高考第一轮模拟数学试题(文三)
- 格式:doc
- 大小:119.00 KB
- 文档页数:4
2024届高三高考数学一模试题及答案(新高考)一、选择题(每题5分,共40分)1. 设集合A={x|2x-3>0},集合B={x|x²-5x+6<0},则A∩B的取值范围是()A. (-∞, 2) ∪ (3, +∞)B. (1, 2) ∪ (3, +∞)C. (1, 3)D. (2, 3)答案:B2. 若函数f(x)=x²+ax+b在区间(-∞, 1)上是减函数,在区间(1, +∞)上是增函数,则a的取值范围是()A. a≤-2B. a≥2C. a≤1D. a≥-1答案:C3. 若等差数列{an}的前n项和为Sn,且S5=10,S10=30,则数列{an}的通项公式是()A. an=2n-1B. an=2nC. an=n+1D. an=n-1答案:A4. 已知函数f(x)=ln(x-1)+2x在区间(1, +∞)上是增函数,则实数a的取值范围是()A. a≥1B. a≤1C. a≥2D. a≤2答案:A5. 若椭圆x²/a²+y²/b²=1(a>b>0)的离心率为√2/2,则a²/b²的值是()A. 2B. 1C. 1/2D. 1/4答案:C6. 已知三角形ABC中,角A、B、C的对边分别为a、b、c,且a=√3, b=2, C=π/3,则三角形ABC的面积S 是()A. √3B. 1C. 2D. 3答案:C7. 若函数f(x)=x³-3x+1在区间(0, 2)上有极值点,则极值点的坐标是()A. (1, -1)B. (1, 1)C. (2, -1)D. (2, 1)答案:B8. 若函数g(x)=2x-3/x在区间(0, +∞)上是减函数,则实数x的取值范围是()A. x≤1B. x≥1C. x≤3D. x≥3答案:D二、填空题(每题5分,共40分)9. 若函数f(x)=x²+2x+k在区间(-∞, 1)上是减函数,在区间(1, +∞)上是增函数,则k的取值范围是________。
高三数学考试(文科) 第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数1z i =-+,则22z z z +=+( )A .-1B .1C .i -D .i 2.若向量(21,)m k k =-与向量(4,1)n =共线,则m n ⋅=( )A .0B .4C .92-D .172-3.已知集合2{|142}A x x =<-≤,{|23}B x x =>,则A B =( ) A.)+∞ B.([2,)+∞C .)+∞D.[(2,)+∞4.函数()cos()6f x x ππ=-的图象的对称轴方程为( ) A .2()3x k k Z =+∈ B .1()3x k k Z =+∈ C .1()6x k k Z =+∈ D .1()3x k k Z =-∈5. 如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .7B .6C .5D .46. 若函数221,1()1,1x x f x x ax x ⎧+≥⎪=⎨-++<⎪⎩在R 上是增函数,则a 的取值范围为( ) A .[2,3] B .[2,)+∞ C .[1,3]D .[1,)+∞7.在公比为q 的正项等比数列{}n a 中,44a =,则当262a a +取得最小值时,2log q =( )A .14B .14-C .18D .18-8.若sin()3sin()αβπαβ+=-+,,(0,)2παβ∈,则tan tan αβ=( )A .2B .12C .3D .139.设双曲线Ω:22221(0,0)x y a b a b -=>>的左、右焦点分别为1F ,2F ,Ω上存在关于y 轴对称的两点P ,Q (P 在Ω的右支上),使得2122PQ PF PF +=,O 为坐标原点,且POQ∆为正三角形,则Ω的离心率为( )A. B. CD10. 我国古代数学名著《九章算术》里有一道关于买田的问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”其意思为:“今有好田1亩价值300钱;坏田7亩价值500钱.今合买好、坏田1顷,价值10000钱.问好、坏田各有多少亩?”已知1顷为100亩,现有下列四个程序框图,其中S 的单位为钱,则输出的x ,y 分别为此题中好、坏田的亩数的是( )A .B .C .D .11.若函数()ln f x x 在(1,)+∞上单调递减,则称()f x 为P 函数.下列函数中为P 函数的序号为( )①()1f x = ②()x f x = ③1()f x x =④()f x =A .①②④ B .①③ C .①③④ D .②③12.设正三棱锥P ABC -的高为H ,且此棱锥的内切球的半径17R H =,则22H PA =( ) A .2939 B .3239 C .3439 D .3539第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.若x 是从区间[0,3]内任意选取的一个实数,y 也是从区间[0,3]内任意选取的一个实数,则221x y +<的概率为 . 14.若圆C :22(1)x y n ++=的圆心为椭圆M :221x my +=的一个焦点,且圆C 经过M 的另一个焦点,则nm =.15. 已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21n n n b a -=+,且1222n n n S T n ++=+-,则2n T =.16.若曲线2log (2)(2)x y m x =->上至少存在一点与直线1y x =+上的一点关于原点对称,则m 的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 20sin ab C B =,2241a c +=,且8cos 1B =. (1)求b ;(2)证明:ABC ∆的三个内角中必有一个角是另一个角的两倍.18.某大型超市在元旦举办了一次抽奖活动,抽奖箱里放有2个红球,1个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取2个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会; ②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;③若取得的2个小球都是红球,则该顾客中得一等奖,奖金是一个10元的红包; ④若取得的2个小球都不是红球,则该顾客中得二等奖,奖金是一个5元的红包; ⑤若取得的2个小球只有1个红球,则该顾客中得三等奖,奖金是一个2元的红包. 抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.