第5章 整数线性规划-第4,5节
- 格式:ppt
- 大小:394.50 KB
- 文档页数:52
第五章 整数规划主要内容:1、分枝定界法; 2、割平面法; 3、0-1型整数规划; 4、指派问题。
重点与难点:分枝定界法和割平面法的原理、求解方法,0-1型规划模型的建立及求解步骤,用匈牙利法求解指派问题的方法和技巧。
要 求:理解本章内容,熟练掌握求解整数规划的方法和步骤,能够运用这些方法解决实际问题。
§1 问题的提出要求变量取为整数的线性规划问题,称为整数规则问题(简称IP )。
如果所有的变量都要求为(非负)整数,称之为纯整数规划或全整数规划;如果仅一部分变量要求为整数,称为混合整数规划。
例1 求解下列整数规划问题211020m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,13522445x x x x x x x x 如果不考虑整数约束,就是一个线性规划问题(称这样的问题为原问题相应的线性规划问题),很容易求得最优解为:96m ax ,0,8.421===z x x 。
用图解法将结果表示于图中画“+”号的点都是可行的整数解,为满足要求,将等值线向原点方向移动,当第一次遇到“+”号点(1,421==x x )时得最优解为1,421==x x ,最优值为z=90。
由上例可看出,用枚举法是容易想到的,但常常得到最优解比较困难,尤其是遇到变量的取值更多时,就更困难了。
下面介绍几种常用解法。
§2 分枝定界法分枝定界法可用于解纯整数或混合的整数规划问题。
基本思路:设有最大化的整数规划问题A ,与之相应的线性规划问题B ,从解B 开始,若其最优解不符合A 的整数条件,那么B 的最优值必是A 的最优值*z的上界,记为z ;而A 的任意可行解的目标函数值是*z的一个下界z ,采取将B 的可行域分枝的方法,逐步减少z 和增大z ,最终求得*z 。
现举例说明: 例2 求解A219040m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,702075679x x x x x x x x 解:先不考虑条件⑤,即解相应的线性规划B (①--④),得最优解=1x 4.81, =2x 1.82,①② ③ ④ ⑤=0z 356(见下图)。
数学中的线性规划与整数规划线性规划和整数规划是数学中两个重要的优化问题。
它们在实际生活和工业生产中有着广泛的应用。
本文将简要介绍线性规划和整数规划的概念、应用以及解决方法。
一、线性规划线性规划是一种优化问题,其目标是在给定的约束条件下,找到一个线性函数的最大值或最小值。
线性规划可以用来解决诸如资源优化分配、生产计划、物流运输等问题。
首先,我们来定义线性规划的标准形式:```最大化: c^Tx约束条件:Ax ≤ bx ≥ 0```其中,`c`是一个n维列向量,`x`是一个n维列向量表示决策变量,`A`是一个m×n维矩阵,`b`是一个m维列向量。
上述的不等式约束可以包括等式约束。
通过线性规划,我们希望找到一个满足所有约束的向量`x`,使得目标函数`c^Tx`达到最大或最小值。
解决线性规划问题的方法有多种,例如单纯形法、内点法等。
其中,单纯形法是应用广泛的一种方法。
它通过不断地移动顶点来搜索可行解的集合,直到找到最优解为止。
二、整数规划整数规划是线性规划的一种扩展形式,它要求决策变量`x`必须取整数值。
整数规划可以更准确地描述实际问题,并且在某些情况下具有更好的可解性。
例如,在生产计划问题中,决策变量可以表示生产的数量,由于生产数量必须为整数,因此整数规划更适用于此类问题。
整数规划的求解相对于线性规划更加困难。
由于整数规划问题是NP困难问题,没有多项式时间内的高效算法可以解决一般情况下的整数规划问题。
因此,为了获得近似最优解,通常需要使用一些启发式算法,如分支定界法、割平面法等。
三、线性规划与整数规划的应用线性规划和整数规划在实际生活和工业生产中有着广泛的应用。
以下列举几个常见的应用领域:1. 生产计划:通过线性规划和整数规划,可以确定产品的生产量、原材料的采购量以及生产时间表,以实现最佳的生产效益。
2. 物流运输:线性规划和整数规划可以用来优化货物的配送路线和运输方案,减少物流成本,提高配送效率。
第五章整数规划§1整数规划的数学模型及特点要求一部分或全部决策变量必须取整数值得规划问题称为整数规划。
其模型为:Max(或min)z=nj jj x c 1s.tnj nj i ijij x x x njx m i b x a ,,,2,10,2,1),(211若要求决策变量只能取值0或1的整数规划称为0-1型整数线性规划。
§5 指派问题一.指派问题的标准形式及数学模型在现实生活中,有各种性质的指派问题。
例如,有若干项工作需要分配给若干人(或部门)来完成;有若干项合同需要选择若干个投标者来承包;有若干班级需要安排在各教室上课等等。
诸如此类的问题,它们的基本要求是在满足特定的指派要求条件下,使指派方案的总体效果最佳。
由于指派问题的多样性,有必要定义指派问题的标准形式。
指派问题的标准形式(以人和事为例)是:有n 个人和n 件事,已知第i 个人作第j 件事的费用为),2,1,(n ji c ij ,要求确定人和事之间的一一对应的指派方案,是完成这n件事的总费用最少。
为了建立标准指派问题的数学模型,引入2n 个0-1变量:10ijx 这样,问题的数学模型可写成ni nj ijij x c z11min (5.1)s.tnji x n i x n j x ijnj ij ni ij,2,1,1,0,2,11,2,1111(5.3)其中,(5.1)表示每件事必优且只有一个人去做,(5.2)表示每个人必做且只做一件事。
注:○1指派问题是产量(i a )、销量(j b )相等,且i a =j b =1,i ,j=1,2,,n 的运输中部分或全部取整数若指派第i 人作第j 件事若不指派第i 人作第j 事i ,j=1,2,,n(5.2)(5.4)问题。
