正数和负数、有理数、数轴、相反数、绝对值
- 格式:doc
- 大小:40.00 KB
- 文档页数:2
第一章 有理数复习主备人:黄玲 审核人:督办领导: 使用时间:内容分析:本章概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律。
【学习目标】1、理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。
2、使学生提高辨别概念能力,能正确地使用这些概念解决问题。
3、能正确比较两个有理数的大小。
4、会进行有理数的加、减、乘、除、乘方的运算5、鼓励学生自己回顾本单元的学习内容。
并与同伴交流在本单元学习中的收获和不足,培养他们的反思意识。
【学习重难点】重点:负数、相反数、绝对值等概念的理解与应用,有理数的运算 难点:对绝对值概念的理解与应用,乘方运算 【教学过程设计】 一、前置学习 (一)【正负数】_____________统称整数,试举例说明 _____________统称分数,试举例说明 ____________统称有理数。
有理数的分类五种:1、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{ …} 正有理数集{ …} 负有理数集{ …} 负整数集{ …} 自然数集{ …} 正分数集{ …} 负分数集{ …}2、某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。
(二)【数轴】 规定了 、 、 的直线,叫数轴 1、如图所示的图形为四位同学画的数轴,其中正确的是( )2、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, -4.5, 1, 0有理数有理数3、下列语句中正确的是( )A、数轴上的点只能表示整数 B、数轴上的点只能表示分数C、数轴上的点只能表示有理数 D、所有有理数都可以用数轴上的点表示出来 4、①比-3大的负整数是____;②已知m是整数且-4<m<3,则m为______。
正数和负数、有理数、数轴、相反数、绝对值章节训练测试班级:姓名:分数:1、如果温度上升3o C记作+3o C,那么下降5o C记作______,+6o C表示_____,—7o C表示______2、今天的气温是零上3o C记作___________,若记作—6o C说明今天的气温是______________3、海拔高度是+561米表示__________________,海拔高度是—189米表示______________4、如果向西走12米记作+12米,则向东走—120米表示的意义是___________________5、味精袋上标有“300±5克”字样,+5表示__________________,—5表示_____________还说明这袋味精的质量应该是____~____6、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海报高度为—5米,其中最高处为__ _地,最低处为____地,最高处与最低处相差_________7、______________________统称整数。
(如:…,—4,—3,—2,—1,0,1,2,3,…)8、______________________统称分数。
(如:1/2,—3/5,—1.2,0.101010101…)9、_________统称有理数。
(如…,—4,—3,—2,—1,0,1,2,3,…;1/2,—3/5,—1.2,0. 101010101…)10、规定了______、_________、_________的________叫做数轴。
11、数轴上原点左边的数表示____数,原点右边的数表示_____数,_____表示0。
12、如果点A表示的数是2.2,将点A向左边移动2个单位长度,那么这时点A表示的数是_______,如过再向左移动1.2个单位长度,那么这时点A表示的数是_______,第三次再向右移动15个单位长度,那么这时点A表示的数是________13、数轴上,到原点的距离等于4个单位长度的点所表示的数是_____,它们互为_________14、数轴上与距离原点3个单位长度的点所表示的负数是___,它与表示数1的点的距离为___15、在数轴上,到表示—3的点的距离等于199个单位长度的点所表示的数是___________16、在数轴上,原点及原点左边的点表示的数是_______数17、在数轴上,点M表示—7,把点M向左移动5个单位长度到点N,再把N向右移动6个单位长度到点P。
数轴、相反数、绝对值数学是研究数量、结构、变化及空间等概念的学科。
在数学中,数轴、相反数和绝对值是非常重要的概念,它们在解决各种实际问题中发挥着关键作用。
一、数轴数轴是数学中的一个基本概念,它是一个有序的直线,用来表示实数和有理数。
数轴上的点表示实数,原点表示零,正半轴表示正数,负半轴表示负数。
通过数轴,我们可以直观地比较两个实数的大小,也可以找出任何实数的相反数和绝对值。
二、相反数相反数是数学中的另一个重要概念。
如果一个数x的相反数是-x,那么它们在数轴上位于原点的两边,并且它们的距离相等。
例如,3的相反数是-3,5的相反数是-5。
在数学中,相反数经常被用于抵消或中和,以解决各种问题。
三、绝对值绝对值是数学中的一个非常有用的概念。
在数轴上,任何一个实数x的绝对值就是从原点到点x的距离。
例如,3的绝对值是3,-5的绝对值也是5。
绝对值的计算公式是|x| = x(x > 0)或 0(x = 0)或 -x(x < 0)。
绝对值的概念可以帮助我们确定一个数的符号和它的大小。
四、总结数轴、相反数和绝对值是数学中的基本概念,它们在解决各种实际问题中发挥着关键作用。
通过了解这些概念,我们可以更好地理解数学的本质,并解决各种复杂的问题。
因此,对于每一个学习数学的人来说,理解这些基本概念都是非常重要的。
《相反数、绝对值复习》课件一、教学目标1、复习相反数和绝对值的概念和性质,掌握它们的计算方法。
2、提高学生对于相反数和绝对值的理解和应用能力。
3、培养学生的思维能力和自主学习能力。
二、教学内容1、相反数的概念及性质。
2、绝对值的概念及性质。
3、相反数和绝对值的计算方法。
三、教学重点与难点重点:掌握相反数和绝对值的计算方法。
难点:理解相反数和绝对值的概念及性质,并应用到实际问题中。
四、教学方法与手段1、通过PPT展示相反数和绝对值的概念和性质,让学生自主思考和讨论。
2、通过例题讲解和练习,让学生掌握计算方法。
七年级上册数学要点
1. 正负数:正数是大于0的数,负数是小于0的数。
0既不是正数也不是负数。
2. 有理数:有理数是可以表示为两个整数之比的数,包括整数和分数。
整数包括正整数、0和负整数,分数包括正分数和负分数。
3. 数轴:数轴是一条直线,可以用来表示所有的有理数。
数轴上的每一个点都对应一个有理数,反之亦然。
数轴上的点有原点(表示0的点)、正方向和单位长度。
在数轴上,右边的数总比左边的数大。
4. 相反数和绝对值:只有符号不同的两个数互为相反数。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
5. 倒数:乘积为1的两个数互为倒数。
0没有倒数。
6. 直线、射线和线段:直线可以向两侧无限延伸,没有端点。
射线有一个端点,可以向一侧无限延伸。
线段有两个端点,长度有限。
7. 角:角是由有公共端点的两条射线组成的图形。
这个公共端点是角的顶点,两条射线是角的两边。
角的度、分、秒是60进制的,即1度等于60分,1分等于60秒。
