2008年广东高考数学试题及答案
- 格式:doc
- 大小:968.00 KB
- 文档页数:9
2008年普通高等学校统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知0<a<2,复数z 的实部为a ,虚部为1,则|z|的取值范围是( )A. (1,5)B. (1,3)C. (1D. (12、记等差数列{a n }的前n 项和为S n 。
若a 1=1/2,S 4=20,则S 6 =( )A. 16B. 24C. 36D. 48 3、某校共有学生2000名,各年级男、女生人数如右表。
已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19。
现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( ) A. 24 B. 18 C. 16 D. 124、若变量x 、y 满足24025000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则32z x y =+的最大值是( )A. 90B. 80C. 70D. 405、将正三棱柱截去三个角(如图1所示A 、B 、 C 分别是△GHI 三边的中点)得到几何体如 图2,则该几何体按图2所示方向的侧视图 (或称左视图)为( )6、已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( )A.()p q ⌝∨B. p q ∧C. ()()p q ⌝∧⌝D. ()()p q ⌝∨⌝7、设a ∈R ,若函数3axy e x =+,x ∈R 有大于零的极值点,则( )A. a>-3B. a<-3C. a>-1/3D. a<-1/38、在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F 。
若AC a =,BD b =,则AF =( )A.1142a b + B.2133a b + C.1124a b + D.1233a b + 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
重庆大学城市科技学院《2011级大学物理电磁学测验题》(说明:本卷一律不使用计算器。
答案中可保留指数、对数、三角函数、反三角函数、乘方、开方,但不能保留四则运算。
)基本公式:点电荷场强:204r qE επ=;均匀带电长直圆柱面场强:rE 02ελπ=外,E内=0;均匀带电球面电势:R q V 04επ=内,r q V 04επ=外;电容器电能:221CU W e=; 长直电流磁场:rIB πμ20=;圆电流中心磁场:r I B 20μ=;长直螺线管磁场:nI B 0μ=;线圈磁矩:S NI m =;磁矩受磁力矩:M =m ×B ;一.单项选择题(共15题,共30分,每题2分)1.两个同心均匀带电球面,半径分别为R a 和R b (R a <R b ),所带电荷量分别为Q a 和Q b ,设某点与球心相距r ,当R a <r<R b 时,该点的电场强度的大小为 D 。
A2041r Q Q b a +πε B 2041r Q Q ba -πε C)(41220b b a R Q r Q +πε D 2041r Q aπε 2.如图,一带电大导体板,平板两个表面的电荷面密度的代数和为σ,置于电场强度为的均匀外电场中,且使板面垂直于0E的方向。
设外电场分布不因带电平板的引入而改变,则板的附近左、右两侧的合场强为 A 。
A 00002,2εσεσ+-E E B 00002,2εσεσ++E E C 00002,2εσεσ-+E E D 00002,2εσεσ--E E 3.一平板电容器充电后保持与电源连接,若改变两极板间的距离,则下述物理量中哪个保持不变? D 。
A 电容器的电容量B 两极板间的电场强度C 电容器储存的能量D 两极板间的电势差4.有长为L 截面积为S 的载流长直螺线管均匀密绕N 匝线圈,设电流为I ,则管内储藏的磁场能量为 D 。
A22202LSN I μ B220LSIN μ4C2202LSIN μ DLSN I 2220μ5.电位移矢量对时间的变化率dtDd 的单位是 C 。
网站导航:591UP首页| 查找试卷| 出卷| 查找题目| 高中历史期刊点击这里登录之后即可免费下载word版试卷!2008年高考数学广东理科试卷含详细解答一. 选择题(本大题共8小题,共0分)1. (2008年广东理1)已知,复数的实部为,虚部为1,则的取值范围是()A. B. C. D.答案详解加入试题篮收藏题目有误回顶部题目ID:44905c72-eced-4edd-a8ef-20026aee4e05答案:C难度:B考查点:复数的模,复数解析:,而,即,点拨:暂无解题方法:暂无思想方法:暂无涉及知识:复数的模,复数2. (2008年广东理2)记等差数列的前项和为,若,,则()A.16B.24C.36D.48答案详解加入试题篮收藏题目有误回顶部题目ID:b4ff9601-6867-400e-b82e-a38db8c2c7ac答案:D难度:B考查点:数列解析:,,故点拨:暂无解题方法:暂无思想方法:暂无涉及知识:数列3. (2008年广东理3)某校共有学生2000名,各年级男、女生人数如表1.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A.24B.18C.16D.12答案详解加入试题篮收藏题目有误回顶部题目ID:a807cd59-2a5b-4ef6-a1a2-2bd99a075e86答案:C难度:C考查点:分层抽样解析:依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是,即总体中各个年级的人数比例为,故在分层抽样中应在三年级抽取的学生人数为点拨:暂无解题方法:暂无思想方法:暂无涉及知识:分层抽样4. (2008年广东理4)若变量满足则的最大值是( )A.90B.80C.70D.40答案详解加入试题篮收藏题目有误回顶部题目ID:68356989-78a0-4a87-a0e8-875c6e817bdf答案:C难度:C考查点:简单的线性规划问题,不等式解析:画出可行域(如图),在点取最大值点拨:暂无解题方法:暂无思想方法:暂无涉及知识:简单的线性规划问题,不等式5. (2008年广东理5)将正三棱柱截去三个角(如图1所示分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()A. B. C. D.