山东诗营市2018届中考数学复习第一章第一节随堂演练1190-数学备课大师【全免费】
- 格式:doc
- 大小:93.00 KB
- 文档页数:2
第3章第2节随堂演练1.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是( )2.(2017·滨州)若点M(-7,m),N(-8,n)都在函数y=-(k2+2k+4)x+1(k为常数)的图象上,则m 和n的大小关系是( )A.m>n B.m<nC.m=n D.不能确定3.(2017·菏泽)如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax +3的解集是( )A.x>2 B.x<2C.x>-1 D.x<-14.(2017·聊城)端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队在500 m 的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示.下列说法错误的是( )A.乙队比甲队提前0.25 min到达终点B.当乙队划行110 m时,此时落后甲队15 mC.0.5 min后,乙队比甲队每分钟快40 mD.自1.5 min开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m/min5.(2016·荆州)若点M(k-1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k-1)x+k的图象不经过第______象限.6.(2016·贵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是______.7.(2017·青岛)A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系.请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是_____(填l1或l2);甲的速度是_____ km/h;乙的速度是_____km/h;(2)甲出发多少小时两人恰好相距5 km?8.(2017·潍坊)某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?参考答案1.B 2.B 3.D 4.D 5.一 6.a>b7.解:(1)l 2 30 20(2)设直线l 2的解析式为s 1=k 1t +b 1,由题意得⎩⎪⎨⎪⎧b 1=60,2k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-30,b 1=60, ∴直线l 1的解析式为s 1=-30t +60.设直线l 2的解析式为s 2=k 2t +b 2,由题意得⎩⎪⎨⎪⎧0.5k 2+b 2=0,3.5k 2+b 2=60,解得⎩⎪⎨⎪⎧k 2=20,b 2=-10, ∴直线l 2的解析式为s 2=20t -10.∵两人恰好相距5 km ,∴s 1-s 2=5或s 1-s 2=-5,即-30t +60-(20t -10)=5或-30t +60-(20t -10)=-5,解得t =1.3或t =1.5.答:甲出发1.3小时或1.5小时时,两人恰好相距5 k m.8.解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨,由题意得⎩⎪⎨⎪⎧x +y =100,4 000x +1 000y =160 000,解得⎩⎪⎨⎪⎧x =20,y =80.答:第一批次购进20吨,第二批次购进80吨.(2)设蒜薹精加工m吨,总利润为w元,则粗加工(100-m)吨,由题意得m≤3(100-m),解得m≤75.利润w=1 000m+400(100-m)=600m+40 000.∵w随m的增大而增大,∴当m=75,即精加工75吨时,w取最大值,最大利润为 85 000 元.。
2018年山东省东营市中考数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣ D.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y43.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣15.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()A.众数是100 B.中位数是30 C.极差是20 D.平均数是306.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.157.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A. B.C.D.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF 的面积y关于x的函数图象大致为()A.B.C.D.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12.(3.00分)分解因式:x3﹣4xy2=.13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:(1)求该校九年级共捐书多少本;(2)统计表中的a= ,b= ,c= ,d= ; (3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.2018年山东省东营市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1.【解答】解:﹣的倒数是﹣5,故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y4【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.