2019年沪科版7(上)有理数——数轴、相反数、绝对值【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的“分水岭”.要点二、有理数的分类(1)按定义分类:(2)按性质符号分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】1.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数. D .正整数和正分数统称正有理数.2.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同;(2)“0的相反数是0”是相反数定义的一部分,不能漏掉;(3)相反数是成对出现的,单独一个数不能说是相反数;(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】1.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为2.(1)如果a=-13,那么-a=______;(2) 如果-a=-5.4,那么a =______;(3) 如果-x=-6,那么x=______;(4) -x=9,那么x=______.3. -4的倒数的相反数是( )A .-4B .4C .-D . 4.填空:(1) -(-2.5)的相反数是 ;(2) 是-100的相反数;(3) 155-是 的相反数; (4) 的相反数是-1.1;(5)8.2和 互为相反数;(6)a 和 互为相反数.(7)______的相反数比它本身大, ______的相反数等于它本身.5. 已知21m -与172m -互为相反数,求m 的值.6.化简:(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)}.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .41412.法则比较法:要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2) 比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】1.计算:(1)145-- (2)|-4|+|3|+|0| (3)-|+(-8)|2.若|a ﹣1|=1﹣a ,则a 的取值范围是( )A. a ≥1B. a ≤1C. a <1D. a >13. 若a >3,则|6﹣2a|= (用含a 的代数式表示).4. 如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .如果|x -2|=1,那么x = ;如果|x |>3,那么x 的范围是 .5.化简||||x x x +的结果是 . 6. 比大小: (1) -0.3 31-(2)⎪⎭⎫ ⎝⎛--91 101--.7. 若m >0,n <0,且|m|>|n|,用“>”把m ,-m ,n ,-n 连接起来.8. 已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:.9. 已知|a -2|+|b -3|=0,求a -b 的值.10. 已知b 为正整数,且a 、b 满足,求的值.【练习】1、下列说法中,错误的个数有( ).①绝对值是它本身的数有两个:0和1②一个有理数的绝对值必为正数③0.5的倒数的相反数的绝对值是2④任何有理数的绝对值都不是负数A 、1个B 、2个C 、3个D 、4个2、在-(-2.5),3,0,-5,-0.25,中正整数有( ).A .1个B .2个C .3个D .4个3、在数轴上表示-2的点离开原点的距离等于( ).A .2B .-2C .±2D .44、有理数a 在数轴上的位置如图所示:化简1+a 的结果是( )A 、b a +B 、1+-aC 、1-aD 、1--a5、若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是().12-A .a >bB .|a |>|b |C .-a <-bD .-a <|b |6、若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则x 2+5(a +b )-8c d =______. 7、若实数a ,b 满足|3a -1|+(b -2)2=0,则a b =______.8、(1)当x =______时,|x -3|+1有最小值为_______;(2)当x =______时,2-|x -1|有最大值为________.9、已知|a|=4,|b|=2,且ab <0,则a +b =_________.10、若|m -n|=n -m ,且|m|=4,|n|=3,则m +n =_________.11、若x =8-,则=x ;若8-=-x ,则x = .12、若a a -=-,则=a .13、13=-x ,则=x .14、如果a <0,b >0且|a|<|b|,则a +b 0.15、已知|x +2|+(2y -3)²=0,求x +2y 的值.【思考题】求的最小值.。
专题01 有理数的分类、数轴、相反数及绝对值(知识大串讲)【知识点梳理】考点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
考点2 有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数考点3 数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)考点4 相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数(:当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号)考点5 绝对值1.几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身(若|a|=|b|,则a=b或a=﹣b)2.代数意义一个负数的绝对值是它的相反数0的绝对值是03.代数符号意义:a >0,|a|=a 反之,|a|=a,则a≥0,|a|=﹣a,则a≦0a = 0,|a|=0a<0,|a|=‐a注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。
有理数之一:正数与负数及数轴。
本章是在小学学过的算术数的基础上引进了负数,从而使数域扩大到了有理数;并由此引出数轴,相反数,绝对值等概念以及有理数的运算法则。
随着知识的不断深入,初二时我们的数域将扩大到实数,到了高中还会学习复数。
这一章以及第一章是为我们以后的数学学习打下的基础,我们务必认真学好这一章的知识。
一、本讲的重点,难点和关键重点:有理数特别是负数的意义以及数轴的意义。
难点:了解有理数特别是负数的意义;利用数轴进一步理解有理数的意义。
关键:利用数轴建立起来的数与形统一的观点。
二、知识要点:1.在小学学过的算术数包括正整数,正分数和0的基础上,由实际生活中具有相反意义的量,如温度有零上,零下之分;帐目有收入,支出之分;买卖有盈亏之分等等。
我们把这样具有相反意义的量分别用不同符号记号,以示区别,如当零上15°C记作+15°C,则零下5°C记作-5°C;收入20元记作+20元,则支出20元记作-20元等等。
在这里,“+”号读作“正”号,“+20”读作“正20”;“-”号读作“负号”,“-10”读作“负10”。
这样引入了负数和正数,由此建立了有理数的概念。
正数前面的“+”号常省略不写,如+12可写成12。
整数:正整数,0和负整数统称为整数;如5,0,-3等等。
分数:正分数,负分数统称为分数。
如,,-3等等。
有理数:整数和分数统称为有理数。
2.有理数的分类我们要弄清楚;其分类如下:或3.零既不是正数,也不是负数,它是正数和负数的分界。
4.数轴的意义:规定了原点,正方向和单位长度的直线叫做数轴。
数轴的三要素是:原点,正方向和单位长度,三者缺一不可。
我们必须能正确,规范地画出数轴。
对于给出的有理数,我们应能以刻度尺为工具,准确地在数轴上画出表示这些数的点,表示指定数的点要用笔涂成小圆黑点。
比如给出-5,-4,0,0.5, 3等,能画一条数轴,并在数轴上面标出表示它们的点,如图:反之,对于一条数轴上标出的点能说出它们表示的数。
整数和负数4一、教学目标:1。
