高二数学寒假作业第3天平面向量理
- 格式:doc
- 大小:395.50 KB
- 文档页数:3
新课标2019年高二数学寒假作业3(必修5-选修2-3)学习的过程中,在把理论知识复习好的同时,也应该要多做题,学懂自己不明白的,下面是编辑准备的新课标2019年高二数学寒假作业,希望对大家有所帮助。
一选择题(本大题共小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数的共轭复数是,z=3+i,则等于()A.3+iB.3-iC. i+D. +i2.设随机变量服从正态分布N(0,1),P(1)=p,则P(-10)等于()A. pB.1-pC.1-2pD. -p3.若曲线在点处的切线方程是,则( )A. B.C. D.4.将A,B,C,D四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A,B不能放入同一个盒子中,则不同的放法有()A.15种B.18种C.30种D.36种5.直线被圆截得的弦长为( )A. B. C. D.6.过抛物线的焦点作直线交抛物线与两点,若线段中点的横坐标为3,则等于( )A.10B.8C. 6D.47.正整数按下表的规律排列(下表给出的是上起前4行和左起前4列)则上起第2019行,左起第2019列的数应为()A. B. C. D.8.已知是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若为钝角三角形,则该双曲线的离心率的取值范围是( )A.B.. D.本大题共小题,每小题5分,9.设P为双曲线上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是________.10.在的展开式中,含x5项的系数是________11.曲线y=x2-1与x轴围成图形的面积等于________12.椭圆的焦点分别是和,过中心作直线与椭圆交于,若的面积是,直线的方程是。
三.解答题(本大题共小题,每小题分,13.(本小题满分1分) 设z是虚数,是实数,且.(1)求|z|的值;(2)求z的实部的取值范围.14.(本小题满分分) 已知抛物线C:y=-x2+4x-3 .(1)求抛物线C在点A(0,-3)和点B(3,0)处的切线的交点坐标;(2)求抛物线C与它在点A和点B处的切线所围成的图形的面积.15.(1分).已知函数,。
高二数学必修二知识点:平面向量(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高二数学必修二知识点:平面向量本店铺高中频道为你准备了《高二数学必修二知识点:平面向量》希望可以帮到你!1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
高二数学平面向量试题答案及解析1.已知则 ,.【答案】;【解析】由三边可知,以向量为邻边的平行四边形是菱形,夹角为,,为另一对角线长度为1【考点】向量运算与三角形法则2.已知,向量的夹角为120°,且,则实数t的值为()A.-2B.-1C.1D.2【答案】B【解析】【考点】向量的数量积运算3.已知点,曲线C:恒过定点B,P为曲线C上的动点且的最小值为2,则()A.﹣2B.﹣1C.2D.1【答案】D【解析】曲线C:恒过点B,则令,可得,即,又点,设,则,由于在(0,+∞)上有最小值2,且,故是的极值点,即最小值点.,恒成立,在(0,+∞)上是增函数,所以没有最小值;故不符合题意;当a>0,时,,函数在是减函数,在是增函数,所以有最小值为,即,解得;故选D.【考点】平面向量数量积的运算.4.已知平面向量,且,则实数的值为()A.1B.4C.D.【答案】D【解析】因为,所以.故选D.【考点】向量平行的充要条件.5.已知菱形的边长为,,则()A.B.C.D.【答案】D【解析】.故D正确.【考点】1向量的加减法;2向量的数量积.6.如图,设为内的两点,且,=+,则的面积与的面积之比为()A.B.C.D.【答案】B【解析】设,则,由平行四边形法则知,所以,同理,故.故答案为:B.【考点】平面向量共线.【思路点睛】首先,利用向量的运算法则——平行四边形法则作出P,利用同底的三角形的面积等于高的比求出,然后再平行四边形法则作出Q,同理可求出,再将两个式子相比,即可求出的面积与的面积之比.7.已知平面向量,,且//,则()A.B.C.D.4【答案】C【解析】两向量平行坐标满足【考点】向量平行的判定8.设,,且,则锐角为()A.B.C.D.【答案】C【解析】由,得,即,由二倍角公式得,故选C.【考点】1、向量的坐标运算;2、向量共线的基本定理.【思路点晴】本题主要考查的向量的基本概念与简单运算、向量的坐标运算,属于容易题.本题通过向量共线,得,代入坐标运算的公式;再由二倍角公式,得到关于角的三角函数值,从而求得锐角的值.9.已知向量,,若与共线,则的值为()A.B.2C.-D.-2【答案】D【解析】,,若与共线,所以有【考点】向量共线与坐标运算10.(本小题满分12分)已知非零向量满足,且.(1)求;(2)当时,求向量与的夹角的值.【答案】(1)(2)【解析】(1)本题考察的是求向量的模,根据题目所给条件很容易得到,即可得到。
高二数学寒假作业一、 填空题1.命题“若方程02=-+m x x 无实根,则0≤m ”为 命题(用“真”、“假”填空) 2.命题“2,0x R x x ∃∈+≤”的否定是 .3.已知p :直线a 与平面α内无数条直线垂直,q :直线a 与平面α垂直.则p 是q 的 条件.(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空)4.双曲线221916x y -=的右焦点是抛物线的焦点,则抛物线的标准方程是 . 5. 已知椭圆5522=+ky x 的一个焦点为)2,0(,则实数k 的值为_______.6.已知命题6:2≥-x x p ,Z x q ∈:,则使得“p 且q ”与“非q ”同时为假命题的所有x 组成的集合M = .7. 函数y=sinx(cosx+1),则函数的导数是y ′=________________.8.当h 无限趋近于0时,22(2)2h h+-无限趋近于常数A ,则常数A 的值为 .9.函数28ln y x x =-的单调递增区间为 _______.10.若l 为一条直线,α,β,γ为三个互不重合的平面,给出下面四个命题: ①α⊥γ,β⊥γ,则α⊥β; ②α⊥γ,β∥γ,则α⊥β; ③l ∥α,l ⊥β,则α⊥β. ④若l ∥α,则l 平行于α内的所有直线。
其中正确命题的序号是 。
(把你认为正确命题的序号都........填上) 11.将全体正整数排成一个三角形数阵:12345678910L L L L L L L L按照以上排列的规律,第n 行(3)n ≥从左向右的第3个数为 .12.P 是抛物线2y x =上的动点,Q 是圆22(3)1x y -+=的动点,则|PQ |的最小值为 .13.已知抛物线C 的顶点在坐标原点,焦点为F (1,0),直线l 与抛物线C 相交于A 、B 两点,若AB 中点为(2,2),则直线l 的方程为 .14.设双曲线x 2a 2-y 2b 2=1 (b .>.a .>0..) 的半焦距为c ,直线l 过(a,0)、(0,b )两点,已知原点到直线l 的距离为34c ,则双曲线的离心率为___________________. 二、解答题15.已知命题p :实数m 满足()0012722><+-a a am m ,命题q :实数m 满足方程12122=-+-m y m x 表示焦点在y 轴上的椭圆,且非q 是非p 的充分不必要条件,求a 的取值范围.16.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.ABC FE D17.如图, ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD ,AB =4a ,BC = CF =2a ,DE =a , P 为AB 的中点.(1)求证:平面PCF ⊥平面PDE ; (2)求证:AE ∥平面BCF .18.已知双曲线2222:1(0,0)x y C a b a b-=>>3x =。
高二数学寒假作业(人教A 版必修五)立体几何中的向量方法1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k =( )A .2B .-4C .4D .-2解析:∵α∥β,∴两平面法向量平行,∴-21=-42=k -2,∴k =4. 答案:C2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相关B .平行C .在平面内D .平行或在平面内解析:∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内.答案:D3.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A .P(2,3,3)B .P(-2,0,1)C .P(-4,4,0)D .P(3,-3,4)4.如图,在长方体ABCD A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为B C 的中点.则AM 与PM 的位置关系为( )A .平行B .异面C .垂直D .以上都不对解析:以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D xyz.依题意,可得,D(0,0,0),P(0,1,3),C(0,2,0),A(22,0,0), M(2,2,0).∴PM →=(2,2,0)-(0,1,3)=(2,1,-3),AM →=(2,2,0)-(22,0,0)=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM.答案:C5.如图所示,在平行六面体ABCD A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.