初二数学第二学期期末试卷(无答案)
- 格式:doc
- 大小:104.01 KB
- 文档页数:7
冀教版八年级下册期末数学试卷一、相信你的选择(本题共10个小题,每题2分,共20分,在每个小题给出的四个选项中,只有一个是符合题目要求的,把正确选项的代码填在最后的括号内。
) 1.下列命题中,正确的是( )A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 一组对边平行,另一组对边相等的四边形是等腰梯形C. 对角线相等的四边形是矩形D. 对角线相等的菱形是正方形2.若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )A.第一象限B. 第二象限C.第三象限D.第四象限 3. 如图,在矩形ABCD 中,AB=2BC ,在CD 上取一点E ,使AE=AB ,则∠EBC 等于( )A. 10°B. 15°C. 22.5°D. 30°4.如图4,将正方形图案中心O 旋转180°后,得到的图案是( )。
5.若四边形的两条对角线相等,则顺次连结该四边形各边中点所得的四边形是( )。
A .梯形B .矩形C .菱形D .正方形 6.若分式方程xxx a --=+-2132有增根,那么a 的值为( )A.-1B.2C.1D.07.甲、乙两人同时从A 地出发,骑车行30千米到B 地,甲比乙每小时多走3千米,结果比乙先大40分钟,若设乙每小时走x 千米,则所列方程正确的是( )A. 3233030=--x xB. 3233030=+-x xC. 3230330=-+x xD.3230330=--x x 8.菱形具有而矩形不一定具有的性质是( )A 、对角线互相垂直B 、对角线相等C 、对角线互相平分D 、对角互补9.一个多边形,除一个内角外,其余各内角和是1200°,则这个角的度数是( )A. 60°B. 80°C. 100°D. 120° 10.有50个数据的平方和为800,平均数是3,这50个数据的方差为 ( ) A 、5 B 、6 C 、7 D 、8二、 准确填空(本大题共8个小题,每小题3分,共24分)11. 下列①线段、②角、③等边三角形、④平行四边形、⑤矩形、⑥菱形、⑦正方形中,是轴对称图形的是 ,中心对称图形是 。
八年级(下)数学期末试卷(2)一.选择题(共11小题,满分33分,每小题3分)1.(3分)“漏壶”是一种古代计时器,如图所示.在壶内盛一定量的水,水从壶底的小孔漏出,壶内壁画有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度,不考虑水量变化对压力的影响,下列图象能表示y与x对应关系的是()A.B.C..D.2.(3分)在一篇文章中,“的”、“地”、“得”三个字共出现100次.已知“的”和“地”的频率之和是0.7,那么“得”字出现的频数是()A.28B.30C.32D.343.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位平均成绩较高且状态稳定的同学参加数学比赛,那么应选()甲乙丙丁平均数80858580方差42455459 A.甲B.乙C.丙D.丁4.(3分)下列二次根式中属于最简二次根式的是()A.B.C.D.5.(3分)下列各式中,无意义的是()A.B.C.D.6.(3分)若x+y=6,x2+y2=20,求xy的值是()A.6B.8C.26D.207.(3分)下列命题中,真命题是()A.任何数的零次幂都等于1B.对角线相等且垂直的四边形是正方形C.有一条边相等的两个等腰直角三角形全等D.有两直角边对应相等的两个直角三角形全等8.(3分)如图,将一副直角三角尺重叠摆放,使得60°角的顶点与等腰直角三角形的直角顶点重合,且DE⊥AB于点D,与BC交于点F,则∠DCF的度数为()A.20°B.15°C.30°D.45°9.(3分)如图,点E是Rt△ABC、Rt△ABD的斜边AB的中点,AC=BC,∠DBA=25°,则∠DCE的度数是()A.20°B.30°C.35°D.40°10.(3分)顺次联结四边形ABCD各边中点所形成的四边形是矩形,那么四边形ABCD是()A.平行四边形B.矩形C.菱形D.等腰梯形11.(3分)函数y=2x+3的图象可能是()A .B .C .D .二.填空题(共4小题,满分12分,每小题3分)12.(3分)小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是.13.(3分)在平行四边形ABCD 中,AB=3,BC=4,则平行四边形ABCD的周长等于.14.(3分)有5位教师和一群学生一起去公园,教师的全票票价是每人7元,学生票收半价.如果买门票共花费206.5元,那么学生有多少人?设学生有x人,填写下表:人数/人票价/元总票价/元教师学生根据题意,得方程,所以学生有人.15.(3分)直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x﹣nx>4n﹣m的解集为.三.解答题(共4小题,满分30分)16.(11分)计算:(1);(2).17.(6分)如图,A,B,H是直线上的三个点,AC⊥l于点A,BD⊥l于点B,HC=HD,AB=5,AC=2,BD=3,求AH的长.18.(6分)如图,任意四边形ABCD中,AB=CD,M、N分别为BC、AD的中点.说明∠1与∠2的大小关系.19.(7分)排球垫球是体育中考的项目之一,下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)运动员甲测试成绩的众数为;运动员乙测试成绩的中位数为;运动员丙测试成绩的平均数为;(2)经计算三人成绩的方差分别为S甲2=0.8,S乙2=0.4,S丙2=0.6,如果在他们三人中选择一位垫球成绩较为稳定的接球能手作为自由人,则运动员更合适;(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)四.解答题(共3小题,满分23分)20.(7分)如图,四边形ABCD的对角线AC⊥BD于点E.点F为四边形ABCD外一点,且∠FCA=90°,BC平分∠DBF,∠CBF=∠DCB.(1)求证:四边形DBFC是菱形;(2)若AB=BC,∠F=45°,BD=2,则AC=.21.(8分)计算:(1)(+)÷﹣6;(2)﹣(1+)(2﹣).22.(8分)某城市有一类出租车,在5时到23时的时间段内运营,计费规定如下:行驶里程不超过3千米付费14元,超过3千米且不超过15千米的部分每千米付费2.50元;总里程超过15千米的部分每千米付费3.80元(等候时间管不计费).(1)该类出租车起步价为多少元?在多少千米内只收起步价?(2)某人乘该类出租车行驶了x千米,试写出当x(千米)超过3(千米)但不超过15(千米)时,乘车费用y(元)关于里程数x(千米)的函数解析式,并求当所付费用为26元时出租车行驶的里程数.(3)当乘车费用为82元时,出租车行驶了多少千米?五.解答题(共2小题,满分22分)23.(10分)(1)【探究发现】如图①,已知矩形ABCD的对角线AC的垂直平分线与边AD,BC分别交于点E,F.求证:四边形AFCE是菱形;(2)【类比应用】如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若AB=3,BC=4,求四边形ABFE的周长;(3)【拓展延伸】如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若,BC=4,∠C=45°,求EF的长.24.(12分)已知:在矩形ABCD中,AB=6,AD=2,P是BC边上的一个动点,将矩形ABCD折叠,使点A与点P重合,点D落在点G处,折痕为EF.(1)如图1,当点P与点C重合时,则线段EB=,EF=;(2)如图2,当点P与点B,C均不重合时,取EF的中点O,连接并延长PO与GF的延长线交于点M,连接PF,ME,MA.①求证:四边形MEPF是平行四边形;②当tan∠MAD=时,求四边形MEPF的面积.。
2022~2023学年度第二学期期末测试初二数学试卷(总分:150分时间:120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中恰有一项是符合题目要求的,请将正确选项前的字母代号写在答题纸的相应位置上)1.下列图形中,是中心对称图形的是( )A. B. C. D.2.在实数范围内有意义,则x 的取值范围是( )A. B. C. D.3.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A. B. C. D.4.下面性质中矩形具有而菱形不一定具有的是( )A.对角线相等B.邻边相等C.对角线垂直D.对边相等5.若点,,都在反比例函数的图象上,则,,的大小关系是()A. B. C. D.6.如果关于x 的分式方程有增根,那么m 的值为( )A. B.2 C. D.47.关于反比例函数的图象,下列说法正确的是( )A.y 随着x 的增大而增大B.图象分布在一、三象限C.当时,D.若在该图象上,则也在该图象上8.如图,已知点,,C 是y 轴上位于点B 上方的一点,平分,平分,直线交于点D .若反比例函数的图象经过点D ,则k 的值是( )3x ≥-3x ≤-3x >-3x ≥22x y -+xy x y +22x y xy +2xx y--()1,2A x ()2,1B x -()3,4C x 8y x =1x 2x 3x 231x x x <<123x x x <<132x x x <<213x x x <<2122mxx x +=--2-4-6y x =-2x >-3y >(),a b -(),a b -()3,0A ()0,4B AD OAB ∠BE ABC ∠BE AD ()0ky x x =<A. B. C. D.二、填空题(本大题共有10小题,每题3分,共30分,不需写出解答过程,请把答案直接填写在答题纸的相应位置上)9.“神舟十六”号载人飞船发射前,工程师对载人飞船和“长征二号F ”火箭所有零部件进行检查,应采用的调查方式是________(请填“普查”或“抽样调查”).10.若分式的值为零,则_______.11.已知实数a 、b_______.12.在一个不透明的盒子中装有10个大小相同的乒乓球,做了1000次摸球试验,摸到红球的频数是401,估计盒子中的红球的个数是_______.13.观察反比例函数的图象,当时,x 的取值范围是_______.14.若关于x 的分式方程的解为正数,则m 的取值范围为_______.15.如图,在矩形中,对角线与相交于点O ,过点A 作,垂足为点E ,若,则_______°.16.如图,菱形的对角线,相交于点O ,过点D 作于点H ,连接,若,,则菱形的周长为_______.17.如图,点M 在函数的图象上,过点M 分别作x 轴和y 轴的平行线交函数的图象于点B 、C ,连接、,则的面积为_______.8-9-10-12-33x x --x =10-=2y x=2y >-222x m x x=---ABCD AC BD AE BD ⊥2EAC CAD ∠=∠BAE ∠=ABCD AC BD DH BC ⊥OH 4OA =3OH =ABCD ()50y x x =>()20y x x=>OB OC OBC △18.如图,在菱形中,,对角线、相交于点O ,点M 在线段上,且,点P 为线段上的一个动点,则的最小值是_______.三、解答题(本大题共有10小题,共96分.请在答题纸的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:(1);(220.(8分)(1)化简:;(2)解方程:.21.(8分)先化简,再求值:,其中.22.(8分)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:ABCD 10AB AC ==AC BD AC 2AM =BD 12MP PB +()21+21111x x x x -⎛⎫-÷ ⎪++⎝⎭11322x x x -+=--2224442x x x x x x x --+÷--2x =-(1)参加问卷调查的学生人数为______名,补全条形统计图(画图并标注相应数据);(2)选择“陶艺”课程的所在的扇形的圆心角度数为______;(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?23.