2.1.1离散型随机变量导学案(选修2-3)
- 格式:doc
- 大小:36.50 KB
- 文档页数:2
§2.1.1 离散型随机变量【学习要求】1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系.【学法指导】引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广.【知识要点】1.随机试验:一般地,一个试验如果满足下列条件:(1)试验可以在相同的情形下重复进行;(2)试验所有可能的结果是明确的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验.2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量.3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量.【问题探究】探究点一随机变量的概念问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢?问题2随机变量和函数有类似的地方吗?例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.(1)上海国际机场候机室中2013年10月1日的旅客数量;(2)2013年某天济南至北京的D36次列车到北京站的时间;(3)2013年某天收看齐鲁电视台《拉呱》节目的人数;(4)体积为1 000 cm3的球的半径长.小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值.跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值;(4)某个人的属相.探究点二离散型随机变量的判定问题1什么是离散型随机变量?问题2非离散型随机变量和离散型随机变量有什么区别?例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出.跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由.(1)白炽灯的寿命ξ;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ;(4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数.探究点三离散型随机变量的应用例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果.(2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η.(2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ.(3)离开天安门的距离η.(4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ.【当堂检测】1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数2.10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是()A.2枚都是4点B.1枚是1点,另1枚是3点C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________.【课堂小结】1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.2.写随机变量表示的结果,要看三个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.【课后作业】一、基础过关1.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是() A.取到的球的个数B.取到红球的个数C.至少取到一个红球D.至少取到一个红球的概率2.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,在950 Ω~1 200 Ω之间的阻值记为X;④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是()A.①②B.①③C.①④D.①②④3.袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是()A.5 B.9C.10 D.254.某人射击的命中率为p(0<p<1),他向一目标射击,当第一次射中目标则停止射击,射击次数的取值是()A.1,2,3,…,n B.1,2,3,…,n,…C.0,1,2,…,n D.0,1,2,…,n,…5.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标6.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.二、能力提升7.如果X是一个离散型随机变量且η=aX+b,其中a,b是常数且a≠0,那么η() A.不一定是随机变量B.一定是随机变量,不一定是离散型随机变量C.一定是连续型随机变量D.一定是离散型随机变量8.在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,抽取次数为ξ,则ξ=3表示的试验结果是__________________9.在一次考试中,某位同学需回答三个问题,考试规则如下:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.10.一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X,随机变量X的可能值有________个.11.设一汽车在开往目的地的道路上需经过5盏信号灯,ξ表示汽车首次停下时已通过的信号灯的盏数,写出ξ所有可能取值并说明这些值所表示的试验结果.12.某车间两天内每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内总得分为ξ,写出ξ的可能取值.三、探究与拓展13.小王钱夹中只剩有20元、10元、5元、2元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X表示这两张金额之和.写出X的可能取值,并说明所取值表示的随机试验结果§2.1.2离散型随机变量的分布列(一)【学习要求】1.在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念.认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.【学法指导】离散型随机变量的分布列可以完全描述随机变量所刻画的随机现象,利用分布列可以计算随机变量所表示的事件的概率.【知识要点】1.定义:一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i (i=1,2,…,n)的概率此表称为离散型随机变量X的概率分布列,简称为X的.2.离散型随机变量的分布列的性质:(1)p i 0,i =1,2,3,…,n ;(2)∑ni =1p i = .【问题探究】探究点一 离散型随机变量的分布列的性质问题1 对于一个随机试验,仅知道试验的可能结果是不够的,还要能把握每一个结果发生的概率.请问抛掷一枚骰子,朝上的一面所得点数有哪些值?取每个值的概率是多少?问题2 离散型随机变量X 的分布列刻画的是一个函数关系吗?有哪些表示法? 问题3 离散型随机变量的分布列有哪些性质?例1 设随机变量X 的分布列P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 小结 离散型随机变量的分布列的性质可以帮助我们求题中参数a ,然后根据互斥事件的概率加法公式求得概率.跟踪训练1 (1试说明该同学的计算结果是否正确.(2)设ξ①求q 的值;②求P (ξ<0),P (ξ≤0).探究点二 求离散型随机变量的分布列例2 将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.小结 (1)求离散型随机变量的分布列关键是搞清离散型随机变量X 取每一个值时对应的随机事件,然后利用排列、组合知识求出X 取每个值的概率,最后列出分布列.(2)求离散型随机变量X 的分布列的步骤是:首先确定X 的所有可能的取值;其次,求相应的概率P (X =x i )=p i ;最后列成表格的形式.跟踪训练2 将一颗骰子掷2次,求下列随机事件的分布列. (1)两次掷出的最小点数Y ;(2)第一次掷出的点数减去第二次掷出的点数之差ξ.【当堂检测】1.下列表中可以作为离散型随机变量的分布列的是( )ABCD2.设随机变量ξ的分布列为P (ξ=i )=a ⎝⎛⎭⎫13i,i =1,2,3,则a 的值为 ( ) A .1B .913C .2713D .11133.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________.4.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.【课堂小结】1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.【课后作业】一、基础过关1.若随机变量X( )A .1B .12C .13D .162.设随机变量X 的分布列为P (X =k )=m ⎝⎛⎭⎫23k,k =1,2,3,则m 的值为( )A .1718B .2738C .1719D .27193.抛掷2颗骰子,所得点数之和ξ是一个随机变量,则P (ξ≤4)等于( ) A .16 B .13 C .12D .234.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止,所需要的取球次数为随机变量ξ,则ξ的可能取值为( )A .1,2,3,…,6B .1,2,3,…,7C .0,1,2,…,5D .1,2,…,5 5.随机变量ξ的所有可能取值为1,2,…,n ,若P (ξ<4)=0.3,则 ( ) A .n =3B .n =4C .n =10D .不能确定6.抛掷两次骰子,两次点数的和不等于8的概率为 ( )A .1112B .3136C .536D .1127.设随机变量X 的分布列为P (X =k )=Ck (k +1),k =1,2,3,C 为常数,则P (0.5<X <2.5)=________.二、能力提升8.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A .⎣⎡⎦⎤0,13B .⎣⎡⎦⎤-13,13C .[-3,3]D .[0,1]9.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A .1220B .2755C .27220D .212510.