对称群与守恒定律
- 格式:pdf
- 大小:90.93 KB
- 文档页数:3
物理学中的对称性与守恒定律对称性和守恒定律是物理学中的基本概念,它们在理解和解释自然界中各种物理现象和规律中起着重要作用。
本文将探讨物理学中的对称性和守恒定律,并探讨它们之间的密切关系。
一、对称性在物理学中的意义对称性是物理学中的重要概念,它描述了物理系统在某些变换下保持不变的性质。
在物理学中,对称性可以分为时空对称性和内禀对称性两种。
1. 时空对称性时空对称性是指物理系统在时空变换下保持不变。
在相对论物理学中,洛伦兹变换是描述时空变换的数学工具。
根据洛伦兹变换的不同类型,物理系统可以表现出平移对称性、旋转对称性和洛伦兹对称性等。
平移对称性是指物理系统在空间位置上的平移不会改变其物理性质。
例如,一个均匀介质中的物理规律在空间中的任何位置都是相同的。
旋转对称性是指物理系统在空间方向的旋转下保持不变。
例如,地球的自转周期不会影响物理规律的成立。
洛伦兹对称性是指物理系统在洛伦兹变换下保持不变,包括时间和空间的坐标变换。
相对论物理学中的基本原理就是洛伦兹对称性。
2. 内禀对称性内禀对称性是指物理系统在内部变换下保持不变。
在粒子物理学中,内禀对称性描述了粒子的基本性质。
例如,电荷共轭对称性指粒子与其反粒子具有相同的物理性质。
对称性在物理学中具有广泛的应用。
它不仅可以用于解释物理定律的成因,还可以帮助物理学家发现新的规律和预测新的物理现象。
二、守恒定律与对称性的关系守恒定律是物理学中的基本定律,描述了物理系统在某些变换下某个物理量保持不变的规律。
守恒定律与对称性之间存在着密切的关系。
以能量守恒定律为例,它描述了物理系统的能量在各种变换下保持不变。
能量守恒定律与时间平移对称性密切相关,即物理规律在时间上的平移不变性保证了能量守恒。
动量守恒定律是另一个重要的守恒定律,它描述了物理系统的总动量在某些变换下保持不变。
动量守恒定律与空间平移对称性密切相关,即物理规律在空间上的平移不变性保证了动量守恒。
角动量守恒定律和电荷守恒定律等也与对称性有着密切的联系。
理论物理中对称性与守恒定律的关系在理论物理中,对称性与守恒定律是两个核心概念。
对称性描述了系统在某些变换下保持不变的性质,而守恒定律则说明了系统在各种变化中某些物理量的不变性。
这两个概念之间存在着密切的关系,对称性的存在导致了守恒定律的存在,反之亦然。
本文将深入探讨对称性与守恒定律的关系。
首先,让我们来了解对称性的概念。
对称性可以简单地理解为某种变换下系统保持不变的性质。
在物理学中,常见的对称性有平移对称性、旋转对称性、时间平移对称性和粒子对称性等。
平移对称性指的是系统在空间中的平移下保持不变,旋转对称性指的是系统在空间中的旋转下保持不变,时间平移对称性指的是系统在时间上的平移下保持不变,而粒子对称性指的是系统在粒子交换下保持不变。
对称性在物理学中起着非常重要的作用。
与对称性相关联的是守恒定律。
守恒定律描述了系统在各种变化中某些物理量守恒的性质。
守恒定律可以用数学表达式表示为:某一物理量的变化率等于该物理量进入与离开系统的流量之差。
根据对称性的不同,我们可以得到不同的守恒定律。
首先,根据时间平移对称性,我们可以得到能量守恒定律。
能量守恒定律指的是系统的能量在时间上保持不变。
这是因为系统的物理规律在时间上的不变性导致的。
无论系统中发生了怎样的能量转化,总能量的变化率始终为零,能量守恒得到维持。
其次,根据空间平移对称性,我们可以得到动量守恒定律。
动量守恒定律指的是系统的动量在空间上保持不变。
这是因为系统的物理规律在空间上的不变性导致的。
无论系统中的物体如何运动,总动量的变化率始终为零,动量守恒得到维持。
此外,根据空间旋转对称性,我们可以得到角动量守恒定律。
角动量守恒定律指的是系统的角动量在空间上保持不变。
这是因为空间旋转对称性导致的。
无论系统中的物体如何旋转,总角动量的变化率始终为零,角动量守恒得到维持。
最后,根据粒子对称性,我们可以得到电荷守恒定律。
电荷守恒定律指的是系统中的总电荷量在粒子交换下保持不变。
