江苏省东台市2016届九年级数学上册期中考试题3
- 格式:docx
- 大小:229.88 KB
- 文档页数:18
九年级数学试题一.选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在答题纸相应位置上)1.方程(x ﹣2)(x+3)=0的解是 【 ▲ 】 A .x=2 B .x=﹣3 C .x 1=﹣2,x 2=3 D .x 1=2,x 2=﹣32.数据1、2、3、4、5;这组数据的极差是 【 ▲ 】 A .1 B .2C .3D .43.若圆的半径是5, 如果点P 到圆心的距离为4.5,那么点P 与⊙O 的位置关系是【 ▲ 】 A .点P 在⊙O 外 B .点P 在⊙O 内C .点P 在⊙O 上D .点P 在⊙O 外或⊙O 上4.下列一元二次方程中,没有实数根的是 【 ▲ 】 A .4x 2﹣5x+2=0 B .x 2﹣6x+9=0 C .5x 2﹣4x ﹣1=0D .3x 2﹣4x+1=05.抛物线y=x 2﹣4x+1的顶点是 【 ▲ 】 A .(﹣2 ,3) B (﹣2 ,﹣3).C .( 2 ,3)D .( 2 ,﹣3)6.已知二次函数)0(2≠++=a c bx ax y 的对称轴是直线x=﹣1 及部分图像(如图所示),由图像可知关于x 的一元二次方程02=++c bx ax 的两个根分别是3.11=x 和=2x 【 ▲ 】A .﹣1.3B .﹣2.3C .﹣3.3D .﹣4.37.下列说法正确的是 【 ▲ 】 A .三点确定一个圆 B .正多边形既是轴对称图形也是中心对称图形 C .等弧所对的圆周角相等 D .三角形的外心到三边的距离相等 8.如图是二次函数 y=ax 2+bx+c (a ≠0)的图象的一部分,【 ▲ 】 给出下列命题:①a+b+c=0;②b >2a ;③3a+c=0; ④a ﹣b <m (ma+b )(m ≠﹣1的实数); 其中正确的命题是A .①②③B .①②④C .②③④D .①③④(第6题图)(第8题图)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9.把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是▲;10.已知方程x2﹣4x﹣1=0的两个根分别为x1,x2,则x1•x2=____▲______;11.一组数据3、4、5;这组数据的方差是_______▲_ ;12.事件A发生的概率为0.05,大量重复做这种试验,事件A平均每100次发生的次数是____▲______;13.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是__▲_ ;14.在⊙O中,直径AB=10,弦CD⊥AB于P,OP=3,则弦CD的长为____▲______;15.如图,ABCD是⊙O的内接四边形,∠B=130°,则∠AOC的度数是____▲______度;第14题图第15题图16.若一三角形的三边长分别为10、24、26,则此三角形的内切圆半径为_____▲_____.17.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D=____▲______.18.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:顶点与x轴的交点围成的三角形面积等于9,请你写出满足上述全部条件的一条抛物线的解析式:__________ ▲ _.三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.解下列方程:(1)x+3﹣x(x+3)=0 (因式分解法)(2)x 2﹣4x ﹣1=0(用配方法).20.已知关于x 的一元二次方程x 2+kx ﹣3=0 (1)求证:不论k 为任何实数,方程总有实数根; (2)若k=﹣1时,用公式法解这个一元二次方程;21.如图所示,PA ,PB 是⊙O 的两条切线,A ,B 为切点,连接PO ,交⊙O 于点D ,交AB 于点C ,(1)写出圆中所有的垂直的关系; (2)若PA=4,PD=2,求半径OA 的长;22.已知函数y=﹣(x ﹣1)2+4.(1)当x=____▲______时,抛物线有最大值,是____▲______. (2)当x____▲______ 时,y 随x 的增大而增大; (3)该函数图象可由y=﹣x 2的图象经过怎样的平移得到? (4)求出该抛物线与x 轴的交点坐标; (5)求出该抛物线与y 轴的交点坐标.(第21题图)23.如图,⊙O 与⊙O 上一点P ,用直尺和圆规过点P 作⊙O 切线(不写作法,保留作图痕迹)并写出作图依据作图依据: ;24.甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分) 数与代数 9090 (1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?25.一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字(1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(第23题图)(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率.26.如图,在四边形ABCD 中,AD ∥BC ,AD=2,AB=2,以点A 为圆心,AD 为半径的圆与BC 相切于点E ,交AB 于点F (1)求∠ABE 的度数;(2)用这个扇形AFED 围成一个圆锥的侧面,所得圆锥的底面半径是多少?27.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t 与每件的销售价x(元)之间的函数关系为t=204-3x 。