(10分)某地为美化环境,计划种植树木600棵,由于志愿者的加入,实际每天植树的棵数比原计划增加了25%,结果提前3天完成任务.求实际每天植树多少棵?24.(10分)如图,菱形的对角线、相交于点O ,,,与交于点F .(1)求证:四边形的为矩形;(2)若,,求菱形的面积.25.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点,.(1)分别求出两个函数的解析式;(2)求的面积;(3)根据图象,直接写出关于x 的不等式的解集.26.(10分)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当和时,图象是线段;当时,图象是反比例函数的一部分.(1)求点A 对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.ABCD AC BD BE AC ∥AE BD ∥OE AB AEBO 10OE =16AC =ABCD 1y kx b =+()20m y m x =>()2,5A ()5,B n -OAB △m kx b x+≤010x ≤<1020x ≤<2045x ≤≤27.(12(,,)化简呢?如能找到两个数m ,n (,),使得,即,且使,那么,.,∵,且,,∵,.的形式,且能找到m ,n (,)使得,且,那么这个双重二次根式一定化简.请同学们通过阅读上述材料,完成下列问题:(1____________;(2(3.28.(12分)矩形纸片中,,,点P 在边上,点Q 在边上,将纸片沿折叠,使顶点B 落在点E 处.(1)如图1,若点E 恰好落在边上.请在图中用无刻度的直尺和圆规作出折痕(不写作法,保留作图痕迹);(2)如图2,折痕的端点P 与点A 重合.①当时,_______°;②若点E 恰好在线段上,求的长.(3)如图3,若,连接,若是以为腰的等腰三角形,求的长.0a >0b >0a ±>0m >0n >m n a +=22a +=m n b ⋅==222a ±=+±=∴±312=+212=⨯∴(22231-=+-=1>∴1=-0m >0n >m n a +=m n b ⋅===ABCD 6AB =10BC =AB BC PQ AD PQ 50CQE ∠=︒AQB ∠=QD BQ DQ PQ ⊥DE DEQ △DQ BQ。
C.120∘
..
..
.如图所示,购买一种水果,所付金额(元)与购买数量x(千克)之间的函数图象由线段
C.38元
+1)都在某一条直线上,则这条直线的解析式是(
C.4
AC、BD的交点,E、F
分)如图,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为
AE,交BC于点E(保留作图痕迹,不写作法);
AD=3,AB=2,求DE长.
)求一次函数解析式并在平面直角坐标系内画出两个函数的图象;
两点都在二次函数y=x2的图象上,试比较
分)端午节是中国的传统节日,民间有端午节吃粽子的习俗,在端午节来临之际,某校七、八年
请根据以上信息,完成下列问题:
7分的学生数是,七年级活动成绩的众数为的值是否为定值?若是,请求出这个定值;若不是,请说明理由
是射线AB上一点,点P与点B是对称点,。
浙教版八年级下册期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列各式中计算正确的是()A.=×=(﹣2)×(﹣4)=8B.=4a(a>0)C.=3+4=7D.=2.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数 4 5 6 7 8 人数 3 6 5 4 2 每天加工零件数的中位数和众数为()A.6,5 B.6,6 C.5,5 D.5,63.如图,在平面直角坐标系中,一次函数y=kx﹣2的图象分别与x轴、y轴交于A、B两点,与函数y=(x>0)的图象交于点C.若点A为线段BC的中点,则k的值为()A.1 B.C.2 D.34.下列关于x的方程中一定没有实数解的是()A.x2﹣x﹣1=0 B.4x2﹣4x+2=0 C.x2=﹣x D.x2﹣mx﹣2=0.5.下列说法不正确的是()A.平行四边形对边平行B.两组对边平行的四边形是平行四边形C.平行四边形对角相等D.两组邻角互补的四边形是平行四边形6.某新建火车站站前广场绿化工程中有一块长为20米,宽为12米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为112米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是()A.2米B.米C.2米或米D.3米7.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.8.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S=1,则k的值为()△AOBA.1 B.﹣1 C.2 D.﹣29.若M=2(x﹣3)(x﹣5),N=(x﹣2)(x﹣14),则M与N的关系为()A.M>NB.M<NC.M=ND.M与N的大小由x的取值而定10.如图,在△ABC中,点D、E分别是AB、AC的中点,∠ACB的平分线交DE于点F,若BC=6,DF =1,则AC的长为()A .2B .3C .4D .5二.填空题(共6小题,满分24分,每小题4分)11.使得代数式有意义的x 的取值范围是 .12.一组数据2,x ,1,3,5,4,若这组数据的中位数是3,则这组数据的方差是 .13.一个多边形的内角和与外角和的比是4:1,则它的边数是 .14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为 .15.如图一次函数的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数的图象于Q ,,则Q 点的坐标为 .16.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD ,若AD =6cm ,∠ABC =60°,则四边形ABCD 的面积等于 cm 2.三.解答题(共8小题,满分66分)17.(6分)计算(1)02)2019()21(9π--+-(2)解方程:x2+3x﹣4=0(公式法)18.(6分)学校准备从甲乙两位选手中选择一位参加汉字听写大赛,学校对两位选手的表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们的各项成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85 78 85 73乙73 80 82 83如果表达能力、阅读理解、综合素质和汉字听写成绩按照2:1:3:4的比确定,请分别计算两名选手的平均成绩,从他们的成绩看,应选派谁?19.(8分)如图,在四边形ABCD中,对角线AC、BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10;(1)求证:四边形ABCD是平行四边形.(2)求四边形ABCD的面积.20.(8分)学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长a=5m,宽b=4m(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?21.(8分)已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC 于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=10,BF=24,CE=7,求四边形ABCD的面积.22.(10分)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A开始沿射线AC向点C以2cm/s的速度移动,与此同时,点Q从点C开始沿边CB向点B以1cm/s的速度移动.如果P、Q分别从A、C同时出发,运动的时间为ts,当点Q运动到点B时,两点停止运动.(1)当点P在线段AC上运动时,P、C两点之间的距离cm.(用含t的代数式表示)(2)在运动的过程中,是否存在某一时刻,使得△PQC的面积是△ABC面积的.若存在,求t 的值;若不存在,说明理由.23.(10分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=(x >0)的图象交于A(1,m)、B(n,1)两点.(1)求直线AB的解析式及△OAB面积;(2)根据图象写出当y1<y2时,x的取值范围;(3)若点P在x轴上,求PA+PB的最小值.24.(10分)以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?。
人教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°2、如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有( )A. B. C. D.3、若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.4、计算的结果是()A.±3B.3C.﹣3D.5、在矩形ABCD中,E,P,G,H分别是边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中正确的是()①存在无数个四边形EFGH是平行四边形.②存在无数个四边形EFGH是矩形.③存在且仅有一个四边形EFGH是菱形.④除非矩形ABCD为正方形,否则不存在四边形EFGH是正方形.A.①②B.①②③C.①②④D.①③④6、如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.127、以下列各组数为边长,不能构成直角三角形的是()A. B. C. D.8、如图,菱形ABCD的对角线BD、AC分别为2、2 ,以B为圆心的弧与AD、DC相切,则阴影部分的面积是()A.2 ﹣πB.4 ﹣πC.4 ﹣πD.29、某射击运动员在训练中射击了10次,成绩分别是:5,8,6,8,9,7,10,9,8,10。