(1)求这20位顾客中获得抽奖机会的人数与抽奖总次数(假定每位获得抽奖机会的顾客都会去抽奖); (2)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);(3)分别求在一次抽奖中获得红包奖金10元,5元,2元的概率. 19.如图,在各棱长均为2的正三棱柱111ABC A B C -中,D 为棱11A B 的中点,E 在棱1BB 上,13B E BE =,M ,N 为线段1C D 上的动点,其中,M 更靠近D ,且1MN =.F 在棱1AA上,且1A E DF⊥.(1)证明:1A E ⊥平面1C DF;(2)若BM =,求三棱锥E AFN -的体积.20.已知0p >,抛物线1C :22x py =与抛物线2C :22y px =异于原点O 的交点为M ,且抛物线1C 在点M 处的切线与x 轴交于点A ,抛物线2C 在点M 处的切线与x 轴交于点B ,与y 轴交于点C .(1)若直线1y x =+与抛物线1C 交于点P ,Q,且PQ =1C的方程;(2)证明:BOC ∆的面积与四边形AOCM 的面积之比为定值.21.已知函数2()3x f x e x =+,()91g x x =-.(1)求函数()4()xx xe x f x ϕ=+-的单调区间; (2)比较()f x 与()g x 的大小,并加以证明;(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔将所选题目对应的题号右侧方框涂黑,并且在解答过程中写清每问的小题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线M的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩t 为参数,且0t >),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为4cos ρθ=. (1)将曲线M 的参数方程化为普通方程,并将曲线C 的极坐标方程化为直角坐标方程; (2)求曲线M 与曲线C 交点的极坐标(0,02)ρθπ≥≤<.23.[选修4-5:不等式选讲]已知函数()413 f x x x=-+--.(1)求不等式()2f x≤的解集;(2)若直线2y kx=-与函数()f x的图象有公共点,求k的取值范围.高三数学详细参考答案(文科) 一、选择题1-5: ADBCB 6-10: AAADB 11、12:BD 二、填空题13. 36π14. 8 15.22(1)4n n n +++- 16. (2,4] 三、解答题17.(1)解:∵sin 20sin ab C B =,∴20abc b =,即20ac =,则b =6==.(2)证明:∵20ac =,2241a c +=,∴4a =,5c =或5a =,4c =.若4a =,5c =,则2225643cos 2564A +-==⨯⨯,∴2cos 2cos 1cos 2B A A =-=,∴2B A =. 若5a =,4c =,同理可得2B C =.故ABC ∆的三个内角中必有一个角的大小是另一个角的两倍.18.解:(1)这20位顾客中获得抽奖机会的人数为5+3+2+1=11.这20位顾客中,有8位顾客获得一次抽奖的机会,有3位顾客获得两次抽奖的机会,故共有14次抽奖机会.(2)获得抽奖机会的数据的中位数为110,平均数为1(10110210410810911++++110112115188189200)++++++143813111=≈ .(3)记抽奖箱里的2个红球为红1,红2,从箱中随机取2个小球的所有结果为(红1,红2),(红1,蓝),(红1,黄),(红2,蓝),(红2,黄),(蓝,黄),共有6个基本事件.在一次抽奖中获得红包奖金10元的概率为116P =,获得5元的概率为216P =, 获得2元的概率为34263P ==. 19.(1)证明:由已知得111A B C ∆为正三角形,D 为棱11A B 的中点,∴111C D A B ⊥,在正三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,则11AA C D⊥.又1111A B AA A =,∴1C D ⊥平面11ABB A ,∴11C D A E⊥. 易证1A E AD⊥,又1AD C D D =,∴1A E ⊥平面1AC D.(2)解:连结1MB ,则11BB MB ⊥,∵12BB =,3BM =,∴13MB =.又11MD A B ⊥,∴3MD =.由(1)知1C D ⊥平面AEF ,∴N 到平面AEF的距离1d DN ==.设1A EDF O=,∵1A E DF⊥,∴111AOD A B E∆∆,∵13B E BE =,∴11111B E A D A B A F =,∴1134A F =,∴143A F =. ∴E AFN N AEFV V --=1122323d =⨯⨯⨯⨯21)9=⨯+=.20.(1)解:由212y x x py =+⎧⎨=⎩,消去y 得2220x px p --=.设P ,Q 的坐标分别为11(,)x y ,22(,)x y ,则122x x p+=,122x x p=-.∴PQ ==0p >,∴1p =.故抛物线1C 的方程为22x y =.(2)证明:由2222y px x py ⎧=⎪⎨=⎪⎩,得2x y p ==或0x y ==,则(2,2)M p p .设直线AM :12(2)y p k x p -=-,与22x py =联立得221124(1)0x pk x p k ---=.由222111416(1)0p k p k ∆=+-=,得21(2)0k -=,∴12k =.设直线BM :22(2)y p k x p -=-,与22y px =联立得222224(1)0k y py p k ---=.由22222416(1)0p p k k ∆=+-=,得22(12)0k -=,∴212k =.故直线AM :22(2)y p x p -=-,直线BM :12(2)2y p x p -=-,从而不难求得(,0)A p ,(2,0)B p -,(0,)C p , ∴2BOC S p ∆=,23ABM S p ∆=,∴BOC ∆的面积与四边形AOCM 的面积之比为222132p p p =-(为定值).21.解:(1)'()(2)(2)xx x e ϕ=--, 令'()0x ϕ=,得1ln 2x =,22x =;令'()0x ϕ>,得ln 2x <或2x >; 令'()0x ϕ<,得ln 22x <<.故()x ϕ在(,ln 2)-∞上单调递增,在(ln 2,2)上单调递减,在(2,)+∞上单调递增. (2)()()f x g x >. 证明如下:设()()()h x f x g x =-2391x e x x +-+,∵'()329x h x e x =+-为增函数, ∴可设0'()0h x =,∵'(0)60h =-<,'(1)370h e =->,∴0(0,1)x ∈.