答案详解加入试题篮收藏题目有误回顶部题目ID:834f4469-408d-4049-a901-adbd613afc19答案:A难度:C考查点:空间几何体的三视图,立体几何解析:解题时在图2的右边放扇墙(心中有墙),可得答案A.点拨:暂无解题方法:暂无思想方法:暂无涉及知识:空间几何体的三视图,立体几何6. (2008年广东理6)已知命题所有有理数都是实数,命题正数的对数都是负数,则下列命题中为真命题的是( )A. B. C. D.答案详解加入试题篮收藏题目有误回顶部题目ID:a8b7ce9f-1d8f-4178-bc65-c01798cde3eb答案:D难度:C考查点:逻辑联结词,真值表解析:不难判断命题为真命题,命题为假命题,从而上述叙述中只有为真命题点拨:暂无解题方法:暂无思想方法:暂无涉及知识:逻辑联结词,真值表7. (2008年广东理7)设,若函数,有大于零的极值点,则( )A. B.C. D.答案详解加入试题篮收藏题目有误回顶部题目ID:cf000195-f916-4040-9873-6970299f72a3答案:B难度:C考查点:函数与导数解析:,若函数在上有大于零的极值点,即有正根。
2008年普通高等学校招生全国统一考试(广东卷)(文科)全解析广东佛山南海区南海中学 钱耀周一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A ={参加北京奥运会比赛的运动员},集合B ={参加北京奥运会比赛的男运动员}。
集合C ={参加北京奥运会比赛的女运动员},则下列关系正确的是A.A ⊆BB.B ⊆CC.A ∩B =CD.B ∪C =A【解析】送分题呀!答案为D.2.已知0<a <2,复数z a i =+(i 是虚数单位),则|z |的取值范围是B. (1,C.(1,3)D.(1,5) 【解析】12+=a z ,而20<<a ,即5112<+<a ,51<<∴z ,选B.3.已知平面向量(1,2)a =,(2,)b m =-,且a //b ,则23a b +=( )A 、(5,10)--B 、(4,8)--C 、(3,6)--D 、(2,4)--【解析】排除法:横坐标为2(6)4+-=-,选B.4.记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A 、2B 、3C 、6D 、7【解析】4224123S S S d d --==⇒=,选B.5.已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数 【解析】222211cos 4()(1cos 2)sin 2cos sin sin 224x f x x x x x x -=+===,选D. 6.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( )A 、10x y ++=B 、10x y +-=C 、10x y -+=D 、10x y --=【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=,选C.(或由图形快速排除得正确答案.)7.将正三棱柱截去三个角(如图1所示A 、B 、C 分别是GHI ∆三边的中点)得到的几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为【解析】解题时在图2的右边放扇墙(心中有墙),可得答案A.8. 命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( )A 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数【解析】考查逆否命题,易得答案A.9、设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( )A 、1a <-B 、1a >-C 、1a e <-D 、1a e>-【解析】题意即0x e a +=有大于0的实根,数形结合令12,x y e y a ==-,则两曲线交点在第一象限,结合图像易得11a a ->⇒<-,选A.10、设,a b R ∈,若||0a b ->,则下列不等式中正确的是( )A 、0b a ->B 、330a b +<C 、220a b -< D 、0b a +>【解析】利用赋值法:令1,0a b ==排除A,B,C,选D.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11-13题)11.为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)55,75的人数是 .【解析】20(0.06510)13⨯⨯=,故答案为13.12.若变量x ,y 满足240,250,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则z =3x +2y 的最大 值是________。
2008年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A ={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( )A 、AB ⊆ B 、BC ⊆ C 、B C A ⋃=D 、A B C ⋂= 2、已知02a <<,复数z a i =+(i 是虚数单位),则||z 的取值范围是( )A 、(1,5)B 、(1,3)C 、(1,5)D 、(1,3) 3、已知平面向量,(2,)b m =-,且a //b ,则23a b +=( )A 、(5,10)--B 、(4,8)--C 、(3,6)--D 、(2,4)--4、记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A 、2B 、3C 、6D 、75、已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数6、经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( )A 、10x y ++=B 、10x y +-=C 、10x y -+=D 、10x y --= 7、将正三棱柱截去三个角(如图1所示A 