下列结论不正确的是( )A.中位数是8B.众数是8C.平均数是8D.方差是210、已知:∠MON,如图,小静进行了以下作图:①在∠MON的两边上分别截取OA,OB,使OA=OB;②分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;③连接AC,BC,AB,OC.=4,则AB的长为()若OC=2,S四边形OACBA.5B.4C.3D.211、两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为()A. B. C.sinα D.112、若式子有意义,则实数x的取值范围是()A. B. 且 C. D. 且13、下列变形正确的是( )A. B. C.D.14、函数y= 中自变量x的取值范围是()A.x≥3B.x≥﹣3C.x≠3D.x>0且x≠315、下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.17、已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于________ .18、A,B两地之间有一条6000米长的直线跑道,小月和小华分别从A,B两地同时出发匀速跑步,相向而行,第一次相遇后,小月将自己的速度提高25%,并匀速跑步到达B点,到达后原地休息;小华匀速跑步到达A点后,立即调头按原速返回B点(调头时间忽略不计),两人距各自出发点的距离之和记为y (米),跑步时间记为x(分钟),已知y(米)与x(分钟)之间的关系如图所示,则小月到达B点后,再经过________分钟小华回到B点.19、最简二次根式与是同类最简二次根式,则b=________.20、如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为________.21、如图,矩形OABC在第一象限,OA,OC分别于x轴,y轴重合,面积为6.矩形与双曲线y=(x>0)交BC于M,交BA于N,连接OB,MN,若2OB=3MN,则k=________22、化简=________23、如图,已知线段,P是AB上一动点,分别以AP,BP为斜边在AB 同侧作等腰和等腰,以CD为边作正方形DCFE,连结AE,BF,当时,为________.24、如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG 的周长是________.25、如图,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O, 若AB=12,EF=13,H为AB的中点,则DG=________.三、解答题(共5题,共计25分)26、计算(结果用根号表示)(+1)(﹣2)+227、已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF 交于点M.求证:AE=BF28、如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌的高CD (结果精确到0.1米,参考数据:≈1.41,≈1.73).29、如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.30、已知m=﹣,n=+ ,求代数式m2+mn+n2的值.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、B5、C6、D7、A8、D9、D10、B11、A12、C13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。
()2. 任何两个无理数相加都是无理数。
()3. 两条平行线的斜率相等。
()4. 一次函数的图像是一条直线。
()5. 任意两个等腰三角形的面积相等。
()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。
2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。
3. 若x^2 5x + 6 = 0,则x的值为_______或_______。
4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。
5. 平行四边形的对边_______且_______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是正比例函数?请举例说明。
人教版八年级下册数学期末试卷(完整)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个5.若 =(b 为整数),则a 的值可以是( )A .15B .27C .24D .20 6.下列长度的三条线段能组成直角三角形的是( ) A .3, 4,5 B .2,3,4 C .4,6,7 D .5,11,127.下列说法中错误的是( )A .12是0.25的一个平方根B .正数a 的两个平方根的和为0C .916的平方根是34D .当0x ≠时,2x -没有平方根 8.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=,90C ∠=,45A ∠=,30D ∠=,则12∠+∠等于( )A .150B .180C .210D .2709.如图,在正方形ABCD 中,AB =9,点E 在CD 边上,且DE =2CE ,点P 是对角线AC 上的一个动点,则PE +PD 的最小值是( )A .310B .103C .9D .9210.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=________.2.因式分解:22ab ab a -+=__________.3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b>kx+6的解集是_________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x y x y +=⎧⎨+=⎩; (2)()346126x y y x y y ⎧+-=⎪⎨+-=⎪⎩.2.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中2,b=12.3.已知11881,2y x x =--22x y x y y x y x+++-.4.已知:在ABC ∆中,AB AC = ,D 为AC 的中点,DE AB ⊥ ,DF BC ⊥ ,垂足分别为点,E F ,且DE DF =.求证:ABC ∆是等边三角形.5.如图,在△OBC 中,边BC 的垂直平分线交∠BOC 的平分线于点D ,连接DB ,DC ,过点D 作DF ⊥OC 于点F .(1)若∠BOC =60°,求∠BDC 的度数;(2)若∠BOC =α,则∠BDC = ;(直接写出结果)(3)直接写出OB ,OC ,OF 之间的数量关系.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、D5、D6、A7、C8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、()21 a b-3、2x(x﹣1)(x﹣2).4、x>3.5、1 (21,2) n n--6、(10,3)三、解答题(本大题共6小题,共72分)1、(1)52xy=⎧⎨=⎩;(2)2xy=⎧⎨=⎩2、原式=a b a b-=+3、14、略.5、(1)120°;(2)180°-α;(3)OB+OC=2OF6、(1)120件;(2)150元.。
2022-2023学年北师大数学八年级下册期末测试卷一.选择题(共12小题)1.下列代数式中,属于分式的是()A.B.C.D.2.下列说法不正确的是()A.多项式2a3+4a2b2﹣3是四次三项式B.钟表的时间是9点30分,此时时针与分针所成的夹角是105°C.n边形从其中一个顶点出发连接其余各顶点,可以画出(n﹣3)条对角线,这些对角线把这个n边形分成了(n﹣2)个三角形D.若AC=BC,则点C是线段AB的中点3.如图,△ABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EF∥AB,AE=2,下列结论错误的是()A.∠ADE=30°B.BD=4C.△EFC的周长为18D.△ABC的周长为214.以下判断中错误的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是()A.1B.2C.3D.47.如图,Rt△ABC中,∠ACB=90°,∠B=60°,将△ACB绕点C逆时针旋转到△CDE 的位置,当CD⊥AB时,连接AE,则∠CAE的度数为()A.45°B.60°C.65°D.75°8.下列从左到右变形,是因式分解的是()A.a(2a2+5ab﹣b2)=2a3+5a2b﹣ab2B.(x+5y)(x﹣5y)=x2﹣25y2C.x2﹣y2=(x+y)(x﹣y)D.2x2﹣3x+1=x(2x﹣3+1)9.若式子+有意义,则x满足的条件是()A.x≠3且x≠﹣3且x≠4且x≠﹣5B.x≠﹣3且x≠﹣5C.x≠4且x≠﹣5D.x≠3且x≠410.如图,点E在平行四边形ABCD内部,AF∥BE,DF∥CE,设平行四边形ABCD的面积为S1,四边形AEDF的面积为S2,则的值是()A.B.C.1D.211.一个多边形的每一个外角都为40°,那么这个多边形的内角和为()A.360°B.1080°C.1260°D.1620°12.如图,Rt△ABC的两边AC和BC的垂直平分线分别交AB于D,E两点,垂足分别为M,N,若AC=6cm,BN=4cm,则△CDE的周长为()A.14cm B.10cm C.8cm D.7cm二.填空题(共6小题)13.如图,∠ABC、∠ACB的平分线相交于点F.过点F作DE∥BC交AB于点D,交AC 于点E,BD=5cm,EC=4cm,则DE=cm.14.已知x+=,则x2﹣2+=.15.如图,已知边长为2的正方形OABC在平面直角坐标系中,点A位于第一象限内B、C 两点在第二象限内,OA与x轴所夹锐角为60°.则C点的坐标为.16.已知关于x的不等式a﹣4x≤0有且只有3个负整数解,则a的取值范围是.17.如图,在直角三角形ABC中,AC=3,BC=4,AB=5,且AC在直线l上,将△ABC 绕点A顺时针旋转到位置①得到点P1,将位置①的三角形绕点P顺时针旋转到位置②得到点P2,…,按此规律继续旋转,直到得到点P601为止(P1,P2,P3在直线l上).则:AP601=.18.已知,,,则代数式2(a2+b2+c2﹣ab ﹣bc﹣ac)的值是.三.解答题(共9小题)19.先化简,再求值:,其中a可能是﹣2,0,1,﹣1,2022,请选择你喜欢的a的值,再化简求值.20.小明一家三口随旅行团参加某景点一日游,已知该景点的门票是每张a元,20人或20人以上的团体票八折优惠.(1)小明发现旅行团共有18人,此时导游正准备去买18张门票,小明想了想说:“买20张团体票合算.”你同意小明的说法吗?请说明理由.(2)当总人数不足20人时,问旅行团至少多少人,买团体票比买普通票便宜?21.已知分式方程﹣=■有解,其中“■”表示一个数.(1)若“■”表示的数为7,求分式方程的解;(2)小瑞回忆说:由于抄题时等号右边的数值抄错,导致找不到原题目,但可以肯定的是“■”是﹣1或0其中之一,请你确定“■”表示的数.22.如图,Rt△ABC中,∠B=90°,AB=8,BC=6,AC的垂直平分线DE分别交AB,AC于D,E两点,求CD的长.23.如图,∠A0B=60°,OC平分∠AOB,过点C作CD⊥OC,交OB于点D,CE∥OA,交OB于点E.(1)若OD=7,求CD的长;(2)试判定△ECD的形状.24.如图,在▱ABCD中,O是对角线AC、BD的交点,延长边CD到点F,使DF=DC,过点F作EF∥AC,连接OF、EC.(1)求证△ODC≌△EDF.(2)连接AF,已知.(从以下两个条件中选择一个作为已知,填写序号),请判断四边形OCEF的形状,并证明你的结论.条件①:AF=FC且AC=2DC;条件②:OD=DC且∠BEC=45°.25.解不等式组:(1);(2);(3).26.随着新冠疫情的出现,口罩成为日常生活的必需品,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部卖出,其中成本、售价如表:甲乙成本 1.2元/只0.4元/只售价 1.8元/只0.6元/只(1)若该公司三月份的利润为8.8万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果该公司四月份投入成本不超过20万元,该医药公司四月份最多只能生产甲种防疫口罩多少万只?(3)养正学校到该公司购买乙型口罩有如下两种方案,方案一:乙型口罩一律打8折;方案二:购买16.8元会员卡后,乙型口罩一律7折,请帮养正学校设计出合适的购买方案.27.如图,平面内有三个等边三角形△ABD、△ACE、△BCF,两两共用一个顶点,求证:CD与EF互相平分.。
