数列求和7种方法(方法全-例子多)
- 格式:doc
- 大小:121.00 KB
- 文档页数:6
数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
数列求和的基本方法和技巧[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n Sn f 的最大值.二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8] 求数列{n(n+1)(2n+1)}的前n 项和.五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6) n n n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则(7))11(1))((1CAn B An B C C An B An a n +-+-=++= (8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==L ,⑴设数列),2,1(21ΛΛ=-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2ΛΛ==n a c n n n ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足nn n a a a -=++122 *N n ∈ ⑴求数列{}n a 的通项公式; ⑵设||||||21n n a a a S +++=Λ,求n S ;。
高中数学解题方法系列:数列中求和问题的7种方法一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n nn 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n [例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2]设S n =1+2+3+…+n,n∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法(等差乘等比)[例3]求和:132)12(7531--+⋅⋅⋅++++=n n xn x x x S [例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n ∴1224-+-=n n n S 三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5]求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明:设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nmn C C -=可得n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6]求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8]求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=(2)nn n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4)121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅=1sin 1cos 2∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设S n =cos1°+cos2°+cos3°+···+cos178°+cos179°∵)180cos(cosn n --=(找特殊性质项)∴S n =(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5[例14]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15]求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅=)91010(8111n n --+数列练习一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A.21 B.22 C.2 D.22.已知为等差数列,,则等于A.-1B.1C.3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A.18B.24C.60D.90.4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于A.13B.35C.49D.635.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d =(A )-2(B )-12(C )12(D )26.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和A.90B.100C.145D.1907.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =(A)38(B)20(C)10(D)9.8.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A.2744n n+B.2533n n+C.2324n n+D.2n n+9.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A.90 B.100 C.145 D.190.二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.2.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,,,1612T T 成等比数列.3.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .4.等比数列{n a }的公比0q >,已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =.数列练习参考答案一、选择题1.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a的公比为正数,所以q =,故2122a a q ===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B。