盒中装有大小相等的10个球,编号分别是0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.11.已知随机变量ξ(1)求η1=12ξ的分布列;(2)求η2=ξ2的分布列.12.从4张已编号(1~4号)的卡片中任意取出2张,取出的卡片号码数之和为X .求随机变量X 的分布列.三、探究与拓展13.安排四名大学生到A ,B ,C 三所学校支教,设每名大学生去任何一所学校是等可能的.(1)求四名大学生中恰有两人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.§2.1.2 离散型随机变量的分布列(二)【学习要求】1.进一步理解离散型随机变量的分布列的求法、作用.2.理解两点分布和超几何分布.【学法指导】两点分布是常见的离散型随机变量的概率分布,如某队员在比赛中能否胜出,某项科学试验是否成功,都可用两点分布来研究.在产品抽样检验中,一般采用不放回抽样,则抽到次品数服从超几何分布;在实际工作中,计算次品数为k 的概率,由于涉及产品总数,计算比较复杂,因而,当产品数较大时,可用后面即将学到的二项分布来代替.【知识要点】1则称离散型随机变量X 服从2.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC nN,k =0,1,2,…,m ,其中*为 .如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从【问题探究】探究点一 两点分布问题1 利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?问题2 只取两个不同值的随机变量是否一定服从两点分布?例1 袋中有红球10个,白球5个,从中摸出2个球,如果只关心摸出两个红球的情形,问如何定义随机变量X ,才能使X 满足两点分布,并求分布列.小结 两点分布中只有两个对应的结果,因此在解答此类问题时,应先分析变量是否满足两点分布的条件,然后借助概率的知识,给予解决.跟踪训练1 设某项试验成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=0)等于 ( ) A .0B .12C .13D .23探究点二 超几何分布问题 超几何分布适合解决什么样的概率问题?例2 从一批含有13件正品、2件次品的产品中,不放回任取3 件,求取得次品数为ξ的分布列.跟踪训练2 某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中的男生人数. (1)求X 的分布列;(2)求至少有2名男生参加数学竞赛的概率. 探究点三 实际应用例3 在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从这10张中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.小结 此类题目中涉及的背景多数是生活、生产实践中的问题,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等,分析题意,判断其中的随机变量是否服从超几何分布是解决此类题目的关键. 跟踪训练3 交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人所得钱数的分布列.【当堂检测】1.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为 ( ) A .C 35C 350B .C 15+C 25+C 35C 350 C .1-C 345C 350D .C 15C 25+C 25C 145C 3502.一个箱内有9张票,其号数分别为1,2,3,…,9,从中任取2张,其号数至少有一个为奇数的概率是 ( )A .13B .12C .16D .563.在掷一枚图钉的随机试验中,令X =⎩⎪⎨⎪⎧1,针尖向上0,针尖向下,如果针尖向上的概率为0.8,试写出随机变量X 的分布列为___________4.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________【课堂小结】1.两点分布两点分布是很简单的一种概率分布,两点分布的试验结果只有两种可能,要注意成功概率的值指的是哪一个量.2.超几何分布超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -k N -MC nN求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.【课后作业】一、基础过关1.在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是 ( )A .150B .125C .1825D .14 9502.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A 的概率为( )A .C 34C 248C 552B .C 348C 24C 552 C .1-C 148C 44C 552D .C 34C 248+C 44C 148C 5523.一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中白球的个数记为X ,则下列概率等于C 122C 14+C 22C 226的是 ( )A .P (0<X ≤2)B .P (X ≤1)C .P (X =1)D .P (X =2) 4.在3双皮鞋中任意抽取两只,恰为一双鞋的概率为( )A .15B .16C .115D .135.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品 6.若离散型随机变量X 的分布列为:则c =________. 二、能力提升7.从只有3张中奖的10张彩票中不放回随机逐张抽取,设X 表示直至抽到中奖彩票时的次数,则P (X =3)等于( )A .310B .710C .2140D .7408.若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=____. 9.有同一型号的电视机100台,其中一级品97台,二级品3台,从中任取4台,则二级品不多于1台的概率为________.(用式子表示)10.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.11.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.求X的分布列.三、探究与拓展12.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计算介于20分到40分之间的概率.§2.2.1条件概率【学习要求】1.理解条件概率的定义.2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.【学法指导】理解条件概率可以以简单事例为载体,先从古典概型出发求条件概率,然后再进行推广;计算条件概率可利用公式P(B|A)=P(AB)P(A),也可以利用缩小样本空间的观点计算.【知识要点】1.条件概率的概念设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件发生的条件下,事件发生的条件概率.P(B|A)读作发生的条件下发生的概率.2.条件概率的性质(1)P(B|A)∈.(2)如果B与C是两个互斥事件,则P(B∪C|A)=.【问题探究】探究点一条件概率问题13张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?问题2如果已知第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?问题3怎样计算条件概率?问题4若事件A、B互斥,则P(B|A)是多少?例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.小结利用P(B|A)=n ABn A解答问题的关键在于明确B中的基本事件空间已经发生了质的变化,即在A事件必然发生的前提下,B事件包含的样本点数即为事件AB包含的样本点数.跟踪训练1一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求第一次取到白球的条件下,第二次取到黑球的概率.探究点二条件概率的性质及应用问题条件概率满足哪些性质?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.小结本题条件多,所设事件多,要分清楚事件之间的关系及谁是条件,同时利用公式P(B∪C|A)=P(B|A)+P(C|A)可使有些条件概率的计算较为简捷,但应注意这个性质在“B与C互斥”这一前提下才成立.跟踪训练2在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.【当堂检测】1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于()A.18B.14C.25D.122.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________ 3.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是_______4.考虑恰有两个小孩的家庭.若已知某家有男孩,求这家有两个男孩的概率;若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率.(假定生男生女为等可能)【课堂小结】1.条件概率:P(B|A)=P(AB)P(A)=n(AB)n(A).2.概率P(B|A)与P(AB)的区别与联系:P(AB)表示在样本空间Ω中,计算AB发生的概率,而P(B|A)表示在缩小的样本空间ΩA中,计算B发生的概率.用古典概型公式,则P(B|A)=AB中样本点数ΩA中样本点数,P(AB)=AB中样本点数Ω中样本点数.【课后作业】一、基础过关1.若P (A )=34,P (B |A )=12,则P (AB )等于( )A .23B .38C .13D .582.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2只球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( ) A .59 B .110C .35D .253.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .38D .344.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是 ( )A .110B .210C .810D .9105.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为 ( ) A .0.02B .0.08C .0.18D .0.726.