使学生体会具有相反意义的量,并能用有理数表示.2.能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义.3.会求有理数的相反数和绝对值(绝对值符号内不含字母)。
4。
会比较有理数的大小。
5。
了解乘方的意义,掌握有理数的加、减、乘、除法和乘方的运算法则,能进行有理数的加、减、乘、除法、乘方运算和简单的混合运算。
6。
会用计算器进行有理数的简单运算。
7.理解有理数的运算律,并能用运算律简化运算.8.能运用有理数的运算解决简单的问题。
9.了解近似数和有效数字的有关概念,能对较大的数字信息作合理的解释和推断.二、教材的特点:1。
本章教材注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。
教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。
2.本章教材注重使学生理解运算的意义,掌握必要的基本的运算技能。
同时引进了计算器来完成一些有理数的运算.教学中要注意正确地把握.3。
数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
4.本章的导图是天气预报图,是引入负数的实际情景。
应该结合教材内容,充分利用导图与导入语,使学生对相反意义的量,对负数有直观的认识。
三、课时安排:本章的教学时间大约需要23课时,建议分配如下:§2。
1正数和负数———-—-—-—--——--2课时§2。
2数轴--—————-——--—-———----——--2课时§2。
3相反数—-——---—-——--——-—-——————1课时§2.4绝对值-------————---—-———-——1课时§2.5有理数的大小比较—-—-——---—1课时§2。
6有理数的加法——--——---—--——2课时§2。
7有理数的减法--—-——————--—-—-1课时§2.8 有理数的加减法混合运算----——-—2课时§2.9 有理数的乘法————-—-----———--2课时§2。
正负数,数轴,倒数,绝对值,相反数知识点1、正数与负数;有理数与无理数【知识要点】1.正数概念:比0大的数。
用“+”表示,读作“正”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
如:“+”号读作“正”,如“+32”,读作“正三分之二”,“+” 可以省略不写. 负数概念:比0小的数 。
用“-”表示,读作“负”,不可以省略不写,所以有“-”号的数是负数。
如:“–”号读作“负”,如“–5”,读作“负五”, “–”号是不可以省略的.注意:a -不一定是负数,关键看a 是正数、负数还是0考点1:正负数分类例题1:把下列各数填入相应的集合中:-11,127,4.8,+90,73,-2.9,-61,0,45,-7.46.例题2:A 市某天的温差为7℃,如果这天的最高气温为5℃,这天的最低气温是 .2.用正,负数表示具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃考点1:相反量的表示例题1:(1)如果向北行走8km 记作+8km ,那么向南行走5km 记作什么?(2)向南走记作+8 km ,那么 –5km 表示什么?(3)如果运进粮食3 t 记作+3 t ,那么–4t 表示什么?例题2:学校对七年级女生进行立定跳远测试,以能跳1.6米为达标,超过1.6米的厘米数用正数表示,不足1.6米的厘米数用负数表示,第一组10名女生评价如下:+2 -4 0 +5 +8 -7 0 +2 +10 -3问这组有百分之几的学生达标?3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
中考连接:例⒈在电视上看到天气预报中,绵阳王朗国家级自然保护区某天气温为“-5℃”表示的意思是 。
例⒉如果+10%表示“增加10%”,那么“减少8%”可以记作( )A .-18%B .-8%C .+2%D .+8%知识点2、有理数分类【知识要点】1.相关概念:整数:正整数、零和负整数统称为整数。
有理数基本概念1.有理数分类⎧⎧⎫⎪⎪⎪⎬⎪⎪⎨⎪⎭⎪⎪⎪⎨⎪⎩⎪⎧⎪⎪⎨⎪⎪⎪⎩⎩正整数自然数零整数负整数有理数(按定义分类)正分数分数负分数 ⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数(按符号分类)零负整数负有理数负分数⎧⎫⎪⎬⎨⎭⎪⎩有限小数可化成分数形式,是有理数小数无限循环小数无限不循环小数——不可以化成分数形式,不是有理数2.有理数的运算律1) 加法交换律 a+b=b+a2) 加法结合律 a+b)+c=a+(b+c)3) 乘法交换律 ab=ba4) 乘法结合律 (ab)c=a(bc)5) 分 配 律 a(b+c)=ab+ac数轴 绝对值 相反数1. “四非”的概念⑴ 零和正数 统称为非负数; ⑵ 负数和零统称为非正数;⑶ 正整数和零统称为非 负整数 ; ⑷ 负整数和零 统称为非正整数.2. 数轴数轴的三要素 ① 原点 ② 正方向 ③ 单位长度.1)在数轴上表示的两个数,右边的数总比左边的数大;2)正数都大于0,负数都小于0;正数大于一切负数;3)所有有理数都可以用数轴上的点表示。
3. 相反数⑴ 若两个数a 与b 互为相反数,则 0a b += 若0a b +=则a 与b 互为相反数.⑵ 正数的相反数是负数,0的相反数是0 ,负数的相反数是正数.一个数的相反数等于其本身,则这个数一定是 0 .4. 绝对值⑴ 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是 相反数 ;0的绝对值是 0 .⑵ 一个数a 的绝对值就是数轴上表示数a 的点 到原点的 距离.数a 的绝对值记作a .⑶ ① _____(0)___0__(0)_____(0)a a a a a a >⎧⎪==⎨⎪-<⎩② (0)(0)a a a a a ⎧=⎨-<⎩≥ ③ (0)(0)a a a a a >⎧=⎨-⎩≤ ⑷ ① 绝对值具有非负性,取绝对值的结果总是正数或0.② 如果若干个非负数的和为0,那么这若干个非负数都必为 0 .5. 倒数(负倒数)乘积为1的两个数互为倒数,特别地,0没有倒数;正数的倒数是正数,负数的倒数是负数.负倒数:乘积为1-的两个数互为负倒数,特别地,0没有负倒数.1)a 的倒数是1a (a ≠0);2)0没有倒数3)若a 与b 互为倒数,则ab=1.绝对值绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续算术根的基础.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:l .去绝对值的符号法则:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值基本性质 ①非负性:0≥a ;②b a ab ⋅=;③)0(≠=b b a b a ;④222a a a ==. 3.绝对值的几何意义从数轴上看,a 表示数a 的点到原点的距离(长度,非负);b a -表示数a 、数b 的两点间的距离. 例题【例1】已知321===c b a ,,,且c b a >>,那么c b a -+= .【例2】 如果c b a 、、是非零有理数,且0=++c b a ,那么abcabc c c b b a a +++的所有可能的值为( ).A .0B . 1或一lC .2或一2D .0或一2【例3】已知12--b •ab 与互为相反数,试求代数式:)2002)(2002(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值.