【解答】解:A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.3.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()A.众数是100 B.中位数是30 C.极差是20 D.平均数是30【分析】根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.【解答】解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D 不正确.故选:B.【点评】本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.6.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A. B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF 的面积y关于x的函数图象大致为()A.B.C.D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.【点评】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.【点评】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×1011【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)分解因式:x3﹣4xy2=x(x+2y)(x﹣2y).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),故答案为:x(x+2y)(x﹣2y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.【点评】此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是15.【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.【解答】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S=•AC•DQ=×10×3=15,△ACD故答案为:15.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为20π.【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长l为5,然后根据圆锥的侧面积公式:S=πrl代入计算即可.侧【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π【点评】本题考查了圆锥的计算,连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.掌=•2πr•l=πrl是解题的关键.也考查了三视图.握圆锥的侧面积公式:S侧17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.【分析】要使得MB﹣MA的值最大,只需取其中一点关于x轴的对称点,与另一点连成直线,然后求该直线x轴交点即为所求.【解答】解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)【点评】本题考查轴对称﹣最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.【分析】因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.【解答】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是故答案为:【点评】本题为一次函数图象背景下的规律探究题,结合了等腰直角三角形的性质,解答过程中注意对比每个点A的纵坐标变化规律.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,再判断即可.【解答】解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组的解集为:﹣3<x≤1,则﹣1是不等式组的解,不是不等式组的解.【点评】本题考查了绝对值、特殊角的三角函数值、零指数幂、负整数指数幂、解一元一次组等知识点,能求出每一部分的值是解(1)的关键,能求出不等式组的解集是解(2)的关键.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:(1)求该校九年级共捐书多少本;(2)统计表中的a=0.35,b=150,c=0.22,d=0.13;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.【分析】(1)根据名人传记的圆心角求得其人数所占百分比,再用名人传记的人数除以所得百分比可得总人数;(2)根据频率=频数÷总数分别求解可得;(3)用总人数乘以样本中科普图书和小说的频率之和可得;(4)列表得出所有等可能结果,从中找到恰好1人捐“名人传记”,1人捐“科普图书”的结果数,利用概率公式求解可得.【解答】解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.【点评】本题考查了列表法和树状图法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.【解答】解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=75°,AB=4.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA 可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD 的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.【点评】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角形得比例,求出OC的长即可;(2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC解析式,把C坐标代入抛物线求出a的值,确定出二次函数解析式即可;(3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入。