有一匹叫Harry 的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天.在30场下雨天的比赛中,Harry 赢了15场.如果明天下雨,Harry 参加赛马的赢率是 ( )A .15B .12C .34D .3107.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1738C .419D .217二、能力提升8.一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球,则后两次也摸得白球的概率为________.9.以集合A ={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是________.10.抛掷红、蓝两枚骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两枚骰子的点数之和大于8”.(1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子点数为3或6时,问两枚骰子的点数之和大于8的概率为多少?11.把外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率.三、探究与拓展12.某生在一次口试中,共有10题供选择,已知该生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该生在第一题不会答的情况下及格的概率.§2.2.2 事件的相互独立性【学习要求】1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.【学法指导】相互独立事件同时发生的概率可以和条件概率对比理解,事件独立可以简化概率计算,学习中要结合实例理解.【知识要点】1.相互独立的概念设A ,B 为两个事件,若P (AB )= ,则称事件A 与事件B 相互独立. 2.相互独立的性质如果事件A 与B 相互独立,那么A 与 , 与B , 与 也都相互独立.【问题探究】探究点一 相互独立事件的概念问题1 3张奖券只有1张能中奖,3名同学有放回地抽取.事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“第三名同学抽到中奖奖券”,事件A 的发生是否会影响B 发生的概率?问题2 在问题1中求P (A )、P (B )及P (AB ),观察它们有何关系?总结相互独立事件的定义. 问题3 互斥事件与相互独立事件有什么区别?问题4 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立,如何证明?例1 (1)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥(2)掷一颗骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是 ( )A .互斥但不相互独立B .相互独立但不互斥。
2.1离散型随机变量及其分布列2.1.1离散型随机变量学习目标:1.理解随机变量及离散型随机变量的含义.(重点)2.了解随机变量与函数的区别与联系.(易混点)3.会用离散型随机变量描述随机现象.(难点)教材整理离散型随机变量阅读教材P40练习以上部分,完成下列问题.1.随机变量(1)定义:在试验中,试验可能出现的结果可以用一个变量X来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量.(2)表示:随机变量常用大写字母X,Y,…表示.2.离散型随机变量如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.()(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.()(3)随机变量是用来表示不同试验结果的量.()(4)试验之前可以判断离散型随机变量的所有值.()(5)在掷一枚质地均匀的骰子试验中,“出现的点数”是一个随机变量,它有6个取值.()【解析】(1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)√因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.(3)√因为由随机变量的定义可知,该说法正确.(4)√因为随机试验所有可能的结果是明确并且不只一个,只不过在试验之前不能确定试验结果会出现哪一个,故该说法正确.(5)√因为掷一枚质地均匀的骰子试验中,所有可能结果有6个,故“出现的点数”这一随机变量的取值为6个.【答案】(1)√(2)√(3)√(4)√(5)√随机变量的概念【例1】判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2019年5月1日的旅客数量;(2)2019年5月1日至10月1日期间所查酒驾的人数;(3)2019年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球的半径长.【精彩点拨】利用随机变量的定义判断.【解】(1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数(2)10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率【解析】(1)B项中水沸腾时的温度是一个确定值.(2)A中取到产品的件数是一个常量不是变量,B,D也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.【答案】(1)B(2)C离散型随机变量的判定【例2】指出下列随机变量是否是离散型随机变量,并说明理由.(1)某座大桥一天经过的车辆数X;(2)某超市5月份每天的销售额;(3)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(4)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ.【精彩点拨】随机变量的实际背景→判断取值是否具有可列性→得出结论【解】(1)车辆数X的取值可以一一列出,故X为离散型随机变量.(2)某超市5月份每天销售额可以一一列出,故为离散型随机变量.(3)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.(4)不是离散型随机变量,水位在(0,29]这一范围内变化,不能按次序一一列举.“三步法”判定离散型随机变量1.依据具体情境分析变量是否为随机变量.2.由条件求解随机变量的值域.3.判断变量的取值能否被一一列举出来,若能,则是离散型随机变量;否则,不是离散型随机变量.2.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后结果都加上6分,求最终得分η的可能取值,并判定η是否为离散型随机变量.【解】(1)(2)由题意可得:η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},所以η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为6,11,16,21.显然,η为离散型随机变量.随机变量的可能取值及试验结果[探究问题]1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?【提示】 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字?【提示】 X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?【提示】 “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.【精彩点拨】分析题意→写出X可能取的值→分别写出取值所表示的结果【解】(1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两张卡片”;X=4,表示“取出标有1,3的两张卡片”;X=5,表示“取出标有2,3或标有1,4的两张卡片”;X=6,表示“取出标有2,4或1,5的两张卡片”;X=7,表示“取出标有3,4或2,5或1,6的两张卡片”;X=8,表示“取出标有2,6或3,5的两张卡片”;X=9,表示“取出标有3,6或4,5的两张卡片”;X=10,表示“取出标有4,6的两张卡片”;X=11,表示“取出标有5,6的两张卡片”.用随机变量表示随机试验的结果问题的关键点和注意点1.关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.2.注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.【解】(1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②在一段时间内,某候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.3D.4【解析】由随机变量定义可以直接判断①②③④都是正确的.故选D.【答案】 D2.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则{ξ=5}表示的试验结果是()A第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标【解析】{ξ=5}表示前4次均未击中,而第5次可能击中,也可能未击中,故选C.【答案】 C3.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是________.【解析】由于抽球是在有放回条件下进行的,所以每次抽取的球号均可能是1,2,3,4,5中某个.故两次抽取球号码之和可能为2,3,4,5,6,7,8,9,10,共9种.【答案】94.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.【解析】甲可能在3次射击中,一次也未中,也可能中1次,2次,3次.【答案】0,1,2,35.写出下列各随机变量可能的取值,并说明这些值所表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷两枚骰子,所得点数之和是偶数X.【解】(1)X的可能取值为1,2,3, (10)X=k(k=1,2,…,10)表示取出第k号球.(2)X的可能取值为0,1,2,3,4.X=k表示取出k个红球,4-k个白球,其中k=0,1,2,3,4.(3)X的可能取值为2,4,6,8,10,12.X=2表示(1,1);X=4表示(1,3),(2,2),(3,1);…;X=12表示(6,6).X的可能取值为2,4,6,8,10,12.。
