空间向量共面充要条件的应用
- 格式:doc
- 大小:56.50 KB
- 文档页数:2
空间向量共面充要条件的应用共面向量定理涉及三个向量→p 、→a 、→b 共面问题,它们之间的充要条件关系为:如果两个向量→a 、→b 不共线,那么向量→p 与向量→a 、→b 共面的充要条件是:存在有序实数组(x,y),使得→p =x →a +y →b .共面向量定理在立体几何中证明中有关有着广泛的运用,如在点线共面、线面平行等问题中,都有很好的体现.由于向量本身具有的位置不定性,使得共面向量可理解为能够平移到同一平面内的向量,或者理解为平行于同一平面的向量.下面就空间向量共面充要条件的应用分类解析,体会应用的方法与技巧.一、判断点与平面的关系例1 已知A 、B 、C 三点不共线,对平面ABC 外一点O ,若→OM =2→OA -→OB -→OC ,判断点M 是否在平面ABC 内.分析:点M 与A 、B 、C 不共面,即点M 不在平面ABC 内,即不存在x ,y 使→AM =x →AB +y →AC ,可用反证法证明判断.解:假设M 在平面ABC 内,则存在实数x,y ,使→AM =x →AB +y →AC ,于是对空间任意一点O ,O 在平面ABC 外,→OM =(1-x -y)→OA +x →OB +y →OC ,比较原式可得⎩⎪⎨⎪⎧ 1-x -y =2x =-1y =-1,此方程组无解,与假设不成立, ∴不存在实数x,y ,使→AM =x →AB+y →AC ,∴M 与A 、B 、C 不共面. 点评:本题采用反证法来证明点M 不在平面ABC 内,因为反证法就是从正面进行解答比较困难,从对立面进行证明的一种思想方法.二、用于证明四点共面例2 如图所示,长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,N 在AC 上,且AN ﹕NC =2﹕1,求证:A 1、B 、N 、M 四点共面.分析:利用空间向量共面的充要条件,通过证明向量→A 1N 、→A 1B 、→A 1M 共面,即可证明存在唯一实数λ、μ,使→A 1N =λ→A 1B +μ→A 1M 成立.证明:如图,→AA 1=→a ,→AB =→b ,→AD =→c ,则→A 1B =→AB -→AA 1=→b -→a ,∵M 为DD 1的中点,→A 1M =→AD -12→AA 1=→c -12→a , ∵AN ﹕NC =2﹕1,∴→AN =23→AC =23(→AB +→AD)=23(→b +→c ), ∴→A 1N =→AN -→AA 1=23(→b +→c )-→a =23(→b -→a )+23(→c -12→a ) =23→A 1B +23→A 1M, ∴A 1、B 、N 、M 四点共面.点评:本题根据空间向量基本定理,充分利用三角法则与平行四边形法则,通过不同的途径分别用向量→EF ﹑→EH 表示→MQ 或用向量→EG 表示→MQ ,从而建立向量→EG与向量→EF ﹑→EH 的线性关系,进而使问题得证.这是不用向量坐标形式证明几何问题的常用方法.三、证明三线平行同一平面例3 如图所示,E 、F 分别为空间四边形ABCD 中AB 、CD 的中点,证明AD 、EF 、BC 平行于同一平面.分析:证明AD 、EF 、BC 平行于同一平面,即证明向量→EF 、→AD 、→BC 共面,进而证明→EF 、→AD、→BC 之间存在线段关系. 证明:→EF =→EA +→AD +→DF ,且→EF=→EB +→BC +→CF , 又→EA =-→EB ,→DF =-→CF ,所以→EF+→EF =→AD +→BC 即→EF +→EF =12(→AD +→BC)=12→AD +12→BC , 可知,→EF 、→AD 、→BC 共面,所以EF 与AD 、BC 平行于同一平面.点评:本题在证明过程中,通过利用两种不同的途径得到向量→EF的两种不同的表达式,然后两式相加就可以得到所需要证明的表达式,当然其过程要用到三角形法则或平行四边形法则,这是利用加减法处理向量线性线性关系常用的方法.四、证明线面平行例4 正方体ABCD -A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM =DN ,求证:MN ∥平面CC 1D 1D.分析:由于DC 与DD 1在同一平面上,因此可以先考虑利用空间向量共面的充要条件证明向量→NM 与→DC 、→DD 1共面,然后只须说明点M 、N 不在CC 1D 1D 内就可证明MN ∥平面CC 1D 1D.证明:设CM =DN =λDB =λCB 1,则→DN =λ→DB =λ(→DA +→DC),→CM =λ→CB 1=λ(→CB +→CC 1),∴→NM =→ND +→DC +→CM =-λ(→DA +→DC)+→DC +λ(→CB +→CC 1) =(1-λ)→DC +λ(→DA +→CB +→CC 1)=(1-λ)→DC +λ(-→DA +→DA +→CC 1) =(1-λ)→DC +λ→DD 1∴→NM 与→DC 、→DD 1共面,又M 、N 不在面DCC 1D 1内,∴MN ∥平面CC 1D 1D.点评:利用空间证明立体几何问题,减少了利用传统法证明的繁琐的思维量,将考查难度要求较高的空间想象力与抽象的逻辑推理能力转化为考查难度要求稍微较低的运算能力.。
