据题意,得:,整理,得:,解得:或,答:每件商品的销售价应定为元或元;∵,∴,∴当时,最大,∴售价定为元/件时,每天最大利润元.【考点】一元二次方程的应用二次函数的应用【解析】(1)待定系数法求解可得;(2)根据“每件利润销售量总利润”列出一元二次方程,解之可得;(3)根据以上相等关系列出函数解析式,配方成顶点式,利用二次函数性质求解可得.。
沪科版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知函数(为常数)图象经过点,,,则有( )A. B. C. D.2.下列函数中,y是x的反比例函数的为()A. y=2x+1B. y=C. y=D. 2y=x3.将抛物线y=3x2先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是()A. y=3(x+2)2+1B. y=3(x+2)2-1C. y=3(x-2)2+1D. y=3(x-2)2-14.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )A. B. C. D.5.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.6.如图,D、E分别是△ABC的边AB、AC上的点,,则△AED与△ABC的面积比是()A.1:2B.1:3C.1:4D.4:97.如图,在菱形ABCD中,DE⊥AB,cosA= ,AE=6,则tan∠BDE的值是( )A. B. C. D.8.若,则=()A. B. C. D.9.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.A. 1个B. 2个C. 3个D. 4个10.如图,在△ABC中,∠C=90°,∠A=30°,D为AB上一点,且AD:DB=1:3,DE⊥AC于点E,连接BE,则tan∠CBE的值等于()A. B. C. D.二、填空题(共10题;共30分)11.若点C是线段AB的黄金分割点,AB=20cm,则AC的长约是________.(精确到0.1cm)12.两个三角形相似,相似比是,如果小三角形的面积是9,那么大三角形的面积是________.13.已知三角形的一边长为x,这条边上的高为x的2倍少1,则三角形的面积y与x之间的关系为________.14.抛物线的部分图象如图所示,则当y<0时,x的取值范围是________.15.如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y2= 上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1=________.16.如图,线段AD与BC相交于点O,AB∥CD,若AB:CD=2:3,△ABO的面积是2,则△CDO的面积等于________17.如图,在菱形纸片ABCD中,,∠,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点,分别在边,上,则∠的值为________ .18.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B(0,),C(4,0),其对称轴与x轴交于点D,若P为y轴上的一个动点,连接PD,则的最小值为________.19.在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y= (m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为________.20.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知=,若DF =10,则DE=________.三、解答题(共7题;共60分)21.计算:°22.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,每个小正方形的边长都为1.(1)在图上标出位似中心D的位置,并写出该位似中心D的坐标是;(2)求△ABC与△A′B′C′的面积比.23.如图,一艘海轮位于灯塔P的南偏东60º方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45º方向上的B处.(参考数据)(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔190海里的点O处.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险,并说明理由.24.如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D 处的仰角为°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.(参考数据:,.结果精确到0.1米)25.如图,已知D、E分别是△ABC的边AC、AB上的点,若∠A=35°,∠C=85°,∠ADE=60°.(1)请说明:△ADE∽△ABC;(2)若AD=8,AE=6,BE=10,求AC的长.26.小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?27.如图,在平面直角坐标系中,△CDE的顶点C点坐标为C(1,﹣2),点D的横坐标为,将△CDE 绕点C旋转到△CBO,点D的对应点B在x轴的另一个交点为点A.(1)图中,∠OCE等于多少;(2)求抛物线的解析式;(3)抛物线上是否存在点P,使S△PAE=S△CDE?若存在,直接写出点P的坐标;若不存在,请说明理由.答案解析部分一、单选题1.【答案】B【考点】二次函数图象上点的坐标特征【解析】【解答】当x=0时,当x=3时, ;当x=6时,∵k<k+9<k+72,故答案为:B.【分析】分别将x=0,x=3,x=6代入函数y=3x2−6x+k,算出对应的函数值,即可比较大小。
九年级上册数学 期末试卷综合测试卷(word 含答案)一、选择题1.方程 x 2=4的解是( ) A .x 1=x 2=2 B .x 1=x 2=-2 C .x 1=2,x 2=-2 D .x 1=4,x 2=-4 2.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)3.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .194.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤5.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=6.一元二次方程x 2=9的根是( ) A .3 B .±3C .9D .±97.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100° 10.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定 11.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( )A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣112.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C .1010D .310二、填空题13.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.14.已知tan (α+15°)3α的度数为______°. 15.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .16.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 17.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.18.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;19..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.20.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ . 21.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.22.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.23.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.24.如图,⊙O的内接四边形ABCD中,∠A=110°,则∠BOD等于________°.三、解答题25.某校九年级(2)班A、B、C、D四位同学参加了校篮球队选拔.(1)若从这四人中随杋选取一人,恰好选中B参加校篮球队的概率是______;(2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中B、C两位同学参加校篮球队的概率.26.如图,分别以△ABC的边AC和BC为腰向外作等腰直角△DAC和等腰直角△EBC,连接DE.(1)求证:△DAC∽△EBC;(2)求△ABC与△DEC的面积比.27.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?28.已知二次函数y=x2+bx+c的函数值y与自变量x之间的对应数据如表:x…﹣101234…y…1052125…(1)求b、c的值;(2)当x取何值时,该二次函数有最小值,最小值是多少?29.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?30.一只不透明的袋子中装有标号分别为1、2、3、4、5的5个小球,这些球除标号外都相同.(1)从袋中任意摸出一个球,摸到标号为偶数的概率是;(2)先从袋中任意摸出一个球后不放回,将球上的标号作为十位上的数字,再从袋中任意摸出一个球,将球上的标号作为个位上的数字,请用画树状图或列表的方法求组成的两位数是奇数的概率.31.