2.1.2《离散型随机变量的分布列》的学案制作王敬审核高二数学组2016-05-30【学习目标】1.理解离散型随机变量分布列的概念、性质,会求分布列;能够运用概率分布求所给事件的概率.2.通过实例,理解超几何分布的意义及其概率的推导过程,并能运用公式解决简单问题.【重点、难点】重点:离散型随机变量分布列的概念、性质和分布列的求法.难点:简单离散型随机变量分布列的求法.【预习导航】抛掷一枚骰子,所得的点数X有哪些值?X取每个值的概率是多少?【导学新知】1.定义:概率分布(分布列)说明:离散型随机变量的分布列具有下述两个性质:(1)(2)【问题探究】探究活动一两点分布例1在掷一枚图钉的随机试验中,令⎩⎨⎧=,针尖向下;,针尖向上;1X如果针尖向上的概率为p,试写出随机变量X的分布列.问:本例关键要求出什么?根据什么知识来求解?2.两点分布由于例1中的随机变量X仅取0和1,像这样的分布列称为两点分布列. 说明:(1)(2)(3)(4)巩固练习一:1、设某项试验成功的概率是失败的概率的2倍,用随机变量X描述1次试验的成功次数,则P(X=0)等于( )A、0B、1/2C、1/3D、2/32、对于0-1分布,设P(0)=m,0<m<1,则P(1)=.3、篮球比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他一次罚球得分X的分布列.探究二超几何分布例2在含有5件次品的100件产品中,任取3件,求取到的次品数X的分布列.问:X的可能取哪些值?题中“任取3件”是指什么?变量X=0的概率怎么求?【拓展提高】观察其分布列有何规律?能否将此规律推广到一般情形.例3在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率.巩固练习二:1、在100件产品中有8件次品,现从中任取10件,用X表示10件产品中所含的次品件数,下列概率中等于的是( )A、P(X=3)B、P(X≤3)C、P(X=7)D、P(X≤7)2、在含有3件次品的5件产品中,任取2件,则恰好取到1件次品的概率是.3、从一副不含大小王的52张扑克牌中任意抽出5张,求至少有3张A的概率.4、袋中有4个红球,3个黑球,现从袋中随机取出4个球,设取到一个红球得2分取到一个黑球得1分(1) 求得分X的分布列;(2) 求得分X大于6的概率.【总结概括】本节课我们主要学习了什么内容?【课后作业】习题A组 P50 第6题B组第1、2题.。
2.1.1 离散型随机变量学习目标:1.理解随机变量及离散型随机变量的含义.(重点)2.了解随机变量与函数的区别与联系.(易混点)3.能写出离散型随机变量的可能取值,并能解释其意义.(难点)[自主预习·探新知]1.随机变量(1)定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母X,Y,ξ,η,…表示.思考:随机变量与函数有怎样的关系?[提示](1)定义:所有取值可以一一列出的随机变量,称为离散型随机变量.(2)特征:①可用数值表示.②试验之前可以判断其出现的所有值.③在试验之前不能确定取何值.④试验结果能一一列出.思考:离散型随机变量的取值必须是有限个吗?[提示]离散型随机变量的取值可以是有限个,例如取值为1,2,…,n;也可以是无限个,如取值为1,2,…,n,….[基础自测]1.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.( )(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.(3)离散型随机变量的取值是任意的实数.()[解析](1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)√因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.(3)×由离散型随机变量的定义可知它的取值能够一一列出,因此离散型随机变量的取值是任意的实数的说法错误.[答案](1)√(2)√(3)×2.下列变量中,是离散型随机变量的是( )【导学号:95032116】A.到2019年10月1日止,我国发射的人造地球卫星数B.一只刚出生的大熊猫,一年以后的身高C.某人在车站等出租车的时间D.某人投篮10次,可能投中的次数D[根据离散型随机变量的定义:其可能取到的不相同的值是有限个或可列为有限个,即可以按一定次序一一列出,试验前可以判断其出现的所有值.选项A、B、C的数值均有不确定性,而选项D中,投篮10次,可能投中的次数是离散型随机变量.]3.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止时,所需要的取球次数为随机变量X,则X的可能取值为( )A.1,2,3,…,6 B.1,2,3,…,7C.0,1,2,…,5 D.1,2,…,5B[由于取到白球游戏结束,由题意可知X的可能取值为1,2,3,4,5,6,7.]4.下列随机变量不是离散型随机变量的是________.【导学号:95032117】①某景点一天的游客数X;②某手机一天内收到呼叫次数X;③水文站观测到江水的水位数X;④某收费站一天内通过的汽车车辆数X.[解析]①②④中的随机变量X可能取的值,我们都可以按一定的次序一一列出,因此都是离散型随机变量;③中X可以取一区间内的一切值,无法按一定次序一一列出,故③不是离散型随机变量.[答案]③[合作探究·攻重难]随机变量的概念A.取到产品的件数B.取到正品的件数C.取到正品的概率D.取到次品的概率(2)判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.①北京国际机场候机厅中明天的旅客数量;②2018年5月1日至10月1日期间所查酒驾的人数;③2018年6月1日济南到北京的某次动车到北京站的时间;④体积为1 000 cm3的球的半径长.(1)B[A中取到的产品的件数是一个常量不是变量,C、D也是一个定值,而B中取到正品的件数可能是0,1,2,是随机变量.](2)[解]①旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.②所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.③动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.④球的体积为1 000 cm3时,球的半径为定值,不是随机变量.[规律方法]随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.[跟踪训练]1.判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某天腾讯公司客服接到咨询电话的个数;(2)标准大气压下,水沸腾的温度;(3)在一次绘画作品评比中,设一、二、三等奖,你的一件作品获得的奖次;(4)体积为64 cm3的正方体的棱长.[解](1)接到咨询电话的个数可能是0,1,2,…出现哪一个结果都是随机的,因此是随机变量.(2)标准大气压下,水沸腾的温度100℃是定值,所以不是随机变量.(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机的,因此是随机变量.(4)体积为64 cm3的正方体的棱长为4 cm为定值,不是随机变量.离散型随机变量的判定(1)某教学资源网站一天内的点击量.(2)你明天上学进入校门的时间.(3)某市明年下雨的次数.(4)抽检一件产品的真实质量与标准质量的误差.【导学号:95032118】[思路探究]根据随机变量的实际背景,判断随机变量的取值是否可以一一列出,从而判断是否为离散型随机变量.[解](1)某教学资源网站一天内的点击量可以一一列出,是离散型随机变量.(2)你明天上学进入校门的时间,可以是某区间内任意实数,不能一一列出,不是离散型随机变量.(3)某市明年下雨的次数可以一一列出,是离散型随机变量.(4)抽检一件产品的真实质量与标准质量的误差可以在某区间内连续取值,不能一一列出,不是离散型随机变量.[规律方法]离散型随机变量判定的关键及方法(1)关键:判断随机变量X的所有取值是否可以一一列出.(2)具体方法:①明确随机试验的所有可能结果;②将随机试验的试验结果数量化;③确定试验结果所对应的实数是否可按一定次序一一列出,如果能一一列出,则该随机变量是离散型随机变量,否则不是.2.给出下列四种变量(1)某电话亭内的一部电话1小时内使用的次数记为X.(2)某人射击2次,击中目标的环数之和记为X.(3)测量一批电阻,在950 Ω和1 200 Ω之间的阻值记为X.(4)一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中离散型随机变量的个数是( )A.1个B.2个C.3个D.4个B[(1)某电话亭内的一部电话1小时内使用的次数记为X,X是离散型随机变量;(2)某人射击2次,击中目标的环数之和记为X,X是离散型随机变量;(3)测量一批电阻,阻值在950 Ω~1 200 Ω之间,是连续型随机变量;(4)一个在数轴上运动的质点,它在数轴上的位置记为X,X不是随机变量.故离散型随机变量个数是2个.]3.有下列问题:(1)某单位一天来往的人数X;(2)从已编号的5张卡片中(从1号到5号)任取一张,被取出的卡片号数X;(3)一天内的温度为X;(4)某人一生内的身高为X;(5)全民运动会上,一选手进行射箭比赛,击中目标得10分,未击中目标得零分,用X表示该选手在比赛中的得分;(6)某林场树木最高达50米,此林场树木的高度X.上述问题中的X是离散型随机变量的是________.[解析](1),(2),(5)都可以一一列出,故都是离散型随机变量,而(3),(4)都是连续型随机变量,不能一一列出,(6)也不能一一列出,树木高度有无限多个,也不是离散型随机变量.[答案](1),(2),(5)随机变量的可能取值及试验结果1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?[提示]可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X,则X可取哪些数字?[提示]X=0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?[提示]“ξ≥4”表示出现的点数为4点,5点,6点.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.【导学号:95032119】[思路探究]分析题意→写出X可能取的值→分别写出取值所表示的结果[解](1)X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X=3表示取出的球编号为1,2,3.X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.母题探究:1.(变换条件、改变问法)在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解]ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.2.(改变问法)本例(2)中,“最大”改为“最小”,其他条件不变,应如何解答?