研究匀变速直线运动的规律
- 格式:doc
- 大小:387.50 KB
- 文档页数:13
专题一 匀变速直线运动的规律及其应用一、匀变速直线运动的规律1.条件:物体受到的合外力恒定,且与运动方向在一条直线上.2.特点:a 恒定,即相等时间内速度的变化量恒定.3.规律:(1)v t =v 0+at (2)s =v 0t +21at 2(3)v t 2-v 02=2as 4.推论:(1)匀变速直线运动的物体,在任意两个连续相等的时间里的位移之差是个恒量,即 Δs =s i +1-s i =aT 2=恒量.(2)匀变速直线运动的物体,在某段时间内的平均速度等于该段时间的中间时刻的瞬时速度,即v t /2=v =20t v v + 以上两个推论在“测定匀变速直线运动的加速度”等学生实验中经常用到,要熟练掌握.(3)初速度为零的匀加速直线运动(设T 为等分时间间隔):①1T 末、2T 末、3T 末……瞬时速度的比为:v 1∶v 2∶v 3∶……∶v N =1∶2∶3∶…∶n②1T 内、2T 内、3T 内……位移的比为:s 1∶s 2∶s 3∶…∶s N =12∶22∶32∶…∶n 2③第一个T 内、第二个T 内、第三个T 内…… 位移的比为:s Ⅰ∶s Ⅱ∶s Ⅲ∶…∶s N =1∶3∶5∶…∶(2n -1)④从静止开始通过连续相等的位移所用时间的比:t 1∶t 2∶t 3∶…∶t N =1∶(2-1)∶(3-2)∶…∶(n -1-n )1 如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的若干小球摄下照片如图,测得AB=15cm ,BC=20cm ,试求:(1)拍照时B 球的速度;(2)拍摄时s CD =?(3)A 球上面还有几颗正在滚动的钢球2 ,一物体作匀加速直线运动,通过一段位移△x 所用的时间为t 1,紧接着通过下一段位移△x 所用的时间为t 2. 则物体运动的加速度为A .1212122()()x t t t t t t ∆-+ B.121212()()x t t t t t t ∆-+ C .1212122()()x t t t t t t ∆+- D .121212()()x t t t t t t ∆+-3 .某质点P 从静止开始以加速度a 1做匀加速直线运动,经t (s )立即以反向的加速度a 2做匀减速直线运动,又经t (s )后恰好回到出发点,试证明a 2=3a l .4,一个质点从静止开始做匀加速直线运动,已知它在第4s 内的位移是14m ,求它前72m 所用的时间.5 每隔一定时间,从车站以同一加速度沿一笔直的公路开出一辆汽车,当第五辆车开始起动时,第一辆车已离站320m .此时第四辆车与第三辆车的距离是多大?6 一列火车有n 节相同的车厢,一观察者站在第一节车厢的前端,当火车由静止开始做匀加速直线运动时( )A .每节车厢末端经过观察者时的速度之比是1∶2∶3∶…∶nB .每节车厢经过观察者所用的时间之比是1∶(12-)∶(23-)∶…∶(1--n n )C .在相等时间里,经过观察者的车厢节数之比是1∶2∶3∶…∶nD .如果最后一节车厢末端经过观察者时的速度为v ,那么在整个列车经过观察者的过程中,平均速度为v /n7,物体沿某一方向做匀变速直线运动,在t (s )内通过的路程为s ,它在s 2处的速度为v 1,在中间时刻的速度为v 2,则v 1和v 2的关系应是( )A .当物体做匀加速直线运动时,v l >v 2B .当物体做匀减速直线运动时,v l >v 2C .当物体做匀速直线运动时,v l =v 2D .当物体做匀减速直线运动时,v l <v 28 某车队从同一地点先后从静止开出n 辆汽车,在平直的公路上沿一直线行驶,各车均先做加速度为a 的匀加速直线运动,达到速度v 后做匀速直线运动,汽车都匀速行驶后,相邻两车距离均为s ,则相邻两车启动的时间间隔为 ( )A .av 2 B .a v 2 C .υ2s D .υs 9.如图1-2-2所示的光滑斜面上,一物体以4m/s 的初速度由斜面底端的A 点匀减速滑上斜面,途经C 和B ,C 为AB 中点,已知v A ∶v C = 4∶3,从C 点到B 点历时(23-)S ,试求:(1)到达B 点的速度?(2)AB 长度?10,有一个物体开始时静止在O 点,先使它向东作匀加速直线运动,经过5秒钟,使它的加速度方向立即改为向西,加速度的大小不改变,再经过5秒钟,又使它加速度方向改为向东,但加速度大小不改变,如此重复共历时20秒,则这段时间内( )A .物体运动方向时而向东时而向西B .物体最后静止在O 点C .物体运动时快时慢,一直向东运动D .物体速度一直在增大11,物体沿光滑斜面匀减速上滑,加速度大小为4 m /s 2,6 s 后又返回原出发点.那么下述结论正确的是( ).A .物体开始沿斜面上滑时速度为12 m /sB .物体开始沿斜面上滑时速度是10 m /sC .物体沿斜面上滑的最大位移是18 mD .物体沿斜面上滑的最大位移是15 m12 ,为了安全,在公路上行驶的汽车之间应保持必要的距离。
一、匀变速直线运动的公式匀变速直线运动的加速度a 是恒定的. 反之也成立. 加速度方向与初速度方向相同的匀变速直线运运称为匀加速直线运动; 加速度的方向与初速度方向相反叫匀减速直线运动.如果以初速度v 0的方向为正方向,则在匀减速直线运动中,加速度应加一负号表示。
1. 基本规律: (公式)(1) 速度公式: v t = v 0 + a t 或:a =tv v t 0-. (图象为一直线,纵轴截距等于初速度大小) 平均速度: 2v v v t +== X/ t (前一式子只适用于匀变速直线运动,它是指平均速度,不是速度的平均值;后一式子对任何变速运动均适用。
(2) 位移公式: x = v 0t +21at 2注:在v -t 图象中,由v - t 直线与两坐标轴所围的面积等于质点在时间t 内运动的位移(3). 速度、加速度和位移的关系式: as v v t 2202=-说明: 以上各矢量均自带符号,与正方向相同时取正,相反取负.在牵涉各量有不同方向时,一定要先规定正方向. 如果物体做匀加速直线运动时加速度取正值的话,则匀减速直线运动时加速度就取负值代入公式运算. 对做匀减速直线运动的情况,一般要先判断物体经历多少时间停止下来,然后才能进行有关计算.否则可能解出的结果不符合题意.【例】一个质点先以加速度a 1从静止开始做匀加速直线运动,经时间t ,突然加速度变为反方向,且大小也发生改变,再经相同时间,质点恰好回到原出发点。
试分析两段时间内的加速度大小关系,以及两段时间的末速度大小关系。
2. 推论公式:(1) 2v v v t += = v t 2 (匀变速直线运动某段过程的平均速度等于这段过程初速度与末速度之和的一半,也等于这段过程中间时刻的瞬时速度) (2) x =v 0+v t 2·t (仅适用匀变速直线运动)(3) v s 2=√v 02+v t22(匀变速直线运动某段过程中间位置的瞬时速度等于这段过程初速度平方与末速度平方之和的一半)(4)v s2>v t2(图像法和公式法两种证明)(5)∆x=aT2 (匀变速运动中,任意连续相等的两段时间T内位移之差为定值)x m-x n=(m-n)aT2 (逐差法)【例1】.一颗子弹水平射入静止在光滑水平面上的木块中. 已知子弹的初速度为v0, 射入木块深度为L后与木块相对静止,以共同速度v 运动,求子弹从进入木块到与木块相对静止的过程中,木块滑行的距离.【例2】. 羚羊从静止开始奔跑,经过50m距离加速到最大速度25m/s,并能维持一段较长时间;猎豹从静止开始奔跑经过60m的距离能加速到最大速度30m/s,以后只能维持这个速度4.0s.设猎豹距离羚羊x m时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹加速阶段分别做匀加速运动,且均沿同一直线索奔跑.求:⑴猎豹要在其最大速度减速前追到羚羊,x值应在什么范围? ⑵猎豹要在其加速阶段追上羚羊, x 值应在什么范围?【例3】. 两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v0.若前车突然以恒定的加速度刹车,在它刚停住后,后车以前车刹车时的加速度开始刹车. 已知前车在刹车过程中行驶的距离为s ,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少为()A. s ;B. 2s ;C. 3s ; D 4s .3.初速度为零的匀加速直线运动的比例规律:(一)从静止开始连续相等时间T分段(1)1T末, 2T末, 3T末, … n T末瞬时速度之比为:v1∶v2∶v3∶…:∶v n = 1∶2 ∶3 ∶…∶n .(2) 1T内, 2T内, 3T内,… n T内位移之比为:s1∶s2∶ s3∶…∶s n = 12∶ 22∶32∶…∶n2 .(3)第一个T 内, 第二个T 内, 第三个T 内, …, 第n 个T 内位移之比为. s Ⅰ∶s Ⅱ∶s Ⅲ∶…s N = 1∶3∶5 ∶… ∶(2n -1).(二)从静止开始连续相等位移S 分段(1)1S 末, 2S 末, 3S 末, … n S 末瞬时速度之比为:v 1 ∶v 2∶ v 3 ∶…:∶v n = √1∶√2 ∶√3 ∶… ∶√n .(2) 1S 内, 2S 内, 3S 内, … n S 内时间之比为:t 1 ∶t 2 ∶ t 3 ∶… t n = √1∶√2 ∶√3 ∶… ∶√n .(3)第一个S 内, 第二个S 内, 第三个S 内, …, 第n 个S 内时间之比为. t Ⅰ ∶t Ⅱ ∶t Ⅲ ∶ … ∶ t N ∶:)23(:)12--… ∶ (1--n n ).【例1】. 三块完全相同的木块固定在地板上. 一初速度为v 0的子弹水平射穿第三块木板后速度恰好为零. 设子弹在三块木板中的加速度相同,求子弹分别通过三块木板的时间之比.【例2】. 一质点由A 点出发沿直线AB 运动,行程的第一部分是加速度为a 1的匀加速运动,接着做加速度为a 2的匀减速运动,到达B 点时恰好速度减为零. 若AB 间总长度为S ,试求质点从A 到B 所用的时间 t. 【例3】.已知O 、A 、B 、C 为同一直线上的四点。