当0x x >时,'()0h x >;当x x <时,'()0h x <.∴min 0()()h x h x =0200391x e x x =+-+, 又003290x e x +-=,∴00329x e x =-+,∴2min 000()2991h x x x x =-++-+2001110x x =-+00(1)(10)x x =--.∵0(0,1)x ∈,∴00(1)(10)0x x -->,∴min ()0h x >,()()f x g x >.22.解:(1)∵y tx =,∴x x =,即2)y x =-,又0t >0>,∴2x >或0x <,∴曲线M的普通方程为2)y x =-(2x >或0x <).∵4cos ρθ=,∴24cos ρρθ=,∴224x y x +=,即曲线C 的直角坐标方程为2240x x y -+=.(2)由222)40y x x x y ⎧=-⎪⎨-+=⎪⎩得2430x x -+=, ∴11x =(舍去),23x =,则交点的直角坐标为,极坐标为)6π. 23.解:(1)由()2f x ≤,得1222x x ≤⎧⎨-≤⎩或1402x <<⎧⎨≤⎩或4282x x ≥⎧⎨-≤⎩, 解得05x ≤≤,故不等式()2f x ≤的解集为[0,5].(2)()413f x x x =-+--22,10,1428,4x x x x x -≤⎧⎪=<<⎨⎪-≥⎩,作出函数()f x 的图象,如图所示,第11页 共11页直线2y kx =-过定点(0,2)C -,当此直线经过点(4,0)B 时,12k =;当此直线与直线AD 平行时,2k =-. 故由图可知,1(,2)[,)2k ∈-∞-+∞.。
2019-2020 年高三第一次模拟试题数学(文)含答案考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120 分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5 毫米黑色字迹的签字笔书写, 字体工整, 字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.参考公式:1 [(x -x) 2+ (x -x) 2+ + (x -x)2 ],其中为样本的平均数样本数据的标准差s =n 1 2 n柱体体积公式,其中为底面面积,为高;锥体体积公式,其中为底面面积,为高球的表面积和体积公式,,其中为球的半径第Ⅰ卷(选择题共 60 分)一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A = {x | x 2 -x - 2 ≤ 0}, B = {x | y = ln(1 -x)}, 则()A. B.C.D. 2.若复数满足,则在复平面内,对应的点的坐标是()A.B.C.D. 3.已知中,,且的面积为,则()A.B.C.或D.或4.已知是边长为2 的正三角形的边上的动点,则()A.有最大值为8 B.是定值6 C.有最小值为2 D.与点的位置有关5.设,且,则()A.B.C.D. 6.掷同一枚骰子两次,则向上点数之和不小于6 的概率是()A.B.C. D.7.数列是公差不为零的等差数列,并且是等比数列的相邻三项,若,则等于()A.B.C.D. 8.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的的值是()A.2 B.C.D.39.如图所示程序框图中,输出()A. B. C. D.⎩ ⎪ ⎩10.点在同一个球的球面上,,若四面体体积的最大值为,则这个球的表面积为( ) A . B . C . D . 11.已知圆,直线,点在直线上.若在圆上存在点,使得(为坐标原点),则的取值范围是 ( ) A . B .C .D .⎧| log x |,0 < x < 2⎪ 212. 已知函数 f (x ) = ⎨,若存在实数满足 ⎪sin( 4 x ),2 ≤ x ≤ 10 f (x 1 ) = f (x 2 ) = f (x 3 ) = f (x 4 ) ,且,则的取值范围是( )A.(20,32)B.(9,21)C.(8,24)D.(15,25)第Ⅱ卷本卷包括必考题和选考题两部分.第 13 题~第 21 题为必考题,每个试题考生都必须做答.第 22 题~第 24 题为选考题,考生根据要求做答. 二、填空题:本大题共 4 小题,每小题 5 分.13. 已知数列中,,则⎧x - y + 1 ≥ 014. 如果满足约束条件⎨x + y - 2 ≤ 0 ,则目标函数的最大值是⎪x - 2 y ≤ 0 15. 过抛物线的焦点 F 作倾斜角为的直线交抛物线于、两点,若线段的长为 8,则16. 已知函数的图像为曲线,若曲线存在与直线垂直的切线,则实数的取值范围为三、解答题:解答应写出文字说明.证明过程或演算步骤2 17.(本小题满分 12 分)已知函数 f (x ) = 2 cos(2x + ) + 3sin 2x(1) 求函数的最小正周期和最大值;(2) 设的三内角分别是.若,且,求边和的值.3MD Q18.(本小题满分 12 分)某班同学利用寒假在 5 个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以计算每户的碳月排放量.若月排放量符合低碳标准的称为“低碳族” ,否则称为“非低碳族”.若小区内有至少%的住户属于“低碳族”,则称这个小区为 “低碳小区”, 否则称为“非低碳小区” .已知备选的 5 个居民小区中有三个非低碳小区,两个低碳小区.(1) 任选两个小区进行调查,求所选的两个小区恰有一个为“非低碳小区”的概率; (2) 假定选择的“非低碳小区”为小区,调查显示其“低碳族”的比例为,数据如图 1 所示,经过同学们的大力宣传,三个月后,又进行了一次调查,数据如图 2 所示,问这时小区是否达到“低碳小区”的标准?19.(本小题满分 12 分)如图,在四棱锥中,底面为直角梯形,, ,平面底面,为的中点, ,BC = 1AD = 1, CD = 2(Ⅰ)求证: 平面; (Ⅱ)求三棱锥的体积。