[解]X可取1,2,3.X=3表示取出的3个球的编号为3,4,5;X=2表示取出的3个球的编号为2,3,4或2,3,5或2,4,5;X=1表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或1,2,4或1,3,4或1,2,3.[规律方法]用随机变量表示随机试验的结果的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值对应的意义,即一个随机变量的取值对应一个或多个随机试验的结果.4.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果. (1)在2018年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X ;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示. [解] (1)X 可能取值0,1,2,3,4,5,X =i 表示面试通过的有i 人,其中i =0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标; 当ξ=1时,表明该射手在本次射击中击中目标.[当 堂 达 标·固 双 基]1.袋中有2个黑球、6个红球,从中任取两个,可以作为随机变量的是( ) A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球D .至少取到一个红球的概率B [A 的取值不具有随机性,C 是一个事件而非随机变量,D 中概率值是一个定值而非随机变量,只有B 满足要求.]2.下列变量中,不是随机变量的是( )【导学号:95032120】A .2020年奥运会上中国取得的金牌数B .2018年冬奥会上中国取得的奖牌数C .某人投篮2次,投中的次数D .某急救中心每天接到的呼救次数B [2018年我国冬奥会上取得的奖牌数是一个具体的数字,不是随机变量,其他三个均为随机变量.] 3.随机变量X 是某城市1天之中发生的火警次数,随机变量Y 是某城市1天之内的温度,随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是( )A .X 和ξB .只有YC .Y 和ξD .只有ξB [某城市1天之内的温度不能一一列举,故Y 不是离散型随机变量.]4.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.【导学号:95032121】[解析] 甲可能在3次射击中,一次也未中,也可能中1次,2次,3次. [答案] 0,1,2,35.甲、乙两队员进行乒乓球单打比赛,规定采用“七局四胜制”.用ξ表示需要比赛的局数,写出“ξ=6”时表示的试验结果.[解] 根据题意可知,ξ=6表示甲在前5局中胜3局且在第6局中胜出或乙在前5局中胜3局且在第6局中胜出.。
2.1.1《离散型随机变量》导学案制作王敬审核高二数学组2016-05-27【学习目标】1.通过实例了解随机变量的概念,理解离散型随机变量的概念.2.能写出离散型随机变量的可能取值,并能解释其意义.【重点难点】重点:离散型随机变量的概念.难点:离散型随机变量的意义.【预习导航】1.一个试验如果满足下列条件:(1)试验可以在相同的情形下__________进行;(2)试验的所有可能结果是__________的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的__________,但在一次试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随着__________变化而变化的变量称为随机变量,随机变量常用字母X、Y、ξ、η等表示.3.______________________的随机变量,称为离散型随机变量.【问题整合】【问题1】一个正四面体玩具,四个面分别涂有红、黄、绿、黑,投掷一次观察落地一面的颜色,有多少种可能的结果?这些结果可以用数字表示吗?【问题2】在一块地里种了6棵树苗,设成活的树苗棵数为X,则X可取哪些数字?【探究活动一】随机变量及其取值的意义例1写出下列各随机变量可能的取值,并说明随机变量的值所表示的随机试验的结果.(1)正方体的骰子,各面分别刻着1、2、3、4、5、6,随意掷两次,所得的点数之和为ξ;(2)一个人要开房门,他共有10把钥匙,其中仅有一把是能开门的,他随机取钥匙去开门并且用后不放回,其中打开门所试的钥匙个数为ξ;(3)电台在每个整点都报时,某人随机打开收音机对表,他所等待的时间ξ(min).方法规律总结跟踪训练1100件产品中,含有5件次品,任意抽取4件产品,其中含有的次品数为ξ,抽取产品的件数为η,ξ、η是随机变量吗?【探究活动二】离散型随机变量例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④【方法规律总结】【方法规律总结】跟踪训练3盒中有9个正品和3个次品共12个零件,每次从中取一个零件,如果取出的是次品,则不再放回,直到取出正品为止,设取得正品前已取出的次品数为X.(1)写出X的所有可能取值.(2)写出X=2所表示的事件.(3)求X=2的概率.跟踪训练2下列随机变量中不是离散型随机变量的是()A.盒子里有除颜色不同,其他完全相同的红球和白球各5个,从中摸出3个球,白球的个数XB.小明回答20道选择题,答对的题数XC.某人早晨在车站等出租车的时间XD.某人投篮10次投中的次数X【探究三】离散型随机变量的取值及其概率写出下列各随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中任取1球,被取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷甲、乙两枚骰子,所得点数之和为X,所得点数之和是偶数为Y.【总结概括】本节课的收获:【课后作业】必做题:课本习题2.1A组1,2题选做题:同步练习册知能提升。
2. 1. 1失散型随机变量预习课本P44~ 45,思虑并达成以下问题1.随机变量和失散型随机变量的观点是什么?随机变量是怎样表示的?2.随机变量与函数的关系?[新知初探 ]1.随机变量(1)定义:在一个对应关系下,跟着试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母 X, Y,ξ,η等表示.2.失散型随机变量假如随机变量X 的所有可能的取值都能一一列举出来,则称X 为失散型随机变量.3.随机变量和函数的关系随机变量和函数都是一种映照,随机变量把随机试验的结果映照为实数,函数把实数映照为实数.在这两种映照之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.[小试身手 ]1.判断以下命题能否正确.(正确的打“√”,错误的打“×”)(1) 随机变量的取值能够是有限个,也能够是无穷个.(2) 手机电池的使用寿命X 是离数型随机变量.(答案: (1) √ (2) ×)()2.以下变量中,是失散型随机变量的是()A.到 2016 年 5 月 1 日止,我国被确诊的爱滋病人数B.一只刚出生的大熊猫,一年此后的身高C.某人在车站等出租车的时间D.某人投篮10 次,可能投中的次数答案: D3.袋中有大小相同的红球6 个,白球 5 个,从袋中无放回的条件下每次随意拿出一个球,直到拿出的球是白色为止,所需要的取球次数为随机变量X,则 X 的可能取值为()A. 1,2,⋯, 6B. 1,2,⋯,7C. 1,2,⋯, 11D. 1,2,3,⋯答案: B4.在考中,需回答三个,考定:每回答正确得100 分,回答不正确得- 100 分,名同学回答三个的得分ξ的所有可能取是________.答案: 300, 100, - 100,- 300随机量的观点[典例 ] (1) 抛一枚平均硬一次,随机量A.抛硬的次数B.出正面的次数C.出正面或反面的次数D.出正面和反面的次数之和(2)6 件品中有 2 件次品, 4 件正品,从中任取()1 件,能够作随机量的是()A.取到的品个数B.取到的正品个数C.取到正品的概率D.取到次品的概率[解 ](1)抛一枚硬一次,可能出的果是正面向上或反面向上.以某一个准,如正面向上的次数来描绘一随机,那么正面向上的次数就是随机量ξ,ξ的取是0,1,故B.而 A 中抛次数就是1,不是随机量; C 中准不明; D 中,出正面和反面的次数之和必定事件,前便知是必定出的果,也不是随机量.(2) 由随机量的定知,随机量是随机的果,清除 C 、 D,又取到的品个数是一个确立,清除 A .故 B .[答案 ](1)B(2)B判断一个是不是随机,依照是个能否足随机的三个条件,即(1)在相同条件下能否可重复行;(2)的所有可能的果是不是明确的,并且的果不只一个;(3)每次的果恰巧是一个,并且在一次前没法知出哪个果.[活学活用 ]指出以下哪些是随机量,哪些不是随机量,并明原因:(1)某人射一次命中的数;(2)一枚地平均的骰子,出的点数;(3)某个人的属相随年的化.解: (1)某人射一次,可能命中的所有数是0,1,⋯,10,并且出哪一个果是随机的,所以命中的数是随机量.(2)一枚骰子,出的果是 1 点, 2 点, 3 点, 4 点, 5 点, 6 点中的一个且出哪一个果是随机的,所以出的点数是随机量.(3)一个人的属相在他出生就确立了,不随年的化而化,所以属相不是随机量.失散型随机量的判断[典例 ]指出以下随机量是不是失散型随机量,并明原因.(1)湖南矮寨大面一每隔 30 米有一路灯,将所有路灯行号,此中某一路灯的号 X;(2) 在一次数学中,一、二、三等,小明同学参加得的次X;(3)丁俊在 2016 年世中每局所得的分数.[解 ] (1)面上的路灯是可数的,号X 能够一一列出,是失散型随机量.(2)小明等次 X 能够一一列出,是失散型随机量.(3)每局所得的分数 X 能够一一列出来,是失散型随机量.判断失散型随机量的方法(1)明确随机的所有可能果.(2)将随机的果数目化.(3)确立果所的数能否能够一一列出,如能一一列出,随机量是失散型随机量,否不是.[活学活用 ]以下随机量中不是失散型随机量的是________(填序号 ).①广州白云机候机室中一天的游客数目X;②广州某水文站察到一天中珠江的水位X;③某工厂加工的某种管,外径与定的外径尺寸之差X;④虎大一天的数X.分析:①④中的随机量X 的所有取,我都能够依照必定的序次一一列出,所以它是失散型随机量,②中的随机量X 能够取某一区内的全部,但没法按必定次序一一列出,故不是失散型随机量.③中X 的取某一范内的数,没法所有列出,不是失散型随机量,故不是失散型随机量.答案:②③用随机量表示的果[典例 ]写出以下随机量可能取的,并明些所表示的随机的果.(1) 袋中有大小相同的球10 个,白球 5 个,从袋中每次任取 1 个球,取后不放回,直到拿出的球是白球止,所需要的取球次数.(2) 从有数字 1,2,3,4,5,6的 6 卡片中任取 2 ,所取卡片上的数字之和.[解 ](1)所需的取球次数X,X= 1,2,3,4,⋯, 10,11, X = i 表示前 (i- 1)次取到的均是球,第 i 次取到白球,里 i= 1,2,3,4,⋯, 11.