共面向量定理怎么证(原创实用版)目录一、共面向量定理的概念及背景二、共面向量定理的证明方法三、共面向量定理的应用举例四、总结正文一、共面向量定理的概念及背景共面向量定理是平面向量基本定理的一个重要结论。
共面向量定理描述了三个向量共面的充分必要条件,它是解决空间向量共面问题的关键定理。
在数学、物理等科学领域中,共面向量定理被广泛应用。
二、共面向量定理的证明方法共面向量定理的证明方法有多种,这里我们介绍一种较为简洁的证明方法。
证明:设向量 a、b、c 共面,那么存在实数 x、y 使得 a=xb+yc。
假设 d 是与 a、b、c 不共面的向量,那么 d 与 a、b、c 确定一个平面α。
由于 a=xb+yc,所以 d 也在平面α内。
但这与 d 与 a、b、c 不共面矛盾,所以假设不成立,即 a、b、c 共面。
三、共面向量定理的应用举例1.证明四点共面:在空间四边形 ABCD 中,M、N 分别是 AD、BC 的中点,求证:BMNADC 共面。
解:由于 M、N 分别是 AD、BC 的中点,所以 AM=MB、BN=NC。
那么向量 AM=MB=x(AB)+y(AC),向量 BN=NC=z(AB)+w(AC)。
由于 x+z=1,y+w=1,所以 BMNADC 共面。
2.求解共面向量定理中的参数:已知向量 a、b、c 共面,且存在实数 x、y 使得 a=xb+yc,求参数 x、y 的值。
解:由于 a、b、c 共面,那么它们对应端点构成的向量也共面。
设对应端点为 A、B、C,那么向量 AB=xAC+yBC。
根据平面向量基本定理,存在实数 u、v 使得 AB=uAC+vBC。
所以 x=u,y=v。
四、总结共面向量定理是平面向量基本定理的一个重要结论,它描述了三个向量共面的充分必要条件。
空间四点共面充要条件的应用与探究平面上的三点共线与空间的四点共面,是平面向量与空间向量问题中的一类重要题型。
在高中数学人教A 版选修教材2-1《空间向量与立体几何》一章中,给出了四点共面的一个判定方法,在配套的教参中更明确为充要条件。
因此有些老师在教学中就给出了如下的空间P 、A 、B 、C 、四点共面的充要条件:对于空间任意一点O ,存在实数x 、y 、z ,使得OC OB OA x OP z y ++=且x+y+z=1。
这个结论对于解决空间四点共面问题提供了很便捷的方法,例如:● 问题1:对于空间任一点O 和不共线的三点A 、B 、C ,有OC OB OA OP 326++=,则 ( )(A)O 、A 、B 、C 四点共面 (B) P 、A 、B 、C 四点共面(C) O 、P 、B 、C 四点共面 (D) O 、P 、A 、B 、C 五点共面 分析:由条件可以得到OC OB OA OP 213161++=,而1213161=++,则P 、A 、B 、C 四点共面。
●问题2:已知点M 在平面ABC 内,并且对空间任意一点O ,OC OB OA x OM 3121++=,则x= 。
分析:由上面的充要条件很容易得到6131211x =--=。
● 问题3:在平行六面体ABCD-A 1B 1C 1D 1中,P 、M 、N 分别是AA 1、AB 、AD 上一点,且132AA AP =,AB AM 21=,AD AN 41=,对角线AC 1与平面PMN 交与点H ,求H 点分AC 1的比。
分析:因为P 、M 、N 、H 四点共面,则可设为AN z AM y AP AH ++=x ,且x+y+z=1 由已知,132AA AP =,AB AM 21=,AD AN 41=, 则AD z AB y AA AH 4232x 1++= 又A 、H 、C 1三点共线,则1AC AH λ= 而AD AB AA AC ++=11 所以,AD z AB y AA AH 4232x 1++=AD AB AA λλλ++=1 因为向量AD AB AA ,,1不共面, 则有:λ===4232z y x , 所以λ23=x ,λ2=y ,λ4=z 又因为x+y+z=1, 所以λ23+λ2+λ4=1, 解得152=λ 所以,1152AC AH = 即:H 点分AC 1的比为2:13.AM C 1以上三个问题的解决都用到了课本中提到的四点共面的充要条件,思路新颖,解法简洁,确实为学生们解决空间四点共面问题提供了一条重要的解题思路。
空间向量共面充要条件的应用共面向量定理涉及三个向量→p 、→a 、→b 共面问题,它们之间的充要条件关系为:如果两个向量→a 、→b 不共线,那么向量→p 与向量→a 、→b 共面的充要条件是:存在有序实数组(x,y),使得→p =x →a +y →b .共面向量定理在立体几何中证明中有关有着广泛的运用,如在点线共面、线面平行等问题中,都有很好的体现.由于向量本身具有的位置不定性,使得共面向量可理解为能够平移到同一平面内的向量,或者理解为平行于同一平面的向量.下面就空间向量共面充要条件的应用分类解析,体会应用的方法与技巧.一、判断点与平面的关系例1 已知A 、B 、C 三点不共线,对平面ABC 外一点O ,若→OM =2→OA -→OB -→OC ,判断点M 是否在平面ABC 内.分析:点M 与A 、B 、C 不共面,即点M 不在平面ABC 内,即不存在x ,y 使→AM =x →AB +y →AC ,可用反证法证明判断.