数轴,相反数,绝对值提高训练练习一:1、(易错题)化简(4)--+的结果为___________3、(教材变型题)如果22a a -=-,则a 的取值范围是 ( )A 、0a >B 、0a ≥C 、0a ≤D 、0a <4、(创新题)代数式23x -+的最小值是 ( ) A 、0 B 、2 C 、3 D 、55、(章节内知识点综合题)已知a b 、为有理数,且0a <,0b >,a b >,则 ( )A 、a b b a <-<<-B 、b a b a -<<<-C 、a b b a -<<-<D 、b b a a -<<-< 巩固练习1、(1)绝对值等于4的数有____个,它们是__ _;(2)绝对值小于4的整数有___个,它们是___(3)绝对值大于1且小于5的整数有_个,它们是___;(4)绝对值不大于4的负整数有_个,它们是___4、求下列各式中的x 的值(1)|x|-3=0 (2)2|x|+3=6练习二:3、如果甲数的绝对值大于乙数的绝对值,那么 ( )A 、甲数必定大于乙数B 、甲数必定小于乙数C 、甲、乙两数一定异号D 、甲、乙两数的大小,要根据具体值确定4、绝对值等于它本身的数有 ( )A 、0个B 、1个C 、2个D 、无数个5、下列说法正确的是( )A 、a -一定是负数B 、只有两个数相等时它们的绝对值才相等C 、若a b =,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数6、数轴上,绝对值为4,且在原点左边的点表示的数为___________.7、绝对值小于π的整数有______________________8、当0a >时,a =_________,当0a <时,a =_________,9、如果3a >,则3a -=__________,3a -=___________.10、若1x x =,则x 是___(选填“正”或“负”)数;若1x x=-,则x 是___(选填“正”或“负”)数; 11、已知3x =,4y =,且x y <,则x y +=________12、已知420x y -++=,求x ,y 的值练习三(一)、掌握命题动态3、(广东深圳)实数a 、b 在数轴上的位置如图所示,那么化简|a-b|-a 的结果是A 、2a-bB 、bC 、-bD 、-2a+b(二)、把握命题趋势1、(信息处理题)已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a b m cd a b c++-++的值.2、(章节内知识点综合题)有理数a b c 、、在数轴上的位置如图所示,化简0a b c -+--0b ac3、(科学探究题)已知3a =,2b =,1c =且a b c <<,求a b c ++的值b O a提高篇1. 若3-x 与5+y 互为相反数,求yx y x -+的值。
有理数 2013.3基础知识:一、正数与负数1、正数,负数的定义:大于0的数叫做______ 小于0的数叫做_______。
2、0既不是正数也不是负数。
正数都大于0,负数都小于0,正数大于一切负数.注意:带有正号的数不一定是正数,同样带有负号的数不一定是负数。
有理数1、有理数的分类:①按整数、分数分:有理数0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数正分数分数负分数②按数的正、负分:有理数0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数负分数负整数负有理数负分数注意:只有能化成分数的数才是有理数。
① 是无限不循环小数,不能写成分数形式,不是有理数。
② 有限小数和无限循环小数都可化成分数,都是有理数。
例:有理数-3,0,20,-1.25,143, -12- ,-(-5) 中,正整数是 , 非负数是 。
2、数轴是具有 、 、 的一条直线。
★在数轴上表示的两个数,右边的数总比左边的数_____. 例:判断(1)正整数集合和负整数集合并在一起,构成整数集合. ( ) (2)正数集合和负数集合并在一起,构成有理数集合. ( ) (5)31.25不是分数,所以不是有理数. ( )(6)在小学学过的数的前面添上“-”号,就是负数. ( )(7)一个物体可以左右移动,设向左移动为正,那么向右移动3m 应记作3m. ( )3、相反数:(1)只有符号不同的两个数称互为相反数,0的相反数是__0___.互为相反数的两个数在数轴上位于原点两旁,且与原点的距离相等. (2)求有理数的相反数在一个数的前面添上“-”号,用这个新数表示原来那个数的相反数. (3)相反数的表示方法以及多重符号的化简★ 数a 的相反数是-a ,这里的数a 是任意有理数,即a 可以是正数、负数或0。
多重符号的化简方法:若一个正数前面有偶数个“-”号,则可以把“-”号一起去掉;若一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号,0前面不论有多少个“-”号,化简后仍是0。
1.法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得零.(4)一个数与零相加,仍得这个数.(二)有理数的减法1.法则:减去一个数,等于加上这个数的相反数.(三)有理数的加减混合运算1.方法和步骤:(1)将有理数加减法统一成加法,然后省略括号和加号.(2运用加法法则、加法运算律进行简便运算。
(四)有理数的乘法1.法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数与零相乘,都得零.(3)几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.【简记为“奇负偶正”】⑷几个数相乘,有一个因数为零,积为零.(五)有理数的除法1.法则:⑴除以一个数等于乘以这个数的倒数.⑵两数相除,同号得正,异号得负,并把绝对值相除.⑶零除以任何一个不等于零的数,都得零.⑷乘积为1的两个数互为倒数.(六)有理数的乘方1.法则:⑴正数的任何次幂都是正数.⑵负数的奇次幂是负数,负数的偶次幂是正数.(七)有理数的混合运算1.运算顺序:⑴先算乘方,再算乘除,最后算加减.⑵同级运算,按照从左到右的顺序进行.⑶如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.(八)科学记数法、近似数1.科学记数法:把一个大于10的数记成ax10n的形式。
说明:[1]a是一个只有一位整数的数。
[2]10的指数n比原数的整数数位少1.2. 近似数[1]近似数:指一个与实际数非常接近的数.[2]一般地,一个近似数四舍五入到某位,就说这个近似数精确到哪一位.第三章整式的加减[l]复习内容:主要复习列代数式,求代数式的值.(一)代数式的有关知识1.代数式是用运算符号(加、减、乘、除、乘方)把数和表示数的字母连结而成的式子。
单独一个数或一个字母也是代数式.2.代数式的书写格式:①若是数字与数字相乘,仍然用“×”号;若是字母与字母相乘,通常省略乘号,且按字母的顺序排列.例如b×a应写成ab.②数字与字母相乘,或数字与小括号相乘时,乘号可省略不写,但数字要写在前面.例如4×a应写成4a;3×(m+n)应写成3(m+n)..③代数式中出现除法运算时,应写成分数的形式.例如2x÷y应写成2xya2b不能④代数式中出现带分数与字母相乘时,应把带分数化成假分数.如52 a2b.写成212⑤代数式的最后运算是加减运算时,如需注明单位的必须用括号把整个式子括起来.如(a-b)元不能写成a-b元.3.列代数式:一般是根据“先读先写”的原则来列代数式.(二)代数式的值1.方法与步骤:⑴用数值代替代数式中的字母,简称“代入”.⑵按照代数式指定的运算顺序计算出结果,简称“求值”.说明:代数式的值是由代数式中的字母所取的值决定的.因此,在代入前,必须先写“当……时”.第三章整式的加减⑵复习内容:整式、单项式、多项式、同类项的概念,合并同类项,去括号,添括号及整式的加减运算.(一)单项式1.定义:表示数字与字母的积的代数式叫做单项式.单独一个数或一个字母也是单项式.2.单项式中的数字因数叫做单项式的系数.3.一个单项式中所有字母的指数的和,叫做这个单项式的次数.(二)多项式1.定义:几个单项式的和叫做多项式.2.多项式的项:多项式中,每一个单项式叫做多项式的项.不含字母的项叫做常数项.3.