人教版八年级数学下册期末测试卷(二)一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12 2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.23.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B 4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5 7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=度.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为分.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是.(填序号)16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在组;(2)4月份生产的该产品抽样检测的合格率是;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.2021年人教版八年级数学下册期末测试卷(二)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【分析】首先分别根据绝对值的和算术平方根的定义可求出a,b的值,然后把a,b的值代入|a+b|=a+b中,最终确定a,b的值,然后求解.【解答】解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.【点评】此题主要考查了绝对值的意义:即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.也利用了算术平方根的定义.2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.2【分析】先求出这组数据的平均数,然后代入方差公式求出即可.【解答】解:这组数据的平均数为:(3+2+1+2)÷4=2;则方差为:S2==,故选:B.【点评】此题主要考查了方差的有关知识,正确的求出平均数,并正确代入方差公式是解决问题的关键.3.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B【分析】利用平行线的判定与性质结合平行四边形的判定得出即可.【解答】解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.【点评】此题主要考查了平行线的判定与性质以及平行四边形的判定,得出AD∥BC是解题关键.4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n【分析】由偶次方非负可得出k2+1>0,利用一次函数的性质可得出y值随x值的增大而增大,再结合3>﹣1可得出m>n,此题得解.【解答】解:∵k2≥0,∴k2+1>0,∴y值随x值的增大而增大.又∵3>﹣1,∴m>n.故选:B.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x 的增大而减小”是解题的关键.5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【分析】根据抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.【解答】解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.【点评】本题考查了函数图象,利用抽水时间确定剩下的水量是解题关键,注意两台抽水机同时工作的剩余水量迅速减少.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:依题意有x﹣3>0且x﹣5≠0,解得:x>3且x≠5.故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分【分析】利用众数和中位数的定义求解.【解答】解:98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13数,是96,所以数据的中位数为96分.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=()2,故能构成直角三角形;B、()2+()2=()2,故能构成直角三角形;C、22+()2≠()2,故不能构成直角三角形;D、12+()2=22,故能构成直角三角形.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长【分析】证明EF为三角形AMC的中位线,那么EF长恒等于定值AC的一半.【解答】解:连接AC,如图所示:∵E,F分别是AM,MC的中点,∴EF=AC,∵C是定点,∴AC是定长,∴无论M运动到哪个位置EF的长不变,故选:A.【点评】此题考查的是进行的性质、三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【解答】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.【点评】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于7+4.【分析】根据完全平方公式可以解答本题.【解答】解:(+2)2=3+4+4=7+4,故答案为:7+4.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式的混合运算的计算方法.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=150度.【分析】由折叠易得∠OCB=∠DBC=15°,由平行四边形对边平行易得∠ACB=∠DBC =15°,利用三角形内角和即可求得所求的角的度数.【解答】解:∵△BEC是△BDC翻折变换的三角形,∴△BEC≌△BDC,∠EBC=∠DBC=15°,∵AC∥BD,∴∠OCB=∠DBC=15°,∴∠BOC=180°﹣∠OCB﹣∠EBC=180°﹣15°﹣15°=150°.故答案为150.【点评】本题考查的是经过翻折变换后的图形与原图形全等的性质,及平行四边形的性质.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为94.2分.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:李刚参加这次招聘考试的最终成绩为=94.2(分).故答案为:94.2.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为y=x+3.【分析】根据“在y轴上的截距为3”计算求出b值,然后代入点(1,4)即可得解.【解答】解:∵直线y=kx+b在y轴上的截距为3,∴b=3,∴y=kx+3,∵经过点(1,4),∴4=k+3,∴k=1,∴这条直线的解析式是y=x+3.故答案是:y=x+3.【点评】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是①②③.(填序号)【分析】①通过证明四边形AMCE是平行四边形,可得AM∥CE;②由“SAS”可证△DCF≌△CBE,可得∠BCE=∠CDF,由直角三角形的性质可求∠CND=90°;③由直角三角形的性质可得DM=MN,由等腰三角形的性质可得AM垂直平分DN,可得AN=AD=BC;④由等腰三角形的性质和余角的性质可得∠ADN=∠DCN=∠AND=∠CNM,即可求解.【解答】解:∵E,F,M分别是正方形ABCD三边的中点,∴AE=BE=BF=CF=DM=CM,CD∥AB,∴四边形AMCE是平行四边形,∴AM∥CE,故①正确;在△DCF和△CBE中,,∴△DCF≌△CBE(SAS),∴∠BCE=∠CDF,∵∠DCE+∠BCE=90°,∴∠CDF+∠DCN=90°,∴∠CND=90°,∴DF⊥CE,故②正确;∵DF⊥CE,DM=CM,∴DM=MN=CM,∵AM∥CE,∴AM⊥DN,∴AM垂直平分DN,∴AD=AN,∴AN=BC,故③正确;∵AN=BC,∴∠ADN=∠AND,∵DM=MN=CM,∴∠DNM=∠NDM,∠MCN=∠MNC,∵∠ADN+∠CDN=90°,∠CDN+∠DCN=90°,∴∠ADN=∠DCN=∠AND=∠CNM,故④错误,故答案为:①②③.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【解答】解:如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF=2,∴BF=4,∴BD===2,∵△CPQ是等边三角形,∴S△CPQ=CP2,∴当CP⊥BD时,△CPQ面积最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ﹣AE=.【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.【分析】(1)先化简二次根式,再合并同类二次根式;(2)按二次根式的乘除法法则计算求值即可;(3)先算括号里面的,再除法运算.【解答】解:(1)原式=3﹣×3﹣2=﹣;(2)原式===;(3)原式=(4﹣9)÷2==﹣.【点评】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解决本题的关键.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?【分析】(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=1.5代入AB段图象的函数表达式,求出对应的y值,再用156减去y即可求解.【解答】解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.【点评】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1)直接利用待定系数法可先确定n的值,然后再把C的坐标代入一次函数y =﹣x+m可得m的值;(2)首先确定A点坐标,进而可得AO的长,再集合C点坐标可得△OAC的面积;(3)根据题意可得S△BCP=PB•|x C|=S△OAC=6,解出PB的值,进而可得P点的坐标.【解答】解:(1)∵点C(﹣2,n)在正比例函数y2=﹣x图象上,∴n=﹣×(﹣2)=3,∴点C的坐标为(﹣2,3).∵点C(﹣2,3)在一次函数y=﹣x+m的图象上,∴3=﹣(﹣2)+m,解得:m=2,∴一次函数解析式为y=﹣x+2.∴m的值为2,n的值为3.(2)当y=0时,0=﹣x+2,解得x=4,∴点a的坐标为(4,0),∴S△OAC=OA•y C=×4×3=6.(3)存在.当x=0时,y=﹣x+2=2,∴B(0,2),∵S△BCP=PB•|x C|=S△OAC=6,∴PB•2=6,∴PB=6,∴点P的坐标为(0,8)或(0,﹣4).【点评】此题主要考查了两直线相交问题,关键是掌握待定系数法求函数解析式,掌握凡是函数图象经过的点必能满足解析式.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.【分析】(1)根据平行四边形的性质和平行线的性质得到∠BAD+∠ADC=180°;然后根据角平分线的性质推知∠DAE+∠ADF=∠BAD+∠ADC=90°,即∠AGD=90°.证得∠BAF=∠AFB,由等腰三角形的判定可得出AB=BF,同理可得CD=CE,则可得出结论;(2)过点C作CK∥AF交AD于K,交DE于点I,证明四边形AFCK是平行四边形,∠AGD=∠KID=90°,得出AF=CK=8,由勾股定理求出DI,则可得出答案.【解答】(1)证明:在平行四边形ABCD中,AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAF=∠AFB,又∵∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF,同理可得CD=CE,∴BF=CE;(2)解:过点C作CK∥AF交AD于K,交DE于点I,∵AK∥FC,AF∥CK,∴四边形AFCK是平行四边形,∠AGD=∠KID=90°,∴AF=CK=8,∵∠KDI+∠DKI=90°,∠DIC+∠DCI=90°,∠IDK=∠IDC,∴∠DKI=∠DCI,∴DK=DC=6,∴KI=CI=4,∵AD∥BC,∴∠ADE=∠DEC=∠CDE,∴CE=CD,∵CI⊥DE,∴EI=DI,∵DI===2,∴DE=2DI=4.【点评】本题考查了平行四边形的判定与性质,平行线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握平行四边形的判定与性质是解题的关键.