对称性和守恒律作者|胡竭末编辑|Trader Joe's简介对称性在现代物理理论中非常重要,一般来说一个理论对称性越多,就越方便我们处理。
更进一步,诺特定理(Noether's theorem)给出了(连续)对称性和守恒量之间的关系。
这是一个非常非常强大的定理。
本文的主要目的就是简要的介绍对称性和守恒律之间的关系。
埃米·诺特(图片来自维基百科)整体对称性和诺特定理我们首先来看最清晰也最简单的情形–––整体对称性。
设一个经典体系有拉式量,则作用量为运动方程为如果有一个整体变换满足那么我们就说这是一个整体对称变换。
对于连续的整体对称变换,我们可以取一个无穷小变换满足那么很显然我们有假如有这么一个函数(微分形式),满足在边界上为0的边界条件。
那么我们由斯托克斯定理(Stokes' theorem)可知这告诉我们,可以写为可以看到以上的推导要求的是对称变换,但并没有要求满足运动方程。
现在如果我们要求一个无穷小变换保持运动方程,但并不要求保持作用量不变,这会发生什么呢?如下因为我们已经要求满足运动方程了,所以上式第二行的第一项就为0,所以得现在如果我们要求既满足对称变换,又满足运动方程,那么根据前式的对比可知其中所以就是一个守恒量,这就是诺特定理(有时候也叫做诺特第一定理)。
对于场论中的诺特定理推导是十分类似的,设其中为拉式密度,则其中总结一下,诺特定理告诉我们任何一个连续对称性有相应的守恒量。
图片来源 /noethers-theorem-kindergarten-phd/特别指出的是,这里的对称性是针对有动力效应(dynamical)的变量而言的,对于属于背景(background)的量则没有以上的结果。
规范对称性规范对称性(gauge symmetry)在现代物理理论中非常重要。
然而虽然我们把它叫做'对称性',但比较现代的观点是把它看成一种'冗余',它告诉我们描述不同物理的是一族数学上的等价类。
对称性与守恒律物理规律是分层次的,有的只对某些具体事物适用,如胡克定律只适用于弹性体;有的在一定范畴内成立,如牛顿定律适用于一切低速运动的宏观物体;有的如能量、动量守恒等守恒律,则在所有领域的自然界起作用。
后者属于自然界更深层次、最为基本的规律。
而守恒律和对称性有紧密联系。
了解对称性的概念、规律及其分析方法,对于深入地认识自然有重要意义。
一、什么是对称性对称的概念日常生活中就有,如人体外部器官的左右对称,紫禁城建设布局的东西对称,不带任何标记的球的中心对称等。
对称性的定义如下。
若某个体系(研究对象)经某种操作(或称变换)后,其前后状态等价(相同),则称该体系对此操作具有对称性,相应的操作称为对称操作。
简言之,对称性就是某种变换下的不变性。
二、物理学中几种常见的(对称)变换1.空间变换1)平移:即对位矢作的变换,相应的对称性谓之平移对称性。
例如,一个不带任何标记的无限大平面,对沿平面的任意平移具有对称性,而当此平面上均匀布满方格时,则对沿平面的特定方位(如边长或对角线方位)平移某个长度的整数倍具有对称性。
2)转动:绕某定点或轴线的转动前述球的中心对称,就是指球对绕球心的任意旋转对称,通常就称之为球对称。
一圆柱体,对绕其中心轴旋转任一角度状态不变,即具有旋转轴对称……3)镜像反射(反演):俗称照镜子。
指对镜面作物像变换。
紫禁城建筑的东西对称,就是以天安门中轴面(南北竖直面)为镜面的镜像对称。
●物理矢量的镜面反射——极矢量和轴矢量按镜面反射时,矢量物像的方向之间的关系,物理矢量分两类。
一类,以位移为例,其镜像为,如图1(a)所示。
它们平行于镜面的分量方向相同,垂直于镜面的分量的方向相反,这类矢量叫极矢量。
,,等都是极矢量。
另一类矢量,如图1(b)中右侧所示一沿圆轨道运动的质点的角速度。
保持角速度方向与轨道旋向成右手关系的规定不变,则其镜像为左侧的。
和沿镜面的平行分量反向,而垂直分量方向相同。
这类矢量叫轴矢量,又称赝矢量。
对称性和守恒律概念及其重要性对称性(Symmetry)与守恒律(Conservation Law)是物理学中最重要的概念之一,它们有助与我们理解和描述这个宇宙的运行机制。