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次第二次第三次第四次甲9887乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.32.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=12AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当35ANAB=且67AMAC=时,求CP的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax2+c=0(a≠0)的方程可变形为2=cxa-,当a、c异号时,可利用直接开平方法求解.2.D解析:D【解析】 【分析】由二次函数的顶点式,即可得出顶点坐标. 【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ), ∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1). 故选:D . 【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).3.B解析:B 【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B . 考点:平行线分线段成比例.4.B解析:B 【解析】 【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可. 【详解】解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.5.D解析:D 【解析】 【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.6.B解析:B 【解析】 【分析】两边直接开平方得:3x =±,进而可得答案. 【详解】 解:29x =,两边直接开平方得:3x =±, 则13x =,23x =-. 故选:B . 【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解.7.B解析:B 【解析】 【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切. 【详解】∵圆心到直线的距离5cm=5cm , ∴直线和圆相切, 故选B . 【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.8.D解析:D 【解析】 【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A ,根据圆周角定理计算即可. 【详解】∵BC 是⊙O 的切线, ∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A.考点:圆周角定理.10.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.11.C解析:C【解析】【分析】根据二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,可知二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点两种情况,然后分别计算出c 的值即可解答本题. 【详解】解:∵二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,∴二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点,当二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点时, (﹣2)2﹣4×1×c =0,得c =1;当二次函数y =x 2﹣2x +c 的图象与轴有两个公共点,其中一个为原点时, 则c =0,y =x 2﹣2x =x (x ﹣2),与x 轴两个交点,坐标分别为(0,0),(2,0); 由上可得,c 的值是1或0, 故选:C . 【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.12.C解析:C 【解析】 【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案. 【详解】 tan A =BCAC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB 故选:C . 【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.二、填空题13.115° 【解析】 【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE 即可. 【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.14.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan (α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键. 15.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:53π 【解析】【分析】 直接利用弧长公式180n R l π=进行计算. 【详解】 解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 16.3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.18.-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围. 【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),解析:-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围.【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0), ,开口向上,∵a=10∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.19.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差解析:甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.20.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90= 解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.21.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 22.【解析】【分析】作OH⊥AB,延长OH 交于E ,反向延长OH 交CD 于G ,交于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB∥CD,所以四边形ABCD 是平行解析:【解析】【分析】作OH ⊥AB ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB ∥CD ,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH ⊥AB ,垂足为H ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,则OA=OB=OC=OD=OE=OF=4,∵弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心, ∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG , 又∵OB=OD ,∴Rt △OHB ≌Rt △OGD ,∴HB=GD ,同理,可得AH=CG= HB=GD∴AB=CD又∵AB ∥CD∴四边形ABCD 是平行四边形,在Rt △OHA 中,由勾股定理得: 22224223OA OH -=-=∴AB=43∴四边形ABCD 的面积=AB ×GH=434=163 故答案为:3.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形. 23.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.24.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题25.(1)14;(2)P (BC 两位同学参加篮球队)16= 【解析】【分析】(1)根据概率公式P m n=(n 次试验中,事件A 出现m 次)计算即可 (2)用列表法求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)()1P B 4=恰好选中B参加校篮球队的概率是1 4 .(2)列表格如下:∴P(BC两位同学参加篮球队)21 126 ==【点睛】本题考查的是用列表法或树状图法求事件的概率问题,通过题目找出全部情况的总数与符合条件的情况数目与熟记概率公式是解题的关键.26.(1)见解析;(2)1 2【解析】【分析】(1)利用等腰直角三角形的性质证明△DAC∽△EBC;(2)依据△DAC∽△EBC所得条件,证明△ABC与△DEC相似,通过面积比等于相似比的平方得到结果.【详解】(1)证明:∵△EBC是等腰直角三角形∴BC=BE,∠EBC=90°∴∠BEC=∠BCE=45°.同理∠DAC=90°,∠ADC=∠ACD=45°∴∠EBC=∠DAC=90°,∠BCE=∠ACD=45°.∴△DAC∽△EBC.(2)解:∵在Rt△ACD中, AC2+AD2=CD2,∴2AC2=CD2∴22 ACCD=,∵△DAC∽△EBC∴ACBC=DCEC,∴EC BC =DC AC, ∵∠BCE =∠ACD ∴∠BCE -∠ACE =∠ACD -∠ACE ,即∠BCA =∠ECD ,∵在△DEC 和△ABC 中,EC BC =DC AC,∠BCA =∠ECD , ∴△DEC ∽△ABC , ∴S △ABC :S △DEC =2DC AC ⎛⎫ ⎪⎝⎭=12. 