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在80<x≤90组;(2)4月份生产的该产品抽样检测的合格率是98.4%;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?【分析】(1)根据频数分布直方图中的数据,可以得到4月份随机抽取的若干件产品中位数在哪一组;(2)根据频数分布直方图中的数据,可以得到4月份生产的该产品抽样检测的合格率;(3)根据统计图中的数据,可以分别计算出3月和4月不合格的件数,然后比较大小即可解答本题.【解答】解:(1)4月份随机抽取的产品数为:8+132+160+200=500,则4月份随机抽取的若干件产品中位数在80<x≤90这一组,故答案为:80<x≤90;(2)4月份生产的该产品抽样检测的合格率为:×100%=98.4%,故答案为:98.4%;(3)4月的不合格件数多,理由:由题意可得,3月的不合格件数为:6000×2%=120,4月的不合格件数为:9000×(1﹣98.4%)=144,∵144>120,∴4月的不合格件数多.【点评】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;(2)根据AAS先证明△ABD≌△AEF,根据全等三角形的对应边相等得出BD=EF,再根据等式的基本性质证出BF=DE.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=50°,∴∠ABC=(180°﹣∠BAC)=65°,∵BD平分∠ABC,∴∠CBD=∠ABC=32.5°,∵AE∥BC,∴∠E=∠CBD=32.5°.(2)∵BD平分∠ABC,∴∠ABD=∠CBD,∵AE∥BC,∴∠AEF=∠CBD,∴∠ABD=∠AEF,∵AD=AF,∴∠ADF=∠AFD,∵∠ADB=180°﹣∠ADF,∠AFE=180°﹣∠AFD,∴∠ADB=∠AFE,在△ABD与△AEF中,,∴△ABD≌△AEF(AAS),∴BD=EF,∴BD+DF=EF+DF,∴BF=DE.【点评】本题考查了等腰三角形的性质,平行线的性质,角平分线的定义,三角形全等,考核学生的推理能力,证明三角形全等是解题的关键.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.【分析】(1)先判断出△ABD为等腰直角三角形,进而得出AB=AD,即可得出结论;(2)先利用三角函数得出,证明夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图3,先利用勾股定理求出EF=CF =CD=,BF=,即可得出BE的长,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.【解答】解:(1)=,理由是:在Rt△ABC中,AB=AC,根据勾股定理得,BC=AB,又∵点D为BC的中点,∴AD⊥BC,∴AB=AD,∵四边形CDEF是正方形,∴AF=EF=AD,∴AB=AF,即=,故答案为:;(2)(1)中的结论成立.证明:∵tan B=1,∴∠ABC=45°,∵AB=AC=3,∴∠ABC=∠ACB=45°,∴∠BAC=90°,∴sin45°=,∴,∵四边形CDEF是正方形,∴∠FEC=45°,∴sin45°==,∴,∵∠FCA=∠ECB,∴△ACF∽△BCE,∴;(3)或.如图2,当点E在线段BF上时,由(1)知CF=EF=CD=,∵在Rt△BCF中,CF=,CB=3,∴BF==,∴BE=BF﹣EF==.由(2)知,∴BE=AF,∴=AF,∴AF=,如图3,当点E在线段BF的延长线上时,同理可得BE=BF+EF=,∴,∴AF=,综上所述,当正方形CDEF旋转到B,E,F三点共线时,线段AF的长为或.【点评】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,熟练掌握正方形的性质及相似三角形的性质是解题的关键.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.【分析】(1)连接BP,先求出点A(4,0),点B(0,3),可得AO=4,OB=3,由勾股定理可求AB的长,由面积法可求PC的长,由勾股定理可求AC的长,即可求解;(2)由“AAS”可证△BOP≌△BCP,可得BO=BC=3,OP=CP,由勾股定理可求OP 的值,即可求点P坐标;(3)分OB为边和OB为对角线两种情况讨论,利用菱形的性质两点距离公式先求出点C坐标,再求出CP解析式,即可求解.【解答】解:(1)如图,连接BP,∵直线y=﹣x+3交x轴于点A,交y轴于点B,∴点A(4,0),点B(0,3),∴AO=4,OB=3,∴AB===5,∵点P是OA中点,∴AP=OP=2,∵S△ABP=×AP×OB=×AB×CP,∴CP=,∴AC===,∴S△APC=×AC×PC=;(2)∵BP平分∠ABO,∴∠OBP=∠CBP,又∵BP=BP,∠BOP=∠BCP=90°,∴△BOP≌△BCP(AAS),∴BO=BC=3,OP=CP,∴AC=AB﹣BC=5﹣3=2,∵AP2=PC2+AC2,∴(4﹣OP)2=OP2+4,∴OP=,∴点P(,0);(3)若OB为边,如图2,设点C(a,﹣a+3),连接OD,∵四边形OCDB是菱形,∴OC=CD=BD=OB=3,BO∥CD,OD⊥BC,∴(a﹣0)2+(﹣a+3﹣0)2=9,∴a1=0(不合题意舍去),a2=,∴点C(,),∵BO∥CD,OB=CD=3,∴点D(,),∴直线OD解析式为:y=x,∵PC∥OD,∴设直线PC解析式为y=x+b,∴=×+b,∴b=﹣3,∴直线PC解析式为y=x﹣3,∴当y=0时,x=,∴点P(,0),∴OP=;若OB为对角线,如图3,设点C(a,﹣a+3),连接CD,∵四边形OCBD是菱形,∴OB与CD互相垂直平分,∴点C在OB的垂直平分线上,∴=﹣a+3,∴a=2,∴点C(2,),∵BO垂直CD,∴点D(﹣2,),设直线PC解析式为y=x+b,∴=×2+b,∴b=﹣,∴设直线PC解析式为y=x﹣,当y=0时,x=,∴点P(,0),∴OP=;综上所述:当OP=时,点D(﹣2,)或当OP=时,点D(,).【点评】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,勾股定理,菱形的性质等知识,利用分类讨论思想解决问题是本题的关键.。
新人教版八年级数学下册期末试卷(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是()A.2 B.12C.12-D.2-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0C.k>0,且b<0 D.k<0,且b<05.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b6.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.32|1|0a b -++=,则2020()a b +=_________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D在同一直线上.若AB=2,则CD=________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
2023~2024学年第二学期八年级期末考试数学(试卷满分:150分考试时间:120分钟)班级______姓名______座号______考号______注意事项1.全卷三大题,25小题,试卷共6页,另有答题卡.2.答案一律写在答题卡上,否则不能得分.3.作图题可直接用2B 铅笔画.一、选择题(本大题共10小题.每小题4分,共40分.每小题只有一个选项符合题意)1.有一组数据:2,3,5,7,5,这组数据的众数是( )A.2B.3C.5D.72.已知y 是x 的函数,其图像经过点,则该函数的解析式可以是( )A. B. C. D.3.平面内自上而下有三条直线a ,b ,c ,且,若a 与b 之间的距离为5cm ,b 与c 之间的距离为2cm ,则a 与c 之间的距离是( )A.3cmB.7cmC.2cmD.5cm4.如图,在中,点D ,E 分别是AB ,AC 的中点,过点C 作交DE 的延长线于点F ,则下列与相等的角是()A. B. C. D.5.如图是甲、乙两名同学6次射击成绩的折线统计图,甲、乙两人射击成绩的方差分别记作,,下列说法正确的是()()0,1y x=1y x =+y x=-1y x =-a b c ABC △CF AB F ∠A ∠B ∠ACB ∠ACF∠2S 甲2S 乙A. B. C. D.无法确定6.若面积为6的菱形的一条对角线长为,则另一条对角线长为( )A. B. C. D.7、下列函数中,其图象同时满足两个条件:①y 随着x 的增大而增大;②与x 轴的正半轴相交.则它的解析式为()A. B. C. D.8.关于x 的一元二次方程,当时,方程有两个相等的实数根:若将c 的值在的基础上增大,则此时方程根的情况是( )A.没有实数根B.两个相等的实数根C.两个不相等的实数根D.一个实数根9.如图,在中,,点P 在边BC 上,于E ,于F ,当P 点从B 点沿着BC 匀速向终点C 运动时,线段EF 的值大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少10.如图,阴影部分表示以的各边为直径的三个半圆所组成的两个新月形,面积分别记作和.若,,则的周长是( )A.12B.13C.14D.15二、填空题(本大题共6小题.每小题4分,共24分.)11.若方程的一根为1,则______.12.在中,,则的度数为______.13.如图,一次函数与的图象相交于点A ,点A 的横坐标为2,则不等式的解集是______.22SS >甲乙22SS =甲乙22SS <甲乙21y x =--21y x =-+21y x =-21y x =+250x x c -+=0c t =0t Rt ABC △90A ∠=︒PE AB ⊥PF AC ⊥Rt ABC △1S 2S 127S S +=6AB =ABC △230x x m ++=m =ABCD :5:4C D ∠∠=B ∠1y kx =+4y mx =+14kx mx +>+14.某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金.该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为22,18,20(单位:万元)若想让一半左右的营业员都能达到月销售目标,则月销售额定为______万元较为合适.15.在平面直角坐标系中,正方形ABCD 的顶点A ,B 的坐标分别为,,则点C 的坐标为______.(用含m 的式子表示)16.在五边形ABCDE 的纸片中,,1),将它沿虚线AF ,CF 剪成三块,再用这三块小纸片进行拼接恰好能拼成一个与原五边形面积相等的正方形(如图2),则该正方形的边长为______.图1图2三、解答题(本大题共9小题,共86分)17.(10分)解下列一元二次方程:(1)(2)18.(7分)如图,在中,点E 、F 分别在AD 、BC 上,且,连接BD ,EF 与BD 相交于点O .求证:O 是BD 的中点.19.(7分)一次函数(1)在直角坐标系中画出该函数的图象;(2)若点和都在该函数图像上,请比较n 与q 的大小.20.(8分)对墙垫球是某地初中学生体育素养测试项目之一,为了解该地某校八年级男生该项目的水平,该地教育部门在该校八年级男生中随机抽取了30名进行测试,并绘制了这30名男生40秒对墙垫球个数n 的频数分布直方图,如图所示.xOy (),m m (),5m m -90BCD BAE ∠=∠=︒AB BC CD DE EA =====2280x -=2410x x +-=ABCD AE CF =24y x =+()2,A n ()4,B q(各组是,,,,)(1)估计这30名男生40秒对墙垫球的平均个数;(2)男生该项目“较高水平”的标准是“40秒对墙垫球的个数不少于32”.该校八年级360名男生中该项目达到较高水平的有多少名?21.