匀变速直线运动规律匀变速直线运动规律:匀变速直线运动是物体沿直线运动,速度恒定不变的一种运动规律。
它包括物体在任意时刻应具有恒定的速度,且连续变化。
1、位移s与时间t的关系:在匀变速直线运动中,物体在每一小段时间内的位移都是一样的,比如说物体的速度为v(m/s),那么每一小段的速度也是一样的。
所以,在某一时刻t的位移s等于t时刻之前的位移s0 加上t时刻之间时间内的位移,即:s = s0 + v*t 。
2、速度v与时间t的关系:关于速度与时间的关系可以从第一条关系s = s0 + v*t 来理解,由于物体在每一小段时间内的位移都是一样的,而这一小段时间的位移取决于当前的速度与时间的乘积,所以我们可以推出速度与时间的关系v = (s-s0) / t。
3、加速度a与时间t的关系:加速度a与时间t的关系也是可以从第一条关系s = s0 + v*t 来推出的,我们可以将该关系展开后得到:s = s0 + v0*t + 1/2 * a*t^2 ,这里的a就是物体变化的加速度,因此可以推出:a = 2*(s-s0 - v0*t)/t^2 。
4、位移s与速度v的关系:在匀变速直线运动中,物体的速度恒定不变,所以可以简单得知:s = s0 + v*t 。
5、加速度a与速度v的关系:从加速度a与时间t的关系可以得到:a = 2*(s-s0 - v0*t)/t^2 ,因此可以推出:v = v0 + a*t 。
总结而言,匀变速直线运动的规律就是:物体的速度是恒定的,其位移、速度、加速度之间存在着密切的关系,利用上述关系可以得出物体的位移、速度、加速度随时间的变化情况,从而得出物体的完整的运动轨迹。
第2课时 匀变速直线运动规律的应用 考纲解读 1.掌握匀变速直线运动的速度公式、位移公式及速度—位移公式,并能熟练应用.2.掌握并能应用匀变速直线运动的几个推论:平均速度公式、Δx =aT 2及初速度为零的匀加速直线运动的比例关系式.【考点梳理】一、匀变速直线运动的规律1.匀变速直线运动(1)定义:沿着一条直线运动,且加速度不变的运动.(2)分类①匀加速直线运动,a 与v 0方向同向.②匀减速直线运动,a 与v 0方向反向.2.匀变速直线运动的规律(1)速度公式:v =v 0+at .(2)位移公式:x =v 0t +12at 2. (3)位移速度关系式:v 2-v 20=2ax .二、匀变速直线运动的推论1.匀变速直线运动的两个重要推论(1)物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半,即:v =2t v =v 0+v 2. (2)任意两个连续相等的时间间隔T 内的位移之差为一恒量,即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.2.初速度为零的匀变速直线运动的四个重要推论(1)1T 末、2T 末、3T 末、……瞬时速度的比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n(2)1T 内、2T 内、3T 内……位移的比为:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个T 内、第二个T 内、第三个T 内……位移的比为:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1)(4)从静止开始通过连续相等的位移所用时间的比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1)三、自由落体运动和竖直上抛运动1.自由落体运动(1)条件:物体只受重力,从静止开始下落.(2)运动性质:初速度v 0=0,加速度为重力加速度g 的匀加速直线运动.(3)基本规律 ①速度公式:v =gt . ②位移公式:h =12gt 2. ③速度位移关系式:v 2=2gh .2.竖直上抛运动(1)运动特点:加速度为g ,上升阶段做匀减速直线运动,下降阶段做自由落体运动.(2)基本规律①速度公式:v =v 0-gt .②位移公式:h =v 0t -12gt 2. ③速度位移关系式:v 2-v 20=-2gh .④上升的最大高度:H =v 202g. ⑤上升到最高点所用时间:t =v 0g. 【考点突破】考点一 匀变速直线运动规律的应用1.速度时间公式v =v 0+at 、位移时间公式x =v 0t +12at 2、位移速度公式v 2-v 20=2ax ,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.2.以上三个公式均为矢量式,应用时应规定正方向.3.如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带,应注意分析各段的运动性质.例1 珠海航展现场“空军八一飞行表演队”两架“歼-10”飞机表演剪刀对冲,上演精彩空中秀.质量为m 的“歼-10”飞机表演后返回某机场,降落在跑道上的减速过程简化为两个匀减速直线运动过程.飞机以速度v 0着陆后立即打开减速阻力伞,加速度大小为a 1,运动时间为t 1;随后在无阻力伞情况下匀减速直至停下.在平直跑道上减速滑行总路程为x .求第二个减速阶段飞机运动的加速度大小和时间.解决匀变速直线运动问题的思维规范→ → → → →突破训练1甲、乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变.在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半.求甲、乙两车各自在这两段时间间隔内走过的总路程之比.考点二 解决匀变速直线运动的常用方法1.一般公式法一般公式法指速度公式、位移公式及推论三式.它们均是矢量式,使用时要注意方向性.2.平均速度法定义式v =Δx Δt 对任何性质的运动都适用,而v =v t 2=12(v 0+v )只适用于匀变速直线运动. 3.比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的重要特征中的比例关系,用比例法求解.4.逆向思维法如匀减速直线运动可视为反方向的匀加速直线运动.5.推论法利用Δx =aT 2:其推广式x m -x n =(m -n )aT 2,对于纸带类问题用这种方法尤为快捷.6.图象法审题获画过程判断运选取正方向 选用公式解方程,必要时对。
第二章 匀变速直线运动的规律1.匀变速直线运动(1)定义:在任意相等的时间内速度的变化量相等的直线运动。
(2)特点:轨迹是直线,加速度a 恒定。
当a 与v 0方向相同时,物体做匀加速直线运动;反之,物体做匀减速直线运动。
2.匀变速直线运动的规律 (1)基本规律①速度时间关系:at v v +=0 ②位移时间关系:2021at t v x += (2)重要推论①速度位移关系:ax v v 2202=- ②平均速度:22t v v v v =+=③做匀变速直线运动的物体在连续相等的时间间隔的位移之差:Δx =x n+1-x n =aT 2。
3.自由落体运动(1)定义:物体只在重力的作用下从静止开始的运动。
(2)性质:自由落体运动是初速度为零,加速度为g 的匀加速直线运动。
(3)规律:与初速度为零、加速度为g 的匀加速直线运动的规律相同。
学法指导一、用匀变速直线运动规律解题的一般思路运动学规律具有条件性、相对性和矢量性。
利用运动学规律解决运动学问题的一般思路是:1.对物体进行运动情况分析,画出运动过程示意图。
2.选择合适的运动学规律,选取正方向,列式求解。
二、利用图象分析解决运动学问题1.速度-时间图象的信息点(1)横坐标表时间,纵坐标表速度。
图线表示速度随时间的变化关系。
(2)斜率表示加速度的大小和方向。
切线的斜率表示某时刻物体加速度的大小和方向。
(3)图线与坐标轴围成的面积表示位移的大小和方向(横轴上方为正,下方为负)。
(4)横、纵截距的含义。
2.位移-时间图象的信息点(1)横坐标表示时间,纵坐标表示位移。
图线表示物体的位移随时间的变化关系,不表示轨迹。
(2)斜率表示速度的大小和方向。
切线的斜率表示某时刻物体速度的大小和方向。
(3)横截距表示物体出发的时刻,纵截距表示零时刻物体的出发位置。
3.利用图象分析和解决问题时必须把图象与具体的物理情景相联系,能写出横、纵坐标之间关系式的,最好写出关系式,并把式子与图象相结合。