【点睛】本题考查了相似三角形的判定和性质,以及相似三角形的面积比等于相似比的平方,解题的关键在于利用(1)中的相似推导出第二对相似三角形.27.(1)该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元【解析】【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意列出关于x 的一元二次方程,求解方程即可;(2)设售价应降低y 元,则每天售出(200+50y )千克,根据题意列出关于y 的一元二次方程,求解方程即可.【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得2100(1)196x +=解得10.440%x ==,2 2.4x =-(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y 元,则每天可售出(20050)y +千克根据题意,得(2012)(20050)1750y y --+=整理得,2430y y -+=,解得11y =,23y =∵要减少库存∴11y =不合题意,舍去,∴3y =答:售价应降低3元.【点睛】本题考查一元二次方程与销售的实际应用,明确售价、成本、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键.28.(1)b=-4,c=5;(2)当x =2时,二次函数有最小值为1【解析】【分析】(1)利用待定系数法求解即可;(2)根据图象上点的坐标,可得出图象的对称轴及顶点坐标,即可得到答案.【详解】(1)把(0,5),(1,2)代入y =x 2+bx +c 得:512c b c =⎧⎨++=⎩, 解得:45b c =-⎧⎨=⎩, ∴4b =-,5c =;(2)由表格中数据可得:∵1x =、3x =时的函数值相等,都是2, ∴此函数图象的对称轴为直线3122x +==, ∴当x =2时,二次函数有最小值为1.【点睛】 本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.29.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b+⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.30.(1)25;(2)组成的两位数是奇数的概率为35.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有20种等可能的结果数,找出组成的两位数是奇数的结果数,然后根据概率公式计算.【详解】解:(1)从袋中任意摸出一个球,摸到标号为偶数的概率25 =;故答案为:25;(2)画树状图为:共有20种等可能的结果数,其中组成的两位数是奇数的结果数为12,所以组成的两位数是奇数的概率123 205 ==.【点睛】本题主要考查了列表法与树状图法求概率,利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B 的概率.31.(1)甲的平均成绩是8,乙的平均成绩是8,(2)推荐甲参加省比赛更合适.理由见解析.【解析】【分析】(1)根据平均数的计算公式即可得甲、乙两名运动员的平均成绩;(2)根据方差公式即可求出甲、乙两名运动员的方差,进而判断出荐谁参加省比赛更合适.【详解】(1)甲的平均成绩是:(9+8+8+7)÷4=8,乙的平均成绩是:(10+6+7+9)÷4=8,(2)甲的方差是:()()()()22229-8+8-8+8-8+7-148⎡⎤⨯⎣⎦=12, 乙的方差是:()()()()2222-8+6-8+7-8+9-814⎡⎤⨯⎣⎦10=52. 所以推荐甲参加省比赛更合适.理由如下:两人的平均成绩相等,说明实力相当;但是甲的四次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加省比赛更合适.【点睛】本题考查了方差、算术平均数,解决本题的关键是掌握方差、算术平均数的计算公式.32.(1)52;(2)①菱形,理由见解析;②AM=209,MN ;(3)1. 【解析】【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA ′交MN 于O .设AM =MA ′=x ,由MA ′∥AB ,可得'MA AB =CM CA ,由此构建方程求出x ,解直角三角形求出OM 即可解决问题.(3)如图3中,作NH ⊥BC 于H .想办法求出NH ,CM ,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt △ABC 中,∵∠C =90°,AC =4,BC =3,∴AB 5==,∵∠A =∠A ,∠ANM =∠C =90°,∴△ANM ∽△ACB , ∴AN AC =AM AB, ∵AN =12AC ∴12=5AM , ∴AM =52.(2)①如图2中,∵NA ′∥AC ,∴∠AMN =∠MNA ′,由翻折可知:MA =MA ′,∠AMN =∠NMA ′,∴∠MNA ′=∠A ′MN ,∴A ′N =A ′M ,∴AM =A ′N ,∵AM ∥A ′N ,∴四边形AMA ′N 是平行四边形,∵MA =MA ′,∴四边形AMA ′N 是菱形.②连接AA ′交MN 于O .设AM =MA ′=x ,∵MA ′∥AB ,∴'ABC MA C ∽∴'MA AB =CM CA , ∴5x =44x -, 解得x =209, ∴AM =209 ∴CM =169, ∴CA 22MA CM -22201699⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=43, ∴AA 22'AC CA +22443⎛⎫+ ⎪⎝⎭4103 ∵四边形AMA ′N 是菱形,∴AA ′⊥MN ,OM =ON ,OA =OA 210,∴OM=22AM AO-=222021093⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎝⎭=2109,∴MN=2OM=410.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴△ABC∽△NBH∴NHAC=BNAB=3BH∴NH4=25=3BH∴NH=85,BH=65,∴CH=BC﹣BH=3﹣65=95,∴AM=67AC=247,∴CM=AC﹣AM=4﹣247=47,∵CM∥NH,∴△CPM∽△HPN∴PCPH=CMNH,∴PC9PC5+=4785,∴PC=1.【点睛】本题考查了相似三角形的综合应用,涉及相似三角形的判定与性质、菱形的判定、勾股定理等知识点,综合性较强,难度较大,解题的关键是综合运用上述知识点.。
九年级上册数学 期末试卷综合测试卷(word 含答案)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .247 2.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠3.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º4.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③ 5.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠. 6.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π 7.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .238.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45°9.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .10.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .43B .23C .33D .32 11.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定 12.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的 二、填空题13.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________.14.抛物线21(5)33y x =--+的顶点坐标是_______.15.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)16.方程22x x =的根是________.17.方程290x 的解为________.18.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.19.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB =10米,则该圆锥的侧面积是_____平方米(结果保留π).20.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.21.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S 甲2=6.5分2,乙同学成绩的方差S 乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).22.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)23.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.24.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题25.已知二次函数22y =x mx --.(1)求证:不论m 取何值,该函数图像与x 轴一定有两个交点;(2)若该函数图像与x 轴的两个交点为A 、B ,与y 轴交于点C ,且点A 坐标(2,0),求△ABC 面积.26.