高三第一次模拟考试文科数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,1,1,2A =--,集合{}|B k A y kx R =∈=在上为增函数,则A B 的子集个数为( )A .1B . 2C . 3D .42. 设a 为1i -的虚部,b 为()21i +的实部,则a b +=( ) A . -1 B . -2 C . -3 D .03.已知具有线性相关的变量,x y ,设其样本点为()(),1,2,,8i i i A x y i =,回归直线方程为1ˆ2yx a =+,若()1186,2OA OA OA +++=,(O 为原点),则a = ( ) A .18 B .18- C .14 D .14-4. 已知非向量()(),2,,2a x x b x ==-,则0x <或4x >是向量a 与b 夹角为锐角的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件5.已知00:,5100np n N ∃∈<,则p ⌝为( )A .,5100n n N ∀∈<B .,5100nn N ∀∈≥ C. 00,5100nn N ∃∈≥ D .00,5100n n N ∃∈>6.国际数学家大会在北京召开,会标是以我国古代数学家赵爽的弦图为基础设计.弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的边长为2,大正方形的边长为10,直角三角形中较小的锐角为θ,则sin cos 23ππθθ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭( )A .410+ B .410- D7.如图所示的程序框图中,输出的S 为 ( )A .99223-B .100223- C. 101223- D .102223-8. 已知函数()f x 既是二次函数又是幂函数,函数()g x 是R 上的奇函数,函数()()()11g x h x f x =++,则()()()()()()()()()201820172016101201620172018h h h h h h h h h ++++++-+-+-+-=( )A .0B . C. 4036 D .40379. 如图是某几何体的三视图,则该几何体的表面积为( )A +D .10. 已知向量44sin ,cos 22x x a ⎛⎫= ⎪⎝⎭,向量()1,1b =,函数()f x a b =,则下列说法正确的是( )A .()f x 是奇函数B .()f x 的一条对称轴为直线4x π=C. ()f x 的最小正周期为2π D .()f x 在,42ππ⎛⎫⎪⎝⎭上为减函数 11.已知双曲线()222109x y b b -=>的左顶点为A ,虚轴长为8,右焦点为F ,且F 与双曲线的渐近线相切,若过点A 作F 的两条切线,切点分别为,M N ,则MN = ( )A .8B ..12.定义在R 上的偶函数()f x 满足()()1f x f x +=-,当[]0,1x ∈时,()21f x x =-+,设函数()()11132x g x x -⎛⎫=-<< ⎪⎝⎭,则函数()f x 与()g x 的图象所有交点的横坐标之和为( )A .2B .4 C. 6 D .8二、填空题:本题共4小题,每小题5分,满分20分,将答案填在答题纸上13.抛物线的顶点在原点,焦点在x 轴上,抛物线上的点()2,P a -到焦点的距离为3,则a = .14.甲、乙、丙三个各自独立地做同一道数学题,当他们都把自己的答案公布出来之后, 甲说:我做错了; 乙说:丙做对了; 丙说:我做错了.在一旁的老师看到他们的答案并听取了他们的意见后说:“你们三个人中有一个人做对了,有一个说对了.”请问他们三个人中做对了的是 .15.已知实数,x y 满足2202200x y x y x y --≥⎧⎪++≥⎨⎪-≥⎩,若32z x y =-取得最小值时的最优解(),x y 满足()20ax by ab +=>,则4a bab+的最小值为 . 16.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,3,2a b ==,且22cosB a 4ac b =-+,则B = . 三、解答题 :共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知数列{}n a 满足:()1122,n n n a a a n n N ++-=+≥∈,且121,2a a ==. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*1121,n n n n a b a b n n N ++=≥∈,且11b =.求数列{}n b 的通项公式,并求其前n 项和n T .18.某大学导师计划从自己所培养的研究生甲、乙两人中选一人,参加雄安新区某部门组织的计算机技能大赛,两人以往5次的比赛成绩统计如下:(满分100分,单位:分).(1)试比较甲、乙二人谁的成绩更稳定;(2)在一次考试中若两人成绩之差的绝对值不大于2,则称两人“实力相当”.若从上述5次成绩中任意抽取2次,求恰有一次两人“实力相当”的概率. 19. 如图,四棱台1111A B C D ABCD -中,1A A ⊥底面111,2ABCD A B A A AB AC ===,平面11A ACC ⊥平面11,C CDD M 为1C C 的中点.(1)证明:1AM D D ⊥;(2)若030ABC ∠=,且AC BC ≠,求点A 到平面11B BCC 的距离.20. 椭圆()2222:10x y C a b a b +=>>的离心率为12,且过点31,2⎛⎫- ⎪⎝⎭.(1)求椭圆C 的方程;(2)设(),P x y 为椭圆C 上任一点,F 为其右焦点,点P '满足()4,0PP x '=-. ①证明:PP PF'为定值;②设直线12y x m =+与椭圆C 有两个不同的交点A B 、,与y 轴交于点M .若,,AF MF BF 成等差数列,求m 的值.21. 已知函数()a f x x x=+. (1)判断函数()f x 的单调性;(2)设函数()ln 1g x x =+,证明:当 ()0,x ∈+∞且0a >时,()()f x g x >.(二)选考题:共10分.请考生在22、23两题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为21x ty t a =⎧⎪⎨=⎪⎩(t 为参数,0a >),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线:cos sin 0l b ρθρθ-+=与2:4cos C ρθ=-相交于A B 、两点,且090AOB ∠=.(1)求b 的值;(2)直线l 与曲线1C 相交于M N 、,证明:22C M C N (2C 为圆心)为定值. 23. 已知函数()1fx x =+.(1)解关于x 的不等式()210f x x -+>;(2)若函数()()()1g x f x f x m =-++,当且仅当01x ≤≤时,()g x 取得最小值,求()1,2x ∈-时,函数()g x 的值域.试卷答案一、选择题1-5: DABBB 6-10: ACDCD 11、12:DB二、填空题13. ± 14. 甲 15. 9 16.6π(或30°) 三、解答题17.