九年级(上)期中数学试卷一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填、填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0 B.1 C.2 D.2或﹣22.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13 B.(x﹣4)2=19 C.(x﹣4)2=13 D.(x+4)2=193.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DM B.OM=MB C.BC=BD D.∠ACD=∠ADC4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0 B.x2+2x+2=0 C.x2﹣2x+2=0 D.x2+2=05.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1 B.k>﹣1且k≠0 C.k>1且k≠2 D.k<16.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20 B.21 C.15 D.167.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1 C.直线x=3 D.直线x=28.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4 B.5 C.6 D.29.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC=6,则CD的长为()A.7 B.7C.8 D.810.已知二次函数y=ax2+bx+c的图象如图所示,则a的取值范围为()A.﹣1<a<0 B.﹣1<a<C.0<a<D.<a<二、填空题(本大题共6小题,每小题3分,共18分)11.抛物线y=﹣(x+3)2+1的顶点坐标是.12.已知ab≠0,且a2﹣3ab﹣4b2=0,则的值为.13.已知关于x的方程a(x+m)2+c=0(a,m,c均为常数,a≠0)的根是x1=﹣3,x2=2,则方程a(x+m﹣1)2+c=0的根是.14.如图,AB,AC是⊙O,D是CA延长线上的一点,AD=AB,∠BDC=25°,则∠BOC=.15.已知△ABC的三个顶点都在⊙O上,AB=AC,⊙O的半径等于10cm,圆心O到BC的距离为6cm,则AB的长等于.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2a;③a+b+c>0;④a(x0﹣x1)(x0﹣x2)<0.其中正确的结论是.(只填写正确结论的序号)三、解答题(本大题共9小题,共72分)17.解方程:(1)x2+2x﹣15=0(2)3x(x﹣2)=(2﹣x)18.已知抛物线的顶点是(4,2),且在x轴上截得的线段长为8,求此抛物线的解析式.19.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,求m2+n2的值.20.为响应党中央提出的“足球进校园”号召,我市在今年秋季确定了3所学校为我市秋季确定3所学校诶我市足球基地实验学校,并在全市开展了中小学足球比赛,比赛采用单循环制,即组内每两队之间进行一场比赛,若初中组共进行45场比赛,问初中共有多少个队参加比赛?21.如图,在⊙O中,=,∠ACB=60°.(1)求证:∠AOB=∠BOC=∠AOC;(2)若D是的中点,求证:四边形OADB是菱形.22.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.23.如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E.(1)求证:CD是⊙O的切线;(2)若正方形ABCD的边长为10,求⊙O的半径.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.九年级(上)期中数学试卷参考答案与试题解析一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填、填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0 B.1 C.2 D.2或﹣2【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程程x2+x+m2﹣4=0得到m2﹣4=0,解得:m=±2,故选D.【点评】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念.2.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13 B.(x﹣4)2=19 C.(x﹣4)2=13 D.(x+4)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=﹣3,x2﹣8x+16=13,(x﹣4)2=13.故选C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DM B.OM=MB C.BC=BD D.