、B 、C 分别是GHI ∆三边的中点)得到的几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为8、命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( )A 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数 9、设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( )A 、1a <-B 、1a >-C 、1a e <-D 、1a e>-10、设,a b R ∈,若||0a b ->,则下列不等式中正确的是( ) A 、0b a -> B 、330a b +> C 、220a b -< D 、0b a +>二、填空题 (一)必做题11、为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[55,75)的人数是 。
绝密 ★ 启用前 试卷类型B2008年普通高等学校招生全国统一考试 (广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:如果事件A B ,互斥,那么()()()P A B P A P B +=+.已知n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++ .一、选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( )A .(15),B .(13), C. D.2.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( ) A .16B .24C .36D .483.某校共有学生2000名,各年级男、女生人数如表1.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C )A .24B .18C .16D .12 表14.若变量x y ,满足24025000x y x y x y ⎧+⎪+⎪⎨⎪⎪⎩,,,,≤≤≥≥则32z x y =+的最大值是( )A .90B .80C .70D .405.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )6.已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝7.设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则( ) A .3a >-B .3a <-C .13a >-D .13a <-8.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC = a ,BD = b ,则AF =( )A .1142+a b B .2133+a b C .1124+a b D .1233+a b 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~12题) 9.阅读图3的程序框图,若输入4m =,6n =,则输出 a = ,i = .(注:框图中的赋值符号“=”也可以写成“←”或“:=”) 10.已知26(1)kx +(k 是正整数)的展开式中,8x 的系数小于 120,则k = .11.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 .12.已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 .E F DIA H GBC EF D AB C侧视 图1图2 BEA .BEB . BEC .BED .图3图4二、选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)已知曲线12C C ,的极坐标方程分别为cos 3ρθ=,π4cos 002ρθρθ⎛⎫=< ⎪⎝⎭,≥≤,则曲线1C 与2C 交点的极坐标为 .14.(不等式选讲选做题)已知a ∈R ,若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是 .15.(几何证明选讲选做题)已知PA 是圆O 的切线,切点为A ,2PA =.AC 是圆O 的直径,PC 与圆O 交于点B ,1PB =,则圆O 的半径R = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫ ⎪⎝⎭,. (1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.17.(本小题满分13分)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ. (1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少? 18.(本小题满分14分)设0b >,椭圆方程为222212x y b b+=,抛物线方程为28()x y b =-.如图4所示,过点(02)F b +,作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过椭圆的右焦点1F .(1)求满足条件的椭圆方程和抛物线方程;(2)设A B ,分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得ABP △为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标). 19.(本小题满分14分)设k ∈R ,函数111()1x x f x x ⎧<⎪-=⎨⎪⎩,≥,()()F x f x kx =-,x ∈R ,试讨论函数()F x 的单调性. 20.(本小题满分14分)如图5所示,四棱锥P ABCD -的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,60ABD ∠=,45BDC ∠=,PD 垂直底面ABCD ,分别是PB CD ,上的点,且PE DFEB FC=,过点E 作BC 的平行线交(1)求BD 与平面ABP 所成角θ的正弦值; (2)证明:EFG △是直角三角形;(3)当12PE EB =时,求EFG △的面积. 21.(本小题满分12分)设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…). (1)证明:p αβ+=,q αβ=; (2)求数列{}n x 的通项公式; (3)若1p =,14q =,求{}n x 的前n 项和n S .图5绝密★启用前试卷类型B。