解:(1)由()*1122,n n n a a a n n N +-=+≥∈知数列{}n a 为等差数列,且首项为1,公差为211a a -=,所以n a n =; (2)∵()121n n nb n b +=+, ∴()11112n n b b n n n +=≥+,∴数列n b n ⎧⎫⎨⎬⎩⎭是以111b =为首项,12为公比的等比数列, 112n n b n -⎛⎫= ⎪⎝⎭,从而12n n nb -=, 01221123122222n n n n n T ---=+++++,23111231222222nn nn nT --=+++++, ∴2111111122121222222212nn n n n nn n n T --+=++++-=-=--, 所以1242n n n T -+=-. 18.解:(1)∵90,90x x ==甲乙,2231.6,50S S ==甲乙, 22S S <甲乙,∴甲的成绩更稳定;(2)考试有5次,任选2次,基本事件有()87,100和()87,80,()87,100和()84,85,()87,100和()100,95,()87,100和()92,90,()87,80和()84,85,()87,80和()100,95,()87,80和()92,90,()84,85和()100,95,()84,85和()92,90,()100,95和()92,90共10个,其中符合条件的事件有()87,100和()84,85,()87,100和()92,90,()87,80和()84,85,()87,80和()92,90,()84,85和()100,95,()100,95和()92,90共有6个,则5次考试,任取2次,恰有一次两人“实力相当”的概率为63105=, 另法:这5次考试中,分数差的绝对值分别为13,7,1,5,2,则从中任取两次,分差绝对值的情况为()()()()()()()()()()13,7,13,1,13,5,13,2,7,1,7,5,7,2,1,5,1,2,5,2共10种, 其中符合条件的情况有()()()()()()13,1,13,2,7,1,7,2,1,5,5,2共6种情况, 则5次考试,任取2次,恰有一次两人“实力相当”的概率为63105=. 19.(1)证明:连接1AC ,∵1111A B C D ABCD -为四棱台,四边形1111A B C D 四边形ABCD ,∴111112A B ACAB AC==,由2AC =得,111AC =, 又∵1A A ⊥底面ABCD ,∴四边形11A ACC 为直角梯形,可求得12C A =, 又2,AC M =为1CC 的中点,所以1AM C C ⊥,又∵平面11A ACC ⊥平面11C CDD ,平面11A ACC ⋂平面111C CDD C C =, ∴AM ⊥平面111,C CDD D D ⊂平面11C CDD , ∴1AM D D ⊥; (2)解:在ABC ∆中,02,30AB AC ABC ==∠=,利用余弦定理可求得,4BC =或2BC =,由于AC BC ≠,所以4BC =,从而222AB AC BC +=,知AB AC ⊥,又∵1A A ⊥底面ABCD ,则平面11A ACC ⊥底面,ABCD AC 为交线,∴AB ⊥平面11A ACC ,所以1AB CC ⊥,由(1)知1,AM CC AB AM A ⊥⋂=, ∴1CC ⊥平面ABM (连接BM ),∴平面ABM ⊥平面11B BCC ,过点A 作AN BM ⊥,交BM 于点N , 则AN ⊥平面11B BCC ,在Rt ABM ∆中可求得AM BM ==AN =所以,点A 到平面11B BCC 20.解:(1)由12c a =得2234a b =, 把点31,2⎛⎫- ⎪⎝⎭代入椭圆方程为221914a b +=,∴221913a a+=得24a =, ∴23b =,椭圆的标准方程为22143x y +=; (2)由(1)知221,143x y c +==,(142PF x x ====-,而4PP x '=-,∴2PP PF'=为定值;②直线12y x m =+与椭圆C 联立,2212143y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩得2230x mx m ++-=, ()2243022m m m ∆=-->⇒-<<,设112211,,,22A x x m B x x m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则21212,3x x m x x m +=-=-, 由①知()()12114,422AF x BF x =-=-,∴1244,22x x mAF BF MF ++=-=+=∵,,AF MF BF 成等差数列,∴2AF BF MF +=,即42m +=解得125m =或43m =-, 又因为22m -<<,所以43m =-.21.解:(1)因为()()22210a x af x x x x -'=-=≠,①若()0,0a f x '≤>,∴()f x 在()(),0,0,-∞+∞为增函数;②若0a>,则()200f x x a x '>⇒->⇒<或x >())2000f x x a x x '<⇒-<⇒<<≠,∴函数()f x的单调递增区间为(),,-∞+∞,单调递减区间为()(,;(2)令()()()()ln 10ah x f x g x x x x x=-=+-->,()22211a x x a h x x x x --'=--=,设()20p x x x a =--=的正根为0x ,所以2000x x a --=,∵()1110p a a =--=-<,∴01x >,()h x 在()00,x 上为减函数,在()0,x +∞上为增函数,()()2000000000min00ln 1ln 12ln 2x x ah x h x x x x x x x x x -==+--=+--=--,令()()2ln 21F x x x x =-->,()12120x F x x x-'=-=>恒成立,所以()F x 在()1,+∞上为增函数, 又∵()12020F =--=,∴()0F x >,即()min 0h x >, 所以,当()0,x ∈+∞时,()()f x g x >.22.(1)解:直线l 和圆2C 的普通方程分别为()220,24x y b x y -+=++=,090AOB ∠=,∴直线l 过圆2C 的圆心()22,0C -,所以20,2b b -+==;(2)证明:曲线()21:0C x ay a =>,可知直线l的参数方程为222x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)代入曲线1C得214022t a t ⎛⎫-+= ⎪ ⎪⎝⎭,21402a a ∆=+>恒成立, 设M N 、两点对应的参数分别为12t t 、,则124812t t ==, 所以22128C M C N t t ==为定值.23.解:(1)2211011x x x x +-+>⇒+>-,①211211x x x x ≥-⎧⇒-<<⎨+>-⎩,②2111x x x φ<-⎧⇒⎨-->-⎩, 所以,不等式的解集为{}|12x x -<<;(2)()1111g x x x m x x m x x m m =+++=-+++≥-+++=+, 当且仅当()()10x x m -++≥时取等号,∴110m ++=, 得2m =-,∴()1g x x x =+-,故当()1,2x ∈-时,第11页 共11页 ()21101012112x x g x x x x -+-<<⎧⎪=≤≤⎨⎪-<<⎩,所以()g x 在()1,2x ∈-时的值域为[)1,3.。