匀变速直线运动的规律一、匀变速直线运动1.定义:沿着一条直线,且加速度不变的运动.二、匀变速直线运动的规律1.匀变速直线运动的速度与时间的关系v t=v0+at.2.匀变速直线运动的位移与时间的关系s=v0t+12at23.匀变速直线运动的位移与速度的关系v2t-v20=2as.4.由平均速度求匀变速直线运动的位移s=v0+v t 2t考点一初速度为零(或末速度为零)的匀变速直线运动做匀变速直线运动的物体,如果初速度为零,各物理量间的比例关系:1.前1 s、前2 s、前3 s、…内的位移之比为1∶4∶9∶…2.第1 s、第2 s、第3 s、…内的位移之比为1∶3∶5∶…3.前1 m、前2 m、前3 m、…所用的时间之比为1∶2∶3∶…4.第1 m、第2 m、第3 m、…所用的时间之比为1∶(2-1)∶(3-2)∶…1.Δs=aT2,即任意相邻相等时间内的位移之差相等.可以推广到s m-s n=(m-n)aT22.=v0+v t2,某段时间的中间时刻的瞬时速度等于该段时间内的平均速度.v =v20+v2t2,某段位移的中间位置的瞬时速度不等于该段位移内的平均速度.可以证明,无论匀加速还是匀减速,都有v v题型一匀变速直线运动基本规律的应用例1 一个氢气球以4 m/s2的加速度由静止从地面竖直上升,10 s末从气球中掉下一重物,此重物最高可上升到距地面多高处?此重物从氢气球中掉下后,经多长时间落回到地面?(忽略空气阻力,g取10 m/s2)解析 下面分三个阶段来求解.向上加速阶段: s 1=12a 1t 21=12×4×102 m =200 m v 1=a 1t 1=40 m/s 竖直上抛上升阶段:s 2=v 212g=80 m t 2=v 1g =4 s自由下落阶段:s 1+s 2=12gt 23得:t 3=2(s 1+s 2)g =56 s =7.48 s 所以,此重物距地面最大高度 s max =s 1+s 2=280 m 重物从掉下到落地的总时间 t =t 2+t 3=11.48 s.2. 从斜面上某一位置,每隔0.1 s 释放一个小球,在连续释放几颗小球后,对在斜面上滚动的小球拍下照片,如图1所示,测得s AB =15 cm ,s BC =20 cm ,求: (1)小球的加速度; (2)拍摄时B 球的速度; (3)拍摄时s CD 的大小; (4)A 球上表面滚动的小球还有几颗.解析 (1)由a =ΔsT 2得小球的加速度 a =s BC -s ABT2=5 m/s 2 (2)B 点的速度等于AC 段上的平均速度,即 v B =s AC2t=1.75 m/s(3)由相邻相等时间内的位移差恒定,即s CD -s BC =s BC -s AB ,所以 s CD =2s BC -s AB =0.25 m(4)设A 点小球的速度为v A ,由于 v A =v B -at =1.25 m/s所以A 球的运动时间为t A =v Aa =0.25 s ,所以在A 球上方滚动的小球还有2颗.自由落体和竖直上抛考点一 自由落体运动的规律与推论 1.基本规律由于自由落体运动是初速度为零的匀加速直线运动,所以匀变速直线运动的基本公式及其推论都适用于自由落体运动. (1)速度公式:v =gt(2)位移公式:h =12gt 2(3)位移与速度的关系:v 2=2gh 2.推论(1)平均速度等于中间时刻的瞬时速度,也等于末速度的 一半,即v =v t 2=12gt(2)在相邻的相等时间内下落的高度差Δh =gT 2(T 为时间间隔) 考点二 对竖直上抛运动的理解 1.竖直上抛运动的研究方法(1)分段法:可以把竖直上抛运动分成上升阶段的匀减速直线运动和下降阶段的自由落体运动处理,下降过程是上升过程的逆过程.(2)整体法:从全过程来看,加速度方向始终与初速度的方向相反,所以也可把竖直上抛运动看成是一个匀变速直线运动.3. 如图2所示,一根长为L =10 m 的直杆由A 点静止释放,求它通过距A 点为h =30 m ,高为Δh =1.5 m 的窗户BC 所用的时间Δt .解析 由题意可知,直杆通过窗户BC 所用的时 间是指直杆的上端E 自由下落到窗户的下沿C 所 用的时间与直杆的下端F 自由下落到窗户的上沿 B 所用的时间之差,如题图所示.所以直杆通过窗 户BC 所用的时间为 Δt =t 2-t 1= 2(h +Δh )g- 2(h -L )g=2×31.510 s - 2×(30-10)10s =0.51 s题型三 “临界分析法”解决抛体相遇问题1.临界问题:是指一种物理过程转变为另一种物理过程,或一种物理状态转变为另一种物理状态时,处于两种过程或两种状态的分界处的问题.处于临界状态的物理量的值叫临界值. 2.临界问题的特点(1)物理现象的变化面临突变性.(2)对于连续变化问题,物理量的变化出现拐点,呈现出两性,即能同时反映出两种过程和两种现象的特点.3.分析方法:解决临界问题,关键是找出临界条件.一般有两种基本方法:(1)以定理、定律为依据,首先求出所研究问题的一般规律和一般解,然后分析、讨论其特殊规律和特殊解;(2)直接分析、讨论临界状态和相应的临界值,求解出研究问题的规律和解.例3 在h 高处,小球A 由静止开始自由落下,与此同时,在A 的正下方地面上以初速度v 0竖直向上抛出另一小球B ,求A 、B 在空中相遇的时间与地点,并讨论A 、B 相遇的条件(不计空气阻力作用)解析 设相遇时间为t ,相遇点离地面高度为y ,则两球相遇必在同一位置,具有相同的y .所以y =v 0t -12gt 2=h -12gt 2,即v 0t =h .所以相遇时间为t =hv 0. 将t 代入y 的表达式中,y =h -12gt 2=h -12g h 2v 20=h (1-gh2v 20),即为相遇点离地面的高度. 讨论:A 、B 能在空中相遇,则y >0,即h (1-gh 2v 20)>0.所以1-gh2v 20>0,即v 0> gh2为A 、B 在空中相遇的条件. 当在B 球的最高点相遇时,应有12gt 2+v 202g =h ,且t =v 0g ,解得v 0=gh .当gh2<v 0<gh 时,在B 球下降过程中两球相遇;当v 0=gh 时,恰在B 球上升到最高点时两球相遇;当v 0>gh 时,在B 球上升过程中两球相遇.建模感悟 从高处下落的物体与上抛物体的相遇极其类似在水平面上的相遇,所不同的是此类题目两物体的运动均是匀变速直线运动.但处理时要注意相遇可能有两种情形——上抛物体的上升段和下降段,同时注意二者之间的时间关系和位移关系,便可顺利解决此类题目. 4. 如图3所示,A 、B 两棒长均为L =1 m ,A 的下端和B 的上端相距s =20m ,若A 、B 同时运动,A 做自由落体运动,B 做竖直上抛运动,初速度v 0=40 m/s.求:(1)A 、B 两棒何时相遇; (2)从相遇开始到分离所需的时间 解析 (1)设经过时间t 两棒相遇,由1 2gt 2+(vt-12gt2)=s,得t=sv0=2040s=0.5 s.(2)从相遇开始到两棒分离的过程中,A棒做初速度不为零的匀加速运动,B棒做匀减速运动,设从相遇开始到分离所需的时间为t′,则(v A t′+12gt′2)+(vBt′-12gt′2)=2L.其中v A=gt,v B=v0-gt.代入后解得t′=2Lv0=2×140s=0.05 s.专题:运动的图象追及和相遇问题1.对s-t图象的理解(1)物理意义:反映了做直线运动的物体位移随时间变化的规律.(2)图线斜率的意义①图线上某点切线的斜率大小表示物体速度的大小②图线上某点切线的斜率正负表示物体速度的方向3)两种特殊的s—t图象①若s-t图象是一条倾斜的直线,说明物体在做匀速直线运动.②若s-t图象是一条平行于时间轴的直线,说明物体处于静止状态.2.对v-t图象的理解(1)物理意义:反映了做直线运动的物体速度随时间变化的规律.(2)图线斜率的意义①图线上某点切线的斜率大小表示物体运动的加速度的大小②图线上某点切线的斜率正负表示加速度的方向(3)图象与坐标轴围成的“面积”的意义①图象与坐标轴围成的面积表示位移的大小②若此面积在时间轴的上方,表示这段时间内的位移方向为正;若此面积在时间轴的下方,表示这段时间内的位移方向为负题型二追及和相遇问题的处理方法例3 甲车以10 m/s的速度在平直的公路上匀速行驶,乙车以4 m/s的速度与甲车平行同向做匀速直线运动.甲车经过乙车旁边时开始以0.5 m/s2的加速度刹车,从甲车刹车开始计时,求:(1)乙车在追上甲车前,两车相距的最大距离;(2)乙车追上甲车所用的时间.解析(1)当甲车速度减至等于乙车速度时两车的距离最大,设该减速过程所用时间为t,则有v乙=v甲-at,解得t=12 s,此时甲、乙间距离为v甲t-12at2-v乙t=36 m(2)设甲车减速到零所需时间为t1,则有t1=v甲a=20 st1时间内,s甲=v甲2t1=102×20 m=100 m s乙=v乙t1=4×20 m=80 m此后乙车运动时间t2=s甲-s乙v乙=204s=5 s 故乙车追上甲车需t1+t2=25 s.题后感悟(1)在解决追及相遇类问题时,要紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式,另外还要注意最后对解的讨论分析.(2)分析追及相遇类问题时,要注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,往往对应一个临界状态,满足相应的临界条件.