(2) 所取卡片上的数字之和X,X= 3,4,5,⋯, 11.X= 3,表示“拿出有1,2的两卡片”;X= 4,表示“拿出有1,3的两卡片”;X= 5,表示“拿出有2,3或 1,4 的两卡片”;X= 6,表示“拿出有2,4或 1,5 的两卡片”;X= 7,表示“拿出有3,4或 2,5 或 1,6 的两卡片”;X= 8,表示“拿出有2,6或 3,5 的两卡片”;X= 9,表示“拿出有3,6或 4,5 的两卡片”;X= 10, 表示“拿出有4,6 的两卡片”;X= 11, 表示“拿出有5,6 的两卡片”.[一多 ]1.[条件 ]若本例 (2)中条件不,所取卡片上的数字之差的随机量ξ,ξ有哪些取?此中ξ= 4 表示什么含?解:ξ的所有可能取有:1,2,3,4,5.ξ= 4 表示“拿出有 1,5 或 2,6 的两卡片”.2.[条件,法 ]甲、乙两行球打比,定采纳“七局四制”,用X 表示需要比的局数,写出X 所有可能的取,并写出表示的果.解:依据意可知X 的可能取4,5,6,7.X= 4 表示共打了 4 局,甲、乙两人有 1 人 4 局.X= 5 表示在前 4 局中有 1 人了一局,最后一局这人出.X= 6 表示在前 5 局中有 1 人了 2 局,最后一局这人出.X= 7 表示在前 6 局中,两人打平,后一局有 1 人出.解答用随机量表示随机的果的关点和注意点(1)关点:解决此的关是明确随机量的所有可能取,以及取每一个应的意义,即一个随机变量的取值对应一个或多个随机试验的结果.(2)注意点:解答过程中不要遗漏某些试验结果.层级一学业水平达标1.给出以下四个命题:①15 秒内,经过某十字路口的汽车的数目是随机变量;②解答高考数学乙卷的时间是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口散场的人数是随机变量.此中正确的个数是()A. 1B. 2C. 3D. 4分析:选D由随机变量的观点能够直接判断①②③④都是正确的.2.随机变量 X 是某城市 1 天之中发生的火警次数,随机变量 Y 是某城市 1 天以内的温度.随机变量ξ是某火车站 1 小时内的游客流感人数.这三个随机变量中不是失散型随机变量的是 ()A. X 和ξB.只有 YC. Y 和ξD.只有ξ分析:选 B某城市1天以内的温度不可以一一列举,故不是失散型随机变量,应选B.3.投掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()A.两颗都是 2 点B.一颗是 3 点,另一颗是 1 点C.两颗都是 4 点D.一颗是 3 点,一颗是 1 点或两颗都是 2 点分析:选 Dξ=4表示两颗骰子的点数和为4.4.袋中有大小相同的 5 个钢球,分别标有1,2,3,4,5 五个号码.在有放回地抽取条件下挨次拿出 2 个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是() A. 25B. 10C. 9D. 5分析:选C第一次可取1,2,3,4,5中的随意一个,因为是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.应选C .5.对一批产品逐一进行检测,第一次检测到次品前已检测的产品个数为ξ,则ξ= k 表示的试验结果为()A.第 k- 1 次检测到正品,而第k 次检测到次品B.第 k 次检测到正品,而第k+ 1 次检测到次品C.前 k- 1 次检测到正品,而第k 次检测到次品D.前 k 次检测到正品,而第k+ 1 次检测到次品分析:选 D ξ就是检测到次品前正品的个数,ξ= k 表示前 k 次检测到的都是正品,第k+ 1 次检测到的是次品.1,记甲击中目标的次数为X,则 X 的可能6.甲进行 3 次射击,甲击中目标的概率为2取值为 ________.分析:甲可能在 3 次射击中,一次未中,也可能中1次,2次,3次.答案: 0,1,2,37.在 8 件产品中,有 3 件次品, 5 件正品,从中任取 3 件,记次品的件数为ξ,则{ξ<2}表示的试验结果是 ________.分析:应分ξ= 0和ξ= 1 两类.ξ= 0表示取到 3件正品;ξ= 1 表示取到 1 件次品、 2件正品.故 {ξ<2} 表示的试验结果为取到 1 件次品、 2 件正品或取到 3 件正品.答案:取到 1 件次品、 2 件正品或取到 3 件正品8.一袋中装有 6 个相同大小的黑球,编号为1,2,3,4,5,6.现从中随机拿出 3 个球,以ξ表示拿出的球的最大号码,用( x, y, z)表示拿出的三个球编号为x, y, z(x<y<z),则ξ= 5表示的试验结果构成的集合是____________________________________________________ .分析:从 6 个球中选出 3 个球,此中有一个是 5 号球,其他的 2 个球是 1,2,3,4 号球中的随意 2 个.∴试验结果组成的会合是{(1,2,5) , (1,3,5) , (1,4,5) , (2,3,5) , (2,4,5) , (3,4,5)} .答案: {(1,2,5) , (1,3,5) , (1,4,5), (2,3,5) , (2,4,5) , (3,4,5)}9.某车间三天内每日生产10 件某产品,此中第一天,次日分别生产了 1 件次品、2件次品,而质检部门每日要在生产的10 件产品中随机抽取 4 件进行检查,若发现有次品,则当日的产品不可以经过.若厂内对车间生产的产品采纳记分制,两天全不经过检查得0 分,经过一天、两天赋别得 1 分、 2 分,设该车间在这两天内得分为ξ,写出ξ的可能取值.解:ξ的可能取值为0,1,2.ξ= 0 表示在两天检查中均发现了次品.ξ= 1 表示在两天检查中有 1 天没有检查到次品, 1 天检查到了次品.ξ= 2 表示在两天检查中没有发现次品.10.已知在10 件产品中有 2 件不合格品,现从这10 件产品中任取 3 件,这是一个随机现象.(1)写出随机象所有可能出的果.(2)用随机量来描绘上述果.解: (1)从10 件品中任取 3 件,所有可能出的果是:“不含不合格品”“恰有 1 件不合格品”“恰有 2 件不合格品”.(2) 令 X 表示拿出的 3 件品中的不合格品数. X 所有可能的取取 3 件品所有可能出的果.即“X = 0”表示“不含不合格品”;0,1,2,着任“X = 1”表示“恰有 1 件不合格品”;“X = 2”表示“恰有 2 件不合格品”.二能力达1.①某亭内的一部 1 小内使用的次数②某人射 2 次,中目的数之和X;③ 量一批阻,阻在950 Ω~ 1 200 Ω之;X;④一个在数上随机运的点,它在数上的地点X .此中是失散型随机量的是 ()A.①②B.①③C.①④D.①②④分析:A①②中量X 所有可能取是能够一一列出来的,是失散型随机量,而③④中的果不可以一一列出,故不是失散型随机量.2.抛两枚骰子,第一枚骰子出的点数与第二枚骰子出的点数之差ξ,“ξ>4”表示的果是()A.第一枚 6 点,第二枚 2 点B.第一枚 5 点,第二枚 1 点C.第一枚 2 点,第二枚 6 点D.第一枚 6 点,第二枚 1 点分析:D只有D 中的点数差6- 1= 5>4,其他均不是,D.3.袋中装有10 个球, 5 个黑球,每次随机抽取一个球,若获得黑球,另一个球放回袋中,直到取到球止,若抽取的次数X,表示“放回 5 个球”的事件() A.X= 4B.X=5C.X= 6D.X≤4分析:C第一次取到黑球,放回 1 个球,第二次取到黑球,共放回2个球⋯,共放了五回,第六次取到了球,止,故X= 6.4.袋中有大小相同的 5 个球,分有球号之和y, y 所有可能的个数是(1,2,3,4,5 五个号,随意抽取)2 个球, 2 个A. 25B. 10C. 7D. 6分析:C∵y 表示拿出的 2 个球的号之和,又1+ 2= 3,1+ 3= 4,1+ 4= 5,1+ 5=6,2+ 3= 5,2+ 4= 6,2+ 5= 7,3+ 4= 7,3+ 5= 8,4+ 5= 9,故 y 的所有可能取3,4,5,6,7,8,9 ,共 7个.5.一串匙有 5 把,只有一把能翻开,挨次,打不开的抛弃,直到找到能开的匙止,次数X 的最大可能________.分析:由意可知X 取最大只剩下一把匙,但此未翻开,故次数4.答案: 46.一用在打忘了号的最后四位数字,只得最后四位数字两两不一样,且都大于 5,于是他随机最后四位数字(两两不一样 ),他到所要号共的次数ξ,随机量ξ的所有可能取的种数________.分析:因为后四位数字两两不一样,且都大于5,所以只好是6,7,8,9 四位数字的不一样排4答案: 247.写出以下随机量可能取的,并明随机量所取的表示的随机的果.(1) 一个袋中装有 2 个白球和 5 个黑球,从中任取 3 个,此中所含白球的个数ξ;(2) 抛甲、乙两枚骰子,所得点数之和Y.解: (1)ξ可取 0,1,2.ξ= i,表示拿出的 3 个球中有i 个白球,3- i 个黑球,此中i= 0,1,2.(2) Y 的可能取2,3,4 ,⋯, 12.若以 (i, j)表示抛甲、乙两枚骰子后骰子甲得i 点且骰子乙得j 点, {Y= 2}表示 (1,1);{Y= 3}表示 (1,2),(2,1);{Y= 4}表示 (1,3) ,(2,2),(3,1);⋯;{Y= 12}表示 (6,6).8.写出以下随机量可能的取,并明随机量所表示的随机的果.在一个盒子中,放有号分 1,2,3 的三卡片,从个盒子中,有放回地先后抽得两卡片的号分 x, y,ξ= |x- 2|+ |y- x|.解:因 x, y 可能取的1,2,3,所以 0≤|x- 2|≤1,0≤|x- y|≤2,所以0≤ξ≤3,所以ξ可能的取0,1,2,3,用 (x, y)表示第一次抽到卡片号x,第二次抽到卡片号y,随机量ξ取各的意:ξ= 0 表示两次抽到卡片号都是2,即 (2,2).ξ= 1 表示 (1,1) , (2,1), (2,3), (3,3).ξ= 2 表示 (1,2) , (3,2).ξ= 3 表示 (1,3) , (3,1).。