2008年高考文科数学试题及参考答案(广东卷))数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中表示球的半径球的体积公式如果事件在一次试验中发生的概率是,那么次独立重复试验中恰好发生次的概率其中表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,,则()A. B. C. D.2.若函数的反函数图象过点,则函数的图象必过点()A. B. C. D.3.双曲线的焦点坐标为()A., B.,C., D.,4.若向量与不共线,,且,则向量与的夹角为()A.0 B. C. D.5.设等差数列的前项和为,若,,则()A.63 B.45 C.36 D.276.若是两条不同的直线,是三个不同的平面,则下列命题中的真命题是()A.若,则 B.若,,则C.若,,则 D.若,,,则7.若函数的图象按向量平移后,得到函数的图象,则向量()A. B. C. D.8.已知变量满足约束条件则的取值范围是()A. B.C. D.9.函数的单调增区间为()A. B. C. D.10.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球.若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为()A. B. C. D.11.设是两个命题:,则是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件12.将数字1,2,3,4,5,6拼成一列,记第个数为,若,,,,则不同的排列方法种数为()A.18 B.30 C.36 D.48第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知函数为奇函数,若,则 .14.展开式中含的整数次幂的项的系数之和为 (用数字作答).15.若一个底面边长为,棱长为的正六棱柱的所有顶点都在一个球的面上,则此球的体积为.16.设椭圆上一点到左准线的距离为10,是该椭圆的左焦点,若点满足,则 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:分组 [500,900) [900,1100) [1100,1300) [1300,1500) [1500,1700) [1700,1900) [1900, )频数 48 121 208 223 193 165 42频率(I)将各组的频率填入表中;(II)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(III)该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率.18.(本小题满分12分)如图,在直三棱柱中,,,分别为棱的中点,为棱上的点,二面角为.(I)证明:;(II)求的长,并求点到平面的距离.19.(本小题满分12分)已知函数(其中)(I)求函数的值域;(II)若函数的图象与直线的两个相邻交点间的距离为,求函数的单调增区间20.(本小题满分12分)已知数列,满足,,且()(I)令,求数列的通项公式;(II)求数列的通项公式及前项和公式.21.(本小题满分14分)已知正三角形的三个顶点都在抛物线上,其中为坐标原点,设圆是的内接圆(点为圆心)(I)求圆的方程;(II)设圆的方程为,过圆上任意一点分别作圆的两条切线,切点为,求的最大值和最小值.22.(本小题满分12分)已知函数,,且对任意的实数均有,.(I)求函数的解析式;(II)若对任意的,恒有,求的取值范围.2007年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)试题答案与评分参考说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。
2008年普通高考广东卷数学(文科)(B 卷)参考答案一选择题:CCBBD CAAAD二填空题:11. 13 12. 70 13. 12 3 14. 6π⎛⎫ ⎪⎝⎭ ,6π⎛⎫- ⎪⎝⎭ 15.;三解答题:16解:(1)依题意知 A=1 1sin 332f ππφ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 又4333πππφ<+< ; ∴536ππφ+=即 2πφ= 因此 ()sin cos 2f x x x π⎛⎫=+= ⎪⎝⎭; (2)()3cos 5fαα==,()12cos 13f ββ== 且 ,0,2παβ⎛⎫∈ ⎪⎝⎭∴ 4sin 5α= ,5sin 13β= ()()3124556cos cos cos sin sin 51351365fαβαβαβαβ-=-=+=⨯+⨯= ; 17解:设楼房每平方米的平均综合费为f (x )元,则 ()()2160100001080056048560482000f x x x x x⨯=++=++()10,x x Z +≥∈ ()21080048f x x'=-令 ()0f x '= 得 15x =当 15x > 时,()0f x '> ;当 015x <<时,()0f x '<因此 当15x =时,f (x )取最小值()152000f =;答:为了楼房每平方米的平均综合费最少,该楼房应建为15层。