以上正确说法的个数为( )A .1B .2C .3D .4解析:A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥面DCC 1D 1,A 1M ∥面D 1PQB 1.①③④正确.答案:C6.已知正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( ) A.1010 B.15 C.31010 D.35解析:以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D(0,0,0),C(0,1,0),B(1,1,0),E(1,0,1),D 1(0,0,2).所以BE →=(0,-1,1),CD 1→=(0,-1,2).所以cos 〈BE →,CD 1→〉=BE →·CD 1→|BE →|·|CD 1→|=32×5=31010. 答案:C7.正方体ABCD A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( ) A.216 a B.66a C.156 a D.153a 解析:以D 为原点建立如图所示的空间直角坐标系D xyz ,则A(a ,0,0),C 1(0,a ,a),N(a ,a ,a 2).设M(x ,y ,z),∵点M 在AC 1上且AM →=12MC 1→, (x -a ,y ,z)=12(-x ,a -y ,a -z) ∴x =23a ,y =a 3,z =a 3. 得M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3, ∴|MN →|=⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216 a. 答案:A8.在正方体ABCD A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22解析:以A 为原点建立如图所示的空间直角坐标系A xyz ,设棱长为1,则A 1(0,0,1),E(1,0,12),D(0,1,0),答案:B9.已知三棱柱ABC A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π6解析:如图所示:S △ABC =12×3×3×sin 60°=334.∴VABC A 1B 1C 1=S △ABC ·OP =334·OP =94,∴OP = 3. 又OA =32×3×23=1,∴tan ∠OAP =OP OA =3, 又0<∠OAP<π2,∴∠OAP =π3. 答案:B10.在四面体P-ABC 中,PA ,PB ,PC 两两垂直,设PA =PB =PC =a ,则点P 到平面ABC 的距离为( )A.63B.33aC.a 3D.6a 解析:根据题意,可建立如图所示的空间直角坐标系P xyz ,则P(0,0,0),A(a ,0,0),B(0,a ,0),C(0,0,a).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的距离.∵PA =PB =PC ,∴H 为△ABC 的外心.又△ABC 为等边三角形,∴H 为△ABC 的重心,则H ⎝ ⎛⎭⎪⎫a 3,a 3,a 3.∴PH =⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02=33a. ∴点P 到平面ABC 的距离为33a. 答案:B11.在长方体ABCD A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________. 解析:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设n =(x ,y ,z)为平面A 1BC 1的法向量.则n·A 1B →=0,n·A 1C 1→=0,即⎩⎪⎨⎪⎧2y -z =0,-x +2y =0,令z =2,则y =1,x =2, 于是n =(2,1,2),D 1C 1→=(0,2,0)设所求线面角为α,则sin α=|cos 〈n ,D 1C 1→〉|=13. 答案:1312.如图所示,在三棱柱ABC A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是________.解析:以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E(0,1,0),F(0,0,1),则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12, ∴EF 和BC 1所成的角为60°.答案:60°13.正△ABC 与正△BCD 所在平面垂直,则二面角A BD C 的正弦值为________.解析:取BC 中点O ,连接AO ,DO.建立如图所示坐标系,设BC =1,则A ⎝ ⎛⎭⎪⎫0,0,32,B(0,-12,0), D ⎝ ⎛⎭⎪⎫32,0,0. ∴OA →=⎝ ⎛⎭⎪⎫0,0,32,BA →=⎝ ⎛⎭⎪⎫0,12,32,BD →=⎝ ⎛⎭⎪⎫32,12,0. 设平面ABD 的法向量为n =(x 0,y 0,z 0),则BA →·n =0,且BD →·n =0,∴y 02+32z 0=0且32x 0+y 02=0, 解之得y 0-3z 0,且y 0=-3x 0,取x 0=1,得平面ABD 的一个法向量n =(1,-3,1),由于OA →=⎝⎛⎭⎪⎫0,0,32为平面BCD 的一个法向量. ∴cos 〈n ,OA →〉=55,∴sin 〈n ,OA →〉=255. 答案:25514.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的序号是________.15.如图所示,在正方体ABCD A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________.解析:以C 1为坐标原点建立如图所示的坐标系.∵A 1M =AN =2a 3,则M(a ,2a 3,a 3),N(2a 3,2a 3,a), ∴MN →=⎝ ⎛⎭⎪⎫-a 3,0,23a . 又C 1(0,0,0),D 1(0,a ,0),∴C 1D 1→=(0,a ,0),∴MN →·C 1D 1→=0,∴MN →⊥C 1D 1→.又C 1D 1→是平面BB 1C 1C 的法向量,且MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C.答案:MN ∥平面BB 1C 1C16.如图,四棱锥P ABCD 的底面为正方形,侧棱PA ⊥底面ABCD ,且PA =AD =2,E ,F ,H 分别是线段PA ,PD ,AB 的中点.求证:(1)PB ∥平面EFH ;(2)PD ⊥平面AHF.证明:建立如图所示的空间直角坐标系A xyz.∴A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),H(1,0,0).(1)∵PB →=(2,0,-2),EH →=(1,0,-1),∴PB →=2EH →,∴PB ∥EH.∵PB ⊄平面EFH ,且EH ⊂平面EFH ,∴PB ∥平面EFH.(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),∴PD →·AF →=0×0+2×1+(-2)×1=0,PD →·AH →=0×1+2×0+(-2)×0=0,∴PD ⊥AF ,PD ⊥AH ,又∵AF∩AH=A ,∴PD ⊥平面AHF.17.如图,四棱柱ABCD A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2.证明:A 1C ⊥平面BB 1D 1D.证明:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立空间直角坐标系,如图.∵AB =AA 1=2,∴OA =OB =OA 1=1,∴A(1,0,0),B(0,1,0),C(-1,0,0),D(0,-1,0),A 1(0,0,1).由A 1B 1→=AB →,易得B 1(-1,1,1).∵A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1),∴A 1C →·BD →=0,A 1C →·B 1B →=0,∴A 1C ⊥BD ,A 1C ⊥BB 1,又BD∩BB 1=B ,∴A 1C ⊥平面BB 1D 1D.18.如图,在直棱柱ABCD-A 1B 1C 1D 1中AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.(1)证明:易知,AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所成直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为A(0,0,0),B(t ,0,0),B 1(t ,0,3),C(t ,1,0),C 1(t ,1,3),D(0,3,0),D 1(0,3,3).从而B 1D →=(-t ,3,-3),AC →=(t ,1,0),BD →=(-t ,3,0).因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0,解得t =3或t =-3(舍去).于是B 1D →=(-3,3,-3),AC →=(3,1,0).因为AC →·B 1D →=-3+3+0=0, ∴AC →⊥B 1D →,则AC ⊥B 1D.。
2019年高二年级向量寒假作业试题小结同学们,查字典数学网为您整理了2019年高二年级向量寒假作业试题小结,希望帮助您提供多想法。