∠ACD=∠ADC【考点】垂径定理.【分析】先根据垂径定理得CM=DM,,,得出BC=BD,再根据圆周角定理得到∠ACD=∠ADC,而OM与BM的关系不能判断.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,,,∴BC=BD,∠ACD=∠ADC.故选:B.【点评】本题考查了垂径定理,圆心角、弧、弦之间的关系定理,圆周角定理;熟练掌握垂径定理,由垂径定理得出相等的弧是解决问题的关键.4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0 B.x2+2x+2=0 C.x2﹣2x+2=0 D.x2+2=0【考点】根的判别式.【分析】根据一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根判断即可.【解答】解:A、∵△=(﹣2)2﹣4×1×(﹣2)>0,∴原方程有两个不相等实数根;B、∵△=22﹣4×1×2<0,∴原方程无实数根;C、∵△=(﹣2)2﹣4×1×2<0,∴原方程无实数根;D、∵△=﹣4×1×2<0,∴原方程无实数根;故选A.【点评】此题考查了根的判别式与方程解的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无解.5.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1 B.k>﹣1且k≠0 C.k>1且k≠2 D.k<1【考点】根的判别式;一元二次方程的定义.【分析】根据关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围.【解答】解:∵关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,∴△=4+4(k﹣2)>0,解得k>﹣1,∵k﹣2≠0,∴k≠2,∴k的取值范围k>﹣1且k≠2,故选C.【点评】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20 B.21 C.15 D.16【考点】规律型:图形的变化类.【分析】由题意可知:排列组成的图形都是三角形,第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…由此得出第n个图形共有1+2+3+4+…+n=n(n+1),由此联立方程求得n的数值即可.【解答】解:∵第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…∴第n个图形共有1+2+3+4+…+n=n(n+1),∴n(n+1)=210,解得:n=20.故选:A.【点评】此题考查图形的变化规律,找出图形之间的联系,得出点的排列规律,利用规律解决问题.7.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1 C.直线x=3 D.直线x=2【考点】二次函数图象上点的坐标特征.【分析】因为两点的纵坐标都为4,所以可判此两点是一对对称点,利用公式x=求解即可.【解答】解:∵两点的纵坐标都为4,∴此两点是一对对称点,∴对称轴x===1.故选B.【点评】本题考查了如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式或用公式x=求解.8.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4 B.5 C.6 D.2【考点】圆内接四边形的性质;含30度角的直角三角形;圆周角定理.【分析】连接OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO 的度数,证明△AOC是等边三角形,即可得出结果.【解答】解:连接OC,如图所示:∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BCO=120°,∠BAO=60°,∵AC=OC,∠BAO=60°,∴△AOC是等边三角形,∴⊙C的半径=OA=4.故选:A.【点评】本题考查了圆周角定理、圆内接四边形的性质、等边三角形的判定与性质;熟练掌握圆内接四边形的性质,证明三角形是等边三角形是解决问题的关键.9.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC=6,则CD的长为()A.7 B.7C.8 D.8【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD 平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD.【解答】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD,∴DF=DG,弧AD=弧BD,∴DA=DB.在Rt△AFD和Rt△BGD中,,∴△AFD≌△BGD(HL),∴AF=BG.在△CDF和△CDG中,,∴△CDF≌△CDG(AAS),∴CF=CG.∵AC=6,AB=10,∴BC==8,∴AF=1,∴CF=7,∵△CDF是等腰直角三角形,∴CD=7.故选B.【点评】本题主要考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等知识点的运用.关键是正确作出辅助线.10.已知二次函数y=ax2+bx+c的图象如图所示,则a的取值范围为()A.﹣1<a<0 B.﹣1<a<C.0<a<D.