18解:(1) BD 是圆的直径 ∴ 90BAD ∠= 又~ADP BAD ,∴ AD DP BA AD = , ()()22234sin 60431sin 3022R BD AD DP R BA BD R ⨯====⨯; (2 ) 在Rt BCD 中,cos 452CD BD R ==2222229211PD CD R R R PC +=+==∴ PD CD ⊥ 又 90PDA ∠= ∴ PD ⊥底面ABCD()2113212sin 604522222ABCSAB BC R R ⎛⎫=+=+= ⎪ ⎪⎝⎭三棱锥P ABC -的体积为 2311313133344P ABC ABCV S PD R R R -++=== . 19解:(1)0.192000x= ∴ 380x =(2)初三年级人数为y +z =2000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:48500122000⨯= 名 (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z ); 由(2)知 500y z += ,且 ,y z N ∈,基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个 事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个 ∴ 5()11P A =; 20解:(1)由()28x y b =-得 218y x b =+ 当2y b =+时,4x =±,∴G 点的坐标为(4,b +2) 14y x '=, 41x y ='=过点G 的切线方程为(2)4y b x -+=-,即2y x b =+-, 令y =0得 2x b =- ,∴1F 点的坐标为 (2-b ,0);由椭圆方程得1F 点的坐标为(b ,0), ∴ 2b b -= 即 b =1,因此所求的椭圆方程及抛物线方程分别为2212x y +=和28(1)x y =-。
绝密★启用前 试卷类型:B2008年全国各地高考试题(广东卷)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡历上角“条形码粘帖处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B )已知n 是正整数,则a n -b n =(a -b )(a n-1+a n-2b +…+ab n-2+b n-1).一、选择题,本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是2.记等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6= A.16 B.24 C.36 D.483.某校共有学生2000名,各年级男、女生人数如表1,已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19,现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为A.24B.48C.16D.124.若变量x ,y 满足240,250,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则32z x y =+的最大值是A.90B.80C.70D.405.将正三棱柱截去三个角(如图1)所示A,B,C 分别是△GHI 三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为6.已知命题P :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是A.q p ∨⌝)(B.q p ∧C.)()(q p ⌝∧⌝D.)()(q p ⌝∨⌝7.设.R a ∈若函数R x x e y m ∈+=,3有大于零的极值点,则A.a>-3B.a <-3C.a>-31D.a <-31 8.在平行四边形ABCD 中,AC 与BD 交于点O,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,b BD a AC ==则=AFA.b a2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
绝密 ★ 启用前 试卷类型B2008年普通高等学校招生全国统一考试 (广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:如果事件A B ,互斥,那么()()()P A B P A P B +=+.已知n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++ .一、选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( ) A .(15), B .(13),C.(1D.(12.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( ) A .16B .24C .36D .483.某校共有学生2000名,各年级男、女生人数如表1.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C ) A .24B .18C .16D .12表14.若变量x y ,满足24025000x y x y x y ⎧+⎪+⎪⎨⎪⎪⎩,,,,≤≤≥≥则32z x y =+的最大值是( )A .90B .80C .70D .405.将正三棱柱截去三个角(如图1所示A B C ,,分别是G H I △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )6.已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( ) A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝7.设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则( ) A .3a >- B .3a <- C .13a >-D .13a <-8.在平行四边形A B C D 中,A C 与BD 交于点O E ,是线段O D 的中点,AE 的延长线与C D 交于点F .若AC = a ,BD = b ,则AF =( ) A .1142+a b B .2133+a bC .1124+a b D .1233+a b二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~12题)9.阅读图3的程序框图,若输入4m =,6n =,则输出 a = ,i = .(注:框图中的赋值符号“=”也可以写成“←”或“:=”) 10.已知26(1)kx +(k 是正整数)的展开式中,8x 的系数小于 120,则k = .11.