多项式的次数:多项式中,次数最高的项的次数,叫做多项式的次数.4.多项式的排列:⑴升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列.⑵降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列.(三)同类项、合并同类项1.定义:所含字母相同,并且相同字母的次数也相同的项,叫做同类项.所有的常数项也是同类项.2.判断标准:⑴所含字母相同;⑵相同字母的次数相同.3.合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的次数保持不变.(四)去括号与添括号1.去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号.括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都要变号.2.添括号法则:所添括号前面是“+”号,括到括号里的各项都不变号.所添括号前面是“-”号,括到括号里的各项都要变号.(五)整式的加减1.步骤:①若有括号,则先去括号;②如有同类项,再合并同类项.第四章图形的初步认识另外:*平行于同一条直线的两条直线也互相平行. *垂直于同一条直线的两条直线也互相平行.4.平行线的特征:(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.。
第一章:有理数(1.1正数和负数)知识点1.正数和负数的定义(1)正数:大于0的数叫正数。
(2)负数:在正数前加上符号:“-”(负号)的数叫做负数,小于0的数叫负数. 注意:比0大的数是正数。
正数前面有“+”号,人们习惯将“+”号省略,在正数前面加“-”号,就是负数,负数前面必须有“-”号。
3)“0”既不是正数,也不是负数。
( 0是正数和负数的分界)2. 正数负数是表示具有相反意义的量(1)用正数和负数表示具有相反意义的量时,哪种意义为正是可以任意选择的,习惯上把升、上、零上为正 ,而相反为负;(2)具有相反意义的量一定是具体的数量;(3)具有相反意义的量中的两个量必须是同类量.不是同类量不具有对此性;(例如:上升和下降,零上和零下)(4)具有相反意义的量是成对出现的,单独的个量不能成为具有相反意义的量;考试点:用正数和负数表示具有相反意义的量时要明确“基准"。
为了计算方便,常把高于平均数,标准数或某一基准数的量规定为正,把与它们具有相反意义的量用负数表示。
1.2.1 有理数有理数的有关概念1.整数:正整数0、负整数统称为整数,如-3,-2,2,0,1,2,3等。
,0.2,-1.25等。
2.分数:正分数负分数统称为分数,如2133.有理数:整数和分数统称为有理数。
(m,n是整数,m≠0)的形式任何一个有理数都可以写成nm4.部分常用的数的名称正整数:如1,2,3,...负整数:如-1,-2,-3,..正分数:形如nm(m,n是正整数)的数,例如12,23,157…负分数:形如- nm(m,n是正整数)的数,例如-0.5,-52非负数:正数和0;非正数:负数和0.●注意:引入负数之后,小学学过的奇数和偶数的范围相应地扩大了,奇数和偶数也可以是负数,如-6,-4,-2都是偶数,也可以写成2n(n为整数)的形式;-5,-3,-1都是奇数,可以写成2n-1(n为整数)或2n+1(n为整数)的形式。
核心考点01 有理数目录考点一:正数和负数考点二:有理数考点三:数轴考点四:相反数考点五:绝对值考点六:有理数大小比较考点七:有理数的加法考点八:有理数的减法考点九:有理数的加减混合运算考点十:有理数的乘法考点十一:有理数的除法考点十二:有理数的乘方考点十三:有理数的混合运算考点十四:科学记数法—表示较大的数一、有理数1.相反意义的量:用正数和负数表示具有相反意义的量,哪种意义的量为正或负,是可以任意选择的.2.正数、负数概念0ìïíïî正数:比大的数;零:既不是,也不是;负数:前面加上“”号的数.正数负数正数-3.有理数的概念ììüïïýíïþïïíîïìïíïîî正整数零有理数负整数正分数负自然整分数数数分数 或者 .ììïíîïïíïìïíïîî正有理数非负数零负有理正整数正数与零统称为;正分数有理数负整数负数与零统数非正数称为负分数考点考向4.数轴ìïìííïîî定义:规定了、和的叫做数轴;数轴上表示的两个数,右边的数总比左边的数;性质:正数都零,负数都零,正数原点正方向单位长度直线大大于小于大于一切负数①②.5.相反数+ìïïíïïî定义:只有的两个数互为相反数;性质:正数的相反数是;负数的相反数是;零的相反数是;理解:定义包括两部分:两个数;相反数是的几何意义:互为相反数的两个点位于原点的符号不同负数正数零大小相等符号不同成对原两侧且到的距离相等.点①②.6.绝对值||;(0)||(00)(0)a a a a a a a a a ìïïïïï>ìïï==ííïï<îïï-ììïïíïíîïïîî定义:数轴上把表示数的点与原点的叫数的绝对值;记作法则:两个负数,绝对值大的;法则:比较大小正数都大于零,负数都小于零,正数大于负数;方法:(两数作差,比较差与零的距离反而小作差法大小关系).二、有理数的运算1.有理数的加法.ìïìïïïïïïïííïïïïïïîïïî定义:把两个有理数合成一个有理数的运算;两数相加,取,并把绝对值;绝对值不等的两数相加,取的加数的符号,法则并用较大的绝对值较小的绝对值;的两个数相加得零;一个数与零相加,仍得这个数运算律:加法交换律、加法结合律同号相同的符号相加异号绝对值较大减去互为相反数①②③④.2.有理数的减法.ìïìííïîî法则:减去一个数,等于加上这个数的.改变符号运算:把减法转化为加法,注意两个“变”改变减数的符号相反数运算性质3 有理数的乘法;()();)(ab ba a a b c ab ac b c a bc ìïìïïïïïííïïïï+îïï===+î意义:乘法是加法的特殊运算形式;两数相乘,同号为,异号为,并把相乘;任何数与零相乘都得.法则:几个不为零的数相乘,积的符号由决定当负因数有个时,积为;当负因数有个时,积为.运算律:交换:结合:乘对加正负绝对值零负因数的个数奇数负偶数正分配:①②③4.有理数的除法11(0);1a a a a b a b ììïïíï¹ïïîïïì¸=´íïïïïíïïïïïîî的两个数互为倒数,零无倒数;倒数:的倒数为除以一个数等于乘以;即法则:两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不等于零的数都乘积为这个数的零倒数得①②.5.有理数的乘方00.ìïìïíïíïïïîî定义:求相同因数的积的运算叫做乘方;乘方的结果叫幂.正数的任何次幂都是;有理数幂的符号法则负数的是负数;负数的幂是正数;的任何正数奇数次幂偶数次非是零次幂都6.有理数的混合运算ìïìïíïíïïïîî加、减、乘、除、乘方五种运算中含两种或两种以上的运算叫有理数的混合运算;先,再,最后;顺序:同级运算,从依次运算;有括号,先做括号内的运算,按小、中、大括号依次进行乘方乘除加减.左到右①②③7.科学记数法:一个数写成10na ´的形式,其中1||10a £<,n 是整数,这种记法叫科学记数法.一.正数和负数(共5小题)1.(2022春•杨浦区校级期中)如果把收入1200元记作+1200元,那么﹣1000元表示 .2.(2022春•徐汇区校级期中)某城市一月份日平均温度大约是零下4.5℃,用负数表示这个温度为 ℃.3.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉,发现包装袋上标有这样一段字样:“净重800±5克”,请说明这段字样的含义 .4.(2022春•崇明区校级期中)某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)星期一二三四五六每股涨跌+4+4.5﹣1﹣2.5﹣6+2(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?