一、填空题1.在△ABC中,已知D是AB边上一点,若AD=2DB,CD=13CA+CB,则=_______.2. 设则按从小到大的顺序排列为.3.将函数的图象先向左平移,然后将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为__________.4.已知,均为锐角,且sin-sin=-12,cos-cos=13,则_______.5.△ABC中角A满足,则角A的取值范围是________.6.三角方程的解集为.7.已知函数在[- 上的最大值是2,则的最小值=________.8.已知a,b是非零向量,且满足(a-2b)a,(b-2a)b,则a与b 的夹角是_________.9.若,且,则_______________.10.△ABC中,BAC=120,AB=2,AC=1,DC=2BD,则ADBC=_____.11.关于x的方程有解,则的取值范围是__________.12.已知O是△ABC内一点,OA+OC=-3OB,则△AOB和△AOC的面积之比为___.13.已知函数y=f(x)是定义在R上的奇函数,且对于任意,都有,若f(1)=1,,则的值为.14.定义在上的函数:当时,;当时,.给出以下结论:①的最小值为;②当且仅当时,取最大值;③当且仅当时,;④的图象上相邻最低点的距离是.其中正确命题的序号是(把你认为正确命题的序号都填上).二、解答题15.已知(1)求值;(2)求的值.16.已知向量a=(sin,1),b=(1,cos),-2.(1)若ab,求(2)求|a+b|的最大值.17.已知函数,,(其中).(1)求函数的值域;(2)若函数的最小正周期为,则当时,求的单调递减区间.18.已知两个向量m= ,n= ,其中,且满足mn=1.要练说,得练看。
理科数学寒假作业答案作业11—5.DCBAB 6.平行或异面 7.平行 8.29.(1)证明:连接1B C ,设1B C 与1BC 相交于点O ,连接OD .因为四边形11BCC B 是矩形,所以点O 是1B C 的中点,因为D 为AC 的中点,所以OD 为1AB C ∆的中位线,所以1//OD AB ,因为OD ⊂平面1BC D ,1AB ⊄平面1BC D ,所以1//AB 平面1BC D .(2)因为1AA ⊥平面ABC ,1AA ⊂平面11AAC C ,所以平面ABC ⊥平面11AAC C ,且平面ABC I 平面11AAC C =AC .作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C .因为12,3,AB BB BC ===在Rt ABC ∆中,224913AC AB BC =+=+=,13AB BC BE AC ⋅==,所以 111111113()1323326213B AACD V AC AD AA BE -=⨯+⋅⋅=⨯⨯⨯=. 10.(1)因为M ,N 分别是BD ,'BC 的中点,所以//MN DC '.因为MN ⊄平面ADC ',DC '⊂平面ADC ', 所以//MN 平面ADC '.同理//NG 平面ADC '.又因为MN NG N =I ,所以平面//GNM 平面ADC '. (2)因为90BAD ∠=o,所以AD AB ⊥.又因为'AD C B ⊥,且'AB C B B =I ,所以AD ⊥平面'C AB .因为'C A ⊂平面'C AB ,所以'AD C A ⊥.因为△BCD 是等边三角形,AB AD =,不防设1AB =,则BC CD BD ===1C A '=.由勾股定理的逆定理,可得'AB C A ⊥. 所以'C A ⊥平面ABD . 作业21-5.DCCBD 6.垂直. 7.①②④⑤ 8.BCD ABD ACD ABC S S S S ∆∆∆∆=++2222 9.(1)因为点F 在CD 上,点E 在D A 上,且DF:FC D :2:3=H HA =, 所以F//C E A ,又F E ⊄平面C AB ,C A ⊂平面C AB , 所以F//E 平面C AB .(2)取D B 的中点M ,连AM ,C M ,因为CD AB 为正四面体,所以D AM ⊥B ,C D M ⊥B , 又C AM M =M I ,所以D B ⊥平面C AM , 又C A ⊂平面C AM ,所以D C B ⊥A , 又F//C H A ,所以直线D B ⊥直线F H .10.(Ⅰ)证明:连结AC 交BD 于O ,连结OM .因为M 为AF 中点,O 为AC 中点,所以//FC MO ,又因为MO ⊂平面MBD ,FC ⊄平面MBD ,所以//FC 平面MBD . (Ⅱ)因为正方形ABCD 和矩形ABEF 所在平面互相垂直,所以AF ⊥平面ABCD . 以A 为原点,以AD ,AB ,AF 为x ,y ,z 轴建立空间直角坐标系.(110)C ,,,(001)M ,,,(010)B ,,,(100)D ,,,42(1)55N ,,,设平面BDM 的法向量为()p x y z =u r,,,00p BD p BM ⎧⋅=⎪⎨⋅=⎪⎩u r u u u r u r u u u u r ,(111)p =u r ,,.设平面BDN 的法向量为()q x y z =r ,,,00q BD q BN ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u ur ,(112)q =-r,,.设p u r 与q r 的夹角为θ,cos 0p q p qθ⋅==⋅u r ru rr ,所以二面角M BD N --的大小为90o .作业3一、选择题 BCDBD 二、填空题 6、922 7、共面 8、OC OB OA 313131++ 三、解答题 9、2110、(1)4 (2)415作业4一、选择题 CBCBD二、填空题 6.5 7.30° 8.1+26三、解答题9.解析:将长方体相邻两个面展开有下列三种可能,如图所示.三个图形甲、乙、丙中AC1的长分别为:(a+b)2+c2=a2+b2+c2+2ab,a2+(b+c)2=a2+b2+c2+2bc,(a+c)2+b2=a2+b2+c2+2ac,因为a>b>c>0,所以ab>ac>bc>0.故最短线路的长为a2+b2+c2+2bc.3010.10作业51. 【解析】由已知得直线方程为y=x,圆心坐标为(0,2),所以d==1,又圆半径r=2,所以弦长为2=2.【答案】D2.【解析】圆x2+y2-2x=0的圆心坐标为(1,0),半径为1,解得a=-1.【答案】D3【解析】x2+y2-4x=0是以(2,0)为圆心,2为半径的圆,而点P(3,0)到圆心的距离为d=3-2=1<2,即点P(3,0)恒在圆内,故过P点的直线l恒与圆C相交.故选A.【答案】A4. 【解析】结合图形可知,当AB 垂直于过点(0,1)的直径时,|AB|最短,故将y=1代入圆的方程得x=或-,所以|AB|min =-(-)=2.【答案】B5. 【解析】因为M ∪N=M ⇔N ⊆M,所以两个圆内含或内切,从而|a|≤5-3=2,解得a ∈[-2,2].【答案】D6. 【思路点拨】根据“半径的平方=弦心距的平方+弦长一半的平方”列方程求解.【精讲精析】圆222210x y x y +--+=标准方程为22(1)(1)1x y -+-=,它的圆心到直线l 的距离2d ==,设直:2(1)20l y k x kx y k +=+-+-=即,则=,解得1k =或17.7k =【答案】或17.7 7. 答案:256)4()4(22=-+-y x8【解析】本题主要考查直线与圆的方程及位置关系.【答案】5解答如下:由题可知动直线0ax by c ++=过定点(1,2)A -.设点(,)M x y ,由MP MA ⊥可求得点M的轨迹方程为圆:Q 22(1)2x y ++=,故线段MN 长度的最大值为5QN r +=+9. 【解析】(1)由题意得:C 1(4,2),r 1=2,C 2(1,3),r 2=3,∴|C 1C 2|=,r 2-r 1<|C 1C 2|<r 1+r 2,∴两圆相交,两圆的方程相减得:6x-2y-15=0,即为公共弦所在直线的方程. (2)设直线l 方程为:y=k(x-1),即:kx-y-k=0, 由题意得:2=,解得:k=0或k=.∴直线l 的方程为:y=0或12x-5y-12=0.10. 解:(1)设直线的方程为(1)y k x =+,即0kx y k -+=.因为直线被圆2C 截得的弦长为65,而圆2C 的半径为1,所以圆心2(3 4)C ,到:0kx y k -+=45=.化简,得21225120k k -+=,解得43k =或34k =.所以直线的方程为4340x y -+=或3430x y -+=. (2)①证明:设圆心( )C x y ,,由题意,得12CC CC =,化简得30x y +-=,即动圆圆心C 在定直线30x y +-=上运动.②圆过定点,设(3)C m m -,,则动圆C=于是动圆C 的方程为2222()(3)1(1)(3)x m y m m m -+-+=+++-. 整理,得22622(1)0x y y m x y +----+=.由2210 620x y x y y -+=⎧⎨+--=⎩,,得1 2x y ⎧=⎪⎨⎪=+⎩或1 2x y ⎧=⎪⎨⎪=⎩所以定点的坐标为(1,(1++. 作业61. 【精讲精析】选B.圆的方程22240x y x y ++-=可变形为5)2()122=-++y x (,所以圆心坐标为(-1,2),代入直线方程得1a =.2. 【精讲精析】选B.22222222y(y mx m)0,y0y mx m0,y0y0x y2x0y mx m0y mx m01)x(22)x0,x y2x00,m((0,33--=∴=--===+-=--=--=⎧++-+=⎨+-=⎩∆>∈-⋃Q或当时,很明显直线与圆有两个不同交点,当时,要使直线与圆有两个不同交点,需联立,得:(m m m由得:3. 【思路点拨】小圆在滚动的过程中,一直与大圆内切,其直径为大圆的半径,且一直过大圆的圆心,易得点M,N在大圆内所绘出的图形.【精讲精析】选A.当小圆在滚动的过程中,一直与大圆内切,由于其直径为大圆半径,故小圆在滚动过程中必过大圆的圆心,所以点M,N在大圆内所绘出的图形大致是A.4【思路点拨】设出点C的坐标,求出AB方程,利用点到直线距离公式求出AB边上的高,再利用面积为2可出点C的个数.