数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前山东省东营市2018年初中学业水平考试数 学(考试时间120分钟,满分120分)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.15-的倒数是( )A .5-B .5C .15-D .152.下列运算正确的是( )A .()2222x y x xy y --=--- B .224a a a += C .236a a a ⋅=D .()2224xyx y =3.下列图形中,根据AB CD ∥,能得到12∠=∠的是( )ABCD4.在平面直角坐标系中,若点()21P m m -+,在第二象限,则m 的取值范围是 ( ) A .1m -<B .2m >C .12m -<<D . 1m ->5.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( )A .众数是100B .中位数是30C .极差是20D .平均数是306.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为 ( )A.19B.18C.16D.157.如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F ,AB BF =.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是( )A .AD BC =B .CD BF = C .A C ∠=∠D .F CDF ∠=∠8.如图所示,圆柱的高3AB =,底面直径3BC =,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .B .CD .9.如图所示,已知ABC△中,12BC =,BC 边上的高6h =,D 为BC 上一点,EF BC ∥,交AB 于点E ,交AC 于点F ,设点E 到边BC 的距离为x .则DEF △的面积y 关于x 的函数图象大致为( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------32页)A B C D10.如图,点E在DBC△的边DB上,点A在DBC△内部,90DAE BAC∠=∠=︒,AD AE=,AB AC=.给出下列结论:①BD CE=;②45ABD ECB∠+∠=︒;③BD CE⊥;④()22222BE AD AB CD=+-其中正确的是()A.①②③④B.②④C.①②③D.①③④第Ⅱ卷(非选择题共90分)二、填空题(本大题共8小题,其中11~14题,15~18题,每小题4分,共28分)11.东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资 4 147亿元.4 147亿元用科学记数法表示为.元.12.分解因式:324x xy-=.13.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.14.用如图,()3,3B-,()50C,,以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.15.如图,在Rt ABC△中,90B∠=︒,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若3BD=,10AC=,则ACD△的面积是.16.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.在平面直角坐标系内有两点A、B,其坐标为()1,1A--,()2,7B,点M为x轴上的一个动点,若要使MB MA-的值最大,则点M的坐标为.18.如图,在平面直角坐标系中,点1A,2A,3A,…和点1B,2B,3B,…分别在直线15y x b=+和x轴上.11OA B△,122B A B△,233B A B△,…都是等腰直角三角形.如果点1(11)A,,那么点2018A的纵坐标是.三、解答题(本大题共7小题,共62分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分7分)(1)计算)()10 2 0181213tan3012-⎛⎫-++-︒+-+ ⎪⎝⎭.(2)解不等式:()302133xx x+⎧⎪⎨-+⎪⎩>,≥,并判断1-这两个是否为该不等式组的解.20.(本小题满分8分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完数学试卷第3页(共32页)数学试卷 第5页(共32页) 数学试卷 第6页(共32页)整的统计图表.请你根据统计图表中所提供的信息解答下列问题:(1)求该校九年级共捐书多少本;(2)统计表中的a = ,b = ,c = ,d = ; (3)若该校共捐书1 500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小 说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状 图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率. 22.