考点精讲(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?5.(2022春•宝山区校级月考)某一出租车一天下午以辰山植物园南门为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+10,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地,出租车离出发点多远?在辰山植物园南门的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?二.有理数(共2小题)6.(2022春•杨浦区校级期中)在0.2,﹣(﹣5),﹣,15%,0,5×(﹣1)3,﹣22,﹣(﹣2)2这八个数中,非负数有( )A.4个B.5个C.6个D.7个7.(2022春•嘉定区校级期中)把下列各数填在相应的集合里:﹣4,2.5,﹣,﹣15,0,49,2.3,321,﹣2.整数集合{ …}负数集合{ …}三.数轴(共7小题)8.(2022春•闵行区期末)数轴上A、B两点所表示的数分别是﹣、1,那么线段AB的长为 .9.(2022春•杨浦区校级期末)数轴上的点A表示0.3,点B表示﹣,这两点中离原点距离较近的点是点 .10.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度,则A点表示的数为 .11.(2022春•宝山区校级月考)数轴上到原点的距离小于3个单位长度的点中,表示整数的点共有 个.12.(2022秋•青浦区校级期末)定义:对于数轴上的三点,若其中一个点与其他两个点的距离恰好满足2倍的数量关系.如下图,数轴上点A,B,C所表示的数分别为1,3,4,此时点B就是点A,C的一个“关联点”.(1)写出点A,C的其他三个“关联点”所表示的数: 、 、 .(2)若点M表示数﹣2,点N表示数4,数﹣8,﹣6,0,2,10所对应的点分别是C1,C2,C3,C4,C5,其中不是点M,N的“关联点”是点 .(3)若点M表示的数是﹣3,点N表示的数是10,点P为数轴上的一个动点.①若点P在点N左侧,且点P是点M,N的“关联点”,求此时点P表示的数.②若点P在点N右侧,且点P,M,N中,有一个点恰好是另外两个点的“关联点”,求此时点P表示的数.13.(2022春•普陀区校级期中)如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动 秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数是 ;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值(写出解题过程).14.(2022春•奉贤区校级月考)根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.四.相反数(共2小题)15.(2022春•徐汇区校级期中)已知m﹣2的相反数是5,那么m3的值等于 .16.(2022春•杨浦区校级期中)已知a+2的相反数是﹣3,那么a的相反数是 .五.绝对值(共7小题)17.(2022春•闵行区校级期中)若a<0,且|a|=4,则a+1= .18.(2022春•崇明区校级期中)代数式|x﹣1|﹣|x+2|,当x<﹣2时,可化简为 ;若代数式的最大值为a与最小值为b,则ab的值 .19.(2022春•闵行区校级期中)比较大小:﹣(﹣1) ﹣|﹣1.35|.(填“<”、“>”或“=”)20.(2022春•崇明区校级期中)有理数a在数轴上的对应点的位置如图所示,若有理数b满足|b|<a,所有满足条件的b的值之和是 .21.(2022春•普陀区校级期中)若|a|=2,|b|=6,a>0>b,则a+b= .22.(2022春•徐汇区校级期中)若|a|=2,则a= .23.(2022春•宝山区校级月考)若x>0,y<0,求|x﹣y+2|﹣|y﹣x﹣3|的值.六.有理数大小比较(共2小题)24.(2022春•闵行区期末)比较大小:﹣|﹣3| ﹣(﹣3.62).25.(2022春•普陀区校级期中)比较大小:﹣ ﹣(填“<”或“>”或“=”).七.有理数的加法(共4小题)26.(2022春•奉贤区校级月考)在横线上填上适当的符号使式子成立:( 6)+(﹣18)=﹣12.27.(2022春•宝山区校级月考)计算(﹣2)+1= .28.(2022春•闵行区校级期中)计算:(﹣0.5)+3+2.75+(﹣5).29.(2022春•宝山区校级月考)在﹣4,﹣3,﹣2,﹣1,1,2,3,4,m这9个数中,m代表一个数,你认为m是多少时,能够使这9个数分别填入图中的9个空格内,使每行的3个数、每列3个数、斜对角3个数个数相加均为零.(1)我认为m= .(2)按要求将这9个数填入如图的空格内.八.有理数的减法(共3小题)30.(2022春•奉贤区校级月考)如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( )A.﹣26℃B.﹣22℃C.﹣18℃D.﹣16℃31.(2022春•杨浦区校级期中)计算:= .32.(2022春•宝山区校级月考)计算:= .九.有理数的加减混合运算(共4小题)33.(2022春•崇明区校级期中)在数1、2、3、4、…、2009、2010的每个数字前添上“+”或“﹣”,使得算出的结果是一个最小的非负数,请写出符合条件的式子: .34.(2022春•普陀区校级期中)计算:8+(﹣1)﹣5﹣(﹣).35.(2022春•徐汇区校级期中)计算:.36.(2022春•崇明区校级期中)若|a|=2,|b|=3,|c|=6,|a+b|=﹣(a+b),|b+c|=b+c.计算a+b﹣c的值.一十.有理数的乘法(共3小题)37.(2022春•奉贤区校级月考)五个有理数的积为负数,那么这五个有理数之中至少有 个负数.38.(2022春•宝山区校级月考)﹣24×(﹣+﹣)39.(2022春•奉贤区校级月考).一十一.有理数的除法(共4小题)40.(2022春•奉贤区校级月考)计算:﹣= .41.(2022春•杨浦区校级期中)计算:= .42.(2022春•普陀区校级期中)计算:(﹣)×(﹣)÷(﹣3).43.(2022春•闵行区校级期中)计算:﹣56×(﹣)÷(﹣1).一十二.有理数的乘方(共5小题)44.(2022春•南岗区校级期中)下列各对数中,数值相等的是( )A.﹣32与﹣23B.(﹣3)2与﹣32C.﹣23与(﹣2)3D.(﹣3×2)3与﹣3×2345.(2022春•普陀区校级期中)把式子(﹣2)×(﹣2)×(﹣2)×(﹣2)写成乘方的形式 .46.(2022春•徐汇区校级期中)如图为一正方形网,若在第一个点上放1枚棋子,在第二个点上放2枚棋子,在第三个点上放4枚棋子,在第四个点上放8枚棋子,以次类推,则在最后一个点上应放 枚棋子.(结果用幂的形式表示)47.(2022春•杨浦区校级期中)计算:﹣32×(﹣2)3= .48.(2022春•徐汇区校级期中)﹣65的底数是 .一十三.有理数的混合运算(共6小题)49.(2022春•杨浦区校级期末)x、y表示两个有理数,规定新运算“*”为:x*y=3x+my,其中m为有理数,已知1*2=5,则m的值为 .50.(2022秋•青浦区校级期末)计算解方程:(1);(2);(3);(4)解方程:3:2=(5﹣x):x.51.(2022春•杨浦区校级期中)定义:若ab=a+b,且a≠b,则称a、b为对称数,试写出一组对称数 .52.(2022春•崇明区校级期中)如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c )(2019﹣d )=8,那么a +b +c +d 的最大值为 .53.(2022春•杨浦区校级期末)计算:.54.(2022春•普陀区校级期中)计算:﹣42÷23+1÷(﹣)3.一十四.科学记数法—表示较大的数(共2小题)55.(2022春•嘉定区校级期中)下列各数中,是科学记数法的是( )A .﹣1.82×1004B .﹣0.9×105C .10.2×109D .1×10656.