【精讲精析】选A.设(,)C x y,则AB:20x y+-=,|AB|=点C到直线AB的距离为.又因为点C在2y x=上,所以2d=令2122ABCS∆=⨯=,解得110,1,22x---+=-.所以满足条件的点有4个.5.【思路点拨】根据有关性质可知AC和BD互相垂直,所以四边形ABCD的面积为BDAC•21.【精讲精析】选B.圆的标准方程为10)3()1(22=-+-yx,圆心为)3,1(O半径10=r,由圆的相关性质可知1022==rAC,222OErBD-=因为5)13()01(22=-+-=OE,所以52222=-=OErBD四边形ABCD的面积为.210521022121=⨯⨯=•BDAC6【思路点拨】可设圆心坐标)0,(x C ,利用CB CA =,求出圆心和半径,再写出圆的标准方程.【精讲精析】选A ,设)0,(x C ,由CB CA =,得1)5(9)1(22+-=+-x x解得2=x .∴10==CA r , ∴圆C 的标准方程为10)2(22=+-y x . 答案:10)2(22=+-y x7【思路点拨】本题考查的是直线与圆的位置关系,解题的关键是找出集合所代表的几何意义,然后结合直线与圆的位置关系,求得实数m 的取值范围.【精讲精析】答案:122m ≤≤由φ≠⋂B A 得,φ≠A ,所以,22m m ≥21≥m 或0≤m .当0≤m 时,m m m ->-=-22222,且m m m ->-=--2222122,又12202+>=+m ,所以集合A 表示的区域和集合B 表示的区域无公共部分;当21≥m 时,只要,222m m ≤-或,2122m m ≤--解得2222+≤≤-m 或221221+≤≤-m ,所以,实数的取值范围是⎥⎦⎤⎢⎣⎡+22,21.8. 【思路点拨】考查数形结合,空间想象能力,特例的取得与一般性的检验.根据命题的特点选择合适的情形.【精讲精析】①例如23+=x y ,②如22-=x y 过整点(1,0),③设y kx =(0k ≠)是过原点的直线,若此直线过两个整点1122(,),(,)x y x y ,则有11y kx =,22y kx =,两式相减得1212()y y k x x -=-,则点1212(,)x x y y --也在直线y kx =上,通过这种方法可以得到直线l 经过无穷多个整点,通过上下平移y kx =得对于y kx b =+也成立,所以③正确;④如2131+=x y 不经过无穷多个整点, ④如直线x y 3=,只经过(0,0).故答案:①③④9. 【思路点拨】第(1)问,求出曲线261y x x =-+与坐标轴的3个交点,然后通过3个点的坐标建立方程或方程组求得圆C 的方程;第(2)圆,设1122(,),(,)A x y B x y ,121200OA OB OA OB x x y y ⊥⇒⋅=⇒+=u u u r u u u r,利用直线方程0x y a -+=与圆的方程联立,化简12120x x y y +=,最后利用待定系数法求得的值.【精讲精析】(Ⅰ)曲线261y x x =-+与坐标轴的交点为(0,1)(3)0,22±故可设圆的圆心坐标为(3,t )则有()()221-t 3222=++t2解得t=1,则圆的半径为()31322=+-t .所以圆的方程为()()229x 3y 1+=--.(Ⅱ)设A(),11y x B(),22y x 其坐标满足方程组0x y a -+=()()91322=+--y x消去y 得到方程012)82(222=+-+-+a x a a x由已知可得判别式△=56-16a-4a2>0由韦达定理可得a x x -=+421,212221+-=a ax x ①由OA OB ⊥可得.02121=+yy x x 又11a y x =+,a xy +=22.所以20)(22121=+++a x x x x a ②由①②可得a=-1,满足△>0,故a=-1.10.【思路点拨】(Ⅰ)反证法;先假设1l 与2l 不相交,之后推出矛盾.(Ⅱ)求出交点,代入方程.【精讲精析】(Ⅰ)反证法.假设1l 与2l 不相交,则1l 与2l 平行,有21k k =代入0221=+k k ,得0221=+k .此与1k 为实数的事实相矛盾.从而,21k k ≠即1l 与2l 相交. (Ⅱ)由方程组⎩⎨⎧-=+=1121x k y x k y解得交点P 的坐标(x,y )为⎪⎪⎩⎪⎪⎨⎧-+=-=1212122k k k k y k k x 而.144)()2(22222122212121221222=++++=-++-=+k k k k k k k k k k y x 即P(x,y)在曲线222x +y =1上.. 作业71.解析 由题意得,p =1×1=1,k =1<6;k =1+1=2,p =1×2=2,k =2<6;k =2+1=3,p =2×3=6,k =3<6;k =3+1=4,p =6×4=24,k =4<6;k =4+1=5,p =24×5=120,k =5<6;k =5+1=6,p =120×6=720,k =6不小于6,故输出p =720. 答案 B3.解析 此程序先将A 的值赋给X ,再将B 的值赋给A ,再将X +A 的值赋给B ,即将原来的A 与B 的和赋给B ,最后A 的值是原来B 的值8,而B 的值是两数之和13. 答案 C4.解析 本题代入数据验证较为合理,显然满足p =8.5的可能为6+112=8.5或9+82=8.5.显然若x 3=11,不满足|x 3-x 1|<|x 3-x 2|,则x 1=11,计算p =11+92=10,不满足题意;而若x 3=8,不满足|x 3-x 1|<|x 3-x 2|,则x 1=8,计算p =8+92=8.5,满足题意. 答案 C5.解析 据程序框图可得当k =9时,S =11;k =8时,S =11+9=20.∴应填入k >8.答案 D6.解析 a =1,b =2,把1与2的和赋给a ,即a =3,输出的结果是3.答案 37.解析 依次执行的是S =1,i =2;S =-1,i =3;S =2,i =4;S =-2,i =5;S =3,i =6;S =-3,i =7,此时满足i >6,故输出的结果是-3.答案 -38.解析 此题的伪代码的含义:输出两数的较大者,所以m =3.答案 39.解析 如图所示:10.解析 第一步:S =0;第二步:i =1;第三步:S =S +i ;第四步:i =i +2;第五步:若i 不大于31,返回执行第三步,否则执行第六步;第六步:输出S 值. 程序框图如图:作业8 1.解析 200个零件的长度是总体的一个样本.答案 C2.解析 抽取比例是903 600+5 400+1 800=1120,故三校分别抽取的学生人数为3 600×1120=30,5 400×1120=45,1 800×1120=15. 答案 B4.解析 60kg 以频率为0.04050.01050.25⨯+⨯=,故人数为4000.25100⨯=(人). 答案 B5.解析 由变量的相关关系的概念知,②⑤是正相关,①③是负相关,④为函数关系, 故选C.答案 C6.解析 根据样子相关系数的定义可知,当所有样本点都在直线上时,相关系数为1.答案 17.解析 系统抽样的步骤可概括为:总体编号,确定间隔,总体分段,在第一段内确定起始个体编号,每段内规则取样等几步.该抽样符合系统抽样的特点.答案 系统抽样8.(注:方差2222121()()()n s x x x x x x n ⎡⎤=-+-++-⎣⎦L ,其中x 为x 1,x 2,…,x n 的平均数)答案 6.89.解析 (1)由试验结果知,用A 配方生产的产品中优质品的频率为22+8100=0.3,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32+10100=0.42,所以用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t ≥94,由试验结果知,质量指标值t ≥94的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B 配方生产的产品平均一件的利润为110010.解析 (1)分数在[120,130)内的频率为1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3.(2)估计平均分为 x =95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由题意,[110,120)分数段的人数为60×0.15=9(人).[120,130)分数段的人数为60×0.3=18(人).∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,并分别记为m ,n ;在[120,130)分数段内抽取4人,并分别记为a ,b ,c ,d ;设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A ,则基本事件共有(m ,n ),(m ,a ),…,(m ,d ),(n ,a ),…,(n ,d ),(a ,b ),…,(c ,d )共15种.则事件A 包含的基本事件有(m ,n ),(m ,a ),(m ,b ),(m ,c ),(m ,d ),(n ,a ),(n ,b ),(n ,c ),(n ,d )共9种.∴P (A )=915=35. ×[4×(-2)+54×2+42×4]=2.68(元).作业91.B;2.B;3.C;4.A;5.C6. 111; 7. 2572; 8. 87.5%;9:解:如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形记"AOC ∆为钝角三角形"为事件M ,则11()0.45OD EB P M OB ++=== 即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角,记"AOC ∆为锐角三角"为事件N ,则3()0.65DE P N OB ===即AOC ∆为锐角三角形的概率为0.6.10.解:设构成三角形的事件为A ,长度为10的线段被分成三段的长度分别为x ,y ,10-(x +y ),则 010010010()10x y x y <<⎧⎪<<⎨⎪<-+<⎩,即010010010x y x y <<⎧⎪<<⎨⎪<+<⎩.由一个三角形两边之和大于第三边,有 10()x y x y +>-+,即510x y <+<.又由三角形两边之差小于第三边,有 5x < ,即05x <<,同理05y <<. ∴ 构造三角形的条件为0505510x y x y <<⎧⎪<<⎨⎪<+<⎩.∴ 满足条件的点P (x ,y )组成的图形是如图所示中的阴影区域(不包括区域的边界).2125·522S ∆阴影==,21·1052OAB S ∆==0. ∴ 1()4OMN S P A S ∆∆阴影==.作业101.B2.D 3.B 4.D 5.C 6.32 7.1512 8.23. 9.(1)53159)(==k p (2)94)(=H p 解:设高二甲班同学为A 、B 、C ,A 为女同学,B 、C 为男同学,高二乙班同学为D 、E 、F ,D 为男同学,E 、F 为女同学。