全国卷Ⅰ新高考理科数学仿真模拟试卷一、选择题(共12题,每题5分,共60分)1.如图,已知R是实数集,集合A={x|lo g12(x-1)>0},B={x|2x-3x<0},则阴影部分表示的集合是A.[0,1]B.[0,1)C.(0,1)D.(0,1] 2.已知复数z满足1+iz=(1-i)2,则复数z的虚部是A.-12B.12C.12i D.-12i3.设a=log32,b=log52,c=log23,则A.a>c>bB.b>c>aC.c>b>aD.c>a>b4.已知向量a和向量b的夹角为30°,|a|=2,|b|=√3,则向量a和向量b的数量积a·b= A.1 B.2 C.3 D.45.函数f(x)=x 2|x|e x的大致图象是A. B.C.D.6.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为A.35B.710C.45D.9107.若l 1,l 2,l 3表示三条不同的直线,则下列命题正确的是A.l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B.l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C.l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D.l 1,l 2,l 3共点⇒l 1,l 2,l 3共面8.若执行如图的程序框图,则输出i 的值等于A.2B.3C.4D.59.已知各项均为正数的数列{a n }的前n 项和为S n ,且a n 2-9=4(S n -n ),数列{1a n ·a n+1}的前n 项和为T n ,则T 10=A.13B.17C.235D.22510.已知椭圆C :x 2m+y 2m -4=1(m >4)的右焦点为F ,点A (-2,2)为椭圆C 内一点.若椭圆C 上存在一点P ,使得|PA |+|PF |=8,则m 的取值范围是A.(6+2√5,25]B.[9,25]C.(6+2√5,20]D.[3,5]11.已知定义在[0,π4]上的函数f (x )=sin(ωx -π6)(ω>0)的最大值为ω3,则正实数ω的取值个数最多为A.4B.3C.2D.112.已知三棱锥S-ABC 中,AB ⊥BC ,AB =BC =2,SA =SC =2√2,二面角B-AC-S 的大小为2π3,则三棱锥S-ABC 的外接球的表面积为A.124π9B.105π4C.105π9D.104π9第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(共4题,每题5分,共20分)13.过点M(2,0)作函数f(x)=e x(x-6)的图象的切线,则切线的方程为. 14.已知在等比数列{a n}中,a n>0且a3+a4=a1+a2+3,记数列{a n}的前n项和为S n,则S6-S4的最小值为.15.某统计调查组从A,B两市各随机抽取了6个大型商品房小区调查空置房情况,并记录他们的调查结果,得到如图所示的茎叶图.已知A市被调查的商品房小区中空置房套数的平均数为82,B市被调查的商品房小区中空置房套数的中位数为77,则x-y=.16.已知抛物线y2=2px(p>0)的焦点为F,准线与x轴的交点为Q,双曲线x 2a2−y2b2=1(a>0,b>0)的一条渐近线被抛物线截得的弦为OP,O为坐标原点.若△PQF为直角三角形,则该双曲线的离心率等于.三、解答题(共7题,共70分)17.(本题12分)在△ABC中,a=7,b=8,cos B=-17.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.18.(本题12分)如图,在直三棱柱ABC-A1B1C1中,D为BC的中点,AB=AC,BC1⊥B1D.求证:(1)A1C∥平面ADB1;(2)平面A1BC1⊥平面ADB1.19.(本题12分)2018年11月27日~28日,2018“未来信息通信技术国际研讨会”在北京召开,本届大会以“5G应用生态与技术演进”为主题,全球5G大咖齐聚一堂,进行了深入探讨.为了给5G手机的用户提供更好的服务,我国的移动、联通、电信三大运营商想通过调查了解现有4G手机用户对传输速度的满意度,随机抽取了100名手机用户进行调查评分(满分100分,单位:分),其频数分布表如下所示.(1)作出频率分布直方图,并求这100名4G 手机用户评分的平均数(同一组中的评分用该组区间的中点值作代表);(2)以样本的频率作为概率,认为评分“不低于80分”为“满意度高”,现从所有4G 手机用户中随机抽取5名用户进行进一步访谈,用X 表示抽出的5名用户中“满意度高”的人数,求X 的分布列和数学期望.20.(本题12分)已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√32, 且过点A (2,1).(1)求椭圆C 的方程;(2) 若P ,Q 是椭圆C 上的两个动点,且使∠PAQ 的角平分线总垂直于x 轴, 试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,请说明理由.21.(本题12分)已知函数f (x )=e x -a ln(x -1).(其中常数e=2.718 28…是自然对数的底数) (1)若a ∈R ,求函数f (x )的极值点个数;(2)若函数f (x )在区间(1,1+e -a )上不单调,证明:1a +1a+1>a .请考生在第 22、23 三题中任选二道做答,注意:只能做所选定的题目。
word 某某省某某市第一中学2016届高考数学模拟试题(三)文(含解析) 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{1,2,3,4,5,6,7,8,9}A,2{|,}BxxnnA,则AB的子集共有( ) A.16个 B.8个 C.4个 D.2个 【答案】B 【解析】 试题分析:因为集合{1,2,3,4,5,6,7,8,9}A,2{|,}BxxnnA
1,4,9,16,25,36,49,64,81,所以AB
1,4,9,其子集个数为
328,故选B.