对称性是物理学上的一种基本假设,指的是存在着外界因素(如时间、空间、组织、排列、颜色)的变化,使得一个模式具有重叠性,称为对称性。
而守恒律指的是一个物理量的大小是不变的,只有根据特定的定律允许存在一定的变化,而不存在消失或诞生的情况。
质量守恒律质量守恒律是物理变换过程中最重要的守恒律之一,它表明量子物理中物质的平衡性,即物质总量保持不变,任何形式的物质是可以通过相互转换得到的。
质量守恒的定义是:质量的总量在物理变换的过程中不会变化,因此在化学反应中反应前后物质的总量是一致的。
电量守恒律电量守恒律是物理变化过程中另一个重要的守恒律,其定义是:在带电粒子运动的物理变化过程中,电子、正电子等电荷总量保持不变,不发生增减。
换言之,任何形式的电荷,只要经过合理计算,都是可以表示为电荷量的,从而可以被计算出来。
动量守恒律动量守恒律是物理变换过程中的另一个守恒律,其定义是:在物理变化的过程中,物质所携带的动量是守恒的,即动量总量保持不变。
动量守恒律是物理变换中最重要的守恒律之一,它表明,在无外力作用的情况下,物体的运动状态是恒定的,物质的动量不会发生变化。
这个定律是有“动量守恒定律”这一名称的,它通常也被称为“牛顿拉普拉斯定律”。
结论由上文可以得出,对称性与守恒律是物理学中不可或缺的重要概念,其中,质量守恒律、电量守恒律和动量守恒律是最为重要的。
这些守恒律在影响物理变换过程中产生了重要的作用,对我们对物质和能量的理解和认识极为重要,它们是理解宇宙现象的基础科学。
对称性和守恒律--物理百科知识对称性和守恒律duichenxing he shouhengl对称性和守恒律symmetry and conservation law对称性是物质的状态和运动规律在对称变换(如镜面反射转动等)下的性质。
它已成为物理学中一个最普遍而深刻的观念。
对称性的观念是人们在观察自然界各种事物的几何形状时逐步形成的。
一个球在围绕通过中心的任何轴转动时,都不改变它的形状,称它具有转动变换的对称性。
在观察晶体时,可以看到各种规则的多而体,经过一定面的镜面反射或是绕特定轴转动特定角度,不改变它们的几何形状,显示了各种对称的组合。
按照对称方式的不同,可以把晶体分为32类,如果再考虑磁性,还可以找到58类不同的晶体对称方式;总共有90类磁性晶体的对称方式。
接连几次对称变换仍然是一个对称变换,这些对称变换之间满足结合律。
而且存在恒等变换和对称变换的逆变换。
因此对称变换的总和构成一个对称群。
在一个群的所有对称变换下不变或协变的状态(或运动规律)具有这个群的对称性。
例如球具有转动群的对称性。
如果物质的运动规律具有某一连续变换群的对称性,同时它的能量最低的状态(基态或真空态)是对称的,那么与这个群的每一个生成元对应的物理量都会是一个守恒量。
物质的运动形态可以千变万化,不断转化,而反映它们共性的守恒物理量将始终不变。
守恒定律是物质运动过程中所必须遵守的最基本的法则。
最普遍的对称性是时空几何对称性和量子力学的代数对称性。
所有的物质都在时空中运动,在不同时间和地点重复相同的实验反复证明了,对一个与周围物质切断了相互作用的孤立的系统,时空坐标原点的选取和坐标轴方向的选取都不会影响这一系统的运动规律。
时空表现为均匀和各向同性的。
坐标系原点的平移和坐标轴的转动都是对称变换,它们构成非齐次洛伦兹群,又称庞加莱群。
在庞加莱群中,与平移生成元对应的物理量为能量动量矢量,与转动生成元对应的物理量为角动量。
能量、动量守恒以及角动量守恒与时空均匀性和各向同性直接相关,它不依赖于物质的具体内容。
物理中的对称性与守恒定律在物理学中,对称性与守恒定律是两个非常重要的概念,它们贯穿于整个物理学的各个领域,为我们解释世界的运行规律提供了重要的理论支撑。
对称性和守恒定律之间存在着密切的联系,它们相辅相成,相互促进,共同构成了物理学中的基本框架。
本文将从对称性和守恒定律的基本概念入手,探讨它们在物理学中的重要作用以及彼此之间的内在联系。
## 对称性的基本概念对称性在物理学中是一个非常重要的概念,它指的是系统在某种变换下保持不变的性质。
具体来说,对称性可以分为空间对称性、时间对称性和内禀对称性等多种类型。