(本小题满分8分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200 m 和2000 m ,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4 min 到达剧院.求两人的速度.22.(本小题满分8分)如图,CD 是O e 的切线,点C 在直径AB 的延长线上. (1)求证:CAD BDC ∠=∠; (2)若23BD AD =,3AC =,求CD 的长.23.(本小题满分9分)关于x 的方程225sin 20x x A +=﹣有两个相等的实数根,其中A ∠是锐角三角形ABC 的一个内角. (1)求sin A 的值;(2)若关于y 的方程22104290y y k k ++=﹣﹣的两个根恰好是ABC △的两边长,求ABC △的周长.24.(本小题满分10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在ABC △中,点O 在线段BC 上,30BAO ∠=︒,75OAC ∠=︒,AO =,:1:3BO CO =,求AB 的长.经过社团成员讨论发现,过点B 作BD AC ∥,交AO 的延长线于点D ,通过构造ABD △就可以解决问题(如图2).请回答:ADB ∠=__________︒,AB =__________. (2)请参考以上解决思路,解决问题:如图3,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC AD⊥AO =,75ABC ACB ∠=∠=︒,:1:3BO OD =,求DC 的长.25.(本小题满分12分)如图,抛物线()()()130y a x x a =-->与x 轴交于A 、B 两点,抛物线上另有一点C 在x 轴下方,且使OCA OBC △∽△. (1)求线段OC 的长度;(2)设直线BC 与y 轴交于点M ,点是BM 的中点时,求直线BM 和抛物线的解析式; (3)在(2)的条件下,直线BC 下方抛物线上是否存在一点P ,使得四边形ABPC 面积最 大?若存在,请求出点P 的坐标;若不存在,请说明理由.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷第7页(共32页)数学试卷第8页(共32页)5 / 16山东省东营市2018年初中学业水平考试2.【答案】D【解析】解:A.()2222x y x xy y =+-﹣--,此选项错误;B.2222a a a +=,此选项错误;C.235a a a ⋅=,此选项错误;D.()2224xy x y =,此选项正确;故选:D .【考点】整式的运算 3.【答案】B【解析】解:A .根据AB CD ∥,能得到12180∠+∠=︒,故本选项不符合题意;B .如图,根据AB CD ∥,能得到34∠=∠,再根据对顶角相等,可得12∠=∠,故本选项符合题意;C .根据AC BD ∥,能得到12∠=∠,故本选项不符合题意;D .根据AB 平行CD ,不能得到12∠=∠,故本选项不符合题意;故选:B . 【考点】平行线的性质 4.【答案】C【解析】解:Q 点()2,1P m m +﹣在第二象限,∴2010m m -⎧⎨+⎩<>,解得12m -<<;故选:C .【考点】各象限内点的坐标的符号特征,解不等式 5.【答案】B【解析】解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A 不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B 正确;该组数据的极差是1001090-=,故极差是90不是20,所以选项C 不正确;6该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D 不正确. 故选:B .【考点】中位数、平均数、众数和极差的概念 6.【答案】B【解析】解:设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个, 根据题意得:316320x y x y +=⎧⎨+=⎩①②,方程()2+÷①②,得:2218x y +=;故选:B .【考点】二元一次方程组的应用 7.【答案】D【解析】解:正确选项是D .理由:F CDF ∠=∠Q ,CED BEF ∠=∠,EC BE =,CDE BFE ∴△≌△,CD AF ∥,CD BF ∴=,BF AB =Q ,CD AB ∴=,∴四边形ABCD 是平行四边形;故选:D .【考点】三角函数的性质及其运用 8.【答案】C【解析】解:把圆柱侧面展开,展开图如右图所示,点A 、C 的最短距离为线段AC 的长. 在Rt ADC △中,90ADC ∠=︒,3CD AB ==,AD 为底面半圆弧长, 1.5πAD =,所以2AC =,故选:C .【考点】平面展开﹣最短路径问题 9.【答案】D【解析】解:过点A 向BC 作AH BC ⊥于点H ,所以根据相似比可知:6126EF x-=,即()26EF x =﹣7 / 16所以()21266,062y x x x x x =⨯=+﹣-(<<),该函数图象是抛物线的一部分,故选:D . 【考点】几何图形的性质确定函数的图象,函数图象的读图能力 10.【答案】A【解析】解:90DAE BAC ∠=∠=︒Q ,DAB EAC ∴∠=∠AD AE =Q ,AB AC =,DAB EAC ∴△≌△,BD CE ∴=,ABD ECA ∠=∠,故①正确,45ABD ECB ECA ECB ACB ∴∠+∠=∠+∠=∠=︒,故②正确,454590ECB EBC ABD ECB ABC ∠+∠=∠+∠+∠=︒+︒=︒Q , 90CEB ∴∠=︒,即CE BD ⊥,故③正确,()2222222222222222()BE BC EC AB CD DE AB CD AD AD AB CD ∴===+=+--﹣﹣-.故④正确,故选:A .【考点】全等三角形的判定和性质,勾股定理,等腰直角三角形的性质 11.【答案】2【解析】直线为210y ++=,圆为()2211x y +-=,因为314d =<,所以有两个交点.【考点】曲线的极坐标方程与直角坐标方程的互化、直线与圆的位置关系。