(8分)近日,小米SU7汽车惊艳上市,智能化和新能源越来越受到人们的追捧.为了解某新能源汽车的充电速度,我校数学兴趣小组经调查研究发现:如图,用快速充电器时,汽车电池电量(占电池容量的%)与充电时间x (单位:h )的函数图像是折线ABC ;用普通充电器时,汽车电池电量(占电池容量的%)与充电时间x (单位:h )的函数图像是线段AD .根据以上信息,回答下列问题:(1)求BC 段的函数解析式;(2)若将该汽车电池电量从10%充至80%,快速充电器比普通充电器少用多长时间?22.(10分)在矩形ABCD 中,若点E 是线段CD 上的一动点,将沿直线BE 翻折,C 点的对应点为F 点.图1图2(1)若点F 落在矩形内,且满足,请用尺规在图1中作出F 点(尺规作图,要求保留作图痕迹,不必写作法).(2)如图2,已知,,若点F 恰好落在线段AD 上,求线段EC 的长;23.(10分)小张利用家里闲置的长方形硬纸板制作收纳盒(如图1),收纳玩具.已知,长方形硬纸板长为2024n ≤<2428n ≤<2832n ≤<3236n ≤<3640n ≤<1y 2y BCE △AD AF =8AB =10BC =100cm ,宽为40cm.图1图2(1)把长方形硬纸板的四角剪去四个相同的小正方形(如图2),然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个长方体无盖收纳盒.若该无盖收纳盒的底面积为,求剪去的小正方形的边长.(2)把长方形硬纸板的四角剪去四个相同的小长方形,折成一个有盖的长方体收纳盒,如图所示,若EF 和HG 两边恰好重合且无重叠部分,设小长方形的宽为x cm ,长y cm.请求出y 关于x 的函数关系式,并判断家里一个玩具机械狗能否完全放入该收纳盒并合上盖子(不考虑倾斜放入).若能,请写出一组x 、y 的值;若不能,请说明理由.图324.(12分)四边形ABCD 是菱形,点O 为对角线交点,点E 在射线BC 上(点C 与E 不重合),,直线AE 与直线CD 交于点F ,如图1所示.图1图2(1)若AD 边的垂直平分线交线段OD 于点P (P 不与O 重合),连接PC ,求证:;(2)当,时,求的度数;(3)若,垂足为M ,请在图2中补全图形,并探究AE 、CE 与CM 的数量关系.25.(14分)如图在平面直角坐标系中,O 为原点,A 、B 两点分别在y 轴、x 轴的正半轴上,直线AB 的关系式为,且,直线,点P 是的平分线与直线l 的交点.21600cm ADC AEC ∠=∠PC PD =2AO =2216AF EF +=ABC ∠AM CD ⊥12y kx n =+04n <<1:32l y x =-+AOB ∠(1)求点P 的坐标______.(2)如果直线AB ,l ,x 轴不能围成三角形,且的面积为,求直线AB 的解析式.(3)如果作直线,过点作x 轴的平行线与直线l 交于点M ,与直线g 交于点N .过点N 作y 轴的平行线与直线AB 交于点Q ,是否存在k 的值,使得的和始终是一个定值d ,若存在,求出k 的值及定值d ;若不存在,请说明理由.PAB △541:g y x n=-()0,1MN QN +。
第1页(共17页)2023-2024学年八年级下学期期末考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项
1.(3分)下列各组数是勾股数的是(
)A .2,3,4
B .3,4,5
C .4,5,6
D .5,6,7
2.(3分)计算
r2r1−r1的结果为(
)A .1B .2
C .2r1
D .2r13.(3分)某校举行健美操比赛,甲、乙、丙三个班各选10名学生参加比赛,三个班参赛学生的平均身高都是1.65米,其方差分别是s 甲2=1.9,s 乙2=2.4,s 丙2=1.6,则参赛学生身高比较整齐的班级是(
)A .甲班B .乙班C .丙班
D .三个班一样整齐4.(3分)小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC 、BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是(
)
A .对角线互相平分的四边形是平行四边形
B .两组对角分别相等的四边形是平行四边形
C .两组对边分别相等的四边形是平行四边形
D .两组对边分别平行的四边形是平行四边形
5.(3分)下列计算正确的是(
)A .2+3=5B .42−2=3
C .3×5=8
D .6÷3=26.(3分)如图,在Rt △ABC 中,∠ACB =90°,AB =12,CD 是AB 边上的中线,则
CD 的长为()
A .24
B .12
C .8
D .6。
2023学年第二学期初二年级期末素养分析数学学科试卷一、选择题: (本大题共6题,每题3分,满分18分)1.一次函数y=-3x+1的图像不经过( ▲ ).(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限2.用换元法解分式方程x―2x ―3xx―2=2时,如果设x―2x=y,那么原方程可化为( ▲ ).(A)y²+2y―3=0(B)y²―2y―3=0(C)y²―3y―2=0(D)y²―y―2=03.下列方程中,没有实数解的是( ▲ ).(A)x²―3=0(B)x2x―2=4x―2(C)x²+y²=0(D)x―4+1=04.如果一个多边形的内角和与外角和相等,那么这个多边形是( ▲ ).(A)三角形 (B)四边形 (C)五边形 (D)六边形5.如图, 梯形ABCD中AD∥BC, AB=CD, O为对角线AC与BD 的交点, 那么下列结论正确的是( ▲ ).(A)AB+AD=BD(B)AC=BD(C)|AC|=|BD|(D)AB―AD=BD6.下列命题中,真命题是(▲ ).(A)一组对边平行,且对角线平分一组对角的四边形是菱形;(B)一组对边平行,且另一组对边相等的四边形是平行四边形.(C)一组对边平行,且对角线相等的四边形是等腰梯形;(D)一组对边平行,且一组邻边互相垂直的四边形是矩形.,二、填空题: (本大题共12题,每题2分,满分24分)7.已知一次函数y=(k+1)x-1 与直线y=43x平行, 那么 k= ▲ .8.当a为▲时, 关于x的方程ax-5=3x无解.9.方程15x3+25=0的根是▲ .10.方程8―2x=―x的根是▲ .第1页共4页11.已知一次函数y=kx+b(k≠0,k 、b 均为常数)的图像如图所示,那么关于x 的不等式kx+b>0 的解集是 ▲ .12.在一个不透明的盒子中放入标号分别为1、2、9、4、5、6、7、8、9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号为合数的概率 ▲ :13.已知某种盆花,若每盆植3株时,平均每株盈利8元;若每盆增加1株,则平均每株盈利减少1元,要使每盆的盈利达到30元,每盆应多植多少株?如果设每盆多植x 株,那么可以列出的方程是 ▲ .14.已知四边形 ABCD 中,对角线AC 、BD 相互垂直, AC=2y, BD=8, 顺次联结这个四边形各边中点所得的四边形的面积等于 ▲ .15.如图, 已知△ABC 中,点D 、E 分别是边AB 、AC 中点, DE=5, 点F 、G 分别是DB 、EC 的中点, 则FG=▲ .16. 已知高为12的梯形ABCD 中, AD∥BC, ∠B 是锐角, AD=8, AB=15, CD=13,那么梯形ABCD 的面积为 ▲ .17.如果把正方形ABCD 绕点 C 旋转得到正方形A'B'CD',点 B'落在对角线AC 上,点 A'落"在 CD 的延长线上, 那么∠AA'B'= ▲ 度.18.对于任意三角形,如果存在一个菱形,使得这个菱形的一条边与三角形的一条边重合,且三角形的这条边所对的顶点在菱形的这条边的对边上,那么称这个菱形为该三角形的“友好菱形”.问题: 如图,在△ABC 中, AB=AC, BC=6,且△ABC 的面积为S. 如果△ABC 存在“友好菱形”为菱形BCMN ,那么S 的取值范围是 ▲ .三、简答题: (本大题共4题,每题6分,满分24分)19.解方程: 1x ―1―1=2xx 2―1.20.解方程组: {x 2―5xy +6y 2=02x ―y ―15=0第2页 共4页21.如图, 在四边形 ABCD中, AD∥BC,点O是对角线AC的中点, DO 的延长线与BC相交于点E,设AB=a,AD=b,BE=c(1)试用向量a、b⋅c表示向量:ED=¯;(2)写出图中所有与AD互为相反向量的向量: ▲——'B'(3) 求作: AD+OC (画出所求向量,并直接写出结论)22.如图,有一种四人对战桌游,游戏开始前,四个人通常经过抽签决定座位A、B、C、D,小杰和小明一同报名参加了这项桌游.(1)小明抽中座位 A 的概率为▲ ;(2)若面对面座位上的两人视为游戏中的盟友,求小杰和小明成为盟友的概率.(要求利用“画树形图”法求解)四、解答题: (本大题共4题, 第 23、24 每题8分, 第25、26题9分, 满分34分)23.小杰、小明两人在一段笔直的滨江步道上同起点、同终点、同方向匀速步行 3200 米,先到终点的人原地休息.已知小杰先出发4分钟,在整个步行过程中,小杰、小明两人间的距离y(米)与小杰出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD 所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求小明的步行速度;(3)求小明比小杰早几分钟到达终点?24. 如图, 在平行四边形ABCD中, 点E、F、G、H分别在边AB、BC、CD、DA上,BE=DG,BF=DH.(1) 求证: 四边形EFGH是平行四边形;(2) 当AB=BC, 且BE=BF时, 请判断四边形EFGH的形状并证明.第3页共4页25.如图,在平面直角坐标系中,函数y=2x+6的图象分别交x轴、y轴于A、B两点.过点A 的直线交y轴正半轴于点 M,且点M 为线段OB的中点.(1) 求直线AM的解析式;(2)试在直线AM 上找一点 P,使得.△ABP与△AOB面积相等,请求出点 P的坐标;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是等腰梯形?若存在,请求出点H的坐标;若不存在,请说明理由.26.如图,在正方形ABCD中, AB=8cm, 点O是对角线AC的中点, 动点P、Q 分别从点A、B同时出发, 点P以2cm/s的速度沿边AB 向终点 B 匀速运动,点 Q 以4cm/s的速度沿折线BC-CD 向终点 D 匀速运动, 联结 PO 并延长交边 CD 于点 M, 联结QO 并延长交折线DA-AB 于点 N, 联结PQ、QM、MN、NP, 得到四边形 PQMN.设点P的运动时间为x(s) (0<x<4) , 四边形PQMN的面积为y(cm²)(1) BP的长为 cm, CM的长为 cm; (用含x的代数式表示)(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当四边形PQMN是轴对称图形时,请直接写出x的值.第4页共4 页。
新人教版八年级数学下册期末测试卷(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.248.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.21273=___________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、D5、D6、B7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、523、32或424、10.5、36、15.三、解答题(本大题共6小题,共72分)1、x=32、x 2-,32-. 3、(1)12,32-;(2)略.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