(2022春•杨浦区校级期末)2022年4月15日,上海市统计局公布本市第七次全国人口普查主要数据:全市常住人口为24894300人.请将这个数据用科学记数法表示为 .一、单选题1.(2023秋·上海青浦·六年级校考期末)下列说法正确的是( )A .若m m <,则m 为负数B .π和 3.14-互为相反数C .所有的有理数都有相反数D .正有理数和负有理数组成全体有理数2.(2023春·上海·六年级专题练习)在12-,0.2,0, 3.5-,50%,12-,7-,10中,负数有( )A .3个B .4个C .5个D .6个3.(2023春·上海·六年级专题练习)如果10+%表示“增加10%”,那么“减少7%”可以记作( )A .17-%B .7-%C .3+%D .7+%4.(2023春·上海·六年级专题练习)下列数字,﹣112,1.2,p , 0,3.14,﹣37,﹣111113,有理数有( )个.巩固提升A .6B .5C .3D .7二、填空题5.(2023秋·上海青浦·六年级校考期末)倒数等于本身的数有______,31146-的差的相反数是______.6.(2023秋·上海青浦·六年级校考期末)有理数a ,b 在数轴上的位置如图所示,若表示数b 与b -的点相距18个单位长度,a 与原点的距离是b 的13,则a =______.7.(2023秋·上海青浦·七年级校考期末)如图,正方形ABCD 的边AB 在数轴上,数轴上的点A 表示的数为1-,正方形ABCD 的面积为16.将正方形ABCD 在数轴上水平移动,移动后的正方形记为A B C D ¢¢¢¢,点A 、B 、C 、D 的对应点分别为A ¢、B ¢、C ¢、D ¢,移动后的正方形A B C D ¢¢¢¢与原正方形ABCD 重叠部分图形的面积记为S ,当4S =时,数轴上点A ¢表示的数是____________.8.(2023春·上海·六年级专题练习)计算:21252æö---=ç÷èø__________9.(2023秋·上海杨浦·六年级统考期末)比较大小:67______78(填“>”、“=”或“<”).10.(2023春·上海·六年级专题练习)如果有4个不同的正整数a 、b 、c 、d 满足()()()()20192019201920198a b c d ----=,那么+++a b c d 的最大值为________.11.(2023春·上海·六年级专题练习)在1115,,0.23,0.51,0,0.65,7.6,2,,314%36----中,非负数有 __个.12.(2023春·上海·六年级专题练习)在数3p ,0.4-,0.2,3.14,0.1010010001…(每两个之间多一个0),120%,20122013,100这8个数中,有理数有__个.13.(2023春·上海·六年级专题练习)如果把收入1200元记作+1200元,那么﹣1000元表示_______.14.(2023春·上海·六年级专题练习)把下列各数填在相应的集合里:﹣4,2.5,﹣13,﹣15,0,49,2.3,321,﹣212.整数集合{___…};负数集合{___…}15.(2022秋·上海·六年级专题练习)阅读理解:12-111-22112==´,13-211-63223==´,14-311-124334==´……阅读以上材料后计算:11111111 1357911131517612203042567290++++++++=__.16.(2022春·上海崇明·六年级校考期中)在数1、2、3、4、…、2009、2010的每个数字前添上“+”或“-”,使得算出的结果是一个最小的非负数,请写出符合条件的式子:________.三、解答题17.(2023秋·上海徐汇·六年级上海市徐汇中学校考期末)计算:272 3363æö-+ç÷èø18.(2023秋·上海徐汇·六年级上海市徐汇中学校考期末)已知一个数的145与43的和是512的倒数,求这个数.19.(2023秋·上海杨浦·六年级统考期末)计算:3321 1.750.4 523æö´-+¸ç÷èø.20.(2023春·上海·六年级专题练习)某班级抽查了10名同学的期末成绩,以80分为基准,超出的分数记为正数,不足的分数记为负数,记录的结果如下(单位:分):+8、﹣3、+12、﹣7、﹣10、﹣3、﹣8、+1、5、+10.这10名同学中,(1)最高分是多少?(2)最低分是多少?(3)10名同学的平均成绩是多少?21.(2023春·上海·六年级专题练习)小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?22.(2023春·上海·六年级专题练习)某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)星期一二三四五六每股涨跌+4+4.5﹣1﹣2.5﹣6+2(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?23.(2022春·上海崇明·六年级校考期中)(1)如图(1),数轴上有一个表示数a 的点M ,已知点M 在数轴上移动3个单位长度后表示的数是5,那么a 的值是 ;(2)如图(2),有一根木尺PQ 放置在数轴上,它的两端P Q 、分别落在AB 、两点处.将木尺在数轴上水平移动,当点P 移动到点B 时,点Q 所对应的数为24;当点Q 移动到点A 时,点P 所对应的数为6(单位:cm ).利用所学知识求出点A 、点B 所表示的数及木尺PQ 的长.(3)借助上面的方法解决问题:一天,小明去问爷爷的年龄,爷爷说:我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是116岁!小明纳闷,爷爷今年到底是多少岁?请你画出示意图,求出小明和爷爷的年龄,并写出合理的计算过程.24.(2022春·上海崇明·六年级校考期中)若2=a ,3b =,6c =,()a b a b +=-+,b c b c +=+,计算a b c +-的值.25.(2022春·上海宝山·六年级校考阶段练习)某一出租车一天下午以辰山植物园南门为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+10,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地,出租车离出发点多远?在辰山植物园南门的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?26.(2021秋·上海·七年级期中)已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:(1)请直接写出a、b、c的值.a=,b=,c=.(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用含t的关系式表示);②请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.27.(2021秋·上海·七年级校考期末)已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.。
正数和负数、有理数、数轴、相反数、绝对值1、如果温度上升3o C记作+3o C,那么下降5o C记作______,+6o C表示_____,—7o C表示______
5、味精袋上标有“300±5克”字样,+5表示
__________________,—5表示_____________
还说明这袋味精的质量应该是____~____
6、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海报高度为—5米,其中最高处为___地,最低处为____地,最高处与最低处相差_________
10、规定了______、_________、_________的________
叫做数轴。
11、数轴上原点左边的数表示____数,原点右边的数表示_____数,_____表示0。