解:假设M 在平面ABC 内,则存在实数x,y ,使→AM =x →AB +y →AC ,于是对空间任意一点O ,O 在平面ABC 外,→OM =(1-x -y)→OA +x →OB +y →OC ,比较原式可得⎩⎪⎨⎪⎧ 1-x -y =2x =-1y =-1,此方程组无解,与假设不成立, ∴不存在实数x,y ,使→AM =x →AB+y →AC ,∴M 与A 、B 、C 不共面. 点评:本题采用反证法来证明点M 不在平面ABC 内,因为反证法就是从正面进行解答比较困难,从对立面进行证明的一种思想方法.二、用于证明四点共面例2 如图所示,长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,N 在AC 上,且AN ﹕NC =2﹕1,求证:A 1、B 、N 、M 四点共面.分析:利用空间向量共面的充要条件,通过证明向量→A 1N 、→A 1B 、→A 1M 共面,即可证明存在唯一实数λ、μ,使→A 1N =λ→A 1B +μ→A 1M 成立.证明:如图,→AA 1=→a ,→AB =→b ,→AD =→c ,则→A 1B =→AB -→AA 1=→b -→a ,∵M 为DD 1的中点,→A 1M =→AD -12→AA 1=→c -12→a , ∵AN ﹕NC =2﹕1,∴→AN =23→AC =23(→AB +→AD)=23(→b +→c ), ∴→A 1N =→AN -→AA 1=23(→b +→c )-→a =23(→b -→a )+23(→c -12→a ) =23→A 1B +23→A 1M, ∴A 1、B 、N 、M 四点共面.点评:本题根据空间向量基本定理,充分利用三角法则与平行四边形法则,通过不同的途径分别用向量→EF ﹑→EH 表示→MQ 或用向量→EG 表示→MQ ,从而建立向量→EG与向量→EF ﹑→EH 的线性关系,进而使问题得证.这是不用向量坐标形式证明几何问题的常用方法.三、证明三线平行同一平面例3 如图所示,E 、F 分别为空间四边形ABCD 中AB 、CD 的中点,证明AD 、EF 、BC 平行于同一平面.分析:证明AD 、EF 、BC 平行于同一平面,即证明向量→EF 、→AD 、→BC 共面,进而证明→EF 、→AD、→BC 之间存在线段关系.证明:→EF =→EA +→AD +→DF ,且→EF=→EB +→BC +→CF , 又→EA =-→EB ,→DF =-→CF ,所以→EF+→EF =→AD +→BC 即→EF +→EF =12(→AD +→BC)=12→AD +12→BC , 可知,→EF 、→AD 、→BC 共面,所以EF 与AD 、BC 平行于同一平面.点评:本题在证明过程中,通过利用两种不同的途径得到向量→EF的两种不同的表达式,然后两式相加就可以得到所需要证明的表达式,当然其过程要用到三角形法则或平行四边形法则,这是利用加减法处理向量线性线性关系常用的方法.四、证明线面平行例4 正方体ABCD -A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM =DN ,求证:MN ∥平面CC 1D 1D.分析:由于DC 与DD 1在同一平面上,因此可以先考虑利用空间向量共面的充要条件证明向量→NM 与→DC 、→DD 1共面,然后只须说明点M 、N 不在CC 1D 1D 内就可证明MN ∥平面CC 1D 1D.证明:设CM =DN =λDB =λCB1,则→DN =λ→DB =λ(→DA +→DC),→CM =λ→CB 1=λ(→CB +→CC 1),∴→NM =→ND +→DC +→CM =-λ(→DA +→DC)+→DC +λ(→CB +→CC 1) =(1-λ)→DC +λ(→DA +→CB +→CC 1)=(1-λ)→DC +λ(-→DA +→DA +→CC 1) =(1-λ)→DC +λ→DD 1∴→NM 与→DC 、→DD 1共面,又M 、N 不在面DCC 1D 1内,∴MN ∥平面CC 1D 1D.点评:利用空间证明立体几何问题,减少了利用传统法证明的繁琐的思维量,将考查难度要求较高的空间想象力与抽象的逻辑推理能力转化为考查难度要求稍微较低的运算能力.。
数学复习:共线向量与共面向量学习目标1.理解向量共线、向量共面的定义.2.掌握向量共线的充要条件和向量共面的充要条件,会证明空间三点共线、四点共面.导语我们知道向量是有大小、有方向的量,它可以平行移动,平面内两个向量若方向相同或相反,就说它们是共线的,那么在空间内向量共线又是怎么回事呢?今天我们就来探究一下.一、空间向量共线的充要条件问题1平面向量共线的充要条件是什么?它适用于空间向量吗?提示对任意两个平面向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb ,由于空间向量共线的定义与平面向量相同,因此也适用于空间向量.知识梳理1.对任意两个空间向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb .2.如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量的定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa ,把与向量a 平行的非零向量称为直线l 的方向向量,直线l 上任意一点都可以由直线l 上的一点和它的方向向量表示.