某商店销售一种商品,经市场调查发现:该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x 、月销售量y 、月销售利润w (元)的部分对应值如下表: 售价x (元/件)40 45 月销售量y (件)300 250 月销售利润w (元) 3000 3750 注:月销售利润=月销售量×(售价-进价)(1)①求y 关于x 的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润; (2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m 的值为 .27.(1)x 2+2x ﹣3=0(2)(x ﹣1)2=3(x ﹣1)28.计算:(1)()28233+-- (2)()103127+3.14+2π-⎛⎫- ⎪⎝⎭ 29.如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm ,开始的时候BD=1cm ,现在三角板以2cm/s 的速度向右移动.(1)当点B 于点O 重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B 点和E 点重合时,AC 与半圆相切于点F ,连接EF ,如图2所示.①求证:EF 平分∠AEC ;②求EF 的长.30.解方程:(1)x 2-3x+1=0;(2)x (x+3)-(2x+6)=0.31.如图,已知⊙O 的直径AC 与弦BD 相交于点F ,点E 是DB 延长线上的一点,∠EAB=∠ADB .(1)求证:AE 是⊙O 的切线;(2)已知点B 是EF 的中点,求证:△EAF ∽△CBA ;(3)已知AF=4,CF=2,在(2)的条件下,求AE 的长.32.某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单x ),若10月份该工厂的总收价的增长率的2倍,设B产品生产数量的增长率为x(0入增加了4.4x,求x的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DF FC CE EF ==, 即2535x x y y-==-, 解得:x =218, 即BD =218, 故选:C .【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.D解析:D【解析】【分析】由函数是二次函数得到a-1≠0即可解题.【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0,解得:a≠1,故选你D.【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.3.B解析:B【解析】【分析】根据垂径定理可得AB AC =,根据圆周角定理可得∠AOB=2∠ADC ,进而可得答案.【详解】解:∵OA 是⊙O 的半径,弦BC ⊥OA ,∴AB AC =,∴∠ADC=12∠AOB=29°. 故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.C解析:C【解析】【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断.【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2b a ->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大;故①正确;根据二次函数的系数,可得图像大致如下,由于对称轴x=2b a-的值未知, ∴当x=1时,y=a+b+c 的值无法判断,故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax 2+bx +c =-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.5.A解析:A【解析】【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.6.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.7.B解析:B【解析】【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得2EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案.【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,∴△CEF ∽△AEB ,设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =,∴2EF CF BE AB ==,设EF =3x ,则2BE x =, ∴()23BF CF DF x ===+,∴()()2223226CD DF x x ==+=+,()()233223DE DF EF x x x =+=++=+, ∴()()222232622EG DG DE x x ===+=+, ∴()()226262CG CD DG x x x =-=+-+=, ∴()62tan 312x EG ACD CGx +∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.8.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O 的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB ,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°. 故选:C .【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.9.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.10.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴13224ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.11.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】∵⊙O 的半径为5,圆心O 到直线的距离为3,∴直线l 与⊙O 的位置关系是相交. 故选A .【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.12.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.二、填空题13.2【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x -5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x 1,x 2是关于 x 的方程x 2+3x -5=0的两个根,根据根与系数的关系,得,x 1+x 2=-3,x 1x 2=-5,则 x 1+x 2-x 1x 2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x 1+x 2=-3,x 1x 2=-5是解题的关键.14.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 15.∠B=∠1或【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可. 【详解】此题答案不唯解析:∠B=∠1或AE AD AC AB=【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或AD AE AB AC=.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵AD AEAB AC=,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或AD AE AB AC=【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 16.x1=0,x2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x-2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题考查了一解析:x 1=0,x 2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.17.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这解析:3x =±【解析】【分析】这个式子先移项,变成x 2=9,从而把问题转化为求9的平方根.【详解】解:移项得x 2=9,解得x =±3.故答案为3x =±.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.18.120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.19.【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的解析:60【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=12lr=12×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=12lr是解题的关键.20.1 【解析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.21.乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2 >S 乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【解析:乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2>S乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.23.