高二数学平面向量基本定理及坐标表示试题答案及解析1.已知向量,,若,则实数的值等于()A.B.C.D.【答案】B【解析】因为,所以,解得,故选B.【考点】平面向量平行的充要条件.2.以下四组向量:①,;②,;③,;④,其中互相平行的是.A.②③B.①④C.①②④D.①②③④【答案】D【解析】因为若∥,则;①②③④都满足,所以都满足∥.【考点】向量的坐标表示、向量的运算.3.已知三点,,.(1)求与的夹角;(2)求在方向上的投影.【答案】(1);(2).【解析】(1)由点的坐标先计算出向量、的坐标,然后利用公式计算出向量夹角的余弦值,最后由余弦值即可确定向量、的夹角;(2)根据一个向量在另一个向量方向上的投影公式进行计算即可.试题解析:(1) , 2分5分而 7分∴ 8分(2)在方向上的投影 12分.【考点】空间向量的基本运算问题.4.向量,若⊥,则实数 .【答案】【解析】由于⊥,则即得.【考点】向量垂直的坐标公式.5.在四边形ABCD中,=,且·=0,则四边形ABCD是()A.矩形B.菱形C.直角梯形D.等腰梯形【答案】B【解析】根据题意,由于四边形ABCD中,=,则说明四边形是平行四边形,且·=0,说明其对角线垂直,说明是菱形,故选B.【考点】向量的运用点评:本试题考查了向量的几何意义的运用,主要是对于向量的数量积为零的理解表示垂直关系,同时能结合向量相等得到模长相等,属于基础题。
6.已知, (为两两互相垂直的单位向量),那么= .【答案】–65【解析】由,可以解得,,所以【考点】本小题主要考查向量的运算.点评:由已知条件可以求出向量的坐标,进而根据向量是数量积运算公式可以求解,难度较低,运算要仔细.7.已知向量,若,则向量与向量的夹角是()A.B.C.D.【答案】B.【解析】因为所以量与向量的夹角为.【考点】向量的数量积,向量的夹角,两角差的余弦公式,向量的模.点评:本小题用到了公式有:.8.已知向量,则等于()A.B.C.25D.5【答案】D【解析】:因为根据向量的数量积公式,以及数量积的性质,要求解向量的模的长度,可以通过平方转化为向量的数量积来得到结论。
【KS5U】新课标2016年高二数学寒假作业3一、选择题.1.已知在等比数列{a n}中,a1+a3=10,a4+a6=,则该数列的公比等于( )A.B.C.2 D.2.数列1,2,4,8,16,32,…的一个通项公式是( )A.a n=2n﹣1 B.a n=2n﹣1C.a n=2n D.a n=2n+13.在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=().A.58 B.88 C.143 D.1764.等差数列{a n}中a n>0,且a1+a2+…+a10=30,则a5+a6=( )A.3 B.6 C.9 D.365.已知数列{a n}满足,则a6+a7+a8+a9=( )A.729 B.367 C.604 D.8546.设S n是等差数列{a n}的前n项和,若=( )A.1 B.﹣1 C.2 D.7.某人要制作一个三角形,要求它的三边的长度分别为3,4,6,则此人()A.不能作出这样的三角形 B.能作出一个锐角三角形C.能作出一个直角三角形 D.能作出一个钝角三角形8.已知△ABC内角A、B、C的对边分别是a、b、c,若cosB=,b=2,sinC=2sinA,则△ABC的面积为()A. B. C. D.9.已知△ABC的两边长分别为2,3,这两边的夹角的余弦值为,则△ABC的外接圆的直径为()A.B.C.D.810.设x,y满足约束条件,若目标函数的最大值为2,则的图象向右平移后的表达式为( )A .B .C .y=sin2xD .二.填空题.11.已知,a b 都是正实数, 函数2xy ae b =+的图象过(0,1)点,则11a b+的最小值是 . 12.△ABC 中,AC=,BC=,∠B=60°,则∠A= .13.设ABC ∆的内角,,A B C 所对的边为,,a b c ,则下列命题正确的是 (写出所有正确命题的序号).①若2ab c >,则3C π<. ②若2a b c +>,则3C π<.③若444c b a =+,则2C π<. ④若()2a b c ab +<,则2C π>.⑤若22222()2a b c a b +<,则3C π>.14.在ABC ∆中,=363A BC =AB =π,,,则C =_____________.三、解答题.15.已知c b a ,,分别是ABC ∆中角C B A ,,的对边,且222sin sin sin sin sin A C B A C +-=(1) 求角B 的大小; (2)若ABC ∆的面积为33,且3b =,求a c +的值. 16.(13分)已知x ,y 是正实数,且2x+5y=20, (1)求u=lgx+lgy 的最大值; (2)求的最小值.17.(本小题12分)数列{}n a 是等差数列、数列{}n b 是等比数列。
高二数学平面向量试题答案及解析1.设是单位向量,且,则的值为.【答案】【解析】。
2.已知、是非零向量且满足,,则与的夹角是_______.【答案】【解析】略3.已知点O为直线外任一点,点A、B、C都在直线上,且,则实数【答案】-2【解析】略4.已知矩阵,向量.(1)求矩阵的特征值、和特征向量、;(2)求的值.【答案】解:(1),当时,得,当时,得.(2).【解析】解:(1)矩阵的特征多项式为,令,得,当时,得,当时,得. …………………6分(2)由得,得.∴.……………………14分5.若向量,且与的夹角余弦为,则等于_________________.【答案】【解析】略6.已知则 ,.【答案】;【解析】由三边可知,以向量为邻边的平行四边形是菱形,夹角为,,为另一对角线长度为1【考点】向量运算与三角形法则7.若向量,=(m,m+1),且∥,则实数m的值为()A.B.C.D.【答案】A【解析】因为两向量平行,所以,所以,故选A.【考点】向量平行的充要条件的坐标表示8.已知向量与的夹角为且,若,且,则实数的值为A.B.1C.2D.【答案】B【解析】因为,所以,所以得.【考点】1.数量积;2.向量垂直.9.已知,,若,,且,则_________.【答案】【解析】因为,所以.【考点】1.数量积;2.向量垂直.10.(本小题满分12分)设平面向量,,函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数的单调递增区间.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先由向量数量积的定义写出函数,然后应用辅助角公式将函数化成的形式,再由公式求得函数的最小正周期;(Ⅱ)由求得的取值区间即为函数的增区间.试题解析:(Ⅰ)所以,的最小正周期为.(Ⅱ)由得所以,的单调递增区间为.【考点】1.向量的数量积;2.三角恒等变形公式;3.三角函数的性质.11.(本小题共12分)设向量(1)若,求x的值;(2)设函数,求的最大值.【答案】(1);(2).【解析】主要考察向量数量积的坐标表示的相关问题,(1)首先表示和,令其相等,得到:,然后再解方程;(2)第一步,先利用数量积的坐标表示得到函数,并化简为,第二步,然后根据,求的范围,并算得其最值.试题解析:(1)由及得:又,从而,所以.(2)当时,取得最大值所以函数的最大值是.【考点】1.向量数量积的坐标表示;2.三角函数的化简和性质.12.已知点,曲线C:恒过定点B,P为曲线C上的动点且的最小值为2,则()A.﹣2B.﹣1C.2D.1【答案】D【解析】曲线C:恒过点B,则令,可得,即,又点,设,则,由于在(0,+∞)上有最小值2,且,故是的极值点,即最小值点.,恒成立,在(0,+∞)上是增函数,所以没有最小值;故不符合题意;当a>0,时,,函数在是减函数,在是增函数,所以有最小值为,即,解得;故选D.【考点】平面向量数量积的运算.13.已知平面向量,且,则实数的值为()A.1B.4C.D.【答案】D【解析】因为,所以.故选D.【考点】向量平行的充要条件.14.已知||=2,||=4,⊥(+),则与夹角的度数为.【答案】120【解析】设与夹角为.由⊥(+)得,,解得,所以.【考点】向量的数量积及其运算律并求向量的夹角.15.(12分)已知向量=(cosωx,1),=(2sin(ωx+),﹣1)(其中≤ω≤),函数f(x)=•,且f(x)图象的一条对称轴为x=.(1)求f(π)的值;(2)若f()=,f(﹣)=,且,求cos(α﹣β)的值.【答案】(1)f()=﹣1;(2)cos(α﹣β)=.【解析】(1)由向量的数量积公式得出函数f(x)的解析式,再由对称轴方程求出,从而得出函数f(x)的解析式,最后将代入解析式求值即可;(2)利用已知条件可求出的正弦、余弦值,然后利用两角差的余弦公式即可求出cos(α﹣β)的值.