注意点:(1)直线可以由其上一点和它的方向向量确定.(2)向量a ,b 共线时,表示向量a ,b 的两条有向线段不一定在同一条直线上.例1如图,四边形ABCD 和ABEF 都是平行四边形,且不共面,M ,N 分别是AC ,BF 的中点,则CE →与MN →是否共线?解方法一∵M ,N 分别是AC ,BF 的中点,且四边形ABCD 和ABEF 都是平行四边形,∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.①又∵MN →=MC →+CE →+EB →+BN→=-12CA →+CE →-AF →-12FB →,②①+②得2MN →=CE →,∴CE →∥MN →,即CE →与MN →共线.方法二∵M ,N 分别是AC ,BF 的中点,且四边形ABCD 和ABEF 都是平行四边形,∴MN →=AN →-AM →=12(AB →+AF →)-12AC→=12(AB →+AF →)-12(AB →+AD →)=12(AF →-AD →)=12(BE →-BC →)=12CE →.∴MN →∥CE →,即MN →与CE →共线.反思感悟向量共线的判定及应用(1)判断或证明两向量a ,b (b ≠0)共线,就是寻找实数λ,使a =λb 成立,为此常结合题目图形,运用空间向量的线性运算法则将目标向量化简或用同一组向量表达.(2)判断或证明空间中的三点(如P ,A ,B )共线的方法:是否存在实数λ,使PA →=λPB →.跟踪训练1(1)已知A ,B ,C 三点共线,O 为直线外空间任意一点,若OC →=mOA →+nOB →,则m +n =________.答案1解析由于A ,B ,C 三点共线,所以存在实数λ,使得AC →=λAB →,即OC →-OA →=λ(OB →-OA →),所以OC →=(1-λ)OA →+λOB →,所以m =1-λ,n =λ,所以m +n =1.(2)如图所示,已知四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边CB ,CD 上的点,且CF →=23CB →,CG →=23CD →.求证:四边形EFGH 是梯形.证明∵E ,H 分别是AB ,AD 的中点,∴AE →=12AB →,AH →=12AD →,则EH →=AH →-AE →=12AD →-12AB →=12BD→=12(CD →-CB →)-32CF =34(CG →-CF →)=34FG →,∴EH →∥FG →且|EH →|=34|FG →|≠|FG →|.又F 不在直线EH上,∴四边形EFGH 是梯形.二、空间向量共面的充要条件问题2空间任意两个向量是共面向量,则空间任意三个向量是否共面?提示不一定,如图所示,空间中的三个向量不共面.问题3对两个不共线的空间向量a ,b ,如果p =x a +y b ,那么向量p 与向量a ,b 有什么位置关系?反过来,向量p 与向量a ,b 有什么位置关系时,p =x a +y b ?提示向量p 与不共线向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a+y b .知识梳理1.向量与平面平行:如果表示向量a 的有向线段OA →所在的直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.2.共面向量定义平行于同一个平面的向量三个向量共面的充要条件向量p 与不共线向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y )使p =x a +y b问题4对于不共线的三点A ,B ,C 和平面ABC 外的一点O ,空间一点P 满足关系式OP →=xOA →+yOB →+zOC →,则点P 在平面ABC 内的充要条件是什么?提示x +y +z =1.证明如下:(1)充分性∵OP →=xOA →+yOB →+zOC→可变形为OP →=(1-y -z )OA →+yOB →+zOC →,∴OP →-OA →=y (OB →-OA →)+z (OC →-OA →),∴AP →=yAB →+zAC →,∴点P 与A ,B ,C 共面.(2)必要性∵点P 在平面ABC 内,不共线的三点A ,B ,C ,∴存在有序实数对(m ,n )使AP →=mAB →+nAC →,OP →-OA →=m (OB →-OA →)+n (OC →-OA →),∴OP →=(1-m -n )OA →+mOB →+nOC →,∵OP →=xOA →+yOB →+zOC →,又∵点O 在平面ABC 外,∴OA →,OB →,OC →不共面,∴x =1-m -n ,y =m ,z =n ,∴x +y +z =1.例2(1)(多选)对空间任一点O 和不共线的三点A ,B ,C ,能得到P ,A ,B ,C 四点共面的是()A .OP →=OA →+OB →+OC →B .OP →=13OA →+13OB →+13OC→C .OP →=34OA →+18OB →+18OC→D .OP →=2OA →-OB →-OC →答案BC 解析方法一A 选项,OP →=OA →+OB →+OC →,不能转化成AP →=xPB →+y PC →的形式,∴A 不正确;B 选项,∵OP →=13OA →+13OB →+13OC →,∴3OP →=OA →+OB →+OC →,∴OP →-OA →=(OB →-OP →)+(OC →-OP →),∴AP →=PB →+PC →,∴PA →=-PB →-PC →,∴P ,A ,B ,C 共面,故B 正确;C 选项,OP →=34OA →+18OB →+18OC →=34OA →+18(OA →+AB →)+18(OA →+AC →)=OA →+18AB →+18AC →.