(3)解题思路和方法5.在水平轨道上有两列火车A和B相距s,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度大小为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0满足的条件.解析A、B车的运动过程(如图)利用位移公式、速度公式求解.对A车有s A=v0t+12×(-2a)×t2 v A=v0+(-2a)×t对B车有s B=12at2,vB=at对两车有s=s A-s B追上时,两车不相撞的临界条件是v A=v B联立以上各式解得v0=6as故要使两车不相撞,A车的初速度v0应满足的条件是v0≤6as1.如图6所示,一高为h=2.4 m,倾角为θ=37°的斜面体ABC固定在光滑水平面上.在距C点右侧水平距离为d=5 m的D处固定一竖直挡板.一质量为m=0.1 kg的小物块从斜面体的顶端B 由静止开始下滑,如果小物块与斜面体间的动摩擦因数μ=0.5,小球在运动过程中经过C 点时无机械能损失,(重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)小物块从顶端B 滑至底端C 所需要的时间t ;(2)小物块从开始运动到最终停止的整个过程中在斜面上运动的路程s . 解析 (1)设小物块下滑的加速度为a ,由牛顿第二定律得mg sin θ-μmg cos θ=ma 可得a =g sin θ-μg cos θ=10×0.6 m/s 2-0.5×10×0.8 m/s 2=2 m/s 2 由运动学公式可得t =2hsin θ·a= 2×2.40.6×2s =2 s (2)小物块最终停在斜面底端C 点 由动能定理得mgh -μmg cos θ·s =0 可得s =6 m 10(新课标理综第21题).如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。
第2单元 匀变速直线运动规律及应用1、匀速直线运动:沿着一条直线,且速度不变的运动,叫做匀速直线运动。
2、匀变速直线运动:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。
匀变速直线运动是一种理想化的运动模型。
当速度与加速度方向相同时,物体的速度随时间均匀增大,物体做匀加速直线运动;当速度与加速度方向相反时,物体的速度随时间均匀减小,物体做匀减速直线运动。
一、速度与时间的关系式:公式的推导:一个物体做匀变速直线运动,设初始时刻(t=0)速度为0v ,t 时刻速度为v ,a 是定值(不变),则由加速度的定义得tv v t v v t v a 000-=--=∆∆=,整理得at v v +=0。
此式就是匀变速直线运动的速度公式。
理解:①公式中0v 表示物体运动的初速度,at 表示t 时间内速度的变化量,用开始时物体的速度0v 加上运动过程中速度的变化量at 就得到t 时刻的瞬时速度v 。
此公式中有四个物理量,只要知道其中的任意三个物理量,就可以确定最后一个物理量。
注:该公式仅适用于匀变速直线运动,对曲线运动或加速度变化的运动均不适用。
②速度公式中0v 、v 、a 都是矢量,用速度时间公式进行运算时,必须先规定正方向,通常规定初速度的方向为正方向。
加速度与初速度方向相同,则物体做匀加速直线运动,加速度为正值,at 表示t ~0时间内的速度增加量,t 时刻的速度等于初速度0v 加上at ,加速度与初速度方向相反,则物体做匀减速直线运动,加速度取负值,at 表示t ~0时间内速度的减小量,t 时刻的速度等于初速度0v 减去at ;若计算出v 为正值,则表示末速度与初速度的方向相同,v 为负值,则表示末速度与初速度方向相反。
③如果一个物体的运动分为几个阶段,全过程不是匀变速运动,但各小段均做匀变速直线运动,则可以在每小段应用匀变速运动的速度公式求解。
④当00=v 时,at v =,表示物体做初速度为0的匀加速直线运动。
匀变速直线运动公式、规律总结一.基本规律:v =ts 1. 公式a =t v v t 0-a =tv tv =20t v v + v =t v 21 at v v t +=0 at v t =021at t v s +=221at s = t v v s t 20+= t v s t 2= 2022v v as t -=22t v as =注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动..................................。
二.匀变速直线运动的两个重要规律:1.匀变速直线运动中某段时间内中间时刻的瞬时速度等于这段时间内的平均速度:即2t v =v ==ts 20t v v + 2.匀变速直线运动中连续相等的时间间隔内的位移差是一个恒量:设时间间隔为T ,加速度为a ,连续相等的时间间隔内的位移分别为S 1,S 2,S 3,……S N ; 则∆S=S 2-S 1=S 3-S 2= …… =S N -S N -1= aT 2注意:设在匀变速直线运动中物体在某段位移中初速度为0v ,末速度为t v ,在位移中点的瞬时速度为2s v ,则中间位置的瞬时速度为2s v =2220t v v + 无论匀加速还是匀减速总有2t v =v =20t v v +<2s v =2220t v v +三.自由落体运动和竖直上抛运动:v=2tvgtvt=s=212gt22tvgs=总结:自由落体运动就是初速度v=0,加速度a=g的匀加速直线运动.gtvvt-=2.竖直上抛运动2021gttvs-=222vvgst-=-总结:竖直上抛运动就是加速度ga-=的匀变速直线运动.四.初速度为零的匀加速直线运动规律:设T为时间单位,则有:(1)1s末、2s末、3s末、…… ns末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n同理可得:1T末、2T末、3T末、…… nT末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n(2)1s内、2s内、3s内……ns内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2同理可得:1T内、2T内、3T内……nT内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2(3)第一个1s内,第二个2s内,第三个3s内,……第n个1s内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)同理可得:第一个T内,第二个T内,第三个T内,……第n个T内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)(4)通过连续相等的位移所用时间之比为:t1∶t2∶t3∶……:t n=1∶(12-)∶(23-)∶………∶(1--nn)课时4:匀速直线运动、变速直线运动基本概念(例题)一.变速直线运动、平均速度、瞬时速度:例1:一汽车在一直线上沿同一方向运动,第一秒内通过5m,第二秒内通过10m,第三秒内通过20m,第四秒内通过5m,则最初两秒的平均速度是_________m/s,则最后两秒的平均速度是_________m/s,全部时间的平均速度是_________m/s.例2:做变速运动的物体,若前一半时间的平均速度为4m/s,后一半时间的平均速度为8m/s,则全程内的平均速度是_________m/s;若物体前一半位移的平均速度为4m/s,后一半位移的平均速度为8m/s,则全程内的平均速度是_________m/s.二.速度、速度变化量、加速度:提示:1、加速度:是表示速度改变快慢的物理量,是矢量。
匀变速直线运动的基本规律在斜面上滚动的物体的运动规律,证明了重力加速度对物体的运动是独立于物体的质量的。
4.XXX的研究成果对现代科学的发展产生了深远的影响,为物理学、力学等领域的发展奠定了基础。
第一章直线运动1.1 匀变速直线运动的规律基础知识梳理一、匀变速直线运动1.定义:沿着一条直线,加速度不变的运动。
2.分类:1) 匀加速直线运动:a与v方向相同;2) 匀减速直线运动:a与v方向相反。
二、匀变速直线运动的基本规律1.匀变速直线运动的三大基本公式:1) 速度与时间的关系:v = v0 + at;2) 位移与时间的关系:x = v0t + 1/2at²;3) 位移与速度的关系:v² - v0² = 2ax。
2.匀变速直线运动的两个常用推论:1) 平均速度公式:匀变速直线运动的平均速度等于初速度与末速度的平均值,也等于中间时刻的速度,即v = (v0 + v)/2.2) 位移差公式:匀变速直线运动在相邻且相等的时间间隔内的位移之差是个恒量,即Δx = ax²。
3.初速度为零的匀加速直线运动的几个比例关系:1) 1T末,2T末,3T末,…,nT末的瞬时速度之比为 = 1:2:3:…:n。
2) 1T内,2T内,3T内,…,nT内的位移之比为 =1²:2²:3²:…:n²。
3) 第1个T内,第2个T内,第3个T内,…,第n个T 内的位移之比为xⅠ:xⅡ:xⅢ:…:xN = 1:3:5:…:(2n-1)。