考点:1、集合的交集;2、集合的子集. 2.设i是虚数单位,若复数52()12iaaRi是纯虚数,则a( ) A.-1 B.1 C.-2 D.2 【答案】B
考点:1、复数的加减乘除法的运算;2、复数的概念. 3.设向量(1,2),(2,3)ab,若向量ab与向量(5,3)c垂直,则的值为( ) A.3 B.1 C.13 D.-1 【答案】D word 【解析】 试题分析:因为向量(1,2),(2,3)ab,向量ab与向量(5,3)c垂直,所以5,312,235,310ab,1,故选D.
考点 1、向量的坐标表示;2、平面向量的数量积公式 . 4.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据
1122334455(,),(,),(,),(,),(,)xyxyxyxyxy,根据收集到的数据可知
12345150xxxxx,由最小
二乘法求得回归直线方程为^0.6724.9yx,则12345yyyyy( ) A.45 B.125.4 C.225 D.350.4 【答案】C
考点 1、平均值的求法;2、样本的中心点的性质. 5.阅读如图所示程序框图,运行相应的程序,若输入x的值为-5,则输出的y值是( ) A.-1 B.1 C.2 D.14 word 【答案】A 【解析】 试题分析:因为53,执行538,x因为83,执行835,x因为53,执行532,x因为1223,log21y,故选A.
2021年高考模拟(三)数学文试题 Word版含答案一、选择题:本大题共10小题,每小题5分,共50分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合若,则实数的取值范围是( A )A. B. C. D.2.函数的图象()A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称【答案】D3.下列结论中错误..的是 ( ) A.设命题:,使,则,都有B.若,则“”是“取到等号”的充要条件C.已知命题p和q,若pq为假命题,则命题p与q都为假命题D.命题“在中,若”的逆命题为真命题【答案】C4.执行如图所示的程序框图,如果输入,那么输出的值为()A.B.C.D.【答案】C5.不全相等的五个数a、b、c、m、n具有关系如下:a、b、c成等比数列,a、m、b和b、n、c都成等差数列,则( C )A.B.0 C.2 D.不能确定侧视图 俯视图1 16..已知边长为1的正方形ABCD 位于第一象限,且顶点A 、D 分别在x 、y 的正半轴上(含 原点)滑动,则的最大值是( C ) A .1 B . C .2 D .7.一个四面体的三视图如图所示,则该四面体的表面积为( D )A. B.C. D.【解析】如图所示,四面体为正四面体.8.某市政府调查市民收入与旅游愿望时,采用独立检验法抽取3000人,计算发现K 2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游愿望有关系的可信程度是 ( )P (K 2≥k ) … 0.25 0.15 0.10 0.025 0.010 0.005 …k… 1.323 2.072 2.706 5.024 6.635 7.879 …A. 99.5% B .97.5% C .95% D .90% 【答案】B 9.已知、、均为单位向量,且满足·=0,则(++)·(+)的最大值是( )A .2+2B .2+C .3+D .1+2 【答案】B10.定义在上的函数满足:则不等式(其中为自然对数的底数)的解集为 ( ) . . . . 【解析】构造函数'''()e ()e ()e e ()()10,x x x x g x f x f x f x f x ⎡⎤=⋅+⋅-=+->⎣⎦因为所以是R 上的增函数,又因为,所以原不等式转化为,解得.故选A. 二、填空题:本大题共5小题,每小题5分,共25分.11.在△ABC 中,=15,=10, ∠A=,则 【答案】12.如图,椭圆的长轴为A 1A 2,短轴为B 1B 2,将坐标平面沿y 轴折成一个二面角,使点A 2在平面B 1A 1B 2上的射影恰好是该椭圆的左焦点,则此二面角的大小为 【答案】13.在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,侧棱PA ⊥底面ABCD ,PA =2,E 为AB 的中点,则四面体PBCE 的体积为_________.【答案】14.等比数列的前项和为,若,,成等差数列,则其公比为 ____________. 【答案】-2 15.在函数的图像上任取两个不同的点、,总能使得,则实数的取值范围为 【答案】【解析】原式等价为,令,则在上为不减函数,所以.三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16. 某工厂有工人1000人,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人)。
2011届郑州二外高考第一轮模拟数学试题(文二)
一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.若集合}13|{},2|||{>=>=x x Q x x P ,则Q C P C R R ⋂等于( ) A .(-∞,0)
B .(-∞,2]
C .[-2,0]
D .[-2,2]
2.一个几何体的三视图如图所示,其中正视图与 左视图都是边长为2的正三角形,则这个几何体的 侧面积为
( )
A .