试题解析:(1)∵向量=(cosωx,1),=(2sin(ωx+),﹣1)=((sinωx+cosωx),﹣1)∴函数f(x)=•=2cosωx(sinωx+cosωx)﹣1=2sinωxcosωx+2cos2ωx﹣1=sin2ωx+cos2ωx=sin(2ωx+),∵f(x)图象的一条对称轴为x = .∴2ω×+=+kπ,(k∈Z).又由≤ω≤,∴ω=1,∴f(x)=sin(2x+),∴f()=sin(2×π+)=﹣cos=﹣1,(2)∵f()=,f(﹣)=,∴sinα=,sinβ=,∵,∴cosα=,cosβ=,【考点】由三角函数的性质求其解析式并运用其求三角函数值、利用两角差的余弦公式求值.16.如图,设为内的两点,且,=+,则的面积与的面积之比为()A.B.C.D.【答案】B【解析】设,则,由平行四边形法则知,所以,同理,故.故答案为:B.【考点】平面向量共线.【思路点睛】首先,利用向量的运算法则——平行四边形法则作出P,利用同底的三角形的面积等于高的比求出,然后再平行四边形法则作出Q,同理可求出,再将两个式子相比,即可求出的面积与的面积之比.17.已知点,动点满足条件,则动点的轨迹方程.【答案】【解析】依题意,点的轨迹是以为焦点的双曲线的右支,又∵.∴,∴所求方程为:.【考点】双曲线的定义.18.设两不同直线的方向向量分别是,平面的法向量是,则下列推理①;②;③;④其中正确的命题序号是()A.①②③B.②③④C.①③④D.①②④【答案】B【解析】两不同直线的方向向量分别是,平面的法向量是,,故①错,所以答案为B【考点】空间向量.【方法点睛】可根据两条直线的方向向量平行,则两条直线平行,两条直线的方向向量垂直,两条直线也垂直,直线的方向向量与平面的法向量平行,则直线与平面垂直,我们结合空间直线与直线,直线与平面位置关系的判断方法,逐一分析已知中的四个命题,即可得到答案.向量方法证明线、面位置关系,其中熟练掌握两条直线的方向向量的夹角与直线夹角的关系,直线的方向向量与平面的法向量的夹角与线面夹角的关系,两个平面的法向量的夹角与二面角之间的关系,是解答此类问题的关键.19.在各项均为正数的等比数列中,和是方程的两根,向量,若,则()A.B.C.D.【答案】D【解析】和是方程的两根,由【考点】1.等比数列性质;2.向量的数量积运算20.已知向量,,且与互相垂直,则的值是()A.1B.C.D.【答案】D【解析】由题意可得,因为与垂直,所以,解得.故D正确.【考点】空间向量垂直问题.21.已知过点且斜率为的直线与圆交于两点.(1)求的取值范围;(2)若,其中O为坐标原点,求.【答案】(1);(2).【解析】(1)由圆心到直线的距离小于半径列出不等式,解之即可求的取值范围;(2)设,联立方程,化简得,由韦达定理写出与的关系,代入向量表达式,可求出的值,从而求出直线方程,即可求的长.试题解析:(1)由题设,可知直线的方程为,因为与交于两点,所以.解得,所以k的取值范围为.(2)设.将代入方程,整理得,所以,,由题设可得,解得,所以的方程为.故圆心在直线上,所以.【考点】1.直线与圆的位置关系;2.向量的坐标运算.【名师】本题主要考查的是直线与圆的位置关系与向量的坐标运算,属于中档题.直线与圆的位置关系的判断可用几何法或代数法:几何法即由圆心到直线的距离来判断,当时,直线与圆相交;当时,直线与圆相切;当时,直线与圆相离;代数法即联立方程组用一元二次方程的判别式来判断,即时,直线与圆相交;时,直线与圆相切;时,直线与圆相离;实际解题时用几何法比代数法简单.22.在直角坐标系中,已知两点,;,是一元二次方程两个不等实根,且、两点都在直线上.(1)求;(2)为何值时与夹角为.【答案】(1);(2)【解析】(1)由判别式大于0求出a的范围,利用根与系数关系结合A、B两点都在直线上求得;(2)求出方程的根,结合A、B两点都在直线上可得x1=y2,x2=y1,求出,再由数量积公式求出,与(1)中的结合得到关于的方程,求解方程得答案试题解析:(1)、是方程两个不等实根,解之,又、两点都在直线上,(2)由题意设,,同理当与夹角为时,解之即为所求.【考点】一元二次方程的根与系数关系及平面向量的数量积运算.【方法点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.主体应用时可根据已知条件的特征来选择,同时要注意数量积的运算律.23.已知为的外心,以线段为邻边作平行四边形,第四个顶点为,再以为邻边作平行四边形,它的第四个顶点为.(1)若,试用、、表示;(2)证明:;(3)若的,,外接圆的半径为,用表示.【答案】(1);(2)证明见解析;(3)【解析】(1)利用向量加法的平行四边形法则,用已知向量表示向量(2)要证明向量只要证明利用O是三角形的外心,可得然后用向量然后用向量、、表示(3)利用已知的角,结合向量的数量积把已知的两边平方整理可得外接圆半径试题解析:(1)由平行四边形法则可得:,即;(2) O是的外心,,即,而,,,;(3)在中, 为的外心,,,于是,,【考点】向量的加法的平行四边形法则,两向量垂直的证明方法及向量数量积的定义.【方法点睛】(1)当向量与是坐标形式给出时,若证明,则只需证明;(2)当是非坐标形式时,要把用已知的不共线的向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行证明;(3)利用向量垂直于平行的条件进行构造方程或函数是求参数或最值问题常用的方法与技巧.24.已知向量则A.2或3B.-1或6C.6D.2【答案】D【解析】由得【考点】向量的坐标运算25.已知、均为单位向量,它们的夹角为,那么等于()A.B.C.D.4【答案】C【解析】根据已知可得:,故选择C【考点】求向量的模26.已知A点坐标为,B点坐标为,且动点到点的距离是,线段的垂直平分线交线段于点.(1)求动点的轨迹C方程.(2)若P是曲线C上的点,,求的最大值和最小值.【答案】(1);(2),.【解析】(1)根据题意知,所以的轨迹是以为焦点的椭圆,且,所以轨迹的方程为;(2)设点则,根据两点之间的距离公式得:,化简得:,又有椭圆的范围知,求函数的最值.试题解析:(1)∵;又,∴的轨迹是以为焦点的椭圆,∵,∴,所求轨迹方程为.(2)解:设点则【考点】1、椭圆的定义;2、椭圆的标准方程;3、两点间距离;4、二次函数的最值.【方法点晴】本题主要考查的是利用椭圆的定义确定点的轨迹、椭圆的标准方程及椭圆的性质,两点间距离,二次函数求最值,属于中档题题.求点的轨迹时,可以根据某些曲线的定义先确定轨迹,再求其轨迹方程,在利用二次函数求最值的过程中,一定要分析自变量的取值范围,否则容易产生错误.27.已知为圆上三点,的延长线与线段的延长线交于圆外点。
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业3 理1、数列{}n a 的前项和为,若1(1)n a n n =+,则等于( ) A .1819 B .2019 C .1920 D .21202、设是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( ) A . B . C . D .21 3、在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++4、 设为等差数列{}n a 的前项和,若36324S S ==,,则9a =( )A. 15B. 45C. 192D. 275、已知{}n a 是等比数列,a n >0,且a 4a 6+2a 5a 7+a 6a 8=36,则a 5+a 7等于 ( )A .6B .12C .18D .246、两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =___________ 7、数列{}n a 的前n项的和S n =3n 2+ n +1,则此数列的通项公式.8、设是等差数列{}n a 的前项和,且8765S S S S >=< ,则下列结论一定正确的有(1).0<d (2).07=a (3)59S S > (4)01<a (5).和均为的最大值9.在等比数列{a n }中,a 1+a n =66,a 2·a n -1=128,且前n 项和S n =126,求n 及公比q .10、已知:等差数列{}中,=14,前10项和18510=S .(1)求;(2)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和.11.已知数列{}n a 是等差数列,且.12,23211=++=a a a a(1)求数列{}n a 的通项公式;(2)令).(R x x a b n n n ∈=求数列{}n b 前n 项和的公式.12、 在数列{}n a 中,11a =,2112(1)n n a a n +=+⋅.(Ⅰ)证明数列2{}n a n 是等比数列,并求{}n a 的通项公式;(Ⅱ)令112n n n b a a +=-,求数列{}n b 的前项和; (Ⅲ)求数列{}n a 的前项和.答案1—5CCAAA6、12657、a n =⎩⎨⎧≥-=2,261,5n n n 8(1)(2)(5)、 9、[解析]∵a 1a n =a 2a n -1=128,又a 1+a n =66,∴a 1、a n 是方程x 2-66x +128=0的两根,解方程得x 1=2,x 2=64,∴a 1=2,a n =64或a 1=64,a n =2,显然q ≠1.若a 1=2,a n =64,由a1-anq 1-q=126得2-64q =126-126q ,∴q =2,由a n =a 1q n -1得2n -1=32,∴n =6.若a 1=64,a n =2,同理可求得q =12,n =6. 综上所述,n 的值为6,公比q =2或12. 