∴OP →-OA →=18AB →+18AC →,∴AP →=18AB →+18AC →,由共面的充要条件知P ,A ,B ,C 四点共面,故C 选项正确;D 选项,OP →=2OA →-OB →-OC →,无法转化成AP →=xPB →+y PC →的形式,D 项不正确.方法二当点P 与A ,B ,C 共面时,对空间任意一点O ,都有OP →=xOA →+yOB →+zOC →,且x+y +z =1,可判断出只有选项B ,C 符合要求.(2)(链接教材P5例1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,N ∈AC ,且AN ∶NC =2,求证:A 1,B ,N ,M 四点共面.证明设AA 1—→=a ,AB →=b ,AD →=c ,则A 1B —→=b -a ,∵M 为线段DD 1的中点,∴A 1M —→=c -12a ,又∵AN ∶NC =2,∴AN →=23AC →=23(b +c ),∴A 1N —→=AN →-AA 1—→=23(b +c )-a=23(b -a )-12a =23A 1B —→+23A 1M —→,∴A 1N —→,A 1B —→,A 1M —→为共面向量.又∵三向量有相同的起点A 1,∴A 1,B ,N ,M 四点共面.反思感悟向量共面的判定及应用(1)证明三个向量共面(或四点共面)时,可以通过以下几个条件进行证明.①MP →=xMA →+yMB →;②对于空间任意一点O ,OP →=OM →+xMA →+yMB →;③对于空间任意一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1);④PM →∥AB →(或PA →∥MB →或PB →∥AM →).(2)若已知点P 在平面ABC 内,则有AP →=xAB →+y AC →或OP →=xOA →+yOB →+zOC →(x +y +z =1),然后利用指定向量表示出已知向量,用待定系数法求出参数.跟踪训练2已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证:E ,F ,G ,H 四点共面.证明如图,连接EG ,BG .因为EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由向量共面的充要条件知向量EG →,EF →,EH →共面,即E ,F ,G ,H 四点共面.1.知识清单:(1)空间向量共线的充要条件,直线的方向向量.(2)空间向量共面的充要条件.(3)三点共线、四点共面的证明方法.2.方法归纳:转化化归、类比.3.常见误区:混淆向量共线与线段共线、点共线.1.对于空间的任意三个向量a ,b ,2a -b ,它们一定是()A .共面向量B .共线向量C .不共面向量D .既不共线也不共面的向量答案A解析由向量共面定理可知,三个向量a ,b ,2a -b 为共面向量.2.(多选)下列条件中,使M 与A ,B ,C 一定共面的是()A .OM →=3OA →-OB →-OC →B .OM →=15OA →+13OB →+12OC→C .MA →+MB →+MC →=0D .OM →+OA →+OB →+OC →=0答案AC解析A 选项中,3-1-1=1,四点共面,C 选项中,MA →=-MB →-MC →,∴点M ,A ,B ,C 共面.3.已知点M 在平面ABC 内,并且对空间任意一点O ,有OM →=xOA →+13OB →+13OC →,则x 的值为()A .1B .0C .3D .13答案D解析∵OM →=xOA →+13OB →+13OC →,且M ,A ,B ,C 四点共面,∴x +13+13=1,∴x =13.4.设a ,b 是空间中两个不共线的向量,已知AB →=9a +m b ,BC →=-2a -b ,DC →=a -2b ,且A ,B ,D 三点共线,则实数m =________.答案-3解析因为BC →=-2a -b ,DC →=a -2b .所以BD →=BC →+CD→=BC →-DC →=-2a -b -(a -2b )=-3a +b ,因为A ,B ,D 三点共线,所以存在实数λ,使得AB →=λBD →,即9a +m b =λ(-3a +b ).=-3λ,=λ,解得m =λ=-3.练习1.下列命题中正确的是()A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量a ,b ,c 共面,即它们所在的直线共面C .若两个非零空间向量AB →与CD →满足AB →+CD →=0,则AB →∥CD →D .