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.24.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题25.(1)见解析;(2)10【解析】【分析】(1)令y=0得到关于x的二元一次方程,然后证明△=b2−4ac>0即可;(2)令y=0求出抛物线与x轴的交点坐标,根据坐标的特点即可解题.【详解】(1)因为224()4(4)b ac m -=--⨯-=216m +,且20m ≥,所以2160m +>. 所以该函数的图像与x 轴一定有两个交点.(2)将A (-1,0)代入函数关系式,得,2(1)40m -+-=,解得m=3,求得点B 、C 坐标分别为(4,0)、(0,-4).所以△ABC 面积=[4-(-1)]×4×0.5=10【点睛】本题主要考查的是抛物线与x 轴的交点、二次函数的性质,将函数问题转化为方程问题是解答问题(1)的关键,求出抛物线与x 轴的交点坐标是解答问题(2)的关键.26.(1)①y =-10x +700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.【解析】【分析】(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解; ②设该商品的售价是x 元,则月销售利润w= y (x -30),求解即可;(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可.【详解】(1)①解:设y =kx +b (k ,b 为常数,k ≠0)根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩∴y =-10x +700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x 元/件时,月销售利润为w 元根据题意得:w =y (x -30)=(x -30)(-10x +700)=-10x 2+1000 x -21000=-10(x -50)2+4000∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元. (2)由题意得:w=[x-(m+30)](-10x+700)=-10x 2+(1000+10m )x-21000-700m对称轴为x=50+2m ∵m >0∴50+2m >50 ∵商家规定该运动服售价不得超过40元/件∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元∴-10×402+(1000+10m )×40-21000-700m=2400解得:m=2∴m的值为2.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.27.(1)x=﹣3或x=1;(2)x=1或x=4.【解析】【分析】(1)用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,∴x=﹣3或x=1;(2)∵(x﹣1)2=3(x﹣1),∴(x﹣1)[(x﹣1)﹣3]=0,∴(x﹣1)(x﹣4)=0,∴x=1或x=4;【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.28.(1;(2)6【解析】【分析】(1)将原式三项化简,合并同类二次根式后即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项利用零指数公式化简,第三项利用负指数公式化简,合并后即可得到结果;【详解】解:(1)原式=,(2)原式=3+1+2=6【点睛】此题考查了实数的混合运算,涉及的知识有:算术平方根和立方根,绝对值的性质,0指数和负整指数幂,熟练掌握公式及法则是解本题的关键.29.(1)2s(2)①证明见解析,②33【解析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)①连接OF,由AC与半圆相切于点F,易得OF⊥AC,然后由∠ACB=90°,易得OF∥CE,继而证得EF平分∠AEC;②由△AFO是直角三角形,∠BAC=30°,OF=OD=3cm,可求得AF 的长,由EF 平分∠AEC ,易证得△AFE 是等腰三角形,且AF=EF ,则可求得答案. 试题解析:(1)∵当点B 于点O 重合的时候,BO=OD+BD=4cm ,∴t=42=2(s);∴三角板运动的时间为:2s ;(2)①证明:连接O 与切点F ,则OF ⊥AC ,∵∠ACE=90°,∴EC ⊥AC ,∴OF ∥CE ,∴∠OFE=∠CEF ,∵OF=OE ,∴∠OFE=∠OEF ,∴∠OEF=∠CEF ,即EF 平分∠AEC ;②由①知:OF ⊥AC ,∴△AFO 是直角三角形,∵∠BAC=30°,OF=OD=3cm ,∴tan30°=3AF ,∴3,由①知:EF 平分∠AEC ,∴∠AEF=∠CEF=12∠AEC=30°, ∴∠AEF=∠EAF ,∴△AFE 是等腰三角形,且AF=EF ,∴330.(1)x 1=352+,x 2=352-;(2)x 1=-3,x 2=2. 【解析】试题分析:(1)直接利用公式法求出x 的值即可;(2)先把原方程进行因式分解,再求出x 的值即可.试题解析:(1)∵一元二次方程x 2-3x+1=0中,a=1,b=-3,c=1,∴△=b 2-4ac=(-3)2-4×1×1=5.∴24(3)535b b ac -±---±±==.即x 1=32+,x 2=32; (2)∵因式分解得 (x+3)(x-2)=0,∴x+3=0或x-2=0,解得 x 1=-3,x 2=2.考点:1.解一元二次方程-因式分解法;2.解一元二次方程-公式法.31.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)连接CD ,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC ,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线;(2)连接BC ,根据直径的性质得出∠ABC=90°,根据B 是EF 的中点得出AB=EF ,即∠BAC=∠AFE ,则得出三角形相似;(3)根据三角形相似得出AB AC AF EF =,根据AF 和CF 的长度得出AC 的长度,然后根据EF=2AB 代入AB AC AF EF=求出AB 和EF 的长度,最后根据Rt △AEF 的勾股定理求出AE 的长度.【详解】解:(1)如答图1,连接CD ,∵AC 是⊙O 的直径,∴∠ADC=90°∴∠ADB+∠EDC=90°∵∠BAC=∠EDC ,∠EAB=∠ADB ,∴∠BAC=∠EAB+∠BAC=90°∴EA 是⊙O 的切线;(2)如答图2,连接BC ,∵AC 是⊙O 的直径,∴∠ABC=90°. ∴∠CBA=∠ABC=90°∵B 是EF 的中点,∴在Rt △EAF 中,AB=BF∴∠BAC=∠AFE∴△EAF ∽△CBA . (3)∵△EAF ∽△CBA ,∴AB AC AF EF= ∵AF=4,CF=2, ∴AC=6,EF=2AB . ∴642AB AB =,解得∴∴【点睛】本题考查切线的判定与性质;三角形相似的判定与性质.32.5%【解析】【分析】根据题意,列出方程即可求出x 的值.【详解】根据题意,得2(12)200(12)(14)100(1)(22001100)(1 4.4)x x x x x +⨯+++⨯+=⨯+⨯+ 整理,得2200x x -=解这个方程,得15%x =,20x =(不合题意,舍去)所以x 的值是5%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.。
数学九年级上册 期末试卷综合测试卷(word 含答案)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .33.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .24 4.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤5.如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点D E F 、、.已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.26.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数7.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50°8.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个9.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( )①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0). A .1B .2C .3D .410.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3411.抛物线y =(x ﹣2)2+3的顶点坐标是( ) A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)12.用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x -=B .2(1)6x +=C .2(1)9x +=D .2(1)9x -=二、填空题13.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.14.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.15.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.16.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .17.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 18.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.19.