10、解析:(1)由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩153a d =⎧⎨=⎩由23,3)1(5+=∴⋅-+=n a n a n n(2)设新数列为{},由已知,2232+⋅==n n n a b .2)12(62)2222(3321n n G n n n +-=+++++=∴*)(,62231N n n G n n ∈-+⋅=∴+11、解:设数列}{n a 公差为,则 ,12331321=+=++d a a a a 又.2,21=∴=d a所以.2n a n =(Ⅱ)解:令,21n n b b b S +++= 则由,2n n n n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=- ①,2)22(42132++-+++=n n n nx x n x x xS ②当1≠x 时,①式减去②式,得 ,21)1(22)(2)1(112++---=-++=-n n n n n nx xx x nx x x x S x所以.12)1()1(212x nxx x x S n n n ----=+当1=x 时, )1(242+=+++=n n n S n ,综上可得当1=x 时,)1(+=n n S n当1≠x 时,.12)1()1(212x nx x x x S n n n ----=+ 12解:(Ⅰ)由条件得1221(1)2n n a a n n +=⋅+,又1n =时,21n a n =, 故数列2{}n a n 构成首项为1,公式为12的等比数列.从而2112n n a n -=,即212n n n a -=. (Ⅱ)由22(1)21222n n n n n n n b ++=-=得23521222n n n S +=+++, 231135212122222n n n n n S +-+⇒=++++, 两式相减得 : 23113111212()222222n n n n S ++=++++-, 所以 2552n nn S +=-. (Ⅲ)由231121()()2n n n S a a a a a a +=+++-+++得 1112n n n n T a a T S +-+-= 所以11222n n n T S a a +=+-2146122n n n -++=-.。
2020-2021学年高二数学寒假作业3一.单项选择题:本小题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的.1.在平面直角坐标系xoy 中,抛物线y x 22=的焦点到准线的距离为( ) A.81 B.1 C.2 D.41 2.若双曲线12222=-by a x 的离心率为3,则其渐近线的斜率为( ) A.21± B.2± C.22± D.2± 3.已知圆锥的侧面展开图是一个半径为6,圆心角为3π的扇形,则 圆锥的高为 ( ) A.33 B. 34 C. 35 D.5 4.如图,在长方体1111D C B ABCD-A 中,2==BC AB ,11=AA ,则1BC 与平面D D BB 11所成角的正弦值为( )A.510B. 552C. 515D.36 5.若直线9=+ny mx 和圆922=+y x 没有交点,则过点)n ,m (的直线与椭圆191622=+y x 的交点个数为( )A. 2个B. 1个C. 0个D. 无法确定6.三棱锥681073======CA ,BC ,AB ,PC PB PA ,ABC P ,则二面角B AC P --的大小为( )A. 090B. 060C. 045D. 0307.已知直线)k (kx y 0≠=与双曲线)b ,a (by a x 001-2222>>=交于B ,A 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为( ) A. 2 B. 3 C. 2 D. 58.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市实行阶梯水价,每人月用水量中不超过a 立方米的部分按2.5元/立方米收费,超出a 立方米的部分按7元/立方米收费,从该市随机调查了10000位居民,获得了他们某年的月均用水量数据,整理得到如下频率分布直方图:如果a 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为2.5元/立方米,a 至少定为( )A .2B .2.5C .3D .4二.多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有 多项符合题目要求的,全部选对的得5分,有错选的得0分,部分选对的得3分.9.已知直线,m n ,平面,αβ,给出下列命题,其中正确的命题是( ).A 若βα//,//n m ,且n m //,则βα//.B 若,m n αβ⊥⊥,且,m n ⊥则αβ⊥.C 若βα//,n m ⊥,且m n ⊥,则βα//.D 若βα//,n m ⊥,且n m //,则αβ⊥10.椭圆:C 2212516x y +=的左焦点为F ,点P 是椭圆C 上的动点,则PF 的值可能是 ( ).A 1 .B 3 .C 6 .D 1011.如图,点,,,,A B C M N 为正方体的定点或所在棱的中点,则下列各图中,满足直线 //MN 平面ABC 的是( )A B C D12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点, 则( ).A 1B E CE ⊥.B 平面//CE B 1平面1A BD.C 三棱锥11C B CE -的体积为83.D 三棱锥111C B CD -的外接球的表面积为24π三.填空题:本题共4小题,每小题5分,共20分.13.如果方程127222=+++a y a x 表示焦点在x 轴上的椭圆,则实数a 的取值范围是______. 14.若某正四棱台的上下底面边长分别是3,9,侧棱长是6,则它的体积为________.(棱台体积公式:)(312211s s s s h V ++=,其中21,s s 分别为棱台上下底的面积,h 为棱台的高. 15.已知抛物线y x C 8:2=的焦点为F ,O 为原点,点p 是抛物线C 准线上的一动点,点A 在抛物线C 上,且4=AF ,则PO PA +的最小值是:16.已知一圆锥底面圆的直径为6,圆锥的高为33,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在几何体内可以绕自身中心任意转动,则a 的最大值为四.解答题:本题共6题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本大题满分10分)已知四棱锥P-ABCD 中,底面ABCD 为菱形,PB=PD(1)求证:CD//面PAB ;(2)求证PC ⊥BD.18.(本大题满分12分)已知抛物线)p (px y 022>=的顶点为O ,准线方程为21-=x . (1)求抛物线方程;(2)过点)0,1(且斜率为1的直线与抛物线交于Q P ,两点,求OPQ ∆的面积.19.(本大题满分12分)椭圆)m (m y m x :C 2122222>=+,直线l 过点),(P 11交椭圆于B A ,两点,且P 为AB 的中点,(1)求直线l 的方程;(2)若|OP ||AB 5|=求m 的值.20.(本大题满分12分)如图,长方体1111ABCD A B C D -中,16,5,4,AB BC AA ===点,E F 分别在1111,A B D C 上,11 2.A E D F ==(1)求直线CF 与1C E 所成角的余弦值;(2)过点,E F 的平面α与此长方体表面相交,交线围成一个正方形,求平面α把该长方体分成的两部分体积的比值.21.(本大题满分12分)如图,直三棱柱111C B A ABC -中,E D ,分别是棱AB BC ,的中点,点F 在棱1CC 上,已知2,3,1====CF BC AA AC AB(1)求证:ADF E C 平面//1(2)在棱1BB 上是否存在点M ,使平面ADF CAM 平面⊥,若存在试求出BM 的值,若不存在,请说明理由.22.(本小题满分12分)已知椭圆()01:2222>>=+b a by a x C 经过点()1,2P ,离心率为22, (1)求椭圆C 的方程;(2)过点P 作两条互相垂直的弦PB PA ,分别交椭圆C 于B A ,, ①证明直线AB 过定点,②求点P 到直线AB 距离的最大值.。
第3天 平面向量、解三角形【课标导航】1.掌握平面向量的概念及加减数乘数量积的运算. 1.综合运用正弦定理、余弦定理及边角关系解三角形; 一、选择题1. 向量++++)()(化简后等于( ) A.B.C.D.2. 凸四边形OABC 中,(24)(21)OB AC ==-,,,则该四边形的面积为( )B. C. 5D. 103. 已知下列命题中:(1)若k R ∈,且0kb =,则0k =或0b =, (2)若0a b ⋅=,则0a =或0b =(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a(4)若a 与b 平行,则a b a b ⋅=⋅其中真命题的个数是( ) A. 0B. 1C. 2D. 34. 已知向量()()1,3,sin ,cos a b αα==且//a b ,则tan α=( )A .3B .-3C .13D .13- 5. △ABC 中,若⋅=⋅,则△ABC 必为( ) A. 直角三角形 B. 钝角三角形C. 锐角三角形D. 等腰三角形6. 已知向量e =(-45,35),点O(0,0)和A(1,-2)在e 所在直线上的射影分别为O 1和A 1,则11O A =λe ,则λ=( )A.115B.-115C.2D.-27.若,a b 是非零向量且满足(2)a b a -⊥,(2)b a b -⊥ ,则a 与b 的夹角是( ) A.6πB.3π C. 32πD. 65π8. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====b a b OB a OA 其中若10,≤≤≤+=μλμλ且b a OC ,C 点所有可能的位置区域用阴影表示正确的是( )二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a ,2sin B =3sin C ,则cos A 的值为________. 