在物理学中,对称性通常表现为物理定律在某种变换下保持不变,这种不变性为我们揭示了自然界中隐藏的规律和对称性。
空间对称性是指系统在空间变换下保持不变的性质。
例如,一个物理系统在进行平移、旋转或镜像变换后仍保持不变,那么我们就说这个系统具有相应的空间对称性。
空间对称性的存在为我们提供了研究物理系统的重要线索,帮助我们揭示物质世界的奥秘。
时间对称性是指系统在时间变换下保持不变的性质。
在经典力学中,时间是一个普遍的参量,物理定律在时间平移下保持不变,这就是时间对称性。
时间对称性的存在为我们提供了研究物理系统随时间演化的重要线索,帮助我们理解自然界中的时间规律。
内禀对称性是指系统在内部变换下保持不变的性质。
例如,电荷守恒定律要求电荷在物理过程中保持不变,这就是内禀对称性的体现。
内禀对称性揭示了物理系统内部的稳定性和规律性,为我们理解微观世界提供了重要线索。
## 守恒定律的基本概念守恒定律是物理学中的另一个重要概念,它描述了系统某些物理量在时间演化过程中保持不变的规律。
根据不同的物理量和系统,可以得到不同的守恒定律,如能量守恒定律、动量守恒定律、角动量守恒定律等。
能量守恒定律是物理学中最基本的守恒定律之一,它表明一个封闭系统中能量的总量在时间演化过程中保持不变。
能量可以在不同形式之间转化,但总能量守恒。
能量守恒定律揭示了自然界中能量转化的规律,为我们研究能量转换和利用提供了基本原则。
物理学中的精确对称性与守恒律物理学是一门研究自然界基本规律的科学,而其中的精确对称性和守恒律是物理学理论框架中非常重要的概念。
在本文中,我将探讨物理学中精确对称性和守恒律的关系,以及它们在不同领域的应用。
首先,我们来了解一下精确对称性的概念。
在物理学中,对称性可以看作是一种保持不变性的特性。
例如,当我们将一个圆形图形以圆心为中心旋转一定角度时,图形的形状仍然保持不变。
这就是旋转对称性的一个例子。
精确对称性则指的是系统在变换下完全保持不变的对称性。
在物理学中,我们用数学表达式来描述这些对称性,例如旋转矩阵、时间平移等。
守恒律是物理学中另一个重要的概念,它与精确对称性密切相关。
守恒律表明某一物理量在系统中的总量是不变的。
例如,动量、能量和角动量都是守恒量。
这些守恒律可以通过数学公式来表示,例如动量守恒可以写为∑mv = 0,其中m为质量,v为速度。
在物理学中,守恒律是由精确对称性决定的,即系统的对称性对应着某个守恒律。
具体来说,精确对称性的存在意味着系统的拉格朗日量是不变的。
拉格朗日量是物理系统中描述粒子运动的关键数学量,通过对拉格朗日量进行变换,我们可以得到系统的运动方程。
精确对称性要求系统的拉格朗日量在变换下保持不变,这样才能保证系统的运动方程具有物理意义。
在物理学中有很多不同类型的精确对称性,例如空间平移、时间平移、旋转和粒子内禀对称性等。
每种对称性都对应着不同的守恒律。
例如,空间平移对应着动量守恒,旋转对应着角动量守恒。
这些守恒律在物理学研究中起着重要的作用,它们帮助我们理解物理现象和预测实验结果。
精确对称性和守恒律不仅在微观领域中有应用,它们也在宏观领域中发挥着重要作用。
例如,在热力学中,能量守恒是一个基本原则,它对应着时间平移对称性。
根据能量守恒原理,我们可以推导出热力学定律和热力学方程。
守恒律的应用也可以扩展到宇宙学中,例如宇宙学中的宇宙常数守恒原理,它对应着空间平移对称性。
在现代物理学研究中,精确对称性和守恒律的概念被广泛应用于理论物理。
对称性和守恒定律按照对称的定义来讲,对称就是指物体相对而又相称,或者说它们相仿,相等。
所谓对称性是指:某种变化下的不变性。
自然界中的事物的对称性表现在两方面。
第一:物体的形状或几何形体的对称性。
例如:五角星的旋转对称,正方体的中心对称性。
这是根据对称性的定义,我们使五角星和正方体都绕它们的中心旋转180°,在这样的变换下,变换后图形具有不变性。
第二:事物进程或物理规律的对称性。
所谓物理规律的对称性是指:物理规律在某种变换下的不变性。
例如:一个物体做平抛运动,水平初速度为V,抛出时离水平地面的高度为H,空气阻力忽略不计。