2023年部编版八年级数学下册期末考试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC等于()A.1cm B.2cm C.3cm D.4cm9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x=,则x=__________2.已知34(1)(2)xx x---=1Ax-+2Bx-,则实数A=__________.3.若m+1m=3,则m2+21m=________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.5.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图),设勾a=3,弦c=5,则小正方形ABCD 的面积是_______。
2023年人教版八年级数学下册期末考试题(真题)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知3y =,则2xy 的值为( )A .15-B .15C .152-D .1522.三角形的三边长为22()2a b c ab +=+,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 5.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②∠EAG=45°;③CE=2DE ;④AG ∥CF ;⑤S △FGC =725.其中正确结论的个数是( )A.2个B.3个C.4个D.5个7.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC ⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A5B.2 C.52D.510.下列选项中,不能判定四边形ABCD是平行四边形的是()A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.计算:()()201820195-252+的结果是________.4.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .三、解答题(本大题共6小题,共72分)1.用适当的方法解方程组(1)3322x yx y=-⎧⎨+=⎩(2)353123x yx y-=⎧⎪⎨-=⎪⎩2.先化简,再求值:2443(1)11m mmm m-+÷----,其中22m=-.3.解不等式组()31511242x xxx⎧-<+⎪⎨-≥-⎪⎩,并写出它的所有非负整数解.4.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.5.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、A5、B6、D7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、22()1y x =-+324(1)n n=+≥5、46、(10,3)三、解答题(本大题共6小题,共72分)1、(1) 47x y =-⎧⎨=⎩;(2) 831x y ⎧=⎪⎨⎪=⎩2、22mm -+1.3、非负整数解是:0,1、2.4、(1)家与图书馆之间路程为4000m ,小玲步行速度为100m/s ;(2)自变量x 的范围为0≤x ≤403;(3)两人相遇时间为第8分钟.5、(1)略;(2)略.6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。
八年级数学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是(▲)2.某校有教师80名,为体现“人文关怀,尊师重教”,学校决定按月为教师过集体生日.办公室先随机抽查统计了其中13名教师的出生月份,则下列说法正确的是(▲)A .这是一个抽样调查,样本是被抽查的13名教师B .这个问题中的总体是80名教师C .“这13名教师中有人出生月份相同”是随机事件D .这是一个抽样调查,样本是被抽查的13名教师的出生月份 3.已知关于x 的方程x2-kx +6=0有两个实数根,则k 的值不可以是(▲)A .5B .-8C .26D .4ABCD4.如果把分式3xyx -y 中的x 和y 都扩大为原来的2倍,那么分式的值(▲)A .不变B .缩小为原来的12C .扩大2倍 D .扩大4倍 5.函数y =kx +k 与y =kx (k ≠0)在同一坐标系内的图象可能是(▲)A . B. C. D.6.如图,在矩形ABCD 中,AB =2,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E.若BE =EO ,则AD 的长是(▲)A .6 2BABCD EO二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题纸相应位置上)10.代数式1x +1 有意义的x 的取值范围是 ▲ ,x +1 有意义的x 的取值范围是 ▲ .11.在一个不透明的袋子里,装有除颜色外其余匀相同的3个白色球和若干个黄色球,摇匀后,从这个袋子里随机摸出一个球,放回摇匀.23C .3 2D .25(第6题)再摸出一个球,经过大量重复实验,摸到黄球的频率在0.4左右,则袋子内有黄色球 ▲ 个.12.关于x 的方程x2+mx +2m =0的两个实根分别为x1,x2,若x1+x2=1,则x1x2= ▲ .13.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了赶在雨季前竣工,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x 万平方米,根据题意列方程得 ▲ . 14.某种服装原价为200元,现连续两次降价,每次降价的百分率相同.已知降价后的价格不能低于进价110元,且第一次降价后的价格比第二次降价后的价格高32元,则每次降价的百分率是 ▲ . 15.△ABC 中,AB =AC =13,BC =10,D 在△ABC 内,且BD =CD ,∠BDC =90°,E 、F 、G 、H 分别是AB 、AC 、BD 、CD 的中点,则四边形EFHG 的面积为 ▲ .16.已知:一次函数y =15x -1与x 轴、y 轴的交点分别为A 、B ,△ABC 是以AB 为斜边的等腰直角三角形,其中,直角顶点C 在反比例函数y =kx(x >0)的图像上,则k = ▲ .三、解答题(本大题共10小题,共计68分) 17.(7分)计算:(1) 2a3·8a (a ≥0); (2)(212-13)×6.HGFEDCBAxyCBA O (第16题)(第15题)18.(5分)化简:2aa2-9 - 1a -3.19.(5分)解方程:x2-3x =2(3-x).20.(6分)先化简:a2+a a2-2a +1÷(2a -1-1a ),再从-2,-1,0,1这四个数中取一个合适的数作为a 的值代入求值.21.(6分)手机是现代人生活中不可或缺的工具.某校“小记者”为了了解市民使用手机的品牌,随机调查了我区部分市民的手机品牌,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=▲,扇形统计图中E组所占的百分比为▲;(2)我区拥有30万手机用户,请估计其中使用华为手机的用户数量;(3)若在这次接受调查的市民中,随机抽查一人,则此人用小米手机的概率是▲.22.(本题7分)已知关于x 的一元二次方程(x -m)2-2(x -m)=0(m 为常数).(1)求证:不论m 为何值,该方程总有两个不相等的实数根; (2)若该方程一个根为3,求m 的值.23.(8分)如图,将矩形ABCD 绕点C 旋转得到矩形FECG ,点E在AD 上,延长ED 交FG 于点H .(1)求证:△EDC ≌△HFE ;(2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论;②若BC 长为2,则AB 的长为▲时,ABCD E FH GxyO四边形BEHC 为菱形.24.(6分)我们已经学习过反比例函数y =1x 的图像和性质,请你回顾研究它的过程,运用所学知识,对函数y =1x2的图像和性质进行探索,并解决下列问题:(1)该函数的图像大致是( ▲ )A .B .C .D .(2)写出该函数两条不同类型的性质:(第23题)yxOyxOy xO①▲;②▲.(3)写出不等式1x2-4>0的解集:▲.25.(8分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间正好可以住满.每个房间每天的定价每增加10元,就会有一个房间空闲.已知有游客入住的房间,宾馆每天需对每个房间支出50元的各种费用.(1)若某天宾馆的入住量为58个房间,则该天宾馆的利润为▲元;(2)求宾馆每天房间入住量达到多少个时,每天的利润为11000元.26.(10分)如图,正方形ABCD中,E是CD边的中点,F是BC边上一点,∠FAE=∠DAE.(1)求证:AF=AD+CF;(2)已知正方形ABCD的边长为4.①求AF之长;②若P是AE上一点,且△DEP是等腰三角形,则线段EP的长为▲.FE D CBA(第26题)八年级数学参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空(本大题共10小题,每小题2分,共20分)7.3 8.100°9.2 10.x≠-1;x≥-1 11.2 12.-213.=+30 14.20% 15.16.4 三、解答题17.(本题7分)计算: (1)2a3·8a (a ≥0); 解:原式=2a3·8a=16a4…………………………………………………………1分=4a2……………………………………………………………3分(2)(212-13)×6.解:原式=212·6-· 6=212×6-×6……………………………………………2分=272-2…………………………………………3分 =122-2=112…………………………………………………………4分18.(5分)化简: 2aa2-9 - 1a -3.解:原式= 2a(a+3)(a -3)- 1a -3=2a -(a+3)(a+3)(a -3)…………………………………3分=a -3(a+3)(a -3)…………………………………4分=1(a+3)…………………………………5分 19.(5分)解方程:x2-3x =2(3-x).解:左边提取-x 得:-x(3-x)=2(3-x) …………………………1分 移项,得-x(3-x)-2(3-x)=0 ………………………………2分 (-x -2)(3-x)=0………………………………3分x1=3,x2=-2 ………………………………………………5分 20.(本题6分)解:原式=a(a +1)(a -1)2÷2a -a+1a(a -1)………………………………………2分=a(a +1)(a -1)2× a(a -1)a+1………………………………………………3分 =a2a -1………………………………………………4分选a =-2代入求得结果为-43.………………………………6分(注:a 只能取-2) 21.(本题6分)解:(1)40;15%………………………………2分(2)30×30%=9(万)答:其中使用华为手机的用户数量为9万人. …………………………4分(3)…………………………6分 22.(本题7分)(1)证明:x2-2mx+m2-2x+2m =0x2-(2m+2)x+m2+2m =0………………………1分 △=(2m+2)2-4(m2+2m) ………………………2分 =4m2+4m+4-4m2-2m=4 …………………3分∵4>0,∴不论m 为何值,该方程总有两个不相等的实数根;……………4分(2)解:(3-m)2-2(3-m)=0…………………5分(3-m -2)(3-m)=0 (1-m)(3-m)=0解得m1=1,m2=3 …………………7分 (其它证法与解法参照给分)23.(本题8分)(1)证明:∵四边形FECG 是矩形,∴FG ∥EC , ∴∠CED=∠EHF , ……………………. 1分∵四边形FECG 是矩形,∴∠EDC=∠F=90°,DC=FE , ………….2分 在△EDC 和△HFE 中 ⎩⎪⎨⎪⎧∠CED=∠EHF ,∠EDC=∠F ,DC=FE .