10塑性极限分析B
- 格式:ppt
- 大小:1.08 MB
- 文档页数:28
混凝土结构塑性极限分析
混凝土结构塑性极限分析是基于塑性力学和极限平衡原理的理论基础上进行的。
在进行分析时,首先需要制定正确的承载准则,这是确定结构塑性极限载荷的关键。
常见的承载准则有极限平衡准则、极限平衡位移准则和应变平衡准则。
然后,根据结构的几何形状、材料力学性质和荷载情况,建立结构的数学模型,并进行力学计算和相应的塑性计算。
最后,通过数值方法或试验方法验证计算结果的准确性。
在混凝土结构的塑性极限分析中,主要考虑的因素包括结构的初始强度、材料的本构关系、荷载的性质和作用面积,以及结构在变形过程中的非线性行为等。
在分析过程中,需要考虑结构在各个截面上的应力和应变分布情况,了解结构的变形形态和荷载的传递规律。
此外,还需要进行弯曲、剪切、压弯和剪弯等复杂变形的计算,以得到结构的变形量和变形模式。
1.确定结构的承载能力和变形能力。
通过塑性极限分析,可以了解结构的塑性变形能力,以判断结构承受荷载时是否会出现过大的塑性变形或结构失稳。
2.优化结构设计。
通过塑性极限分析,可以对结构进行合理的设计和优化,以提高结构的安全性和经济性。
3.评估结构的可靠性。
通过塑性极限分析,可以对结构的可靠性进行评估,以确定结构在使用和极限状态下的安全性。
4.指导结构的维护和加固。
通过塑性极限分析,可以确定结构的破坏机理和塑性变形特征,以指导结构的维护和加固工作。
总之,混凝土结构塑性极限分析是一种重要的分析方法,对于确保混凝土结构的安全性和可靠性具有重要的意义。
通过合理应用塑性极限分析方法,可以更好地理解混凝土结构的变形行为和受力机理,为结构设计和维护提供科学依据。
第二章考虑材料塑性的极限分析知识要点1.塑性变形在常温下,与时间无关的不可恢复的永久变形称为塑性变形。
塑性变形是不可逆的永久变形,应力超过了材料的线弹性范围,胡克定律不再成立,其应力-应变关系一般呈非线性关系。
塑性变形与加载历程有关,其应力与应变间的对应关系呈多值性。
2.塑性极限分析(1)塑性极限分析的假设①荷载为单调增加的静荷载。
若有多个荷载同时作用,则各个荷载按比例同时由零增至终值。
②结构(或荷载)在达到极限状态前,保持几何不变体系③材料的应力-应变关系理想化为刚塑性模型或理想弹塑性模型,如图2-1(a)(b)所示0 t(2)屈服荷载,极限荷载结构(或构件)开始出现塑性变形的荷载,称为屈服荷载,记为F s ;结构(或构件)开始出现大的塑性变形成为几何可变机构,而处于极限状态时的荷载,称为极限荷载,记为F u。
(3)屈服扭转(或弯矩),极限扭矩(或弯矩)圆轴(或梁)横截面上的最大应力达到材料的屈服极限而开始出现塑性变形时,横截面内的扭矩(或弯矩)称为屈服扭矩(或弯矩)记为T s (或M s);圆轴(或梁)横截面上的应力全部达到材料的屈服极限,此时横截面各点均发生塑性变形,整个截面进入完全塑性状态达到极限状态时的扭矩(或弯矩)称为极限扭矩(或弯矩)记为T u (或M u)。
(4)塑性铰当梁的某截面达到极限状态时,该截面两侧的两段梁将绕其中性轴作相对转动,犹如在该截面处安另了一个铰链,故称其为塑性铰。
塑性铰并不等同于真实的铰链,而是由于截面达到完全塑性引起的,它能承受弯矩,即截面上的极限弯矩。
(5)残余应力当结构或构件达到极限状态后,卸除荷载至零,构件截面上的应力,称为残余应力。
由于卸载后外荷载为零,故残余应力必自相平衡。
残余应力最大值为材料的屈服极限。
习题详解2-1 一组合圆筒,承受荷载F,如题图(a)所示。
内筒材料为低碳钢,横截面面积为A i,弹性模量为E i,屈服极限为J ;外筒材料为铝合金,横截面面积为A2,弹性模量为E2,屈服极限为匚S2。