若a ∥b ,则存在唯一的实数λ,使a =λb答案C解析A 中,若b =0,则a 与c 不一定共线,故A 错误;B 中,共面向量的定义是平行于同一平面的向量,表示这些向量的有向线段所在的直线不一定共面,故B 错误;C 中,∵AB →+CD →=0,∴AB →=-CD →,∴AB →与CD →共线,故AB →∥CD →,故C 正确;D 中,若b =0,a ≠0,则不存在λ,使a =λb ,故D 错误.2.已知非零向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是()A .A ,B ,D B .A ,B ,C C .B ,C ,D D .A ,C ,D答案A解析∵BD →=BC →+CD →=2a +4b =2AB →,∴A ,B ,D 三点共线.3.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则()A .P ∈直线AB B .P ∉直线ABC .点P 可能在直线AB 上,也可能不在直线AB 上D .以上都不对答案A解析因为m +n =1,所以m =1-n ,所以OP →=(1-n )·OA →+nOB →,即OP →-OA →=n (OB →-OA →),即AP →=nAB →,所以AP →与AB →共线.又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上,即P ∈直线AB .4.对于空间任意一点O 和不共线的三点A ,B ,C ,有如下关系:6OP →=OA →+2OB →+3OC →,则()A .O ,A ,B ,C 四点必共面B .P ,A ,B ,C 四点必共面C .O ,P ,B ,C 四点必共面D .O ,P ,A ,B ,C 五点必共面答案B解析由6OP →=OA →+2OB →+3OC →,得OA →-OP →=2(OP →-OB →)+3(OP →-OC →),即PA →=2BP →+3CP →.由共面向量定理,知P ,A ,B ,C 四点共面.5.(多选)在以下命题中,不正确的命题是()A .已知A ,B ,C ,D 是空间任意四点,则AB →+BC →+CD →+DA →=0B .|a |-|b |=|a +b |是a ,b 共线的充要条件C .若a 与b 共线,则a 与b 所在的直线平行D .对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P ,A ,B ,C 四点共面答案BCD解析对于A ,AB →+BC →+CD →+DA →=AC →+CD →+DA →=AD →+DA →=0,A 正确;对于B ,若a ,b 同向共线,则|a |-|b |<|a +b |,故B 不正确;对于C ,由向量平行知C 不正确;对于D ,只有x +y +z =1时,才有P ,A ,B ,C 四点共面,故D 不正确.6.已知P 为空间中任意一点,A ,B ,C ,D 四点满足任意三点均不共线,但四点共面,且PA →=43PB →-xPC →+16DB →,则实数x 的值为()A .13B .-13C .12D .-12答案A解析PA →=43PB →-xPC →+16DB →=43PB →-xPC →+16(PB →-PD →)=32PB →-xPC →-16PD →.又∵P 是空间任意一点,A ,B ,C ,D 四点满足任意三点均不共线,但四点共面,∴32-x -16=1,解得x =13.7.设e 1,e 2是空间两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,且A ,B ,D 三点共线,则k =________.答案-8解析由已知得BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2,∵A ,B ,D 三点共线,∴AB →与BD →共线,即存在λ∈R ,使得AB →=λBD →.∴2e 1+k e 2=λ(e 1-4e 2)=λe 1-4λe 2,∵e 1,e 2不共线,=2,=-4λ,∴k =-8.8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”“相等”或“相反”)答案平行解析设G 是AC 的中点,连接EG ,FG (图略),则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →),所以2EF →=AD →+BC →,从而EF →∥(AD →+BC →).9.已知A ,B ,C 三点不共线,平面ABC 外一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断M 是否在平面ABC 内.解(1)∵OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),∴MA →=BM →+CM →=-MB →-MC →,∴向量MA →,MB →,MC →共面.(2)由(1)知,向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 四点共面,即M 在平面ABC 内.10.如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:向量MN →,CD →,DE →共面.证明因为M 在BD 上,且BM =13BD ,所以MB →=13DB →=13DA →+13AB →.