2.1.1离散型随机变量知识目标:1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.教学重点:随机变量、离散型随机变量、连续型随机变量的意义.教学难点:随机变量、离散型随机变量、连续型随机变量的意义.授课类型:新授课.课时安排:1课时.内容分析:本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题教学过程:一、复习引入:展示教科书章头提出的两个实际问题,激发学生的求知欲某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点二、讲解新课:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.知识点1:在随着试验中,试验的可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量(random variable ).随机变量常用大写字母 X , Y…表示.随机变量和函数有类似的地方吗?联系:随机变量和函数都是一种映射,随机变量是随机试验的结果到实数的映射,函数是实数到实数的映射;在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.区别:函数的自变量是实数x ,而在随机变量的概念中,随机变量的自变量是实验结果.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?知识点2:如果随机变量X 所有可能的取值都能一一列举出来,则称为离散型随机变量 ( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….电灯的寿命X 是离散型随机变量吗?电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 一般地,如果随机变量可以取某一个区间内的任意一个值,则称这样的随机变量为连续型随机变量.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,或者说取值为有限个或多至可列个,而连续性随机变量的结果不可以一一列出.如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值. 三、讲解范例:例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η. 解:(1) ξ可取3,4,5.ξ=3,表示取出的3个球的编号为1,2,3; ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5.(2)η可取0,1,…,n ,…. η=i ,表示被呼叫i 次,其中i=0,1,2,….例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点.例3.某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费.若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量.(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟? 解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2. (Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟. 四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( )A .①;B .②;C .③;D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( ) A .3n =; B .4n =; C .10n =; D .不能确定 3.抛掷两次骰子,两个点的和不等于8的概率为( ) A .1112; B .3136; C .536; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和. 答案:1.B 2.C 3.B 4.D五、小结 :随机变量离散型、随机变量连续型、随机变量的概念.随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量.2.1.2离散型随机变量的分布列及超几何分布知识与技能:会求出某些简单的离散型随机变量的概率分布. 过程与方法:认识概率分布对于刻画随机现象的重要性.情感、态度与价值观:认识概率分布对于刻画随机现象的重要性. 教学重点:离散型随机变量的分布列的概念. 教学难点:求简单的离散型随机变量的分布列. 授课类型:新授课. 课时安排:2课时. 教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.随机变量常用希腊字母ξ、η等表示.2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量.并且不改变其属性(离散型、连续型) 二、讲解新课:对于一个离散型随机变量来说,我们不仅要知道它的可能取哪些值,更重要的是要知道它取各个值得概率分别有多大,这样才能对这个离散型随机变量有深刻的了解.例如:在射击问题里,我们只要知道命中环数为0,1,2,…,10的概率分别是多少,才能了解选手的射击水平有多高.根据某个选手在一段时间里的成绩,可以得到下表命中环数X 0 1 2345 6 78910 10概率P0.01 0.01 0.02 0.020.060.09 0.28 0.290.22通过这个例子我们可以了解到:知识点3:要掌握一个离散型随机变量X 的取值规律,必须要知道:(1)X 所有可能取的值x 1,x 2,…,x n ,…(2)X 取每一个值x i (i=1,2,…)的概率为()i i P x p ξ==, 这就是说,需要列出下表:ξ x 1 x 2 … x i … PP 1P 2…P i…我们称这个表为离散型随机变量X 的概率分布,或成为离散型随机变量X 的分布列.知识点4:通过对上例的分析我们可以知道分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此可以得出离散型随机变量的分布列都具有下面两个性质: (1)P i ≥0,i =1,2,…n ; (2)P 1+P 2+…P n =1.对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和.即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ.讲解教材42-43页例题1到3. 知识点5:两点分布列:例1.在掷一枚图钉的随机试验中,令⎧⎨⎩1,针尖向上;X=0,针尖向下.如果针尖向上的概率为p ,试写出随机变量 X 的分布列. 解:根据分布列的性质,针尖向下的概率是(1p -) .于是,随机变量 X 的分布列是 ξ 01P1p -p像上面这样的分布列称为两点分布列.两点分布又称0~1分布.两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.如果随机变量X 的分布列为两点分布列,就称X 服从两点分布,而称p =P(X=1)为成功概率.例 2.在含有 5 件次品的 100 件产品中,任取 3 件,试求: (1)取到的次品数X 的分布列;(2)至少取到1件次品的概率.解: (1)由于从 100 件产品中任取3 件的结果数为310C ,从100 件产品中任取3件,其中恰有k 件次品的结果数为3595k k C C -,那么从 100 件产品中任取 3 件,其中恰有 k 件次品的概率为35953100(),0,1,2,3k kC C P X k k C -===。
2.1.1 离散型随机变量预习导引1.随机变量(1)定义:随着________变化而变化的变量称为随机变量.(2)表示法:随机变量常用字母____________表示.预习交流1随机变量与函数有何区别与联系?2.离散型随机变量所有取值可以________的随机变量,称为离散型随机变量.预习交流2(1)离散型随机变量有什么特点?(2)下列不是离散型随机变量的是().A.某水站观察到一天中长江的水位B.某立交桥一天经过的车辆数C.110报警中心一天内接到的报警电话个数D.从编号为1,2,3,4的卡片中任取一张,取出的卡号课堂探究问题导学一、随机变量的概念活动与探究1判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2013年5月1日的旅客数量;(2)2013年5月1日到10月1日期间所查酒驾的人数;(3)2013年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球半径长.思路分析:判断所给的量是否随试验结果的变化而变化,发生变化的是随机变量.迁移与应用将一枚均匀骰子掷两次,随机变量为().A.第一次出现的点数B.第二次出现的点数C.两次出现的点数之和D.两次出现相同点的种数名师指导在一次随机试验中,随机变量的取值实质是随机试验的结果所对应的数,且这个数所有可能的取值是预先知道的,但不知道究竟会出现哪一个值,这便是“随机”的本源.二、离散型随机变量的判定活动与探究2指出下列随机变量是否是离散型随机变量,并说明理由.(1)湖南矮寨大桥桥面一侧每隔30米有一路灯,将所有路灯进行编号,其中某一路灯的编号X;(2)在一次数学竞赛中,设一、二、三等奖,小明同学参加竞赛获得的奖次X;(3)一天内气温的变化值X;(4)丁俊辉在2012世锦赛中每局所得的分数X.思路分析:看一个变量是否为离散型随机变量时,首先明确是否是随机变量,再看变量的取值是否一一列出.迁移与应用下列随机变量中不是离散型随机变量的是__________.①某地车展中,预订各类汽车的总人数X;②北京故宫某周内每天接待的游客人数;③正弦曲线上的点P到x轴的距离X;④小麦的亩产量X;⑤王老师在一次英语课上提问的学生人数X.名师指导判断一个变量是否为离散型随机变量,首先看它是不是随机变量,其次看可能取值是否能一一列出,也就是说变量的取值若是有限的,或者是可以列举出来的,就可以视为离散型随机变量,否则就不是离散型随机变量.三、离散型随机变量的取值活动与探究3写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果:(1)在2013年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数X;(3)一袋中装有5只同样大小的球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数X.思路分析:明确随机变量X的意义,写出X的所有取值及每个值对应的试验结果,要列举全面.迁移与应用抛掷两枚骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是().A.一枚是3点,一枚是1点B.两枚都是2点C.两枚都是4点D.一枚是3点,一枚是1点或两枚都是2点名师指导解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.当堂检测1.给出下列四个命题:①某次数学期中考试中,其中一个考场30名考生中做对选择题第12题的人数是随机变量;②黄河每年的最大流量是随机变量;③某体育馆共有6个出口,散场后从某一出口退场的人数是随机变量;④方程x2-2x-3=0根的个数是随机变量.其中正确的是().A.1 B.2 C.3 D.42.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是().A.5 B.9 C.10 D.253.某人进行射击,共有5发子弹,击中目标或子弹打完停止射击,射击次数为X,则“X=5”表示的试验结果为().A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.前4次均击中目标4.某班有学生45人,其中O型血的有10人,A型血的有12人,B型血的有8人,AB型血的有15人,用0,1,2,3分别表示O型,A型,B型,AB型,现任抽一人,其血型是随机变量ξ,则ξ的可能取值为__________.5.下列随机变量中是离散型随机变量的有__________.①某鱼塘所养的鲤鱼中,重量在2.5公斤以上的条数X;②直线y=x上的整点个数X;③放学后,小明同学离开学校大门的距离X;④网站中,歌曲《爱我中华》一天内被点击的次数X.——★参考答案★——预习导引1.