百度文库-让每个人平等地提升自我数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法:利用等差、等比数列求和公式错位相减法求和反序相加法求和分组相加法求和裂项消去法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
1、2、3、5、一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法n(a1 a n)等差数列求和公式:等比数列求和公式:S nS nnk3k 1S nS n1)1)]2na13d1[例1]已知x ,求xx2解:由等比数列求和公式得na1印(11(q 1) x3a.qS n[例2]设S n= 1+2+3+ …+n, n€ N*,求f(n)4、S n的前(q 1)nk2k 1n项和.2x3x(1 x n)1 x2(1S n(n 32)S n 1」n(n 1)(2 n 1)6x nJ2L =1 _ 丄11 2n2的最大值.(利用常用公式)百度文库-让每个人平等地提升自我2解:由等差数列求和公式得1Sn2n(n 1),S n1-(n 1)( n 2) 2(利用常用公式)S n…f(n) (n 32)S n 1n ~2n 34n 641 ""“ 64n 34•••当 n -8•一 n1 I,5050,即 8 时,f (n )max50二、错位相减法求和这种方法是在推导等比数列的前 n 项和公式时所用的方法, 项和,其中{ a n }、{ b n }分别是等差数列和等比数列 2 3[例 3]求和:S n 1 3x 5x 7x(2n 1)x n 1解:由题可知, {(2n 1)x n 1}的通项是等差数列设xS n1x 3x 2 5x 3 7x 4(2n 这种方法主要用于求数列 {2n — 1}的通项与等比数列{ x nn1)x ①一②得 (1 x)S n 1 2x 2x 2 2x 32x 42x n 1(2n 1)x n{a n • b n }的前n}的通项之积 (设制错位)(错位相减)再利用等比数列的求和公式得:(1X )Snn 1c 1 X /c 2x(2n1 xn1)x[例4]求数列2,-62 2 解:由题可知,设S n2 ' '2n4 22 4 戸 2 22 22①一②得(1n 1S (2n 1)x(2nS n2(1 x)贵前n 项的和.1)x n (1 x) }的通项是等差数列{2n }的通项与等比数列{ I }的通项之积2n_6_ 23 6 24 1)S n2S n2 22 1尹n 2 yr....................2n、“ 1 2 2 23 24 2n盯 2 2n 2* 2*1(设制错位) (错位相减)百度文库-让每个人平等地提升自我练习题1 已知,求数列{a n}的前n项和S.答案:练习题的前n项和为百度文库-让每个人平等地提升自我答案:三、逆序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a.a n).0 12[例5]求证:C n 3C n 5C n(2n 1)C:(n 1)2n证明:设S n C0 3C1 5C;(2n i)c n把①式右边倒转过来得又由c nmS n (2n 1)C:(2nC:m可得S n (2n 1)C0 (2n①+②得2S n(2nS n (n1)C:1i)c n2)(C°C:1) 2n3c n C0(反序)3C;1C n 1 nC:C n n) 2(n 1) 2n(反序相加)题1 已知函数(1)证明:(2)求的值.解:(1 )先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1 )小题已经证明的结论可知, 两式相加得:百度文库-让每个人平等地提升自我所以四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可 .1 1[例7]求数列的前n 项和:1 1,— 4,-y 7,a a 1 1解:设 S n (1 1) (- 4) (-2a a将其每一项拆开再重新组合得1 S n (1 一a3n 2,•-7)(丄 a n 13n 2)1a(3n 1)n2丄 孑(3n 1)n\ 1丄a[例8]求数列{n(n+1)(2n+1)}的前n 项和.当a = 1时, 当a 1时,S n解:设 a k k(k 1)(2k 1)2k 3 )(13k 23n 2)(3n 1)n1a a 1(3n 1)n 2nS n k(k 1)(2kk 11)n(2 k 313k 2 k)将其每一项拆开再重新组合得nS n = 2k 1k 3 k 2=2(13 233\n )3(12 2 (1 2n)(分组)(分组求和)(分组)2 2n (n 1) n(n 1)(2n 1) n(n 1)2 2 22n(n 1) (n 2)2(分组求和)五、裂项法求和 这是分解与组合思想在数列求和中的具体应用 .裂项法的实质是将数列中的每项(通项)分解,然后 重新组合,使之能消去一些项,最终达到求和的目的.