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.20.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.21.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.22.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.23.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.24.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.三、解答题25.如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.(1)求证:BDE CAD ∆∆∽;(2)若13AB =,10BC =,求线段DE 的长.26.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB . (1)证明:△ADC ∽△ACB ;(2)若AD =2,BD =6,求边AC 的长.27.如图,抛物线y=ax 2+bx+4(a ≠0)与x 轴交于点B (-3 ,0) 和C (4 ,0)与y 轴交于点A . (1) a = ,b = ;(2) 点M 从点A 出发以每秒1个单位长度的速度沿AB 向B 运动,同时,点N 从点B 出发以每秒1个单位长度的速度沿BC 向C 运动,当点M 到达B 点时,两点停止运动.t 为何值时,以B 、M 、N 为顶点的三角形是等腰三角形?(3) 点P 是第一象限抛物线上的一点,若BP 恰好平分∠ABC ,请直接写出此时点P 的坐标.28.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队?29.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.30.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 . 31.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值. 32.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD 为矩形, ∴AB=CD=3,∠BCD=90°, ∴∠PCD+∠PCB=90°, ∵PBC PCD ∠=∠, ∴∠PBC+∠PCB=90°, ∴∠BPC=90°,∴点P 在以BC 为直径的圆⊙O 上,在Rt △OCD 中,OC=118422BC ,CD=3, 由勾股定理得,OD=5,∵PD ≥OD OP ,∴当P ,D,O 三点共线时,PD 最小, ∴PD 的最小值为OD-OP=5-4=1.故选:B. 【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P 点的运动轨迹是解答此题的关键.3.D解析:D 【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.4.B解析:B 【解析】 【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可. 【详解】解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.5.B解析:B 【解析】 【分析】根据平行线分线段成比例定理即可解决问题. 【详解】 解:////AD BE CF ,AB DEBC EF ∴=,即1 1.23EF =, 3.6EF ∴=, 3.6 1.2 4.8DF EF DE ∴++===,故选B . 【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.6.A解析:A 【解析】 【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差. 【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差 故选A 考点:方差7.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴12ABC AOC4.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.9.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x=221-⨯=﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.10.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.11.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.12.A解析:A【解析】【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2−2x=5,配方得:x2−2x+1=6,即(x−1)2=6.故选:A.【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.二、填空题13.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.14.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数 解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4……2020中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22 【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.15.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形, ∴它的内切圆半径5121322r +-==, 16.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴圆锥的底面半径为cm ,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,6=cm ,∴底面周长为2π×6=12πcm ,即这张扇形纸板的弧长是12πcm ,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.17.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 18.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a 的值,再利用tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF ,∴,即解得a=(-舍去)∴【解析】【分析】设BC=EC=a,根据相似三角形得到222a a =+,求出a 的值,再利用tan DAE ∠=tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF , ∴AB EC BF CF =,即222a a =+解得1(-1舍去)∴tan DAE ∠=tanF=2EC a CF =. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义. 19.2【解析】【分析】首先根据平均数确定x 的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],计算方差即可.【详解】∵组数据的平均数是10,∴15(9+10+12+x+8)=10,解得:x=11,∴S2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],=15×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.21.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2).解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2). 22.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====,∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.23.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB ,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A 为上面小正方形边的中点,点B 为小正方形与圆的交点,D 为小正方形和大正方形重合边的中点, 由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形,∵⊙O 半径为 52,根据垂径定理得:∴OD=CD=522=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()()22215=522x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16⨯.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.24.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x =3(x+)2﹣,∴函数的对称轴为x =﹣,∴当﹣1≤x≤0时,函数有最解析:﹣13≤y ≤1 【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y =3x 2+2x =3(x +13)2﹣13, ∴函数的对称轴为x =﹣13, ∴当﹣1≤x ≤0时,函数有最小值﹣13,当x =﹣1时,有最大值1, ∴y 的取值范围是﹣13≤y ≤1, 故答案为﹣13≤y ≤1. 