同理AN →=13AD →+13DE →.所以MN →=MB →+BA →+AN→+13AB BA →+13DE =23BA →+13DE →=23CD →+13DE →.又CD →与DE →不共线,根据向量共面的充要条件可知MN →,CD →,DE →共面.11.若P ,A ,B ,C 为空间四点,且有PA →=αPB →+βPC →,则α+β=1是A ,B ,C 三点共线的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C 解析若α+β=1,则PA →-PB →=β(PC →-PB →),即BA →=βBC →,显然,A ,B ,C 三点共线;若A ,B ,C 三点共线,则有AB →=λBC →,故PB →-PA →=λ(PC →-PB →),整理得PA →=(1+λ)PB →-λPC →,令α=1+λ,β=-λ,则α+β=1.12.平面α内有五点A ,B ,C ,D ,E ,其中无三点共线,O 为空间一点,满足OA →=12OB →+xOC →+yOD →,OB →=2xOC →+13OD →+yOE →,则x +3y 等于()A .56B .76C .53D .73答案B解析由点A ,B ,C ,D 共面得x +y =12,①又由点B ,C ,D ,E 共面得2x +y =23,②联立①②,解得x =16,y =13,所以x +3y =76.13.已知正方体ABCD -A 1B 1C 1D 1中,P ,M 为空间任意两点,如果有PM →=PB 1—→+7BA →+6AA 1—→-4A 1D 1——→,那么M 必()A .在平面BAD 1内B .在平面BA 1D 内C .在平面BA 1D 1内D .在平面AB 1C 1内答案C 解析PM →=PB 1—→+7BA →+6AA 1—→-4A 1D 1——→=PB 1—→+BA →+6BA 1—→-4A 1D 1——→=PB 1—→+B 1A 1——→+6BA 1—→-4A 1D 1——→=PA 1—→+6(PA 1—→-PB →)-4(PD 1—→-PA 1—→)=11PA 1—→-6PB →-4PD 1—→,又11-6-4=1,于是M ,B ,A 1,D 1四点共面.14.已知a =3m -2n -4p (a ≠0),b =(x +1)m +8n +2y p ,且m ,n ,p 不共面,若a ∥b ,则x +y =________.答案-5解析∵a ∥b 且a ≠0,∴b =λa ,即(x +1)m +8n +2y p =3λm -2λn -4λp ,又m ,n ,p 不共面,∴x +13=8-2=2y -4,则x =-13,y =8,x +y =-5.15.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不同为0的实数λ,m ,n ,使λOA→+mOB →+nOC →=0,那么λ+m +n 的值为________.答案0解析∵A ,B ,C 三点共线,∴存在实数k ,使得AB →=kBC →,∵AB →=OB →-OA →,BC →=OC →-OB →,∴OB →-OA →=k (OC →-OB →),化简整理得OA →-(k +1)OB →+kOC →=0,∵λOA →+mOB →+nOC →=0,∴①当k =-1时,比较系数得m =0且λ=-n ,∴λ+m +n =0;②当k ≠-1时,可得λ1=m -k -1=n k,得m =(-k -1)λ,n =kλ;由此可得λ+m +n =λ+(-k -1)λ+kλ=0,综上所述,λ+m +n =0.16.如图所示,若P 为平行四边形ABCD 所在平面外一点,点H 为PC 上的点,且PH HC =12,点G 在AH 上,且AG AH =m ,若G ,B ,P ,D 四点共面,求m 的值.解如图,连接BG .因为AB →=PB →-PA →,AB →=DC →,所以DC →=PB →-PA →.因为PC →=PD →+DC →,所以PC →=PD →+PB →-PA→=-PA →+PB →+PD →.因为PH HC =12,所以PH →=13PC →,所以PH →=13(-PA →+PB →+PD →)=-13PA →+13PB →+13PD →.又因为AH →=PH →-PA →,所以AH →=-43PA →+13PB →+13PD →.因为AGAH =m ,所以AG →=mAH →=-4m 3PA →+m 3PB →+m 3PD →.因为BG →=-AB →+AG →=PA →-PB →+AG →,所以BG →+m 3PD →.又因为G ,B ,P ,D 四点共面,所以1-4m 3=0,m =34,即m 的值是34.。
空间向量共面充要条件的应用
共面向量定理涉及三个向量→p 、→a 、→b 共面问题,它们之间的充要条件关系为:如果两个向量→a 、→b 不共线,那么向量→p 与向量→a 、→b 共面的充要条件是:存在有序实数组(x,y),使得→p =x →a +y →b .
共面向量定理在立体几何中证明中有关有着广泛的运用,如在点线共面、线面平行等问题中,都有很好的体现.由于向量本身具有的位置不定性,使得共面向量可理解为能够平移到同一平面内的向量,或者理解为平行于同一平面的向量.下面就空间向量共面充要条件的应用分类解析,体会应用的方法与技巧.