通项分解 (裂项)如:(1) a nf(n 1) f(n)(2) sin1 cos n cos(n 1)tan(n 1) tan n(3) a n1 n(n 1)(4) a n(2n )2 (2n 1)(2 n1)1 2n 1(5)a nn(n 1)( n 2) 12[n(n 1) (n 1)(n 2)](7)a na n(8) a n[例9]求数列n 2 1 n(n 1) 2n2(n 1) n n(n 1)1 2n1 n 2n 1,则 S n1(n 1)2n ' n1 (n 1)2n(An B)(A n C)C B (AnAn七)的前 n 项和.(裂项)解:设a n则S n=(.2 .1)(..n 1(3 (裂项求和)[例10]在数列{a n }中,a n、、n )-,求数列{b n }的前n 项的和•a n a n 1解:a n••• b nS n8[(1 =8(1/n 1(2009年广东文)20.(本小题满分n n 1 f nn 12 2}的前n 项和2)(丄1)2 3(14)(-二n n1 =8nn 114分)• 数列{b n (裂项)(裂项求和)1 x已知点(1,一)是函数f (x ) a (a 0,且a 1)的图象上一点,等比数列{a n }的前n 项和为f (n ) 3c ,数列{b n }(b n 0)的首项为 c ,且前 n 项和 S n 满足 S * — S n 1 = ... S n + .. S n1(n2).(1)求数列{a n }和{b n }的通项公式;1(2)若数列{—— bn b n}前n 项和为T n ,问Tn > 1000的最小正整数2009n 是多少?0.【解析】(1)a 1 又数列又公比又b n 数列b n ,a 2a 3f 3a n 成等比数列, a 2 a 12 27S n2n a12a s4 81 2 27所以1,所以3a nS n 1S n 1构成一个首相为 1( n N );1公差为 1的等差数列,1 n , S n n 21 2 2n 1 ;⑵T n1 1b|b2 b2b3b s b4HI ib n b n i7 III 1(2n 1) 2n 1由T n 11 1 1 11 -2 3 2 3 5HI 1 12 2n 112n 11 1丄2 2n 1n2n 1 n2n 11000得n 1000,满足T n2009 9竺0的最小正整数为112.2009练习题1.练习题2。
数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a == [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111 (裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和的七种方法
1. 求和公式法:利用数列的通项公式和求和公式,将每一项的值代入公式求和。
2. 算术数列求和法:对于等差数列,可以利用求和公式 S =
n/2(2a + (n-1)d),其中a为首项,d为公差,n为项数。
3. 几何数列求和法:对于等比数列,可以利用求和公式 S =
a(1-q^n)/(1-q),其中a为首项,q为公比,n为项数。
4. 分割求和法:将数列分割成多个子序列,分别求和后再将结果相加。
5. 枚举法:遍历数列中的每一项,依次相加求和。
6. 递推关系式法:通过建立递推关系式,根据当前项与前一项的关系来求和。
7. 数学归纳法:对于特定的数列,可以利用数学归纳法证明求和公式的正确性,然后代入数值计算求和结果。
数列求和公式七个方法求和公式是数列中常用的一个工具,用于计算数列中一定数量的项的和。
在数学中,有七种不同的方法可以使用求和公式。
1.求等差数列的和:等差数列的求和公式是:Sn = (a1 + an) * n / 2,其中Sn是数列前n项和,a1是数列的首项,an是数列的末项,n是数列的项数。
这个公式的核心思想是将数列分成两部分,每部分的和都是数列的首项和末项之和的一半。
2.求等比数列的和:等比数列的求和公式是:Sn=a1*(1-r^n)/(1-r),其中Sn是数列前n 项和,a1是数列的首项,r是数列的公比,n是数列的项数。
这个公式利用了等比数列的特性,即每一项都是前一项乘以公比。
3.求等差数列的和差:等差数列的和差公式是:Sa=Sn-S(n-1),其中Sa是数列从第n-1项到第n项的和差,Sn是数列前n项和,S(n-1)是数列前n-1项和。
这个公式的思想是将数列分成两部分,分别计算它们的和,然后将后一部分的和减去前一部分的和,即可得到和差。
4.求等比数列的和差:等比数列的和差公式是:Sa=Sn/S(n-1),其中Sa是数列从第n-1项到第n项的和差,Sn是数列前n项和,S(n-1)是数列前n-1项和。
这个公式利用了等比数列的特性,即每一项都是前一项乘以公比。
5.求调和数列的和:调和数列的求和公式是:Sn = n / (1/a1 + 1/a2 + ... + 1/an),其中Sn是数列前n项和,a1,a2,...,an是数列的各项。
这个公式的思想是将数列的各项的倒数相加,然后再取它们的倒数。
6.求幂和数列的和:幂和数列的求和公式是:Sn=(a^(n+1)-1)/(a-1),其中Sn是数列前n项和,a是数列的公比,n是数列的项数。
这个公式利用了幂和数列的特性,即每一项都是公比的幂次。
7.求有限项数列的和:有限项数列的求和公式是:Sn = (n / 2) * (a1 + an),其中Sn是数列前n项和,a1是数列的首项,an是数列的末项,n是数列的项数。
数列求和的七种方法及例题
1、直接求和法:将数列中所有的项都加起来,累加求和。
例如:求 1+2+3+4+5=15
2、等差数列求和法:只适用于等差数列,将首项和末项相加,乘以项数,再除以2。
例如:求 1+3+5+7+9=25
3、等比数列求和法:只适用于等比数列,求出公比,然后用求和公式求和。
例如:求 3+6+12+24=45
4、分而治之法:将大的问题分解成小的问题,再求出小的问题的答案之和为大的问题的答案。
例如:求
1+2+3+4+5=15
5、求差法:将数列中连续的相邻两项差值求出,然后把差值相加求和。
例如:求 1+2+3+4+5=15
6、高阶法:当数列中有多项时,可以把它们分成高阶和低阶两组,先求高阶项和低阶项的和,在相加求和。