【点睛】 本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.三、解答题25.(1)见解析;(2)6013DE =. 【解析】【分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明; 对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC =,∴B C ∠=∠.又∵AD 为BC 边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得12AD ==. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD =, 即51312DE =,∴6013 DE=.【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理. 26.(1)见解析; (2)4.【解析】【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)利用相似三角形的对应边对应成比例列式求解即可.【详解】(1)证明:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB.(2)解:∵△ADC∽△ACB,∴ACAB =ADAC,AB=AD+DB=2+6=8∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.27.(1)13-,13;(2)52530,,21111t=;(3)511(,)24【解析】【分析】(1)直接利用待定系数法求二次函数解析式得出即可;(2)分三种情况:①当BM=BN时,即5-t=t,②当BM=NM=5-t时,过点M作ME⊥OB,因为AO⊥BO,所以ME∥AO,可得:BM BEBA BO=即可解答;③当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=即可解答;(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=32,设出点P坐标,易证△BGO∽△BPD,所以BO GOBD PD=,即可解答.【详解】解:解:(1)∵抛物线过点B (-3 ,0) 和C (4 ,0),∴9340 16440a ba b-+⎧⎨++⎩==,解得:1313ab⎧=-⎪⎪⎨⎪=⎪⎩;(2)∵B (-3 ,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,在Rt△ABO中,由勾股定理得:AB=5,t秒时,AM=t,BN=t,BM=AB-AM=5-t,①如图:当BM=BN时,即5-t=t,解得:t=5 2 ;,②如图,当BM=NM=5-t时,过点M作ME⊥OB,因为BN=t,由三线合一得:BE=12BN=12t,又因为AO⊥BO,所以ME∥AO,所以BM BEBA BO=,即15-253tt=,解得:t=30 11;③如图:当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=,即5t253t-=,解得:t=2511.(3)设BP 交y 轴于点G ,过点G 作GH ⊥AB 于点H ,因为BP 恰好平分∠ABC ,所以OG=GH ,BH=BO=3,所以AH=2,AG=4-OG ,在Rt △AHG 中,由勾股定理得:OG=32,设P (m ,-13m 2+13m+4),因为GO ∥PD ,∴△BGO ∽△BPD ,∴BO GO BD PD= ,即2332113+433m m m =-++ ,解得:m 1=52,m 2=-3(点P 在第一象限,所以不符合题意,舍去),m 1=52时,-13m 2+13m+4=114 故点P 的坐标为511(,)24 【点睛】本题考查用待定系数法求二次函数解析式,还考查了等腰三角形的判定与性质、相似三角形的性质和判定.28.(1)9,1;(2)乙【解析】【分析】(1)根据平均数与方差的定义即可求解;(2)根据方差的性质即可判断乙队整齐.【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差∴成绩较为整齐的是乙队.【点睛】 此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质.29.(1)3秒后,PQ 的长度等于(2)PQB ∆的面积不能等于27cm .【解析】【分析】(1)由题意根据PQ=BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可;【详解】解:(1)设x 秒后,PQ =5BP x =-,2BQ x =,∵222BP BQ PQ +=∴()()(22252x x -+= 解得:13x =,21x =-(舍去)∴3秒后,PQ 的长度等于;(2)设t 秒后,5PB t =-,2QB t =,又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=, ∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键.30.(1)见解析;(2)4.【解析】【分析】(1)先证∠AGD=∠B ,再根据∠ADG=∠BEF=90°,即可证明;(2)由(1)得ADG ∆∽FEB ∆,则△ADG 面积与△BEF 面积的比=2AD EF ⎛⎫ ⎪⎝⎭=4. 【详解】(1)证:在矩形DEFG 中,GDE FED ∠=∠=90°∴GDA FEB ∠=∠=90°∵C GDA ∠=∠=90°∴A AGD A B ∠+∠=∠+∠=90°∴AGD B ∠=∠在ADG ∆和FEB ∆中∵AGD B ∠=∠,GDA FEB ∠=∠=90°∴ADG ∆∽FEB ∆(2)解:∵四边形DEFG 为矩形,∴GD=EF ,∵△ADG ∽△FEB , ∴224ADG BEF S AD AD S EF GD ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故答案为4.【点睛】本题考查了相似三角形的判定与性质,根据题意证得△ADG ∽△FEB 是解答本题的关键.31.(1)174m >-;(2)4m =- 【解析】【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解.【详解】 (1)∵方程有两个不相等的实数根,∴()()22=2144=417m m m ∆+--+>0 解得:174m >-∴当174m >-时,方程有两个不相等的实数根; (2)由题意得:2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++= 解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线∴122 1 0x x m +=-->,即12m <-∴4m =-【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键.32.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时, ∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°,综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC ∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD , 根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD 为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD 的垂直平分线交MN 于点O以O 为圆心OB 为半径作圆,交AD 于点Q ,圆O 即为△BCD 的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC )=120° ∴∠BQA=∠CQA=∠BQC如图③,点Q 即为所求. (4)③⑤.①如下图所示,在RtABC 中,∠ABC=90°,O 为△ABC 的内心假设∠BAC=60°,∠ACB=30°∵点O 是△ABC 的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15° ∴∠AOC=180°-∠CAO -∠ACO=135°,∠AOB=180°-∠BAO -∠ABO=105°,∠BOC=180°-∠CBO -∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q .如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠, 此时便能保证B 、'Q 、M 、D 四点共线,进而使'''Q A Q B Q C ++最小.故答案为:③⑤.【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.。
九年级数学(上)综合水平测试(A )
一、选择题(每小题2分,共16分)
1.对于任何实数a 、b ,下列结论正确的是( )
A .a 2的算术平方根是a
B a =-
C 2=
D a =
2.关于x 的方程ax 2-3x +2=0是一元二次方程,则( ) A .a >0 B .a ≠0 C .a =1 D .a ≥0 3.如图1,把一个量角器放置在∠BAC 的上面,请你根据量角器的读数判断∠BAC 的度数是( ) A .30° B .60° C .15° D .20°
4.4张扑克牌如图2(1)所示放在桌面上,小敏把其中一张旋转180°后得到如图2(2)所示,那么她所旋转的牌从左数起是( ) A .第一张 B .第二张 C .第三张 D .第四张 5.一元二次方程x 2-x +2=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .无实数根 D .无法确定
6.已知两圆相交,其圆心距为6,大圆半径为8,则小圆半径r 的取值范围是( ) A .r >2 B .2<r <14 C .1<r <8 D .2<r <8 7.在两个口袋里分别放黑白球各一粒(它们仅颜色不同),在每一个口袋里摸一粒,记下颜色后,放到第2个口袋里,再在第2个口袋里摸一粒,两次摸到颜色相同的频率估计是( ) A .