在其他外部条件都相同的情况下,在不同的地方使该物体做如上所述的运动,该物体的运动状况是否相同呢?我们知道,平抛运动可以看成两种运动的合成:水平方向上是匀速直线运动,竖直方向是自由落体运动。
在其他条件相同的情况下,水平方向上都是以速度V作匀速直线运动。
在竖直方向上,下落的时间可以由公式T=(g为重力加速度)求出,我们知道重力加速度在不同的地方是不相同的,也就是说上述例子中的物体在不同地方的下落时间是不相同的。
这就说明了自由落体运动在不同的地方并不具有不变性,但是,我们不可否认的是下落时间和高度以及加速度它们之间的相互关系是并不会因为地点的不同而不相同,所以它的物理规律始终是保持不变的。
对物质运动基本规律的探索中,对称性和守恒定律的研究占有重要的地位。
从历史发展过程来看,无论是经典物理学还是近代物理学,一些重要的守恒定律常常早于普遍的运动规律而被认识。
质量守恒、能量守恒、动量守恒、电荷守恒就是人们最早认识的一批守恒定律。
它们的出现也不是偶然的,而是因为物理规律具有多种对称性的必然结果。
这些守恒定律的确立为后来认识普遍运动规律提供了线索和启示。
物理学中关于对称性探索的一个重要进展是建立诺特定理,定理指出,如果运动定律在某一变换下具有不变性,必相应地存在一条守恒定律。
简单的说就是:物理定律的一种对称性,对应地存在一条守恒定律。
对称性与守恒定律在物理学中,对称性与守恒定律是研究物理系统中基本规律和性质的重要工具。
对称性是指物理系统在某种变换下保持不变的性质,而守恒定律则描述了物理系统中某种量在时间演化过程中保持不变的规律。
本文将从对称性和守恒定律的概念入手,探讨它们在物理学中的应用以及对科学研究的重要性。
一、对称性的概念及分类对称性是物理学中一项重要的基本概念,它是指在某种变换下,物理系统的性质保持不变。
在物理学中,常见的对称性包括平移对称性、旋转对称性、镜像对称性和时间反演对称性等。
平移对称性是指物理系统在空间平移变换下保持不变。
这意味着系统中的物理规律在空间各点上具有相同的形式。
例如,自然界中的物体在平移变换下,它们的性质和规律是不变的。
旋转对称性是指物理系统在空间旋转变换下保持不变。
这表示系统的物理规律在空间各个方向上具有相同的形式。
例如,自然界中的球体在旋转变换下保持不变,即无论如何旋转球体,它的性质和规律都保持不变。
镜像对称性是指物理系统在镜像变换下保持不变。
这意味着系统具有左右对称性,即系统的一侧与另一侧具有相同的性质和规律。
例如,人的面部就具有镜像对称性,因此我们可以通过镜子看到自己的镜像。
时间反演对称性是指物理系统在时间反演变换下保持不变。
这表示系统的物理规律在时间正向和逆向上具有相同的形式。
例如,自然界中的物理过程在时间反演下仍然是可逆的,即物理规律在时间的正向和逆向上保持不变。
二、守恒定律的概念与应用守恒定律是指在物理系统中,某种量在时间演化过程中保持不变的规律。
守恒定律的出现与系统的对称性密切相关。
动量守恒定律是最基本、最广泛应用的守恒定律之一。
它表明在一个孤立系统中,系统的总动量在时间演化中保持不变。
这意味着系统中物体的动量之和在各个时刻都是相等的。
例如,当一个物体在空中自由下落时,系统的总动量始终保持不变。
能量守恒定律是另一个重要的守恒定律。
它描述了在一个孤立系统中,系统的总能量在时间演化中保持不变。
第五章: 对称性及守恒定律[1]证明力学量Aˆ(不显含t )的平均值对时间的二次微商为: ]ˆ],ˆ,ˆ[[222H H A A dtd -= (H ˆ是哈密顿量) (解)根据力学量平均值的时间导数公式,若力学量Aˆ 不显含t ,有]ˆ,ˆ[1H A i dt A d= (1) 将前式对时间求导,将等号右方看成为另一力学量]ˆ,ˆ[1H A i的平均值,则有: ]ˆ],ˆ,ˆ[[1]ˆ],ˆ,ˆ[1[1222H H A H H A i i dt A d -== (2) 此式遍乘2即得待证式。
[2]证明,在不连续谱的能量本征态(束缚定态)下,不显含t 的物理量对时间t 的导数的平均值等于零。