∴△EDC ≌△HFE (AAS );…………….3分(2)解:①四边形BEHC 是平行四边形…………………..4分∵△EDC ≌△HFE ,∴EH =EC ,………………….................................…..5分 ∵矩形FECG 由矩形ABCD 旋转得到, ∴EH =EC =BC ,EH ∥BC ,∴四边形BEHC 为平行四边形. ………………….....6分 ②………………….................................….. 8分 24.(本题6分)解:(1)D ………………….................................…..2分(第23题)AB CDGFEH(2)①函数y=1x2的图像关于y轴对称;…………………...................….3分②当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小.…………..4分(3)不等式1x2-4>0的解集为:-< x<0或0<x<. …………………...............6分25.(本题8分)解:(1)9860;………………….................................…..2分(2)设每个房间每天的定价增加了x 元………………….....................3分根据题意,得:(60-)(200+x-50)=11000 ……….......................…..5分化简得:x2-450x+20000=0解得:x1=50,x2=400 …………..…………..…………..7分∴60-×50=55(个)或60-×400=20(个)答:每天房间入住量达到55个或20(个)时,利润为11000元...…………..8分26.(本题10分)解:(1)过E 点作EG ⊥AF ,垂足为G ,连接EF .(也可延长AE 、BC 交于P ,用全等和等腰三角形知识解决) ∵EG ⊥AF∴∠EGF =∠AGE =90°, ∵四边形ABCD 是正方形, ∴∠C =∠D =90°, 在△AGE 和△ADE 中, ⎩⎪⎨⎪⎧∠FAE =∠DAE ,∠D =∠AGE ,AE =AE .∴△AGE ≌△ADE(AAS)∴AD=AG ,GE=DE ……….................................2分 ∵E 是CD 边的中点, ∴CE=DE ,∴GE=CE , ……….................................…..3分 在Rt △EGF 和Rt △ECF 中,⎩⎪⎨⎪⎧GE=CE ,EF =EF .∴Rt △EGF ≌Rt △ECF(HL)∴GF =CF ……….................................…..4分 ∵AF =AG +GF ,∴AF =AD +CF .……….................................…..5分 (2)①设: CF=x ,则BF =4-x ,AF =4+x在Rt △ABF 中,AB =AD =4∴42+(4-x)2=(4+x)2……….................................….7分 解得x=1∴AF =AD +CF=4+1=5………..................................8分 ②2或或……….................................…..10分。
(VIP&校本题库)2022-2023学年福建省福州市福清市八年级(下)期末数学试卷一、选择题(共7小题)A .30°B .35°C .45°D .60°1.如图,正六边形ABCDEF 内接于⊙O ,若直线PA 与⊙O 相切于点A ,则∠PAB =( )A .133B .92C .4313D .252.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )√√A .40°B .60°C .70°D .80°3.如图,PA 和PB 是⊙O 的切线,点A 和点B 是切点,AC 是⊙O 的直径,已知∠P =40°,则∠ACB 的大小是( )A .4B .23C .8D .434.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =12,则A B 的长是( )√√A .4cm B .3cm C .2cm D .1.5cm5.如图,一个边长为4cm 的等边三角形ABC 的高与⊙O 的直径相等.⊙O 与BC 相切于点C ,与AC 相交于点E ,则CE 的长为( )6.如图,PA 、PB 分别与⊙O 相切于A 、B 两点,若∠C =65°,则∠P 的度数为( )二、填空题(共9小题)A .65°B .130°C .50°D .100°A .70°B .60°C .55°D .35°7.如图,AC 是⊙O 的切线,切点为C ,BC 是⊙O 的直径,AB 交⊙O 于点D ,连接OD .若∠BAC =55°,则∠COD 的大小为( )8.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F .若∠ACF =65°,则∠E = .9.如图,已知AB 是⊙O 的一条直径,延长AB 至C 点,使AC =3BC ,CD 与⊙O 相切于D 点.若CD =3,则劣弧AD 的长为 .√10.如图,将一块含30°角的直角三角板和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA =2,则图中阴影部分的面积为 .(结果保留π)11.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠C =20°,则∠CDA = °.12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD 的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心,其中正确结论是 (只需填写序号).⌢13.如图,AB 切⊙O 于点B ,OA =23,∠BAO =60°,弦BC ∥OA ,则BC 的长为 (结果保留π).√⌢三、解答题(共14小题)14.如图,AB 为⊙O 的直径,延长AB 至点D ,使BD =OB ,DC 切⊙O 于点C ,点B 是CF 的中点,弦CF交AB 于点E .若⊙O 的半径为2,则CF = .⌢15.小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB ,CD 分别相切于点N ,M .现从如图所示的位置开始,将光盘在直尺边上沿着CD 向右滚动到再次与AB 相切时,光盘的圆心经过的距离是 .16.如图,在矩形ABCD 中,AB =8,AD =12,过A ,D 两点的⊙O 与BC 边相切于点E ,则⊙O 的半径为 .17.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作⊙O 的切线DF ,交AC 于点F .(1)求证:DF ⊥AC ;(2)若⊙O 的半径为4,∠CDF =22.5°,求阴影部分的面积.18.如图,AB 为⊙O 的直径,直线CD 切⊙O 于点D ,AM ⊥CD 于点M ,BN ⊥CD 于N .(1)求证:∠ADC =∠ABD ;(2)求证:AD 2=AM •AB ;(3)若AM =185,sin ∠ABD =35,求线段BN 的长.19.如图,AB 是半圆O 的直径,CD ⊥AB 于点C ,交半圆于点E ,DF 切半圆于点F .已知∠AEF =135°.(1)求证:DF ∥AB ;(2)若OC =CE ,BF =22,求DE 的长.√20.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交AB 于点M ,交BC 于点N ,连接AN ,过点C 的切线交AB 的延长线于点P .(1)求证:∠BCP =∠BAN(2)求证:AM MN =CB BP.21.如图,在△ABC 中,∠C =90°,以AB 上一点O 为圆心,OA 长为半径的圆恰好与BC 相切于点D ,分别交AC 、AB 于点E 、F .(1)若∠B =30°,求证:以A 、O 、D 、E 为顶点的四边形是菱形.(2)若AC =6,AB =10,连接AD ,求⊙O 的半径和AD 的长.22.如图,AB 是⊙O 的直径,CD 与⊙O相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E .(1)求证:DC =DE ;(2)若tan ∠CAB =12,AB =3,求BD 的长.23.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点B 作⊙O 的切线DE ,与AC 的延长线交于点D ,作AE ⊥A C 交DE 于点E .(1)求证:∠BAD =∠E ;(2)若⊙O 的半径为5,AC =8,求BE 的长.24.如图,在△ABC 中,BA =BC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,BC 的延长线于⊙O 的切线AF 交于点F .(1)求证:∠ABC =2∠CAF ;(2)若AC =210,CE :EB =1:4,求CE 的长.√25.如图,MN 是⊙O 的直径,QN 是⊙O 的切线,连接MQ 交⊙O 于点H ,E 为MH 上一点,连接ME ,NE ,NE 交MQ 于点F ,且ME 2=EF •EN .(1)求证:QN =QF ;(2)若点E 到弦MH 的距离为1,cos ∠Q =35,求⊙O 的半径.⌢26.如图,AB 是⊙O 的直径,点C 是AB 的中点,⊙O 的切线BD 交AC 的延长线于点D ,E 是OB 的中点,CE 的延长线交切线BD 于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:AC =CD ;(2)若OC =5,求BH 的长.⌢√27.如图1,一个圆球放置在V 型架中.图2是它的平面示意图,CA 、CB 都是⊙O 的切线,切点分别是A 、B ,如果⊙O 的半径为23cm ,且AB =6cm ,求∠ACB .√28.如图,AB 是⊙O 的直径,ED =BD ,连接ED 、BD ,延长AE 交BD 的延长线于点M ,过点D 作⊙O 的切线交AB 的延长线于点C .(1)若OA =CD =22,求阴影部分的面积;(2)求证:DE =DM .⌢⌢√29.如图,已知AB 是⊙O 的弦,CD 是⊙O的直径,CD ⊥AB ,垂足为E ,且点E 是OD 的中点,⊙O 的切线BM 与AO 的延长线相交于点M ,连接AC ,CM .(1)若AB =43,求AB 的长;(结果保留π)(2)求证:四边形ABMC 是菱形.√⌢30.如图,已知四边形ABCD 是平行四边形,AD 与△ABC 的外接圆⊙O 恰好相切于点A ,边CD 与⊙O 相交于点E ,连接AE ,BE .(1)求证:AB =AC ;(2)若过点A 作AH ⊥BE 于H ,求证:BH =CE +EH .。
首都师范大学附属育新学校中学部第二学期期末考试试卷
初 二 数 学
班级 姓名 成绩
一.选择题 (共10题,每题3分)
1.如果,5)5(2x x -=-那么( )
A .x>0 B.x≤ 5 C . 不存在 D. 以上都不对
2.在直角坐标系中,点P (-3,5)关于Y 轴对称的点的坐标是( )
A .(3,5)
B .(3,-5)
C .(-3,5)
D .(-3,-5)
3
由图象可知,不挂物体时,弹簧的长度为( ) A . 7cm
B . 8cm
C . 9cm
D . 10cm
4.下列结论不成立的是 ( )
A .顶角相等的两个等腰三角形相似
B .直角边对应成比例的两个直角三角形相似
C .一对锐角对应相等的两个直角三角形相似
D .底和腰对应成比例的两个等腰三角形相似
5.一个三角形三边之比为3:5:7,与之相似的另一个三角形最长边为21cm ,则其余两边之和为( )
A .24cm
B .26 cm
C . 28 cm
D . 32 cm
6.在∆ABC 中,∠A :B ∠:C ∠=1:2:3,则tanA+cosB 等于( )
A .
223+ B . 23 C . 635 D .6332+ x(kg)。