10.已知单位向量12,e e 满足1212⋅=e e .若1212(54)()()k k -⊥+∈R e e e e ,则k =_______, 12k +=e e _______.11.在直角坐标系xOy 中,已知点(2,0)A 和点(3,4)B -.若点C 在AOB ∠的平分线上且||5OC =,则OC =______________.12.边长为2的正三角形ABC 内(包括三边)有点P ,1PB PC ⋅=,求AP AB ⋅的范围 . 三、解答题13.如图12,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(Ⅰ)求sin ∠BAD ;(Ⅱ)求BD ,AC 的长.图1214.已知△ABC 中,角A 为锐角,内角A ,B ,C 所对的边分别为a , b ,c .设向量m =(cos A ,sin A ),n =(cos A ,-sin A ),且m 与n 的夹角为π3.(Ⅰ)计算m ·n 的值并求角A 的大小;(Ⅱ)若a ,c ABC 的面积S .15. 已知向量.1,43),1,1(-=⋅=且的夹角为与向量向量π(Ⅰ)求向量;(Ⅱ)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈,若0=⋅,试求||b n +的取值范围.16.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x , y )在△ABC 三边围成的区域(含 边界)上.(Ⅰ)若PA →+PB →+PC →=0,求|OP →|;(Ⅱ)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.【链接高考】(2016年浙江高考)已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有|a ·e |+|b ·e | 则a ·b 的最大值是 .第3天 平面向量、解三角形1-8 ACCC, DDBA 9.-14;10. 2;11. ()1,2;12. 3[213.(1)sin ∠BADBD =3 ,AC =7 14.(1)m ·n =12,A =π6; (2) S.15.(1)令⎩⎨⎧-==⎩⎨⎧=-=⇒⎪⎩⎪⎨⎧-=+⋅-=+=1001143cos 21),(22y x y x y x y x y x n 或则π )1,0()0,1(-=-=∴n n 或(2))1,0(0),0,1(-=∴=⋅= )1sin ,,(cos -=+x xx sin 22-=)sin 1(2x -;∵ ―1≤sinx ≤1, ∴ 0||2n b ≤+≤. 16. (1) ||=. (2)∵=m +n ,∴(x ,y )=(m +2n ,2m +n ), ∴22x m ny m n=+⎧⎨=+⎩两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.【链接高考】12。
高二数学寒假完美假期作业:空间向量与立体几何
高二数学寒假完美假期作业:空间向量与立体几
何
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。
小编准备了高二数学寒假完美假期作业,具体请看以下内容。
1.如图所示,在四棱锥PABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,,M为PC 上一点,且PA∥平面BDM.
(1)求证:M为PC中点;
(2)求平面ABCD与平面PBC所成的锐二面角的大小.
2.如图,平面平面ABC,是等腰直角三角形,AC =BC= 4,四边形ABDE是直角梯形,BD∥AE,BD BA, , ,求直线CD 和平面ODM所成角的正弦值.
3.如图,已知四棱锥PABCD的底面为等腰梯形,AB∥CD,ACBD,垂足为H,PH是四棱锥的高,E为AD的中点.
(1)证明:PE
(2)若APB=ADB=60,求直线PA与平面PEH所成角的正弦值.
4.如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,BAD=90,ACBD,BC=1,AD=AA1=3.
(1)证明:AC
(2)求直线B1C1与平面ACD1所成角的正弦值.
5.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的。
第3天 平面向量、解三角形
【课标导航】
1.掌握平面向量的概念及加减数乘数量积的运算. 1.综合运用正弦定理、余弦定理及边角关系解三角形; 一、选择题
1. 向量++++)()(化简后等于
( ) A.
B.
C.
D.
2. 凸四边形OABC 中,(24)(21)OB AC ==-,,
,则该四边形的面积为
( )
B. C. 5
D. 10
3. 已知下列命题中:
(1)若k R ∈,且0kb =,则0k =或0b =, (2)若0a b ⋅=,则0a =或0b =
(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a (4)若a 与b 平行,则a b a b ⋅=⋅其中真命题的个数是
( ) A. 0
B. 1
C. 2
D. 3
4. 已知向量()()1,3,sin ,cos a b αα==且//a b ,则tan α=
( )
A .3
B .-3
C .1
3
D .13
- 5. △ABC 中,若⋅=⋅,则△ABC 必为
( ) A. 直角三角形 B. 钝角三角形
C. 锐角三角形
D. 等腰
三角形
6. 已知向量e =(-45,3
5
),点O(0,0)和A(1,-2)在e 所在直线上的射影分别为O 1和A 1,则
11O A =λe ,则λ=
( )
A.115
B.-115
C.2
D.-2
7.若,a b 是非零向量且满足(2)a b a -⊥,(2)b a b -⊥ ,则a 与b 的夹角是
( ) A.
6
π
B.
3π C. 32π D. 65π
8. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====b a b OB a OA 其中若
10,≤≤≤+=μλμλ且b a OC ,C 点所有可能的位置区域用阴影表示正确的是
( ) 二、填空题
9.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =1
4a ,2sin B =3sin C ,
则cos A 的值为________. 10.已知单位向量12,e e 满足121
2
⋅=
e e .若1212(54)()()k k -⊥+∈R e e e e ,则k =_______, 12k +=e e _______.
11.在直角坐标系xOy 中,已知点(2,0)A 和点(3,4)B -.若点C 在AOB ∠的平分线上且
||5OC =,则OC =______________.
12.边长为2的正三角形ABC 内(包括三边)有点P ,1PB PC ⋅=,求AP AB ⋅的范
围 . 三、解答题
13.如图12,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =1
7.
(Ⅰ)求sin ∠BAD ;
(Ⅱ)求BD ,AC 的长.
图
12
14.已知△ABC 中,角A 为锐角,内角A ,B ,C 所对的边分别为a , b ,c .设向量m =(cos A ,sin A ),
n =(cos A ,-sin A ),且m 与n 的夹角为π
3
.
(Ⅰ)计算m ·n 的值并求角A 的大小; (Ⅱ)若a =7,c =3,求△ABC 的面积S .
15. 已知向量.1,4
3),1,1(-=⋅=n m m n m 且的夹角为与向量向量π
(Ⅰ)求向量n ;
(Ⅱ)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈,若0=⋅a n ,试求||b n +的取值范围.
16.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x , y )在△ABC 三边围成的区域(含 边界)上.
(Ⅰ)若PA →+PB →+PC →=0,求|OP →
|;
(Ⅱ)设OP →=mAB →+nAC →
(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.
【链接高考】(2016年浙江高考)已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有
|a ·e |+|b ·e |≤
6 ,则a ·b 的最大值是 .
第3天 平面向量、解三角形
1-8 ACCC, DDBA 9.
-14;10. 2;7 ;11. ()1,2;12. 35
[,35]2--
13.(1)sin ∠BAD =33
14
; (2) BD =3 ,AC =7 14.(1)m ·n =12,A =π6; (2) S =3.
15.(1)令⎩⎨⎧-==⎩⎨⎧=-=⇒⎪⎩
⎪
⎨⎧-=+⋅-=+=1001143cos 21
),(2
2y x y x y x y x y x n 或则π (2))1,0(0
),0,1(-=∴=⋅=n a n a )1sin ,,(cos -=+x x b n
b
n +=()2
2cos sin 1x x +-=x sin 22-=)sin 1(2x -;
∵ ―1≤sinx ≤1, ∴ 0||2n b ≤+≤. 16. (1) ||=22. (2)∵=m +n ,
∴(x ,y )=(m +2n ,2m +n ), ∴22x m n
y m n
=+⎧⎨
=+⎩
两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.
【链接高考】
12。