(证明)设Aˆ是个不含t 的物理量,ψ是能量H ˆ的公立的本征态之一,求A ˆ在ψ态中的平均值,有:⎰⎰⎰=ττψψd AA ˆ*将此平均值求时间导数,可得以下式(推导见课本§5.1)(1) 今ψ代表Hˆ的本征态,故ψ满足本征方程式 ψψE H=ˆ (E 为本征值) (2) 又因为Hˆ是厄密算符,按定义有下式(ψ需要是束缚态,这样下述积公存在) τψψτψψτd AHd A H ⎰⎰⎰⎰⎰⎰=)ˆ(*)ˆ()~(ˆ* (3)(题中说力学量导数的平均值,与平均值的导数指同一量)(2)(3)代入(1)得:τψψτψψd A H id H A i dt A d )ˆ(*)ˆ(1)ˆ(ˆ*1⎰⎰⎰⎰⎰⎰-= ⎰⎰⎰⎰⎰⎰-=τψψτψψd A iE d A i E ˆ**ˆ* 因*E E =,而0=dtAd[3]设粒子的哈密顿量为 )(2ˆˆ2r V p H +=μ。
(1) 证明V r p p r dtd ∀⋅-=⋅μ/)(2。
(2) 证明:对于定态 V r T ∀⋅=2(证明)(1)z y x p z p y p xp r ˆˆˆˆˆˆ++=⋅,运用力学量平均值导数公式,以及对易算符的公配律: ]ˆ,ˆˆ[1)ˆˆ(H p r i p rdt d⋅=⋅)],,(ˆ21,ˆˆˆˆˆˆ[]ˆ,ˆˆ[2z y x V pp z p y p x H p r z y x +++=⋅μ)],,()ˆˆˆ(21,ˆˆˆˆˆˆ[222z y x V p p p p z p y p xz y x z y x +++++=μ)],,(,[21],ˆˆˆˆˆˆ[222z y x V zp yp xp p p p p z p y p xz y x z y x z y x +++++++=μ(2) 分动量算符仅与一个座标有关,例如xi p x ∂∂= ,而不同座标的算符相对易,因此(2)式可简化成:]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[222z z y y x x p p z p p y p p x H p rμμμ++=⋅ )],,(,ˆˆˆˆˆˆ[z y x V p z p y p xz y x +++ ],ˆˆ[],ˆˆ[],ˆˆ[]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21222V p z V p y V p xp p z p p y p p x z y x z z y y x x +++++=μμμ (3)前式是轮换对称式,其中对易算符可展开如下:x x x x p x pp x p p x ˆˆˆˆˆ]ˆ,ˆˆ[232-= x x x x x x p x p p x p p x p p x ˆˆˆˆˆˆˆˆˆˆˆ2223-+-= x x x x x p p x pp p x ˆ]ˆ,ˆ[ˆˆ]ˆ,ˆ[2+= 222ˆ2ˆˆx x x pi p i p i =+= (4) ],ˆ[ˆˆˆˆˆˆˆˆˆˆˆˆˆ],ˆˆ[V p x p V x V p x p x V V p x V p xx x x x x x =-=-= xV x i ∂∂=ˆˆ (5) 将(4)(5)代入(3),得:}{)ˆˆˆ(]ˆ,ˆˆ[222zV z y V y x V x i p p p i H p rz y x ∂∂+∂∂+∂∂+++=⋅ μ }ˆ{2V r pi ∀⋅+=μ代入(1),证得题给公式:V r pp r dt d ∀⋅-=⋅ μ2ˆ)( (6)(2)在定态ψ之下求不显含时间t 的力学量Aˆ的平均值,按前述习题2的结论,其 结果是零,令p r Aˆˆˆ ⋅= 则0)ˆˆ(*2=∀⋅-=⋅=⋅⎰⎰⎰V r p d p r p r dt d τμτψψ (7) 但动能平均值 μτψμψτ22ˆ*22p d p T =≡⎰⎰⎰由前式 V r T ∀⋅⋅=21[4]设粒子的势场),,(z y x V 是z y x ,,的n 次齐次式证明维里定理(Virial theorem )式中V是势能,T是动能,并应用于特例:(1)谐振子 T V = (2)库仑场 T V 2-=(3)T V n Cr V n 2,==(解)先证明维里定理:假设粒子所在的势场是直角坐标),,(z y x 的n 次齐次式,则不论n 是正、负数,势场用直角痤标表示的函数,可以表示为以下形式,式中V假定是有理函数(若是无理式,也可展开成级数):∑=ijkkj i ijk z y x C z y x V ),,( (1)此处的k j i ,,暂设是正或负的整数,它们满足:n k j i =++ (定数)ijk C 是展开式系数,该求和式可设为有限项,即多项式。