例如:求 1+2+3+4+5=15
7、循环求和法:将数列中的每一项都分别相加,然后把结果累加求和。
例如:求 1+2+3+4+5=15。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nnn n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ① 把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序) 又由mn nm n C C -=可得 n nn n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ② ①+②得 n n n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ n n n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) n nn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和常见的7种方法数列求和是数学中比较常见的问题之一,它在各个领域中都有广泛的应用。
在数学中,我们常常使用不同的方法来求解数列求和问题,以下将介绍一些常见的数列求和方法。
一、公式法:公式法是求解数列求和中最常用的方法之一、对于一些特定的数列,我们可以通过找到它们的通项公式,从而直接计算出数列的和。
例如,对于等差数列an = a1 + (n-1)d,其前n项和Sn =[n(a1+an)]/2,其中a1为首项,an为末项,d为公差。
同样地,对于等比数列an = a1 * r^(n-1),其前n项和Sn = a1 *(1 - r^n)/(1 - r),其中a1为首项,r为公比。
二、递推法:递推法是另一种求解数列求和问题的常用方法。
通过推导出数列的递推关系式,我们可以通过逐项求和的方式来求解数列求和问题。
例如,对于斐波那契数列Fn=Fn-1+Fn-2(其中n>2),我们可以通过递推的方式来求得前n项和。
三、画图法:画图法是一种直观的方法,通过画图可以更清楚地理解数列求和问题,并帮助我们找到解题思路。
例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为一个由等差数列首项、末项组成的矩形,然后通过计算矩形的面积来求解数列的和。
四、换元法:换元法是将数列中的变量进行换元,从而将原始数列转化为另一种形式,从而更容易求出数列的和。
例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为Sn = (n+1)a1 + d(1+2+3+...+n),然后再利用等差数列的求和公式来求解。
五、差分法:差分法是一种将数列进行相邻项之间的差分操作,从而得到一个新的数列,通过对新数列进行求和的方式来求解原始数列的和。
例如,对于等差数列an = a1 + (n-1)d,我们可以计算得到数列bn = a2 - a1,然后求出bn的和,再通过一些变换得到原始数列的和。
数列求和常见的7种方法数列求和是数学中常见的问题之一、在数学中,数列是按照一定规律排列的一组数,求和则是将数列中的所有数相加得到一个结果。
在实际问题中,数列求和涉及到很多应用,比如计算排列组合、概率统计、几何等。
本文将介绍常见的七种求和方法,包括等差数列求和、等比数列求和、递推数列求和、特殊数列求和、级数求和、积性函数求和和递归求和。
一、等差数列求和方法等差数列指的是数列中的每一项与下一项之间的差值都相等的数列。
等差数列求和的方法有两种:公式法和递推法。
公式法:设等差数列的首项为a1,公差为d,求等差数列的前n项和Sn,则有下面的公式:Sn = (a1+an) * n / 2,其中an是数列的末项。
递推法:通过递推方法,可以依次计算等差数列的每一项,将它们相加得到数列的和。
递推公式为:an = a1 + (n-1) * d。
使用递推法时要注意,计算的次数需要与指定的项数相等。
二、等比数列求和方法等比数列是指数列中的每一项与前一项之比都相等的数列。
等比数列求和的方法有两种:公式法和递推法。
公式法:设等比数列的首项为a1,公比为q,求等比数列的前n项和Sn,则有下面的公式:当q≠1时:Sn=a1*(1-q^n)/(1-q)。
当q=1时:Sn=a1*n。
递推法:通过递推方法,可以依次计算等比数列的每一项,将它们相加得到数列的和。
递推公式为:an = a1 * q^(n-1)。
同样,使用递推法时要注意计算的次数与指定的项数相等。
三、递推数列求和方法递推数列是指数列中的每一项都由前面的项经过其中一种规律计算得到的数列。
递推数列求和的方法有两种:递推法和公式法。
递推法:通过递推方法,依次计算数列的每一项,将它们相加得到数列的和。
递推公式由数列的规律决定。
公式法:有些递推数列可以找到与之对应的公式,从而可以直接通过公式计算数列的和。
四、特殊数列求和方法特殊数列是指具有特殊性质的数列,比如斐波那契数列、Lucas数列等。
数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法:利用等差、等比数列求和公式错位相减法求和反序相加法求和分组相加法求和裂项消去法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、等差数列求和公式: d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a qq a q na S n nn 3、4、)1(211+==∑=n n k S nk n )12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n [例1] 已知,求的前n 项和.21=x ⋅⋅⋅++⋅⋅⋅+++nx x x x 32解:由等比数列求和公式得(利用常用公式)n n x x x x S +⋅⋅⋅+++=32===1-xx x