第一章 第一节随堂演练1.(2017·淄博)-23的相反数是( ) A.32 B .-32 C.23 D .-232.(2017·聊城)64的立方根是( )A .4B .8C .±4D .±83.20年前,NASA 航天器“卡西尼”号发射升空开启了探索土星的旅程;13年前它到达土星轨道;现在,它准备好了旅程的最后一步,前所未有地接近土星.地球到土星距离约12.8亿公里,12.8亿用科学记数法表示为( )A .12.8×108B .1.28×109C .128×107D .0.128×1084.(2017·菏泽)生物学家发现了一种病毒,其长度约为0.000 000 32 mm ,数据0.000 000 32用科学记数法表示正确的是( )A .3.2×107B .3.2×108C .3.2×10-7D .3.2×10-85.(2017·威海)计算-(2)2+(2+π)0+(-12)-2的结果是( ) A .1 B .2 C.114 D .36.(2017·潍坊)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于_____之间( )A .B 与CB .C 与D C .E 与F D .A 与B7.判断311-4的值介于下列哪两个整数之间?( )A .3,4B .4,5C .5,6D .6,78.(2017·青岛)近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫.65 000 000用科学记数法可表示为__________.9.计算(-3)2-(π-1)0+3+|3-2|=_____.10.(2017·临沂)计算:|1-2|+2cos 45°-8+(12)-1.参考答案1.C 2.A 3.B 4.C 5.D 6.A 7.C 8.6.5×107 9.410.解:原式=2-1+2×22-22+2 =2-1+2-22+2=1.。
第8章 第一节随堂演练1.(2017·德州)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是( )A .平均数B .方差C .众数D .中位数2.(2017·威海)某校排球队10名队员的身高(厘米)如下: 195,186,182,188,188,182,186,188,186,188. 这组数据的众数和中位数分别是( )A .186,188B .188,187C .187,188D .188,1863.(2017·泰安)某班则他们捐款金额的中位数和平均数分别是( )A .10,20.6B .20,20.6C .10,30.6D .20,30.64.(2017·枣庄)下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:丙 根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) A .甲 B .乙 C .丙 D .丁5.(2017·青岛)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是( )A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是436.(2017·潍坊)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( )A.甲B.乙C.丙D.丁7.(2017·日照)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是______.8.七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):<x≤150.07若该小区有800户家庭,据此估计该小区月均用水量不超过10 m的家庭约有______户.9.(2017·青岛)某中学开展了“手机伴我健康行”主题活动.他们随机抽取部分学生进行“使用手机的目的”和“每周使用手机的时间”的问卷调查,并绘制成如图所示的统计图.已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_____度;(2)补全条形统计图;(3)该校共有学生1 200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.参考答案1.C 2.B 3.D 4.A 5.C 6.C 7.182 8.5609.解:(1)126(2)一共抽取的人数为40÷40%=100,所以每周使用手机3小时以上的人数为100-2-16-18-32=32.补全条形统计图如图:(3)1 200×32+32100=768.答:估计每周使用手机时间在2小时以上(不含2小时)的人数为768人.。
第2章 第一节随堂演练1.若代数式4x -5与2x -12的值相等,则x 的值是( ) A .1B.32C.23 D .22.利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10 ①,5x -3y =6 ②,下列做法正确的是( ) A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×23.关于x ,y 的方程组⎩⎪⎨⎪⎧x +py =0,x +y =3的解是⎩⎪⎨⎪⎧x =1,y =●,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( ) A .-12 B.12 C .-14 D.144.(2017·滨州)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x =16(27-x)B .16x =22(27-x)C .2×16x =22(27-x)D .2×22x=16(27-x)5.(2016·聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A.27 B .51 C .69 D .726.