物理中的对称性与守恒定律物理领域一直以来都是科学研究的重要组成部分,对称性与守恒定律则是物理学中的重要概念之一。
作为物理学家,我们需要深入了解和探讨对称性与守恒定律在自然界中的重要作用。
本文将重点围绕对称性与守恒定律展开讨论,并探索它们在现代物理学中的应用和意义。
对称性在物理学中的基本原理对称性是物理学中一个十分基础且关键的概念,它描述了一个系统在某种变换下保持不变的性质。
具体来说,对称性可以分为空间对称性、时间对称性和粒子对称性等多个方面。
在物理学中,对称性的存在往往伴随着一些守恒量的出现,例如动量守恒、能量守恒和角动量守恒等。
空间对称性空间对称性是指系统在空间平移、旋转、镜像变换等操作下保持不变。
其中,空间平移对称性导致了动量的守恒,空间旋转对称性导致了角动量的守恒,而空间镜像变换则涉及了手性对称性等重要概念。
时间对称性时间对称性是指系统在时间平移下保持不变。
这一原理引申出了能量守恒定律,即系统的能量在时间演化过程中保持不变。
粒子对称性粒子对称性描述了基本粒子在空间变换或相互作用下的特定行为。
例如,电荷共轭对称性、夸克色荷和强相互作用等都属于粒子对称性研究范畴。
守恒定律与理论物理守恒定律作为自然界普遍存在的规律,在现代物理学中起着举足轻重的作用。
其核心思想是:封闭系统中某个物理量的总量,在系统演化过程中保持不变。
能量守恒定律能量守恒定律是指封闭系统中能量总量保持不变。
这一定律深刻影响了热力学、光学、原子物理等多个领域的研究。
动量守恒定律动量守恒定律描述了封闭系统中动量总量保持不变。
无论是微观粒子碰撞问题还是宏观物体运动问题,动量守恒都是一个重要的约束条件。
角动量守恒定律角动量守恒定律则描述了封闭系统中角动量总量保持不变。
这一定律在描述自转、公转、陀螺运动等方面有着广泛应用。
对称性与守恒定律在物理学中的应用对称性与守恒定律作为物理学中重要的基本原理,渗透到了各个领域和层面。
从微观粒子到宏观世界,都能看到这些基本原理的影响。
物理学中的对称性与守恒定律在物理学中,对称性和守恒定律是两个核心概念。
对称性是自然界中普遍存在的特征,而守恒定律则是对自然界中物质和能量守恒的描述。
这两个概念相互关联,共同构成了物理学中一个重要的研究领域。
一、对称性在物理学中的应用对称性在物理学中有着广泛的应用。
最为人熟知的是空间对称性和时间对称性。
空间对称性指的是在空间中的各个位置上具有相同的物理性质。
例如,在宇宙中,无论你身处何地,都能感受到相同的万有引力。
这就是空间对称性的体现。
时间对称性则是指物理规律在时间上的不变性。
举个例子,考虑一个摆钟,不管时间如何推移,它的摆动周期是恒定不变的。
这也是时间对称性的一个例证。
除了空间对称性和时间对称性外,物理学中还涉及其他形式的对称性,如粒子对称性、守恒粒子数等。
这些对称性的研究,对于我们理解自然的基本规律以及发展新的物理理论都具有重要意义。
二、守恒定律和对称性的关系守恒定律是物理学中的基本原理之一。
它可以从对称性中推导得出。
根据诺特定理,每个连续对称性都对应一个守恒量。
以动量守恒定律为例,物理系统中的动量守恒是因为系统在空间平移对称性下具有不变性。
也就是说,无论系统在空间中的位置如何变化,系统的总动量保持不变。
类似地,能量守恒定律是由时间平移对称性推导得出的。
无论时间如何变化,系统的能量总是保持不变。
这种对称性与守恒定律的关系,使我们能够通过对系统中的对称性进行研究,来预测和解释物理学中的现象和规律。
三、对称性破缺与守恒量的消失尽管对称性在物理学中扮演着重要的角色,但有时我们也会观察到对称性的破缺。