4) 从静止开始通过连续相等的位移所用时间之比为 = 1:(2-1):(3-2):(2-3):…:(n-n-1)。
三、自由落体运动1.定义:物体只在重力作用下,从静止开始下落的运动叫自由落体运动。
2.基本特征:初速度为零、加速度为g的匀加速直线运动。
3.基本规律:v = gt,h = 1/2gt²,v² = 2gh。
匀变速直线运动的规律一.考点整理匀变速直线运动规律1.匀变速直线运动:沿着一条直线,且加速度的运动.分为匀加速直线运动〔a与v方向〕和匀减速直线运动〔a与v向〕.2.三个根本规律:①速度公式:v = ;②位移公式:x = ;③位移速度关系式:v2t–v02 = .3.三个推论:①做匀变速直线的物体在连续相等的相邻时间间隔T内的位移差等于恒量,即x2–x1 = x3–x2 =……= x n–x n – 1 = ;②做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初末时刻速度矢量和的一半,还等于中间时刻的瞬时速度,即v平均= v t/2= ;③匀变速直线运动的某段位移中点的瞬时速度v x/2 = .4.初速度为零的匀加速直线运动的特别规律:⑴在1T末,2T末,3T末,…,n T末的瞬时速度之比为v1∶v2∶v3∶…∶v n = ;⑵在1T内,2T内,3T内,…,n T内的位移之比为x1∶x2∶x3∶…∶x n = ;⑶在第1个T内,第2个T内,第3个T内,…,第n个T内的位移之比为:xⅠ∶xⅡ∶xⅢ∶…∶x N =____________________________________;⑷从静止开始通过连续相等的位移所用时间之比为t1∶t2∶t3∶…∶t n = ;⑸从静止开始通过连续相等的位移时的速度之比为v1∶v2∶v3∶…∶v n = ;5.自由落体运动:物体只在作用下,从开始下落的运动叫自由落体运动.⑴根本特征:只受,且初速度为、加速度为的匀加速直线运动.⑵根本规律:由于自由落体运动是直线运动,所以匀变速直线运动的根本公式及其推论都适用于自由落体运动.①速度公式:v = ;②位移公式:h = ;③位移与速度的关系:v2 = .⑶推论:①平均速度等于中间时刻的瞬时速度,也等于末速度的一半,即v平均= v/2 = ;在相邻的相等时间内下落的位移差Δh = 〔T为时间间隔〕.二.思考与练习思维启动1.依据给出的速度和加速度的正负,对物体运动性质的推断正确的选项是〔〕A.v > 0,a < 0,物体做加速运动B.v < 0,a < 0,物体做加速运动C.v < 0,a > 0,物体做减速运动D.v > 0,a >0,物体做加速运动2.一物体由静止开始沿光滑斜面做匀加速直线运动,运动6秒到达斜面底端,斜面长为18米,则:⑴物体在第3秒内的位移多大?⑵前3秒内的位移多大?3.甲物体的质量是乙物体质量的5倍,甲从H高处自由下落,同时乙从2H高处自由下落,以下说法中正确的选项是〔高度H远大于10 m〕〔〕A.两物体下落过程中,同一时刻甲的速率比乙的大B.下落1 s末,它们的速度相等C.各自下落1 m,它们的速度相等D.下落过程中甲的加速度比乙的大三.考点分类探讨典型问题〖考点1〗匀变速直线运动规律的应用【例1】珠海航展现场空军八一飞行表演队两架“歼-10〞飞机表演剪刀对冲,上演精彩空中秀.质量为m的“歼-10〞飞机表演后返回某机场,降落在跑道上减速过程简化为两个匀减速直线运动.飞机以速度v0着陆后马上翻开减速阻力伞,加速度大小为a1,运动时间为t1;随后在无阻力伞情况下匀减速直至停下.在平直跑道上减速滑行总路程为x.求:第二个减速阶段飞机运动的加速度大小和时间.【变式跟踪1】如下列图,是某型号全液体燃料火箭发射时第—级发动机工作时火箭的a– t图象,开始时的加速度曲线比较平滑,在120 s的时候,为了把加速度限制在4g以内,第—级的推力降至60%,第—级的整个工作时间为200s.由图线可以看出,火箭的初始加速度为15 m/s2,且在前50 s内,加速度可以看做均匀变化,试计算:⑴t = 50 s时火箭的速度大小;⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t =10 s时离地面的高度是多少?如果此时有一碎片脱落,不计空气阻力,碎片将需多长时间落地?〔取g = 10 m/s2,结果可用根式表示〕〖考点2〗自由落体运动和竖直上抛运动例2某人在高楼的平台边缘,以20 m/s的初速度竖直向上抛出一石子.不考虑空气阻力,取g=10 m/s2,求:⑴物体上升的最大高度;回到抛出点所用的时间;⑵石子抛出后通过距抛出点下方20 m处所需的时间.【变式跟踪2】在塔顶上将一物体竖直向上抛出,抛出点为A,物体上升的最大高度为20m,不计空气阻力,设塔足够高,则物体位移大小为10 m时,物体通过的路程可能为〔〕A.10 m B.20 m C.30 m D.50 m考点3:实际应用:汽车的“刹车〞问题.汽车刹车问题的实质是汽车做单方向匀减速直线运动问题.汽车在刹车过程中做匀减速直线运动,速度减为0后,车相对地面无相对运动,加速度消逝,汽车停止不动,不再返回.汽车运动时间满足t≤v0/a,发生的位移满足x≤v02/2a〔停止时取“=〞号〕.例3一辆汽车以10 m/s的速度沿平直的公路匀速前进,因故紧急刹车,加速度大小为0.2 m/s2,则刹车后汽车在1 min内通过的位移大小为〔〕A.240 m B.250 m C.260 m D.90 m【变式跟踪3】一辆公共汽车进站后开始刹车,做匀减速直线运动,开始刹车后的第1 s内和第2 s内位移大小依次为9 m和7 m,则刹车后6 s内的位移是〔〕C.25 m D.75 m四.考题再练高考真题1.〔202xX高考〕某航母跑道长200m,飞机在航母上滑行的最大加速度为6m/s2,起飞需要的X速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为〔〕A.5m/s B.10m/s C.15m/s D.20m/s【预测1】中国首架空客A380大型客机在最大重量的状态下起飞需要滑跑距离约3000m,着陆距离大约为202xm.设起飞滑跑和着陆时都是匀变速运动,起飞时速度是着陆时速度的1.5倍,则起飞滑跑时间和着陆滑跑时间之比是〔〕A.3∶2 B.1∶1 C.1∶2 D.2∶12.〔202x全国卷大纲版〕一客运列车匀速行驶,其车轮在铁轨间的接缝处会产生周期性撞击.坐在该客车中的某旅客测得从第1次到第16次撞击声之间的时间间隔为10.0s.在相邻的平行车道上有一列货车,当该旅客经过货车车尾时,货车恰好从静止开始以恒定加速度沿客车行进方向运动.该旅客在此后的20.0s内,看到恰好有30节货车车厢被他连续超过.每根铁轨的长度为25.0m,每节货车车厢的长度为16.0m,货车车厢间距忽略不计.求:⑴客车运行速度的大小;⑵货车运行加速度的大小【预测2】小明同学乘坐“和谐号〞动车组,觉察车厢内有速率显示屏.当动车组在平直轨道上经历匀加速、匀速与再次匀加速运行期间,他记录了不同时刻的速率,局部数据列于表格中.动车组的总质量M = 2.0×105kg,假设动车组运动时受到的阻力是其重力的0.1倍,取g = 10m/s2.在小明同学记录动车组速率这段时间内,求:⑴动车组的加速度值;⑵动车组牵引力的最大值;⑶动车组位移的大小.五.课堂演练自我提升t/s v/m·s-1 0 30 100 40 300 50 400 50 500 60 550 70 600 801.一个物体从静止开始做匀加速直线运动.它在第1 s内与第2 s内的位移之比为x1∶x2,在走完第1 m时与走完第2 m时的速度之比为v1∶v2.以下说法正确的选项是〔〕A.x1∶x 2 = 1∶3,v1∶v2 = 1∶2 B.x1∶x2 = 1∶3,v1∶v2 = 1∶ 2C.x1∶x2 = 1∶4,v1∶v2 = 1∶2 D.x1∶x2 = 1∶4,v1∶v2 = 1∶ 22.某做匀加速直线运动的物体初速度为2 m/s,经过一段时间t后速度变为6 m/s,则t/2时刻的速度为〔〕A.由于t未知,无法确定t/2时刻的速度B.5 m/sC.由于加速度a及时间t未知,无法确定t/2时刻的速度D.4 m/s3.科技馆里有一个展品,该展品放在暗处,顶部有一个不断均匀向下喷射水滴的装置,在频闪光源的照耀下,可以看到水滴好似静止在空中固定的位置不动,如下列图.某同学为计算该装置喷射水滴的时间间隔,用最小刻度为毫米的刻度尺测量了空中几滴水间的距离,由此可计算出该装置喷射水滴的时间间隔为〔g取10 m/s2〕〔〕A.0.01 s B.0.02 s C.0.1 s D.0.2 s4.做匀减速直线运动的物体经4 s后停止,假设在第1 s内的位移是14 m,则最后1 s内的位移是〔〕A.3.5 m B.2 m C.1 m D.05.沙尘暴天气会严峻影响交通.有一辆卡车以54 km/h的速度匀速行驶,司机突然模糊看到正前方十字路口一个老人跌倒〔假设没有人扶起他〕,该司机刹车的反响时间为0.6 s,刹车后卡车匀减速前进,最后停在老人前1.5 m处,预防了一场事故.刹车过程中卡车加速度大小为5 m/s2,则〔〕A.司机觉察情况后,卡车经过3 s停下B.司机觉察情况时,卡车与该老人的距离为33 mC.从司机觉察情况到停下来的过程,卡车的平均速度为11 m/sD.