n--1)1(211)211(21--n n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求的最大值.1)32()(++=n nS n S n f解:由等差数列求和公式得 , (利用常用公式))1(21+=n n S n )2)(1(21++=n n S n∴ =1)32()(++=n n S n S n f 64342++n n n==nn 64341++50)8(12+-nn 501≤∴ 当,即n =8时,nn 8=501)(max =n f 二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:………………………①132)12(7531--+⋅⋅⋅++++=n n xn x x x S 解:由题可知,{}的通项是等差数列{2n -1}的通项与等比数列{}的通项之积1)12(--n xn 1-n x设………………………. ② (设制错位)nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=①-②得 (错位相减)n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--再利用等比数列的求和公式得:nn n x n xx x S x )12(1121)1(1----⋅+=--∴21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列前n 项的和.⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n解:由题可知,{}的通项是等差数列{2n}的通项与等比数列{}的通项之积n n 22n 21设…………………………………①n n nS 2226242232+⋅⋅⋅+++=………………………………②(设制错位)14322226242221++⋅⋅⋅+++=n n nS ①-②得 (错位相减)1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS1122212+---=n n n ∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题 的前n 项和为____答案:三、逆序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个.)(1n a a +[例5] 求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明: 设………………………….. ①nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=把①式右边倒转过来得(反序)113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- 又由可得mn nm n C C -=…………..…….. ②n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12( ①+②得(反序相加)n nn n n n n n n C C C C n S 2)1(2))(22(211⋅+=++⋅⋅⋅+++=-∴ nn n S 2)1(⋅+=题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:, (231),,71,41,1112-+⋅⋅⋅+++-n a a a n 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n 将其每一项拆开再重新组合得(分组))23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 当a =1时,=(分组求和)2)13(n n n S n -+=2)13(nn +当时,=1≠a 2)13(1111n n aa S nn -+--=2)13(11n n a a a n -+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ =∑=++=n k n k k k S 1)12)(1()32(231k k knk ++∑=将其每一项拆开再重新组合得S n =(分组)k k k nk n k nk ∑∑∑===++1213132=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++= (分组求和)2)1(2)12)(1(2)1(22++++++n n n n n n n=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)(2))()1(n f n f a n -+=n n n n tan )1tan()1cos(cos 1sin -+=+(3) (4)111)1(1+-=+=n n n n a n )121121(211)12)(12()2(2+--+=+-=n n n n n a n (5))2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6) n nn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则(7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列的前n 项和.⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 解:设(裂项)n n n n a n -+=++=111则 (裂项求和)11321211+++⋅⋅⋅++++=n n S n =)1()23()12(n n -++⋅⋅⋅+-+-=11-+n [例10] 在数列{a n }中,,又,求数列{b n }的前n 项的和.11211++⋅⋅⋅++++=n n n n a n 12+⋅=n n n a a b 解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴(裂项))111(82122+-=+⋅=n n n n b n ∴ 数列{b n }的前n 项和(裂项求和))]111()4131()3121(211[(8+-+⋅⋅⋅+-+-+-=n n S n= = )111(8+-n 18+n n (2009年广东文)20.(本小题满分14分)已知点(1,)是函数且)的图象上一点,等比数列的前n 项和为31,0()(>=a a x f x1≠a }{n a ,数列的首项为c ,且前n 项和满足-=+(n 2).c n f -)(}{n b )0(>n b n S n S 1-n S n S 1+n S ≥(1)求数列和的通项公式;}{n a }{n b (2)若数列{前n 项和为,问>的最小正整数n 是多少?}11+n n b b n T n T 200910000.【解析】(1)()113f a ==Q ,()13xf x ⎛⎫∴= ⎪⎝⎭()1113a f c c =-=- ,()()221a f c f c =---⎡⎤⎡⎤⎣⎦⎣⎦29=-, ()()323227a f c f c =---=-⎡⎤⎡⎤⎣⎦⎣⎦ .又数列{}n a 成等比数列,22134218123327a a c a ===-=-- ,所以 1c =;又公比2113a q a ==,所以12112333n nn a-⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭*n N ∈ ;1n nS S--=+=Q ()2n ≥又0n b >0>, 1-=;数列构成一个首相为1公差为1()111n n =+-⨯= , 2n S n =当2n ≥, ()221121n n n b S S n n n -=-=--=- ;21n b n ∴=-(*n N ∈);(2)12233411111n n n T b b b b b b b b +=++++L ()1111133557(21)21n n =++++⨯⨯⨯-⨯+K 1111111111112323525722121n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭K 11122121nn n ⎛⎫=-= ⎪++⎝⎭; 由1000212009n n T n =>+得10009n >,满足10002009n T >的最小正整数为112.练习题1..练习题2。
数列求和
一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
1、 等差数列求和公式:d n n na a a n S n n 2
)1(2)(11-+=+= 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q
q a q na S n n n 3、 )1(211+==∑=n n k S n
k n 4、)12)(1(6112++==∑=n n n k S n k n 5、 213)]1(21[+==∑=n n k S n
k n [例1],求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.
[例2] 设S n =1+2+3+…+n,n ∈N *,求1
)32()(++=
n n S n S n f 的最大值.
题1.等比数列
的前n项和S n=2n-1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =
二、错位相减法求和
{ a n }、{ b n }分别是等差数列和等比数列.
[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①
[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n
n 前n 项的和.
练习题1 已知
,求数列{a n }的前n 项和S n .
练习题2
的前n 项和为____
三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.
[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值
题1 已知函数
(1)证明:;
(2)求
的值.
练习、求值:
四、分组法求和
[例7] 求数列的前n 项和:231,,71,41,
1112-+⋅⋅⋅+++-n a
a a n ,…
五、裂项法求和
[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.
[例10] 在数列{a n }中,1
1211++⋅⋅⋅++++=
n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.
练习题1.
练习题2。
=
提高练习:
1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,
⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列;
⑵设数列),2,1(,2
==
n a c n n n ,求证:数列{}n c 是等差数列;
2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.
(1)试用n a 表示a 1n +;
3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈
⑴求数列{}n a 的通项公式;
⑵设||||||21n n a a a S +++= ,求n S ;
说明:本资料适用于高三总复习,也适用于高一“数列”一章的学习。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。