1
3
B .
14
C .
12
D .
23
8.如图3,在△ABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是( ) A .1
B .
54
C .
127
D .
94
二、填空题(每小题3分,共24分) 9.当x 时,式子
有意义.
10.当m = 时,最简二次根式
11.如图4,CD 所在的直线垂直平分线段AB ,利用这样的工具,最少使用 次就可以找到圆形工件的圆心.
12.口袋中放有2只红球和5只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,则取到黄球的概率是 .
13.旋转是一种常见的全等变换,如图5中△ABC 绕点O 旋转后得到△A ′B ′C ′,我们称点A 和点A ′、点B 和点B ′、点C 和点C ′分别是对应点,把点O 称为旋转中心.观察图形,想一想,旋转变换具有哪些特点呢?请写出其中的一个特点: . 14.在边长为3cm 、4cm 、5cm 的三角形白铁皮上剪下一个最大的圆,此圆的半
径为 cm .
15.等腰△ABC 中,BC =8,AB 、AC 的长是关于x 的方程x 2-10x +m =0的两根,则m 的值是 .
16.如图6,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依ABCDEFCGA 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断地爬行,直到行走2 006πcm 后才停下来.请问这只蚂蚁停在哪一个点?答:停在 点.
三、解答题(本大题共60分)
17.(本题8分)有一道题“先化简,再求值:22
2
41344
x x x x x -⎛⎫+÷
⎪+--⎝⎭,其中3x =-.”小玲做题时把“3x =-”错抄成了“3x =”,但她的计算结果也是正确的,请你解释这是怎么回事? 18.(本题8分)如图7,请在下列网格图中画出所给图形绕点O 顺时针依次旋转90°、180°、270°后所成的图形.(注意:有阴影部分图形旋转后的对应图形要涂上阴影.不要求写画法)
19.(本题10分)小红和小明在操场做游戏,他们先在地上画了半径分别2m 和3m 的同心圆(如图8),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.
(1)你认为游戏公平吗?为什么?
(2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”.请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公
式)
20.(本题10分)如图9,有一个拱桥是圆弧形,他的跨度为60m,拱高为18m,当洪水泛滥跨度小于30m时,要采取紧急措施.若拱顶离水面只有4m时,问是否要采取紧急措施?
21.(本题10分)顾客李某于今年“五·一”期间到电器商场购买空调,与营业员有如下的一段对话:
顾客李某:A品牌的空调去年“国庆”期间价格还挺高,这次便宜多了,一次降价幅度就达到19%,是不是质量有问题?
营业员:不是一次降价,这是第二次降价,今年春节期间已经降了一次价,两次降价的幅度相同.我们所销售的空调质量都是很好的,尤其是A品牌系列空调的质量是一流的.
顾客李某:我们单位的同事也想买A品牌的空调,有优惠政策吗?
根据以上对话和A品牌系列空调销售的优惠办法,请你回答下列问题:
(1)求A品牌系列空调平均每次降价的百分率?
(2)请你为顾客李某决策,选择哪种优惠更合算,并说明为什么?
22.(本题14分)(1)已知MN是一条直线,AB是⊙O的直径,且AB=2R,设A、B两点到M、N的距离分别为x、y.
如图10,当直线MN与⊙O相切时,x、y与O点到直线MN的距离d之间的关系为:;(2)如图11、图12,当直线MN与⊙O相离时,x、y与O点到直线MN的距离d之间的关系为:;
(3)根据图10、图11、图12,你能归纳出什么结论:;
(4)当直线MN与⊙O相交时,上面归纳的关系是否一定成立?成立时,请写出证明过程,不成立时,说明理由.(请画出图形)
附加题:(本题20分,不计入总分)
23.如图13,形如量角器的半圆O的直径D E=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.
当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?
当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线D E围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
参考答案:
一、1~5.DBCAC 6~10.DAA 二、9.0x ≥且9x ≠
10.
14
11.两 12.
57
13.①对应点到旋转中心的距离相等;②任意一对对应点与旋转中心的连结所成的角相等;③旋转前后两个图形全等等均可 14.1 15.16或25 16.D 三、17.略. 18.图略. 19.(1)不公平,理由略.(2)略. 20.不用采取紧急措施,理由略. 21.(1)A 品牌系列空调平均每次降价的百分率为10%;
(2)当A 品牌系列空调的某一型号的价格为每台小于3000元时,应选方案二;当A 品牌系列空调的某一型号的价格为每台3000元时,两种方案都可以选;当A 品牌系列空调的某一型号的价格为每台大于3000元时,应选方案一. 22.解:(1)2x y d +=(或2R ); 2)2x y d +=;
(3)2x y d +=(此时MN 与
O 相切或相离);
(4)不一定成立,理由略. 附加题:
23.解:①1t =s 时,半圆O 与AC 相切;图略; ②4s t =时,半圆O 与AB 相切,图略. 此时重叠部分面积为2
9cm π.
③7s t =时,半圆O 与AC 相切;图略.
此时重叠部分面积为26)cm π.
④16s t =时,半圆所在的O 和直线AB 的延长线相切.图略.。