12、如果点A表示的数是2.2,将点A向左边移动2个单位长度,那么这时点A表示的数是_______,如过再向左移动1.2个单位长度,那么这时点A表示的数是_______,第三次再向右移动15个单位长度,那么这时点A表示的数是________
13、数轴上,到原点的距离等于4个单位长度的点所表示的数是_____,它们互为_________
14、数轴上与距离原点3个单位长度的点所表示的负数是___,它与表示数1的点的距离为___
15、在数轴上,到表示—3的点的距离等于199个单位长度的点所表示的数是___________
16、在数轴上,原点及原点左边的点表示的数是_______数
17、在数轴上,点M表示—7,把点M向左移动5个单位长度到点N,再把N向右移动6个单位长度到点P。
则点P表示的数是______,P点与M点距离是________
18、+3的相反数是____;_____的相反数是—2.3;0的相反数是______
19、若X的相反数是—5,则X=______;若—X的相反数是—3.7,则X=_______
20、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________
21、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______
23、a+3与—1互为相反数,则a=________
24、a—1的相反数是__________,n+1的相反数是
_________,—a+b—c的相反数是_________
26、一个数的绝对值是2.6,那么这个数为___________ 27、|a|=—a时,a是________数,当|a|=a时,a是________数
28、若|X|=2,则X=______,若|X—3|=0,则X=______,|X—3|=6,则X=______
29、|—5.7|=______;|0|=_____;—|+5|=______;—|—6.8|=____;—(—2.9)=_____;—[+(—2.6)]=_______;
30、如果a=—2,则|—a|=_____,|a|=______
31、|—X|=2,则X=______;
32、如果a<3,则|a—3|=_______;|3—a |=________
33、已知|a|=2,|b|=3, a>b,则a+b=__________
34、|X|/X=1,则X是___数,|X|/X=—1,则X是___数()35、下列说法正确的是:A、非负有理数就是正有理数;B、零表示没有,不是自然数;C、正整数和负整数统称整数; D、整数和分数统称为有理数
()36、零不属于:A、有理数集合;B、整数集合;C、非正有理数集合;D、正数集合
()38、下列说法正确的是:A、正整数和负整数统称整数;B、正分数、负分数统称分数;C、零既可以是正整数也可以是负整数;D、一个有理数不是正数就是负数()39、下列说法错误的是:A、规定了原点、正方向和长度的直线叫数轴;B、所有有理数都可以用数轴上的点表示;C、数轴上的原点表示数0;D、数轴上表示—3.33的点在表示—3的点的左边。
()40、一辆汽车从车站出发向东行使50千米,然后向西行使20千米,此时汽车的位置是:A、车站的东边70千米处,B、车站的西边20千米处C、车站的东边30千米处D车站的东边30千米处
()41、下列说法正确的是:A、—1是相反数; B、—3.3与+3互为相反数;C、—2/3和—3/2互为相反数D、—4的相反数是4
()42、下列说法错误的是:A、在一个数前面添加一个“—”,就免除原数的相反数;B、—11/5与2.2互为相反数;C、如果两个数互为相反数,则它们的相反数也互为相反数D、1/3的相反数是0.3
()43、若a、b表示有理数,且a=—b,那么在数轴上表示数a与数b的点到原点的距离:A、表示数a的点到原点的距离较远;B、表示数b的点到原点的距离较远;
C、一样远;
D、无法比较
()44、下列说法正确的是:A、符号相反的两个数是相反数;B、任何一个负数都小于它的相反数;C、任何一个负数都大于它的相反数;D、0没有相反数
()45:如果X与2Y互为相反数,那么:A、X—2Y=0;
B、X+2Y=0;
C、X·2Y=0;
D、以上答案都不对
()46、绝对值等于相反数的数一定是:A、负数;B、正数;C、负数或零;D、正数和零
()47、下面四个结论中,正确的是:A、|—2|>|—3|;B、|2|>|3|;C、2>|—3|; D、2<|—3| ()48、若a是有理数,则|a|一定:A、是正数;B、不是正数;C、是负数;D、不是负数
()49、下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数,③不相当的两个数绝对值不相等;④绝对值相等的两数一定相等。
其中正确的有:A、0个;B、1个;C、2个;D、3个
()50、如果|—2a|=—2a,则a的取值范围是:A、a >0;B、a≥0;C、a<0;D、a≤0
()51、正整数集合和负整数集合合在一起,构成数的集合是()A. 整数集合; B. 有理数集合; C. 自然数集合; D. 非零整数集合
()52、下列说法中不正确的是:A、最小的自然数是1;B、最大的负整数是—1;C、没有最大的正整数;D、没有最小的负整数
()53、绝对值等于本身的数有:A、0个;B、1个;
C、2个;D无数个
()54如果甲数的绝对值大于乙数的绝对值,那么:A、甲数必定大于乙数;B、甲数必定小于乙数;C、甲、乙两数一定异号;D、甲、乙两数的大小,要根据具体值确定
()55、如果|a|=4,|b|=4,那么A、a=b;B、a>b;
C、a<b;
D、|a/b|=1
()56、下列说法正确的是:A、有0个苹果即一个苹果也没有,故0的意义就是表示没有;B、0没有带“—”号,所以0是正数;C、字母a没有带“—”号,所以a 是正数;D、0既不是正数,也不是负数
()60、下列语句中正确的是:A、有理数没有最大的数也没有最小的数;B、正数没有最大的数,有最小的数;
C、负数没有最小的数,有最大的数;
D、整数有最大的数,也有最小的数
()61、下列说法中错误的是:A、圆周率∏是无限不循环小数,它不是有理数;B、负整数与负分数统称负有理数;C、正有理数与负有理数;D、21/3不是分数,而是整数
()62、数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2000
厘米的线段AB盖住的整点的个数共有_____个。
A、1998或1999;B、1999或2000;C、2000或2001;D、2001或2002
()63、若a的相反数是非负数,则a为:A、负数;
B、负数或零;
C、正数;
D、正数或零
()64、绝对值小于3.5的整数共有:A、8个;B、7个;C、6个;D、5个
()65、下列式子中,正确的是:A、—5<—7;B、—1/5>0;C、—1/5<—1/7;D、—1/5>—1/7
()67、下列结论中,正确的是:A、|a|一定是正数;
B、—|a|一定是负数;
C、—|—a|一定是正数;
D、—|a|一定是非正数
()68、在数轴上,下面说法中不正确的是:A、两个有理数,绝对值大的离原点远;B、两个有理数,大的在右边;C、两个负有理数,大的离原点近;D、两个有理数,大的离原点远
70、写出下列各数的相反数,并在数轴上把这些相反数表示出来:+2,—3,0,—(—1),—3.5,—(+2),—|—4|
73、观察下列依次排列的一列数,它的排列有什么规律。
请接着写出后面的3个数:
(1)2,4,—6,8,10,—12,_____,______,_____;(2)3,2,1,0,—1,—2,______,_______,_____;(3)1,—2,4,—8,16,—32,______,______,_______;
75、写出绝对值大于3且不大于8的所有整数,并指出其中的最大数和最小数。
78、已知|X—4|+|Y+2|=0,求2X—|Y|的值。
79、若|a|=4,|b|=7,求(1)a+2b的值;(2)若ab<0,求|a—b|;。