假设卡车的初速度为72 km/h,其他条件都不变,则卡车将撞到老人6.从地面竖直上抛一物体A,同时在离地面某一高度处有一物体B自由下落,两物体在空中同时到达同一高度时速度大小均为v,则以下说法正确的选项是〔〕A.A上抛的初速度与B落地时速度大小相等,都是2vB.两物体在空中运动的时间相等C.A上升的最大高度与B开始下落时的高度相同D.两物体在空中同时到达的同一高度处肯定是B开始下落时高度的中点7.一条东西方向的平直公路边上有两块路牌A、B,A在西B在东,一辆匀速行驶的汽车自东向西经过B路牌时,一只小鸟恰自A路牌向B匀速飞去,小鸟飞到汽车正上方马上折返,以原速率飞回A,过一段时间后,汽车也行驶到A.以向东为正方向,它们的位移-时间图像如下列图,图中t2 = 2t1,由图可知〔〕A.小鸟的速率是汽车速率的两倍B.相遇时小鸟与汽车位移的大小之比是3:1C.小鸟飞行的总路程是汽车的1.5倍D.小鸟和汽车在0-t2 时间内位移相等8.汽车刹车后,停止转动的轮胎在地面上发生滑动产生明显的滑动痕迹,即常说的刹车线.由刹车线长短可以得知汽车刹车前的速度大小,因此刹车线的长度是分析交通事故的一个重要依据.假设某汽车刹车后至停止的加速度大小为7 m/s2,刹车线长为14 m,求:⑴该汽车刹车前的初始速度v0的大小;⑵该汽车从刹车至停下来所用的时间t0;⑶在此过程中汽车的平均速度.参考答案:一.考点整理匀变速直线运动规律1.保持不变同反2.v0 + at v0t + at2/2 2ax 3.aT2(v0 + v t)/22220tvv4.1∶2∶3∶…∶n 12∶22∶32∶…∶n21∶3∶5∶…∶(2n–1) 1∶(2–1)∶(3–2)∶…∶(n–n-1) 1∶2∶3∶…∶n5.重力静止重力零g初速度为零的匀加速gt gt2/2 2gh gt/2 gT2二.思考与练习思维启动1.BCD;速度和加速度都是矢量,假设二者符号相同,物体就做加速运动,故B、D正确;假设二者符号相反,物体就做减速运动,故A错误,C正确.2.⑴第1 s,第2 s,第3 s……第6 s内的位移之比为1∶3∶5∶7∶9∶11,因此第3秒内的位移xⅢ=51+3+5+7+9+11×18 m = 2.5 m,⑵将6 s的时间分成2个3 s,前3 s内的位移x3=11+3×18 m=4.5 m.3.BC三.考点分类探讨典型问题例1如图,A为飞机着陆点,AB、BC分别为两个匀减速运动过程,C点停下.A到B过程,依据运动学规律有:x1 = v0t1–12a1t12,v B = v0–a1t1,B到C过程,依据运动学规律有:x2 = v B t2–12a2t22,0 = v B–a2t2,A到C过程,有:x = x1 + x2,联立解得:a2 = (v 0–a1t1)2/(2x + a1t12– 2 v0t1) t2 = (2x + a1t12– 2v0t1)/( v 0–a1t1)变式1 ⑴因为在前50 s内,加速度可以看做均匀变化,则加速度图线是倾斜的直线,它与时间轴所围的面积就表示该时刻的速度大小,所以有:v = (1/2)(15+20)×50 m/s = 875 m/s.⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t = 10 s时离地面的高度是h=at2/2 =(1/2)×15×102 m = 750 m,如果有一碎片脱落,它的初速度v1=at=150 m/s,离开火箭后做竖直上抛运动,有-h = v1t-12gt2,代入数据解得t=5(3+15) s,t′=5(3-15) s舍去.例2 法1:⑴上升过程,匀减速直线运动,取竖直向上为正方向,v0 = 20 m/s,a1 = –g,v = 0,依据匀变速直线运动公式:v2–v02 = 2ax,v= v0 + at,得物体上升的最大高度:H = v02/2a1 = v02/2g = 20 m;上升时间:t1 = v0/g = 2 s;下落过程,自由落体运动,取竖直向下为正方向.v02 = 0,a2 = g,回到抛出点时,x1 = H,到抛出点下方20 m处时,x2 = 40 m,依据自由落体公式,得下落到抛出点的时间:t2=2x1g =2×2010s=2 s,回到抛出点所用的时间为t = t1+t2 = 4 s.⑵下落到抛出点下方20 m处的时间:t2′=2x2g=2×4010s = 2 2 s;从抛出到落到抛出点下方20 m处所经历时间为t′ = t1 + t2′= 2(1+2) s.法2:⑴全过程分析,取向上为正方向,v0 = 20 m/s,a= –g,最大高度时v = 0,回到原抛出点时x1 =0 m,由匀变速运动公式得最大高度:H = v02/2g = 20 m,回到原抛出点:x1 = v0t–12gt2,t = 2 v0/g =4 s.⑵落到抛出点下方20 m处时,x = – 20 m:x = v0t2–12gt22,代入数据得:–20 = 20t2–12×10t22,解得⎩⎨⎧t2=〔2+22〕 s t2′=〔2-22〕 s.舍去.所以石子落到抛出点下方20 m 处所需时间t 2=2(1+2) s 变式2 A CD ;物体在塔顶上的A 点抛出,位移大小为10 m 的位置有两处,如下列图,一处在A 点之上,另一处在A 点之下,在A 点之上时,通过位移为10 m 处又有上升和下降两种过程,上升通过时,物体的路程s 1等于位移x 1的大小,即s 1=x 1=10 m ;下落通过时,路程s 2=2H -x 1=2×20 m -10 m =30 m ,在A 点之下时,通过的路程s 3=2H +x 2=2×20 m +10 m =50 m .故A 、C 、D 正确例3 B ;因汽车刹车后一直做匀减速直到运动速度为零为止,所以t = v 0/a = 50 s ,所以汽车刹车后在1 min内通过的位移为x = v 0t /2 = 250 m . 变式3 C ;因汽车做匀减速直线运动.由x = v 0t +12at 2得 9=v 0×1-12a ×12,9+7=v 0×2-12a ×22,解得v 0 = 10 m/s ,a = 2 m/s 2.汽车从刹车到停止所需时间t = v 0/a = 5s ;刹车后6 s 内的位移即5 s 内的位移x = v 0t – 12at 2,代入数据解得x = 25 m .四.考题再练 高考真题 1.B预测1:B ;由x = v t /2解得起飞滑跑时间和着陆滑跑时间之比是 t 1:t 2 =(x 1/x 2)(v 2/v 1) =1∶1,选项B 正确. 2.⑴ 设连续两次撞击铁轨的时间间隔为Δt ,每根铁轨长度为l ,则客车速度为v = l /Δt ,其中l = 25.0m 、Δt = 10.0/(16–1) s 得 v = 37.5m/s .⑵ 设从货车开始运动后t = 20.0s 内客车行驶了s 1米,货车行驶了s 2米,货车加速度为a ,30节货车车厢的总长度为L = 30×16.0m .由运动学公式有 s 1 = v t 、s 2 = at 2/2,由题给条件有L = s 1 – s 2,联立上述各式,并代入数据解得a = 1.35m/s 2.预测2:⑴ 通过记录表格可以看出,动车组有两个时间段处于加速状态,设加速度分别为a 1、a 2,由 a =Δv /Δt 代入数据后得a 1 = 0.1m/s 2、a 2 = 0.2m/s 2.⑵ 由牛顿第二定律 F - F f = Ma ,F f = 0.1Mg 当加速度大时,牵引力也大.代入数据得 F = F f + Ma 2 =2.4×105N .⑶ 通过作出动车组的 v – t 图可知,第—次加速运动的结束时刻是200s ,第二次加速运动的开始时刻是450s .x 1 = (v 1 + v 2)/2]t 1、x 2 = v 2t 2、x 3 = (v 2 + v 3)/2]t 3、x = x 1 + x 2 + x 3,代入数据解得x = 30250m .五.课堂演练 自我提升1.B ;由x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶xn =1∶3∶5∶…∶(2n – 1)知x 1∶x 2=1∶3,由x =12at 2知t 1∶t 2=1∶2,又v=at 可得v 1∶v 2=1∶2,正确.2.D ;中间时刻的速度等于这段时间内的平均速度,即v t/2 = (v 0 + v )/2 = 4 m/s3.C ;自上而下第—、二和三点之间的距离分别为x 1 = (10.00 – 1.00)×10-2 m = 9.00×10-2 m ,x 2 = (29.00 –10.00)×10-2 m =19.00×10-2 m ,依据公式Δx = aT 2得x 2–x 1 = gT 2,故T = 0.1 s . 4.B ;设加速度大小为a ,则开始减速时的初速度大小为v 0=at =4a ,第1 s 内的位移是x 1=v 0t 1-12at 12=3.5a = 14 m ,所以a =4 m/s 2,物体最后1 s 的位移是x =12at 22=2 m .