一、判断点与平面的关系
例1 已知A 、B 、C 三点不共线,对平面ABC 外一点O ,若→OM =2→OA -→OB -→OC ,判断点M 是否在平面ABC 内.
分析:点M 与A 、B 、C 不共面,即点M 不在平面ABC 内,即不存在x ,y 使→AM =x →AB +y →AC ,可用反证法证明判断.
解:假设M 在平面ABC 内,则存在实数x,y ,使→AM =x →AB +y →AC ,
于是对空间任意一点O ,O 在平面ABC 外,→OM =(1-x -y)→OA +x →OB +y →OC ,
比较原式可得⎩⎪⎨⎪⎧ 1-x -y =2
x =-1y =-1
,此方程组无解,与假设不成立, ∴不存在实数x,y ,使→AM =x →AB
+y →AC ,∴M 与A 、B 、C 不共面. 点评:本题采用反证法来证明点M 不在平面ABC 内,因为反证法就是从正面进行解答比较困难,从对立面进行证明的一种思想方法.
二、用于证明四点共面
例2 如图所示,长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,N 在AC 上,且AN ﹕NC =2﹕1,求证:A 1、B 、N 、M 四点共面.
分析:利用空间向量共面的充要条件,通过证明向量→A 1N 、→A 1B 、→A 1M 共面,即可证明
存在唯一实数λ、μ,使→A 1N =λ→A 1B +μ→A 1M 成立.
证明:如图,→AA 1=→a ,→AB =→b ,→AD =→c ,则→A 1B =→AB -→AA 1=→b -→a ,
∵M 为DD 1的中点,→A 1M =→AD -12→AA 1=→c -12
→a , ∵AN ﹕NC =2﹕1,∴→AN =23→AC =23(→AB +→AD)=23
(→b +→c ), ∴→A 1N =→AN -→AA 1=23(→b +→c )-→a =23(→b -→a )+23(→c -12
→a ) =23→A 1B +23→A 1M
, ∴A 1、B 、N 、M 四点共面.
点评:本题根据空间向量基本定理,充分利用三角法则与平行四边形法则,通过不同的
途径分别用向量→EF ﹑→EH 表示→MQ 或用向量→EG 表示→MQ ,从而建立向量→EG
与向量→EF ﹑→EH 的线性关系,进而使问题得证.这是不用向量坐标形式证明几何问题的常用方法.
三、证明三线平行同一平面
例3 如图所示,E 、F 分别为空间四边形ABCD 中AB 、CD 的中点,证明AD 、EF 、BC 平行于同一平面.
分析:证明AD 、EF 、BC 平行于同一平面,即证明向量→EF 、→AD 、→BC 共面,进而证明→EF 、→AD
、→BC 之间存在线段关系. 证明:→EF =→EA +→AD +→DF ,且→EF
=→EB +→BC +→CF , 又→EA =-→EB ,→DF =-→CF ,
所以→EF
+→EF =→AD +→BC 即→EF +→EF =12(→AD +→BC)=12→AD +12
→BC , 可知,→EF 、→AD 、→BC 共面,所以EF 与AD 、BC 平行于同一平面.
点评:本题在证明过程中,通过利用两种不同的途径得到向量→EF
的两种不同的表达式,然后两式相加就可以得到所需要证明的表达式,当然其过程要用到三角形法则或平行四边形法则,这是利用加减法处理向量线性线性关系常用的方法.
四、证明线面平行
例4 正方体ABCD -A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM =DN ,求证:MN ∥平面CC 1D 1D.
分析:由于DC 与DD 1在同一平面上,因此可以先考虑利用空间向量共面的充要条件证明向量→NM 与→DC 、→DD 1共面,然后只须说明点M 、N 不在CC 1D 1D 内就可证明MN ∥平面CC 1D 1D.
证明:设CM =DN =λDB =λCB 1,则
→DN =λ→DB =λ(→DA +→DC),→CM =λ→CB 1=λ(→CB +→CC 1),
∴→NM =→ND +→DC +→CM =-λ(→DA +→DC)+→DC +λ(→CB +→CC 1
) =(1-λ)→DC +λ(→DA +→CB +→CC 1)=(1-λ)→DC +λ(-→DA +→DA +→CC 1
) =(1-λ)→DC +λ→DD 1
∴→NM 与→DC 、→DD 1共面,
又M 、N 不在面DCC 1D 1内,∴MN ∥平面CC 1D 1D.
点评:利用空间证明立体几何问题,减少了利用传统法证明的繁琐的思维量,将考查难度要求较高的空间想象力与抽象的逻辑推理能力转化为考查难度要求稍微较低的运算能力.。