(2017·枣庄)已知⎩⎪⎨⎪⎧x =2,y =-3是方程组⎩⎪⎨⎪⎧ax +by =2,bx +ay =3的解,则a 2-b 2=____. 7.(2017·济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组为____________.8.解下列方程(组).(1)2-3x -77=-x +75. (2)⎩⎪⎨⎪⎧2x +y =3,x -y =0.9.(2017·威海)某农场去年计划生产玉米和小麦共200吨.采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%.该农场去年实际生产玉米、小麦各多少吨?参考答案1.B 2.D 3.A 4. D 5.D 6.17.⎩⎪⎨⎪⎧x +12y =4823x +y =488.解:(1)去分母,得35×2-5(3x -7)=-7(x +7).去括号,得70-15x +35=-7x -49.移项、合并同类项,得-8x =-154.方程两边同除以-8,得x =774. (2)⎩⎪⎨⎪⎧2x +y =3, ①x -y =0. ② ①+②得3x =3,解得x =1.把x =1代入②,得y =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =1. 9.解:设去年计划生产玉米x 吨,小麦y 吨,根据题意得⎩⎪⎨⎪⎧x +y =200,(1+5%)x +(1+15%)y =225, 解得⎩⎪⎨⎪⎧x =50,y =150,∴ (1+5%)×50=52.5(吨),(1+15%)×150=172.5(吨).答:该农场去年实际生产玉米52.5吨,小麦172.5吨.。
第一节 实数及其运算随堂演练1.(2017·烟台)下列实数中的无理数是( ) A.9 B .π C .0 D.132.(2017·淄博)-23的相反数是( ) A.32 B .-32 C.23 D .-233.(2017·聊城)64的立方根是( )A .4B .8C .±4D .±84.(2017·自贡)计算(-1)2 017的结果是( )A .-1B .1C .-2 017D .2 0175.(2017·潍坊)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1 000亿吨油当量.将1 000亿用科学记数法可表示为( )A .1×103B .1 000×108C .1×1011D .1×10146.(2017·威海)计算-(2)2+(2+π)0+(-12)-2的结果是( ) A .1 B .2 C.114 D .37.(2017·重庆)估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间8.(2017·恩施)16的平方根是 .9.(2017·十堰)某颗粒物的直径是0.000 002 5 m ,把0.000 002 5用科学记数法表示为 .10.(2017·广东)已知实数a ,b 在数轴上的对应点的位置如图所示,则a +b .(填“>”“<”或“=”)11.(2017·陕西)在实数-5,-3,0,π,6中,最大的一个数是 .12.(2017·台州)计算:9+(2-1)0-|-3|.13.(2017·凉州)计算:12-3tan 30°+(π-4)0-(12)-1.参考答案1.B 2.C 3.A 4.A 5.C 6.D 7.B 8.±49.2.5×10-610.>11.π12.解:原式=3+1-3=1.13.解:原式=23-3×33+1-2=3-1.2。
概率随堂演练1.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )A.47B.37C.27D.172.(2017·威海)甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.233.(2017·济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 口进入,从C ,D 口离开的概率是( )A.12B.13C.16D.234.(2017·淄博)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n.如果m ,n 满足|m -n|≤1,那么就称甲、乙两人“心领神会”.则两人“心领神会”的概率是( ) A.38B.58C.14D.125.(2017·泰安)为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A ,B ,C ,D 四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图.根据统计图中提供的信息,结论错误的是( )A .本次抽样测试的学生人数是40B.在图1中,∠α的度数是126°C.该校九年级有学生500名,估计D级的人数为80D.从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.26.(2017·德州)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.7.(2017·聊城)如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.8.(2017·枣庄)为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图.请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.参考答案1.A 2.C 3.B 4.B 5.C 6.19 7.178.解:(1)50 30%(2)选修绘画课程的有50×20%=10(人), 选修书法课程的有50×10%=5(人). 补全条形统计图如下:(3)∵5-2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学. 列表如下:男,女 抽取的2名同学恰好是1名男同学和1名女同学的情况有12种, ∴P(1男1女)=1220=35.。