此题也可以采纳逆向思维的方法,把物体的运动看做是初速度为零的匀加速直线运动,其在连续相邻相等时间内的位移之比为1∶3∶5∶7,第4 s 内的位移是14 m ,所以第1 s 内的位移是2 m .5.BD ;v 0=15 m/s ,故刹车后卡车做匀减速运动的时间t 2 = v 0/a = 3 s ,故卡车经过3.6 s 停下来,A 错误;卡车与该老人的距离x =v 0t 1 + v 02/2a +Δx =33 m ,B 正确;v 平 = (x –Δx )/(t 1 + t 2) =8.75 m/s ,C 错误;x ′ = v ′t 1 + v ′2/2a = 52 m > 33 m ,所以D 正确.6.AC ;设两物体从下落到相遇的时间为t ,竖直上抛物体初速度为v 0,由题gt = v 0 – gt = v 得v 0=2v .故A 正确.依据竖直上抛运动的对称性可知,B 自由落下到地面的速度为2v ,在空中运动时间为t B = 2v /2g ,A 竖直上抛,在空中运动时间t A = 2×(2v /g ) = 4v /g .故B 错误.物体A 能上升的最大高度h A = (2v )2/2g ,B 开始下落的高度h B =g (2v /g )2/2,显然两者相等.故C 正确.两物体在空中同时到达同一高度为h = gt 2/2 = g (v /g )2/2 = v 2/2g = h B /4.故D 错误.应选AC7.BC ;设AB 之间的距离为L ,小鸟的速率是v 1,汽车的速率是v 2,小鸟从出发到与汽车相遇的时间与返回的时间相同,故它们相向运动的时间为t 1/2,则在小鸟和汽车相向运动的过程中有v 1t 1/2 + v 2t 1/2 = L ,即〔v 1 + v 2〕t 1/2 = L ,对于汽车来说有v 2t 2 = L ;联立以上两式可得v 1 =3 v 2,故A 错误B 正确.汽车通过的总路程为x 2 = v 2t 2,小鸟飞行的总路程为x 1 = v 1t 1=3 v 2×(t 2/2) = (3/2)x 2,故C 正确.小鸟回到出发点,故小鸟的位移为0,故D 错误.应选BC .8.⑴ 由题意依据运动学公式v 2 – v 20 = 2ax 得– v 20 = 2ax 代入数据解得v 0 = 14 m/s . ⑵ 法1:由v = v 0 + at 0得t 0 = (v – v 0)/a = 2s ;法2:(逆过程) 由x = 12at 02 得t 0 =2xa= 2 s . ⑶ 法1:v 平均 = x /t = 7 m/s ;法2:v 平均 = (v 0 + v )/2 = 7 m/s .附:9.物体以肯定的初速度v 0冲上固定的光滑斜面,到达斜面X 点C 时速度恰为零,如下列图.物体第—次运动到斜面长度3/4处的B 点时,所用时间为t ,求物体从B 滑到C 所用的时间. 法1〔比例法〕:对于初速度为0的匀加速直线运动,在连续相等的时间里通过的位移之比为 x 1∶x 2∶x 3∶…∶x n = 1∶3∶5∶…∶(2n – 1),现有x BC ∶x AB = (x AC /4)∶(3x AC /4) = 1∶3,通过x AB 的时间为t ,故通过x BC 的时间t BC = t . 法2〔中间时刻速度法〕:中间时刻的瞬时速度等于这段位移的平均速度.v AC = (v 0 + 0)/2 = v 0/2,又v 02 =2ax AC ① v B 2 = 2ax BC ② x BC = x AC /4 ③ 解①②③得:v B = v 0/2,可以看出v B 正好等于AC 段的平均速度,因此B 点是中间时刻的位置.因此有t BC = t . 法3〔利用有关推论〕:对于初速度为0的匀加速直线运动,通过连续相等的各段位移所用的时间之比为 t 1∶t 2∶t 3∶…∶t n = 1∶(2-1)∶(3-2)∶(4-3)∶…∶(n-n -1).现将整个斜面分成相等的四段,如下列图.设通过BC段的时间为t x ,那么通过BD ,DE ,EA 的时间分别为:t BD = (2-1)t x ,t DE = (3-2)t x ,t EA = (2-3)t x ,又t BD + t DE + t EA = t ,得t x = t .v /m·s -1t/s100 200 300 400 500 600 20406080。
一)匀变速直线运动的规律的几个基本关系。
=v0+at速度公式:vt位移公式:平均速度公式:1、速度位移关系式:v t2-v02=2as=v0+at和位移公式,两式联立消去根据匀变速直线运动的速度公式vtt即可得到速度位移关系式.在有些问题中,没有给出或者不涉及时间t,应用速度位移关系式解题比较方便。
2、某段时间内中间时刻的瞬时速度等于这段时间内的平均速度:。
=v0+at可知,经后的瞬时速度为:证明:由vt3、某段位移内中间位置的瞬时速度v中与这段位移的初、末速度的关系为:。
证明:(二)匀变速直线运动规律的两个推论:1、任意两个连续相等的时间间隔(T)内位移之差为一恒量,即2、对于初速为零的匀加速直线运动,有如下特殊规律:(3)第一个T内,第二个T内,第三个T内,…,位移的比为=1∶3∶5∶…∶(2n-1)SⅠ∶SⅡ∶SⅢ∶…∶SN关注:对物体作匀减速运动至末速为零,常逆向视为初速为零的同加速度大小的匀加速运动。
解题相当方便实用。
例1、汽车以12m/s的速度匀速前进,突然遇到紧急情况,立即制动,刚停下又立即起动,再以12m/s的速度匀速前进,设起动与制动的加速度大小相等均为2m/s2,则与没有遇到紧急情况相比,汽车耽误了多长时间?解析:选初速方向为正方向,汽车匀减速运动到停下时,速度为零,加速度a=-2 m/s2,由公式v=v0+at,得0=12-2×t1,故匀减速运动时间t1=6s,此阶段汽车向前运动t;汽车起动阶段,初速为零,加速度a=2m/s2,由12m/s=at2得匀加速阶段运动时间t2=6s;汽车向前运动.所以汽车在起动与制动时间共用时间6s+6s=12s,汽车共向前运动36m+36m=72m.若汽车以12m/s的速度匀速前进,72m只需要时间72m÷12m/s=6s,故汽车耽误时间12s-6s=6s.答案:汽车耽误时间6s.注意:本题要求对运动过程分析清楚,并运用相应规律解题.例2、一物体做匀加速直线运动,已知在相邻的各1s内通过的位移分别为1.2m和3.2m,求物体的加速度和相邻各一秒始末的瞬时速度v1,v2,v3。
研究匀变速直线运动的规律(二)一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后的括号)1.从某高处释放一粒小石子,经过1 s从同一地点再释放另一粒小石子,则在它们落地之前,两粒石子间的距离将( )A.保持不变B.不断增大C.不断减小D.有时增大,有时减小答案:B2.正在匀加速沿平直轨道行驶的长为L的列车,保持加速度不变通过长度为L的桥.车头驶上桥时的速度为v1,车头经过桥尾时的速度为v2,则列车过完桥时的速度为( )A.v1v2B.v21+v22C.2v22+v21D.2v22-v21答案:D3.(2011年高考天津理综)质点做直线运动的位移s与时间t的关系为s=5t+t2(各物理量均采用国际单位制单位),则该质点( )A.第1 s的位移是5 mB.前2 s的平均速度是6 m/sC.任意相邻的1 s位移差都是1 mD.任意1 s的速度增量都是2 m/s答案:D4.汽车以20 m/s的速度做匀速运动,某时刻关闭发动机而做匀减速运动,加速度大小为5 m/s2,则它关闭发动机后通过37.5 m所需时间为( ) A.3 s B.4 sC.5 s D.6 s答案:A5.(2012年模拟)如图所示,水龙头开口处A的直径d1=2 cm,A离地面B 的高度h=80 cm,当水龙头打开时,从A处流出的水流速度v1=1 m/s,在空中形成一完整的水流束.则该水流束在地面B处的截面直径d2约为(g取10m/s2)( )A.2 cm B.0.98 cmC.4 cm D.应大于2 cm,但无法计算答案:B6.物体以速度v匀速通过直线上的A、B两点,所用时间为t.现在物体从A 点由静止出发,先做匀加速直线运动(加速度为a1),到某一最大速度v m后立即做匀减速直线运动(加速度大小为a2),至B点速度恰好减为0,所用时间仍为t,则物体的( )A.v m只能为2v,与a1、a2的大小无关B.v m可为许多值,与a1、a2的大小有关C.a1、a2须是一定的D.a1、a2必须满足a1·a2a1+a2=2vt答案:AD7.(2011年高考理综)一物体做匀加速直线运动,通过一段位移Δs所用的时间为t1,紧接着通过下一段位移Δs所用的时间为t2,则物体运动的加速度为( )A.2Δs t1-t2t1t2t1+t2B.Δs t1-t2t1t2t1+t2C.2Δs t1+t2t1t2t1-t2D.Δs t1+t2t1t2t1-t28.以35 m/s的初速度竖直向上抛出一个小球,不计空气阻力,g取10 m/s2.以下判断正确的是( )A.小球到最大高度时的速度为0B.小球到最大高度时的加速度为0C.小球上升的最大高度为61.25 mD.小球上升阶段所用的时间为3.5 s答案:ACD9.一辆汽车拟从甲地开往乙地,先由静止启动做匀加速直线运动,然后保持匀速直线运动,最后做匀减速直线运动,当速度减为0时刚好到达乙地.从汽车启动开始计时,下表给出某些时刻汽车的瞬时速度,据表中的数据通过分析、计算可以得出汽车( )时刻(s) 1.0 2.0 3.0 5.07.09.510.5速度(m/s)3.0 6.09.012129.0 3.0A.匀加速直线运动经历的时间为4.0 sB.匀加速直线运动经历的时间为5.0 sC.