○2有时也称ij c 为第i 个人完成第j 件工作所需的资源数,称之为效率系数(或价值系数)。
并称矩阵C=n n ij c )(=nnn n n n c c c c c c c c c 212222111211(5.5)为效率矩阵(或价值系数矩阵)。
线性规划知识点归纳总结一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。
2 可行域:约束条件表示的平面区域称为可行域。
3 整点:坐标为整数的点叫做整点。
4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。
只含有两个变量的简单线性规划问题可用图解法来解决。
5 整数线性规划:要求量整数的线性规划称为整数线性规划。
二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。
1 对于不含边界的区域,要将边界画成虚线。
2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。
若直线不过原点,通常选择原点代入检验。
3 平移直线y=-kx+P时,直线必须经过可行域。
4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。
5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。
积储知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<0 3.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0 注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。
每个线性规划问题都有一个与之对应的对偶问题。
简单考虑如下的生产分配问题我们有下面的对偶问题:该问题的任意一个可行解对应的目标函数值都不小于原问题的目标函数值,但是两个问题的最优目标函数值(有限)相同。
一般而言:1、每个对偶变量对应原问题的一个约束条件2、原问题是等式约束则对偶变量无不等式约束(非负约束)3、原问题是不等式约束则对偶变量有不等式约束4、原问题变量和对偶问题约束条件同样具有如上规律任何原问题和对偶问题之间都存在下述相互关系:弱对偶性:原对偶问题任何可行解的目标值都是另一问题最优目标值的界(推论:原对偶问题目标值相等的一对可行解是各自的最优解)强对偶性:原对偶问题只要有一个有最优解,另一个就有最优解,并且最优目标值相等互为对偶的线性规划问题解之间关系有如下四种:原问题与对偶问题之间存在互补松弛性:一般形式的线性规划互补松弛定理:经济学中有所谓影子价格的概念:如果增加某些约束条件的数值,原问题的最优目标值应该增加,增加单位约束使得原问题最优值的增加量为该约束条件的影子价格。
影子价格可以由对偶线性规划问题清楚地描述:对偶单纯形法:当线性规划问题中地某个约束条件或价值变量中含有参数时,原问题称之为参数线性规划,它有如下的处理方法:1)固定λ的数值解线性规划问题2)确定保持当前最优基不变的λ的区间3)确定λ在上述区间附近的最优基,回2)如以下问题:在实际问题中,许多变量以及它们的约束条件往往是离散的,或者说限定在整数域上,这便引入了整数线性规划的概念。
具体而言,整数线性规划包含纯整数线性规划(所有变量是整数变量)、混合整数线性规划(同时包含整数和非整数变量)、0-1型整数线性规划(变量等于0或1)去除整数规划的整数约束后的问题称为其松弛问题。
一般情况,原问题的解并不一定是其松弛问题的最优解附近的整数解,例如:通常的解决办法是在松弛问题的基础上出发,不断地引入整数的约束条件,从而求出整数规划的解。
线性规划与整数规划线性规划(linear programming)是一种优化问题的数学建模方法,它的目标是在给定的约束条件下,找到一个线性函数的极值。
线性规划的解决方法与整数规划(integer programming)有很大的联系,整数规划是线性规划的一种特殊形式,在选择决策变量时,限制其取值为整数。
线性规划和整数规划在实际问题中有着广泛的应用。
一、线性规划线性规划的数学模型可以用如下形式表示:$max\,C^TX$$s.t.\,AX \leq B$$X \geq 0$其中,$C$是一个列向量,$X$是一个列向量,$A$是一个矩阵,$B$是一个列向量。
在上述模型中,$C^TX$表示我们要优化的目标函数,即我们希望最大化或最小化的线性函数。
目标函数的系数在矩阵$C$中定义。
约束条件由不等式$AX \leq B$表示。
约束矩阵$A$的每一行代表一个约束式,而约束向量$B$确定每个约束条件的边界。
最后一个条件$X \geq 0$表示决策变量$X_i$必须非负。
线性规划问题的解可以通过线性规划算法求解,如单纯形算法、内点法等。
这些算法能够有效地求解线性规划问题,但是当问题涉及到整数变量时,线性规划就无法得到整数解,这时就需要使用整数规划来解决。
二、整数规划整数规划是对线性规划的一种扩展,它的决策变量被限制为整数。
整数规划的数学模型可以用如下形式表示:$max\,C^TX$$s.t.\,AX \leq B$$X_i \in Z$其中,$X_i \in Z$表示决策变量$X_i$必须为整数。
整数规划相比于线性规划更加困难,因为整数规划的解空间更大。
对于非线性整数规划问题,甚至可能没有有效的解决方法。
求解整数规划问题的方法也有很多,比如分支定界法、割平面法、动态规划等。
这些方法能够在有限的时间内找到整数规划问题的近似解。
然而,由于整数规划问题是NP难问题,当问题规模较大时,求解时间呈指数增长。
三、线性规划与整数规划的应用线性规划和整数规划在实际问题中有着广泛的应用。