山东省东营市2018 届九年级数学上学期期中试题一、选择题: ( 本大题共 10 小题,每题 3 分,满分 30 分.在每题给出的四个选项中,只有一项是切合题目要求的,请将正确选项的字母代号填涂在答题卡相应地点上.)1.以下选项中比 | ﹣| 小的数是()A.1 B.2C. D .2. 以下计算错误的选项是()A.3 ﹣=2236C.﹣ 2+| ﹣ 2|=0 D .(﹣ 3)﹣ 2 ?x =x =3.将图 1 围成图 2 的正方体,则图 1 中的红心“”标记所在的正方形是正方体中的()A.面 CDHE B.面 BCEF C.面 ABFG D.面 ADHG4.小红把一把直尺与一块三角板如图搁置,测得∠1=48°,则∠ 2 的度数为()A.38° B .42° C .48° D . 52°5.每到四月,很多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为,该数值用科学记数法表示为()A.1.05 × 105 B. 0.105 × 10﹣4C. 1.05 × 10﹣5 D. 105× 10﹣76.正比率函数 y1=k1x( k1> 0)与反比率函数y2= 图象以下图,则不等式 k1x 的解集在数轴上表示正确的选项是()A. B .C. D .7.如图,有一个质地均匀的正四周体,其四个面上分别画着圆、等边三角形、菱形、正五边形,投掷该正四周体一次,向下的一面的图形既是轴对称图形又是中心对称图形的概率是()A.1B.C.D.1210 亿元的目标.假如每8.2015 年某县 GDP总量为 1000 亿元,计划到 2017 年全县 GDP总量实现年的均匀增加率同样,那么该县这两年 GDP总量的均匀增加率为()A.1.21% B .8% C .10% D. 12.1%9.如图,在菱形ABCD和菱形 BEFG中,点 A、B、E 在同向来线上,P 是线段 DF 的中点,连结PG, PC.若∠ABC=∠ BEF=60°,则=()A .B.C.D.10.如图,△ ABC中,∠ ACB=90°,∠ A=30°, AB=16.点 P 是斜边 AB 上一点.过点 P作 PQ⊥ AB,垂足为 P,交边 AC(或边 CB)于点 Q.设 AP=x,△ APQ的面积为y,则 y 与 x 之间的函数图象大概是()A.B.C.D.二、填空题:( 本大题共8 小题,11~ 14 每题 3 分, 15~18 每题 4 分,共28 分.)11.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21 场比赛,则参赛球队的个数是_________.12.分解因式 2a2 - 8b2=.13.市运会举行射击比赛,某校射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击 10 次,计算他们10 发成绩的均匀数(环)及方差以下表,请你依据表中数据选一人参加比赛,最适合的人选是 ________ .甲乙丙丁均匀数方差14.如图,已知扇形的圆心角为60°,半径为,则图中弓形的面积为___________;15. 如图,一只蚂蚁沿着边长为 2 的正方体表面从点 A 出发,经过 3 个面爬到点B,假如它运动的路径是最短的,则AC的长为.16.如图,折叠矩形ABCD的一边 AD,使点 D 落在 BC边的点 F 处,已知折痕AE=5cm,且 tan ∠ EFC= ,那么矩形 ABCD的周长为 cm.17.如图,函数y=和y=﹣的图象分别是l 1和 l 2.设点 P 在 l 1上, PC⊥ x 轴,垂足为 C,交 l 2于点 A,PD⊥ y 轴,垂足为 D,交 l 2于点 B,则三角形 PAB的面积为 _______.18.如图,直线y=﹣与x轴、y轴分别交于点A、 B;点 Q是以 C( 0,﹣ 1)为圆心、 1 为半径的圆上一动点,过 Q点的切线交线段 AB于点 P,则线段PQ的最小是.三、解答题:(共 7 小题,共62 分。
第一章 第一节
随堂演练
1.(2017·淄博)-23的相反数是( ) A.32 B .-32 C.23 D .-23
2.(2017·聊城)64的立方根是( )
A .4
B .8
C .±4
D .±8
3.20年前,NASA 航天器“卡西尼”号发射升空开启了探索土星的旅程;13年前它到达土星轨道;现在,它准备好了旅程的最后一步,前所未有地接近土星.地球到土星距离约12.8亿公里,12.8亿用科学记数法表示为( )
A .12.8×108
B .1.28×109
C .128×107
D .0.128×108
4.(2017·菏泽)生物学家发现了一种病毒,其长度约为0.000 000 32 mm ,数据0.000 000 32用科学记数法表示正确的是( )
A .3.2×107
B .3.2×108
C .3.2×10-7
D .3.2×10-8
5.(2017·威海)计算-(2)2+(2+π)0+(-12
)-2的结果是( ) A .1 B .2 C.114 D .3
6.(2017·潍坊)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于_____之间( )
A .
B 与C
B .
C 与
D C .
E 与
F D .A 与B
7.判断311-4的值介于下列哪两个整数之间?( )
A .3,4
B .4,5
C .5,6
D .6,7
8.(2017·青岛)近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫.65 000 000用科学记数法可表示为__________.
9.计算(-3)2-(π-1)0+3+|3-2|=_____.
10.(2017·临沂)计算:|1-2|+2cos 45°-8+(12
)-1.
参考答案
1.C 2.A 3.B 4.C 5.D 6.A 7.C 8.6.5×107 9.4
10.解:原式=2-1+2×22-22+2 =2-1+2-22+2=1.。