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 .12.已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 .EF D IA HGBC EF D ABC侧视 图1图2BEA .BEB . BEC .BED .图3图4二、选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)已知曲线12C C ,的极坐标方程分别为c o s 3ρθ=,π4cos 002ρθρθ⎛⎫=<⎪⎝⎭,≥≤,则曲线1C 与2C 交点的极坐标为 . 14.(不等式选讲选做题)已知a ∈R ,若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是 .15.(几何证明选讲选做题)已知P A 是圆O 的切线,切点为A ,2PA =.A C 是圆O 的直径,P C 与圆O 交于点B ,1PB =,则圆O 的半径R = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫ ⎪⎝⎭,. (1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.17.(本小题满分13分)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ. (1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?18.(本小题满分14分)设0b >,椭圆方程为222212xy bb+=,抛物线方程为28()x y b =-.如图4所示,过点(02)F b +,作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过椭圆的右焦点1F .(1)求满足条件的椭圆方程和抛物线方程;(2)设A B ,分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得A B P △为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).19.(本小题满分14分)设k ∈R ,函数111()1x x f x x ⎧<⎪-=⎨⎪⎩,≥,()()F x f x kx =-,x ∈R ,试讨论函数()F x 的单调性.20.(本小题满分14分)如图5所示,四棱锥P A B C D -的底面A B C D 是半径为R 的圆的内接四边形,其中BD 是圆的直径,60ABD ∠= ,45BDC ∠= ,PD 垂直底面A B C D ,分别是P B C D ,上的点,且P E D F E BF C=,过点E 作B C 的平行线交P (1)求BD 与平面A B P 所成角θ的正弦值; (2)证明:E F G △是直角三角形; (3)当12P E E B=时,求E F G △的面积.21.(本小题满分12分)设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…).(1)证明:p αβ+=,q αβ=; (2)求数列{}n x 的通项公式; (3)若1p =,14q =,求{}n x 的前n 项和n S .图5绝密★启用前 试卷类型B2008年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案一、选择题:C D C C A D B B 1.C 【解析】12+=a z ,而20<<a ,即5112<+<a ,51<<∴z2.D 【解析】20624=+=d S ,3=∴d ,故481536=+=d S3.C 【解析】依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是5003703803773732000=----,即总体中各个年级的人数比例为2:3:3,故在分层抽样中应在三年级抽取的学生人数为168264=⨯4.C 5.A6.D 【解析】不难判断命题p 为真命题,命题q 为假命题,从而上述叙述中只有()()p q ⌝∨⌝为真命题7.B 【解析】'()3ax f x ae =+,若函数在x R ∈上有大于零的极值点,即'()30ax f x ae =+=有正根。
当有'()30ax f x ae =+=成立时,显然有0a <,此时13ln()x aa=-,由0x >我们马上就能得到参数a 的范围为3a <-。
8.B二、填空题:9.【解析】要结束程序的运算,就必须通过n 整除a 的条件运算,而同时m 也整除a ,那么a 的最小值应为m 和n 的最小公倍数12,即此时有3i =。
10.【解析】26(1)kx +按二项式定理展开的通项为22166()r r r r r r T C kx C k x +==,我们知道8x的系数为444615C k k =,即415120k <,也即48k <,而k 是正整数,故k 只能取1。
11.【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=。
12.【解析】21cos 211()sin sin cos sin 2)22242xf x x x x x x π-=-=-=--+,故函数的最小正周期22T ππ==。
二、选做题(13—15题,考生只能从中选做两题)图413.【解析】由cos 3(0,0)4cos 2ρθπρθρθ=⎧≥≤<⎨=⎩解得6ρπθ⎧=⎪⎨=⎪⎩)6π。
14.10,4⎡⎤⎢⎥⎣⎦15.【解析】依题意,我们知道P B A P A C ∆∆ ,由相似三角形的性质我们有2P A P BRA B=,即2221PA AB R PB∙⨯===⨯三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.16.解:(1)依题意有1A =,则()s i n ()f x x ϕ=+,将点1(,32M π代入得1sin()32πϕ+=,而0ϕπ<<,536πϕπ∴+=,2πϕ∴=,故()sin()cos 2f x x x π=+=;(2)依题意有312cos ,cos 513αβ==,而,(0,)2παβ∈,45sin ,sin 513αβ∴====,3124556()cos()cos cos sin sin 51351365f αβαβαβαβ-=-=+=⨯+⨯=。