π2
3
B .2π
C .3π
D .4π
3.已知数列)tan(,4}{1221371a a a a a a n +=++则为等差数列且π的值为
( )
A .3
B .3±
C .3
3-
D .—3
4.已知a =(1,0),b =(1,1),(a +λb )⊥b ,则λ=( )
A .-2
B .2
C .
2
1 D . 2
1-
5.设n m ,是两条不同的直线,βα,是两个不同的平面,则下列命 题不正确的是( ) A .若a n n m n m //,,,则αα⊄⊥⊥ B .若ααβαβ⊂⊥⊥m m m 或则//,,
C .若ββαα⊥⊥m m 则,,//
D .若βαβα⊥⊥⊥⊥则,,,n m n m 6.方程x x 2)4(log 2=+的根的情况是( ) A .仅有一根
B .有两个正根
C .有一正根和一负根
D .有两个负根
7.过点)
2,3(-的直线l 经过圆0222=-+y y x 的圆心,
则直线l
的倾斜角大小为( )
A .150°
B .120°
C .30°
D .60° 8
.若函数)1
(,34)()(2++-='x
f x x x f x f 则函数的导函数 的单调递减区间是( )
A .(0,2)
B .(1,3)
C .(—4,—2)
D .(—3,—1)
正(主)视图
左(侧)视图
俯视图
9.按如图所示的程序框图运算:若输入8
=x ,则输出=
k
( )
A .3
B .4
C .5
D .6 10.已知复数i z bi z 21,321-=-=,若
2
1z z 是实数,则实数b 的值为( )
A . 6
B . -6
C .0
D . 6
1
11.已知双曲线
)
0,0(12
22
2>>=-
b a b
y a
x 的左、右焦点分别为F 1、F 2,若在双曲线的右支上存
在一点P ,使得|PF 1|=3|PF 2|,则双曲线的离心率e 的取值范围为( )
A .[)+∞,2
B .
[
)+∞
,2
C .(]2,1
D .(]
2,1
12.设函数
)
(x f 是奇函数,并且在R 上为增函数,若0≤θ≤
2
π
时,f (m sin θ)+f (1—m )
>0恒成立,则实数m 的取值范围是( ) A .(0,1)B .(-∞,0)C .)
2
1,
(-∞ D .(-∞,1)
二、填空题:本大题共4小题,每小题5分,共20分。
把答案填在横线上。
13.已知数列=
+++=
65,2
1}{a a n n S n a n n 则项和为
的前
14.△ABC 的内角A 、B 、C 的对边分别为c b a ,,,若︒===120,6,2B b c ,则a = . 15.抛物线)0(22>=p px y 的动弦AB 的长为)
2(p a a ≥,则弦AB 的中点M 到y 轴的最短距离
为_______________。
16.给出定义:若2
12
1+
≤<-
m x m (其中m 为整数),则m 叫做离实数x 最近的整数,记作}{x ,
即m
x =
}{. 在此基础上给出下列关于函数
|}{|)(x x x f -=的四个命题:
①函数)
(x f y =的定义域是R ,值域是[0,2
1]; ②函数)(x f y =的图像关于直线)
(2
Z k k x
∈=对称;
③函数
)
(x f y =是周期函数,最小正周期是1; ④ 函数
)
(x f y =在⎥⎦⎤
⎢⎣⎡
-
21,
21上是增函数;
则其中真命题是__ .
F E
A D
B
C
P
三、解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分) 已知函数
2
12
cos
2cos
2sin
)(2
-
+=x x x x f .
(1)若()的值求απαα,,0,4
2)(∈=f ;
(2)求函数)
(x f 在⎥⎦
⎤
⎢⎣
⎡-
ππ
,4上最大值和最小值.
18.(本小题满分12分)
旅游公司为三个旅游团提供了甲.乙.丙.丁4条旅游线路,每个旅游团从中任选一条线路 (1)3个旅游团选择3条不同线路的概率;
(2)求恰有2条线路都没有被选的概率.
19.(本小题满分12分)
如图,已知四棱锥P-ABCD 中,PA ⊥平面ABCD , ABCD 是直角梯形,AD ∥BC ,∠BAD=90°,BC=2AD .
(1)求证:AB ⊥PD ; (2)在线段PB 上是否存在一点E ,使AE//平面PCD , 若存在,指出点E 的位置并加以证明;若不存在,请说明理由.
20.(本小题满分12分)
已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数,又
.2
3
)21(='f (1)求)(x f 的解析式;
(2)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围
F
E
21.(本小题满分12分) 设椭圆)0(1:2
22
2>>=+
b a b
y a
x C
的离心率为2
2=
e ,点A 是椭圆上的一点,且点A 到椭圆C 两焦
点的距离之和为4. (1)求椭圆C 的方程;
(2)椭圆C 上一动点),(00y x P ,关于直线x
y 2=的对称点为),(111y x P ,求1143y x -的取值范围.
四、选做题(本小题满分10分。
请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分。
作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑。
) 22. 如图,AB 是⊙O 的直径,弦BD 、CA 的延长线相交于点E , EF 垂直BA 的延长线于点F. 求证:(1)DFA DEA ∠=∠;
(2)AB 2
=BE •BD-AE •AC.
23. 已知圆方程为08cos 7cos 8sin 6222=++-+-θθθx x y y 。
(1)求圆心轨迹的参数方程C ; (2)点)
,(y x P 是(1)中曲线C 上的动点,求y
x +
2的取值范围。
24.设函数21)(-+-=x x x f 。
(1)画出函数y=f(x)的图像;
(2)若不等式)(x f a b a b a ≥-++,(a ≠0,a 、b ∈R )恒成立,求实数x 的范围。