对称性的破缺通常意味着守恒定律不再适用。
著名的例子是弱相互作用中的手性问题。
在弱相互作用中,左手和右手的粒子行为有所不同,这打破了空间反演对称性。
通过对这个对称性破缺的研究,我们可以更好地理解物理学中的基本粒子和相互作用。
此外,在高能物理实验中,科学家们也发现了很多新的物理现象。
这些现象通常涉及到对称性的破缺,以及新的守恒定律的出现。
对称性和守恒定律对称性和守恒定律是物理学中两个基本的概念,它们在解释和描述自然现象中起着重要的作用。
本文将探讨对称性和守恒定律的定义、原理以及它们在不同领域中的应用。
一、对称性对称性是指系统在变换下具有不变性或不变性对称的性质。
在物理学中,对称性是研究自然规律的基础之一。
常见的对称性包括平移对称、旋转对称和镜像对称。
1. 平移对称性平移对称性是指系统在平移变换下保持不变。
例如,在空间中的物体在平移变换下,其性质和状态保持不变。
2. 旋转对称性旋转对称性是指系统在旋转变换下保持不变。
例如,地球在自转时保持不变的物理规律。
3. 镜像对称性镜像对称性是指系统在镜像变换下保持不变。
例如,物体的左右对称性。
对称性在物理学中有着广泛的应用。
它可以帮助我们预测和解释自然现象,并推导出物理方程与定律。
二、守恒定律守恒定律是指在某个系统中,某种物理量的总量在时间变化过程中保持不变。
这些物理量可以是能量、动量、角动量等。
1. 质量守恒定律质量守恒定律是指在一个系统中,质量的总量在任何变化过程中保持不变。
根据爱因斯坦的质能方程,质量可以转化为能量,反之亦然。
2. 动量守恒定律动量守恒定律是指在一个孤立系统中,动量的总量在相互作用下保持不变。
这是因为系统中的所有物体在相互作用过程中,它们的动量会相互转移,但总动量的和保持不变。
3. 能量守恒定律能量守恒定律是指在一个孤立系统中,能量的总量在各种能量转换过程中保持不变。
各种能量形式之间可以相互转化,但能量的总量始终保持定值。
守恒定律是自然界中最基本的定律之一。
它们提供了描述和解释自然现象的数学工具和规律,使得我们能够更好地理解和预测自然界的行为。
三、对称性与守恒定律的关系对称性与守恒定律密切相关。
根据诺特定理,对称性与守恒定律之间存在一一对应的关系。
对称性的存在意味着守恒定律的存在,而守恒定律的存在则反映了系统中的对称性。
通过对称性的研究,我们可以预测和发现新的守恒定律。
运动积分:拉格朗日函数为广义坐标q α、qα 和t 的函数,一个力学体系在t 时刻由2S 个量S q 和S q 来决定。
广义坐标:其中:122,,,S C C C 为拉格朗日方程通解的2S 个积分常数。
他们存在于q α、qα 的函数中,而且在运动过程中保持不变。
这种函数称为运动积分。
如果体系的自由度为S 我们可以从上述方程中消去t ,保留21S-个方程组,解得:21S -个(,)i C q qαα 都是相互独立的,都是拉格朗日方程的运动积分。
原则上我们可以用运动积分运动积分:H 的物理意义:设:12(,,,)i i S r r q q q守恒量:运动积分的分类:(1)具有可加性。
有几个部分组成,而各个部分之间的相互作用可以忽略不计,它的值等于各个部分之和(2)具有不可加性:守恒量。
(a)时间的均匀性----------能量守恒(b)空间的均匀性----------动量守恒(c)空间的各向同性-------角动量守恒(b )+(c ) 空间的均匀性和各向同性: 在空间做一个无限小的平移:或无限小的转动:拉格朗日函数不变。
即:令(,,)L L q qt αα= ,坐标轴方向可以任意转动,dJdt111111N N N NN N J r m v r m v m r V r m v Vt m v m r V ααααααααααααααααααααα======'=⨯=⨯+⨯''=⨯+⨯+⨯∑∑∑∑∑∑其中第一项1N J r m v αααα='''=⨯∑ 质点系在K '系中的总角动量,质心系中第二项:10N o J Vt m v ααα==⨯=∑第三项:1NC C m r V MR V R P ααα=⨯=⨯=⨯∑C J J R P '=+⨯。