匀减速直线运动经历的时间为2.0 sD.匀减速直线运动经历的时间为4.0 s答案:AC10.在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g值,g值可由实验精确测定,以铷原子钟或其他手段测时间,能将g 值测得很准.具体做法是:将真空长直管沿竖直方向放置,自其中O点竖直向上抛出小球,小球又落至原处O点的时间为T2,在小球运动过程中经过比O点高H 的P点,小球离开P点后又回到P点所用的时间为T1,测得T1、T2和H,可求得g等于( )A.8HT22-T21B.4HT22-T21C.8HT2-T12D.H4T2-T12二、非选择题(本题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)如右图所示,在国庆阅兵式中,某直升飞机在地面上空某高度A 位置处于静止状态待命,要求该机10时56分40秒由静止状态沿水平方向做匀加速直线运动,经过AB段加速后,进入BC段的匀速受阅区,11时准时通过C 位置,如下图所示,已知s AB=5 km,s BC=10 km.问:(1)直升飞机在BC段的速度大小是多少?(2)在AB段做匀加速直线运动时的加速度大小是多少?解析:(1)由题意知t=t+t2=200 s1s AB =0+v2t1=5 000 msBC=vt2=10 000 m 解得:v=100 m/s(2)因为t1=2s ABv=100 s所以a=v-0t1=1 m/s2答案:(1)100 m/s (2)1 m/s212.(15分)(2011年高考课标全2013届高考一轮物理复习高效课时作业:研究匀变速直线运动的规律(二)(沪科版)(时间:45分钟,满分:100分)一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后的括号)1.从某高处释放一粒小石子,经过1 s从同一地点再释放另一粒小石子,则在它们落地之前,两粒石子间的距离将( )A.保持不变B.不断增大C.不断减小D.有时增大,有时减小解析:设第1粒石子运动的时间为t s,则第2粒石子运动的时间为(t-1)s,则经过时间t s,两粒石子间的距离为Δh=12gt2-12g(t-1)2=gt-12g,可见,两粒石子间的距离随t的增大而增大,故B正确.答案:B2.正在匀加速沿平直轨道行驶的长为L的列车,保持加速度不变通过长度为L的桥.车头驶上桥时的速度为v1,车头经过桥尾时的速度为v2,则列车过完桥时的速度为( )A.v1v2B.v21+v22C.2v22+v21D.2v22-v21解析:列车过完桥行驶的距离为2L,车头经过桥尾时的速度为v2,刚好是这一段距离的中间位置,设列车过完桥时的速度为v ,则v 2=v 21+v22,解得v= 2v 22-v 21.答案:D3.(2011年高考天津理综)质点做直线运动的位移s 与时间t 的关系为s =5t +t 2(各物理量均采用国际单位制单位),则该质点( )A .第1 s 的位移是5 mB .前2 s 的平均速度是6 m/sC .任意相邻的1 s 位移差都是1 mD .任意1 s 的速度增量都是2 m/s解析:由匀变速直线运动的位移公式s =v 0t +12at 2,对比题给关系式可得v 0=5 m/s ,a =2m/s 2.则第1 s 的位移是6 m ,A 错;前2 s 的平均速度是v =s 2t=5×2+222 m/s =7 m/s ,B 错;Δs =aT 2=2 m ,C 错;任意1 s 速度增量Δv =at =2 m/s ,D 对.答案:D4.汽车以20 m/s 的速度做匀速运动,某时刻关闭发动机而做匀减速运动,加速度大小为5 m/s2,则它关闭发动机后通过37.5 m 所需时间为( )A .3 sB .4 sC .5 sD .6 s解析:由位移公式得:s =v 0t -12at 2解得t 1=3 s t 2=5 s 因为汽车经t 0=v 0a=4 s 停止,故t 2=5 s 舍去,应选A. 答案:A5.(2012年模拟)如图所示,水龙头开口处A 的直径d 1=2 cm ,A 离地面B 的高度h =80 cm ,当水龙头打开时,从A 处流出的水流速度v 1=1 m/s ,在空中形成一完整的水流束.则该水流束在地面B 处的截面直径d 2约为(g 取10m/s2)( )A.2 cm B.0.98 cmC.4 cm D.应大于2 cm,但无法计算解析:水流由A到B做匀加速直线运动,由v2B-v21=2gh可得:v B=17 m/s,由单位时间通过任意横截面的水的体积均相等,可得:v 1Δt·14πd21=v BΔt·14πd22,解得:d2=0.98 cm,故B正确.答案:B6.物体以速度v匀速通过直线上的A、B两点,所用时间为t.现在物体从A 点由静止出发,先做匀加速直线运动(加速度为a1),到某一最大速度v m后立即做匀减速直线运动(加速度大小为a2),至B点速度恰好减为0,所用时间仍为t,则物体的( )A.v m只能为2v,与a1、a2的大小无关B.v m可为许多值,与a1、a2的大小有关C.a1、a2须是一定的D.a1、a2必须满足a1·a2a1+a2=2vt解析:由S AB=vt=vm2t1+vm2t2=vm2t得,vm=2v,与a1、a2的大小无关,故A正确;由t1=vma1,t2=vma2得t=vma1+vma2,即得a1·a2a1+a2=2vt,故D也正确.答案:AD7.(2011年高考理综)一物体做匀加速直线运动,通过一段位移Δs所用的时间为t1,紧接着通过下一段位移Δs所用的时间为t2,则物体运动的加速度为( )A.2Δs t1-t2t1t2t1+t2B.Δs t1-t2t1t2t1+t2C.2Δs t1+t2t1t2t1-t2D.Δs t1+t2t1t2t1-t2解析:物体做匀变速直线运动,由匀变速直线运动规律:v=vt/2=st知:vt1/2=Δst1①vt2/2=Δst2②由匀变速直线运动速度公式v t=v0+at知vt2/2=vt1/2+a·⎝⎛⎭⎪⎫t1+t22③①②③式联立解得a=2Δs t1-t2t1t2t1+t2.答案:A8.以35 m/s的初速度竖直向上抛出一个小球,不计空气阻力,g取10 m/s2.以下判断正确的是( )A.小球到最大高度时的速度为0B.小球到最大高度时的加速度为0C.小球上升的最大高度为61.25 mD.小球上升阶段所用的时间为3.5 s解析:小球到最大高度时的速度为0,但加速度仍为向下的g,A正确、B错误;由H=v22g=61.25 m,可知C正确;由t=vg=3510s=3.5 s,可知D正确.答案:ACD9.一辆汽车拟从甲地开往乙地,先由静止启动做匀加速直线运动,然后保持匀速直线运动,最后做匀减速直线运动,当速度减为0时刚好到达乙地.从汽车启动开始计时,下表给出某些时刻汽车的瞬时速度,据表中的数据通过分析、计算可以得出汽车( )A.B.匀加速直线运动经历的时间为5.0 sC.匀减速直线运动经历的时间为2.0 sD.匀减速直线运动经历的时间为4.0 s解析:从题表中看出,匀速的速度为12 m/s.从t=1.0 s到t=3.0 s,各秒速度变化相等,做匀加速直线运动,a=9.0-3.03.0-1.0m/s2=3 m/s2.匀加速的时间t=v/a=123s=4.0 s,故选项A对、B错;匀减速的加速度a=3.0-9.010.5-9.5m/s2=-6 m/s2.匀减速的时间t=0-va=-12-6s=2.0 s,故选项C对、D错.答案:AC10.在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g值,g值可由实验精确测定,以铷原子钟或其他手段测时间,能将g 值测得很准.具体做法是:将真空长直管沿竖直方向放置,自其中O点竖直向上抛出小球,小球又落至原处O点的时间为T2,在小球运动过程中经过比O点高H 的P点,小球离开P点后又回到P点所用的时间为T1,测得T1、T2和H,可求得g等于( )A.8HT22-T21B.4HT22-T21C.8HT2-T12D.H4T2-T12解析:设从O点到最高点距离为H2,则H2=12g(T22)2,由P点到最高点的距离为H2-H,则H2-H=12g(T12)2,由以上两式解得:g=8HT22-T21,故选A.答案:A二、非选择题(本题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)如右图所示,在国庆阅兵式中,某直升飞机在地面上空某高度A 位置处于静止状态待命,要求该机10时56分40秒由静止状态沿水平方向做匀加速直线运动,经过AB段加速后,进入BC段的匀速受阅区,11时准时通过C 位置,如下图所示,已知s AB=5 km,s BC=10 km.问:(1)直升飞机在BC段的速度大小是多少?(2)在AB段做匀加速直线运动时的加速度大小是多少?解析:(1)由题意知t=t1+t2=200 ss AB =0+v2t1=5 000 msBC=vt2=10 000 m 解得:v=100 m/s(2)因为t1=2s ABv=100 s所以a=v-0t1=1 m/s2答案:(1)100 m/s (2)1 m/s212.(15分)(2011年高考课标全国卷)甲、乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。