(1)试验结果(2)X,Y,ξ,η,…预习交流1:提示:联系:两者均是特殊的映射.区别:随机变量把试验的结果映射为实数,而函数是把一个非空数集映射到另一个非空数集上.2.一一列出预习交流2:(1)提示:①随机变量的取值能一一列出,这是判定随机变量是否为离散型随机变量的关键.②离散型随机变量的取值可以是有限个,如取值1,2,3,…,n;也可以是无限个,如取值为1,2,…,n,….(2)提示:A课堂探究问题导学活动与探究1:解:(1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.迁移与应用:[[答案]]C[[解析]]A,B,D中出现的点数虽然是随机的,但是其取值所反映的结果,都不能整体反映本试验,C整体反映两次投掷的结果,可以预见两次出现的点数的和是2,3,4,5,6,7,8,9,10,11,12这十一种结果,但每掷一次之前都无法确定是哪一个,因此是随机变量.活动与探究2:解:(1)桥面上的路灯是可数的,编号X可以一一列出,是离散型随机变量.(2)小明获奖等次X可以一一列出,是离散型随机变量.(3)一天内的气温变化值X,可以在某区间内连续取值,不能一一列出,不是离散型随机变量.(4)每局所得的分数X可以一一列举出来,是离散型随机变量.迁移与应用:[[答案]]③④[[解析]]③中X的值在[-1,1]内取值,不能一一列出,不是离散型随机变量;④中X的值可在某一区间内取值,不能一一列出,不是离散型随机变量.①②⑤是离散型随机变量.活动与探究3:解:(1)X可能取0,1,2,3,4,5.X=i,表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)X可取0,1,2.X=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2.(3)X可取3,4,5.X=3,表示取出的3个球的编号为1,2,3;X=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;X=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5. 迁移与应用:[[答案]]D当堂检测1.[[答案]]C[[解析]]①②③是正确的,④中方程x2-2x-3=0的根有2个是确定的,不是随机变量.2.[[答案]]B[[解析]]X的可能取值是2,3,4,5,6,7,8,9,10,共9个.故选B.3.[[答案]]C4.[[答案]]0,1,2,35.[[答案]]①②④[[解析]]③中距离X可取某区间内的任意值,∴③中X不是离散型随机变量.①②④的X可以一一列举,且②中的X是无限的.。
§2.1.1§2.1.2离散型随机变量及其分布列学习目标:1.理解随机变量的定义;2.掌握离散型随机变量的定义;3.理解离散型随机变量的分布列的定义.学习重点:随机变量、离散型随机变量的意义;理解离散型随机变量的分布列。
学习难点:对随机变量意义的理解与应用学习方法:尝试、变式、互动 一、新知探究新知1:随机变量的定义:随着试验结果变化而变化的变量称为 ,常用字母 、 、 、 …表示.新知2:随机变量与函数的关系:随机变量与函数都是一种 ,试验结果的范围相当于函数的 ,随机变量的范围相当于函数的 .新知3:所有取值可以 的随机变量,称为离散型随机变量.新知4:离散型随机变量的分布列:若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,21 ,X 取每一个值),,2,1(n i x i =的概率i i.则①分布列表示:②等式表示:新知5:离散型随机变量的分布列具有的性质:(1) ;(2)新知6:两点分布列:称X 服从 ;二、例题配置例1 在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个 ,其值域是 .随机变量0X =表示 ;4X =表示 ;3X <表示 ;“抽出3件以上次品”可用随机变量 表示.例2①电灯泡的寿命X 是离散型随机变量吗?②随机变量⎩⎨⎧≥<=小时寿命小时寿命1000,11000,0Y 是一个离散型随机变量吗?例3编号1,2,3的三位学生随意入座编号1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生人数是X.求随机变量X 的概率分布列;。
2.1.1离散型随机变量知识目标:1.理解随机变量的意义;2.理解随机变量所表示试验结果的含义,并恰当地定义随机变量. 教学重点:随机变量、离散型随机变量的意义一、课前预习:定义1:在一些试验中,试验可能出现的结果可以用________________来表示,并且随着试验结果变化而变化的,我们把____________________称为一个随机变量.随机变量常用字母 X , Y,ξ,η,…表示.定义2:如果随机变量X的所有可能的取值都能_______________________,那么称X为离散型随机变量二、例题分析例1.写出以下随机变量可能取的值:(1)从10X已编号的卡片〔1~10〕中任取一X,被取出的卡片的号数;(2)抛掷一个骰子得到的点数;(3)一个袋子里装有5个白球和5个黑球。
从中任取3个,其中所含白球的个数;(4)同时抛掷5枚硬币,得到硬币反面向上的个数。
例2.写出以下随机变量可能取的值一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大数ξ;例3.假设进行一次从袋中摸出一个球的游戏,袋中有3个红球,4个白球,一个篮球,2个黑球,摸到红球得2分,白球得0分,篮球得1分,黑球得-2分,试列表写出可能的结果、对应的分值X及相应的概率。
例4、1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ其中的ξ是连续型随机变量的是〔〕A.①;B.②;C.③;D.①②③2.随机变量ξ的所有等可能取值为1,2,,n…,假设()40.3Pξ<=,那么〔〕A.3n=;B.4n=;C.10n=;D.不能确定3.抛掷两次骰子,两个点的和不等于8的概率为〔〕A.1112;B.3136;C.536;D.112课堂小结:2. 1.2离散型随机变量的分布列知识与技能:会求出某些简单的离散型随机变量的概率分布。
教学重点:离散型随机变量的分布列的概念求简单的离散型随机变量的分布列一、新课探究:1. 要掌握一个离散型随机变量X 的取值规律,必须知道: 〔1〕___________________________________ 〔2〕___________________________________ 那么列表我们称这个表为随机变量X 的概率分布,或称为_________________________.2. :1)(0≤≤A P ,并且不可能事件的概率为______,必然事件的概率为_______.由此你可以得出离散型随机变量的分布列都具有下面两个性质: 〔1〕___________________________________ 〔2〕___________________________________在掷一枚图钉的随机试验中,令⎧⎨⎩1,针尖向上;X=0,针尖向下.如果针尖向上的概率为p ,试写出随机变量 X 的分布列.解:根据分布列的性质,针尖向下的概率是〔1p -) .于是,随机变量 X像上面这样的分布列称为________________________.二、例题分析:例1、篮球运动员在比赛中每次罚球命中得1分,不中得0分。
§2.1.1离散型随机变量导学案(理5)
高二数学组撰稿:于军审稿:崔素良2009-3-14
一、教学目标
1.复习古典概型、几何概型有关知识。
2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。
3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.
重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.
难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.
二、复习引入:
1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。
所有基本事件构成的集合称为,常用大写希腊字母
表示。
2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。
互斥事件的概率加法公式。
3. 一次试验中的两个事件叫做互为对立事件,
事件A的对立事件记作,对立事件的概率公式
4.古典概型的两个特征:(1) .(2) .
5.概率的古典定义:P(A)= 。
6.几何概型中的概率定义:P(A)= 。
三、预习自测:
1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。
常用表示。
2.如果随机变量X的所有可能的取值,则称X为。
四、典例解析:
例1写出下列各随机变量可能取得值:
(1)抛掷一枚骰子得到的点数。
(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。
(3)抛掷两枚骰子得到的点数之和。
(4)某项试验的成功率为0.001,在n次试验中成功的次数。
(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值
例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。
变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。
例3△ABC中,D,E分别为AB,AC的中点,向△ABC内部随意投入一个小球,求小球落在△ADE中的概率。
五、当堂检测
1.将一颗均匀骰子掷两次,不能作为随机变量的是:()
(A)两次出现的点数之和;(B)两次掷出的最大点数;
(C)第一次减去第二次的点数差;(D)抛掷的次数。
2.小王钱夹中只剩有20元、10元、5元、2元和1元人民币各一张。
他决定随机抽出两张,作为晚餐费用。
用X表示这两张人民币金额之和。
X的可能取值。
3.2008年8月的某天,福娃在国家射击馆进行手枪慢射决赛,她对准移动靶进行射击。
你觉得她可能出现的射击结果有,若用X表示命中的环数,则X可能取的值有。
4.在一场比赛中樱木花道在三分线外出手,你觉得他得分的可能性有种,若用X表示得分情况,则X可能取的值有。
5.在含有10件次品的100件产品中,任意抽取4件,设含有的次品数为X:
X=4表示事件____ ___;X=0表示事件__ ;
X<3表示事件_____ ;事件“抽出3件以上次品数”用_______表示.
6.袋中有大小相同的5个小球,分别标有1、2、3、4、5五个号码,现在
在有放回的条件下取出两个小球,设两个小球号码之和为X,则X所有可
能值的是__ ;X=4表示.
7.某项试验的成功率是失败率的3倍,用随机变量X表示一次试验的成功
次数,则P(X=0)= 。
8.10件产品中有6件合格品,4件次品,从中任取3件,取得次品的个数为X,求X的所有可能取值及相应概率。
六、小结:
七、作业:课后练习A、B。