<a<【考点】二次函数图象与系数的关系.【分析】根据开口判断a的符号,根据y轴的交点判断c的符号,根据对称轴b用a表示出的代数式,进而根据当x=2时,得出4a+2b+c=0,用a表示c>﹣1得出答案即可.【解答】解:抛物线开口向上,a>0图象过点(2,4),4a+2b+c=4则c=4﹣4a﹣2b,对称轴x=﹣=﹣1,b=2a,图象与y轴的交点﹣1<c<0,因此﹣1<4﹣4a﹣4a<0,实数a的取值范围是<a<.故选:D.【点评】此题考查二次函数图象与系数的关系,对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.抛物线y=﹣(x+3)2+1的顶点坐标是(﹣3,1).【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:∵抛物线y=﹣(x+3)2+1,∴顶点坐标是(﹣3,1).故答案为:(﹣3,1).【点评】此题考查二次函数的性质,掌握顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h,是解决问题的关键.12.已知ab≠0,且a2﹣3ab﹣4b2=0,则的值为﹣1或4.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】把a2﹣3ab﹣4b2=0看作关于a的一元二次方程,利用因式分解法解得a=4b或a=﹣b,然后利用分式的性质计算的值.【解答】解:(a﹣4b)(a+b)=0,a﹣4b=0或a+b=0,所以a=4b或a=﹣b,当a=4b时,=4;当a=﹣b时,=﹣1,所以的值为﹣1或4.故答案为﹣1或4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).13.已知关于x的方程a(x+m)2+c=0(a,m,c均为常数,a≠0)的根是x1=﹣3,x2=2,则方程a(x+m﹣1)2+c=0的根是x1=﹣2,x2=3.【考点】解一元二次方程-直接开平方法.【分析】把后面一个方程中的x﹣1看作整体,相当于前面一个方程中的x,从而可得x﹣1=﹣3或x﹣1=2,再求解即可.【解答】解:∵关于x的方程a(x+m)2+c=0的解是x1=﹣3,x2=2(a,m,c均为常数,a≠0),∴方程a(x+m﹣1)2+c=0变形为a[(x﹣1)+m]2+c=0,即此方程中x﹣1=﹣3或x﹣1=2,解得x=﹣2或x=3.故方程a(x+m﹣1)2+c=0的解为x1=﹣2,x2=3.故答案是:x1=﹣2,x2=3.【点评】此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.14.如图,AB,AC是⊙O,D是CA延长线上的一点,AD=AB,∠BDC=25°,则∠BOC= 100°.【考点】圆周角定理.【分析】由AD=AB,∠BDC=25°,可求得∠ABD的度数,然后由三角形外角的性质,求得∠BAC的度数,又由圆周角定理,求得答案.【解答】解:∵AD=AB,∠BDC=25°,∴∠ABD=∠BDC=25°,∴∠BAC=∠ABD+∠BDC=50°,∴∠BOC=2∠BAC=100°.故答案为:100°.【点评】此题考查了圆周角定理以及等腰三角形的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.已知△ABC的三个顶点都在⊙O上,AB=AC,⊙O的半径等于10cm,圆心O到BC的距离为6cm,则AB的长等于8或4.【考点】垂径定理;等腰三角形的性质;勾股定理.【专题】分类讨论.【分析】此题分情况考虑:当三角形的外心在三角形的内部时,根据勾股定理求得BD的长,再根据勾股定理求得AB的长;当三角形的外心在三角形的外部时,根据勾股定理求得BD 的长,再根据勾股定理求得AB的长.【解答】解:如图1,当△ABC是锐角三角形时,连接AO并延长到BC于点D,∵AB=AC,O为外心,∴AD⊥BC,在Rt△BOD中,∵OB=10,OD=6,∴BD===8.在Rt△ABD中,根据勾股定理,得AB===8(cm);如图2,当△ABC是钝角或直角三角形时,连接AO交BC于点D,在Rt△BOD中,∵OB=10,OD=6,∴BD===8,∴AD=10﹣6=4,在Rt△ABD中,根据勾股定理,得AB===4(cm).故答案为:8或4.【点评】本题考查的是垂径定理,在解答此题时要注意进行分类讨论,不要漏解.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2a;③a+b+c>0;④a(x0﹣x1)(x0﹣x2)<0.其中正确的结论是①、④.(只填写正确结论的序号)【考点】二次函数图象与系数的关系.【专题】推理填空题;数形结合.【分析】由抛物线的开口方向可确定a的符号,由抛物线的对称轴相对于y轴的位置可得a 与b之间的符号关系,由抛物线与y轴的交点位置可确定c的符号;根据抛物线的对称轴与x=﹣1的大小关系可推出2a﹣b的符号;由于x=1时y=a+b+c,因而结合图象,可根据x=1时y的符号来确定a+b+c的符号,根据a、x0﹣x1、x0﹣x2的符号可确定a(x0﹣x1)(x0﹣x2)的符号.【解答】解:由抛物线的开口向下可得a<0,由抛物线的对称轴在y轴的左边可得x=﹣<0,则a与b同号,因而b<0,由抛物线与y轴的交点在y轴的正半轴上可得c>0,∴abc>0,故①正确;由抛物线的对称轴x=﹣>﹣1(a<0),可得﹣b<﹣2a,即b>2a,故②错误;由图可知当x=1时y<0,即a+b+c<0,故③错误;∵a<0,x0﹣x1>0,x0﹣x2>0,∴a(x0﹣x1)(x0﹣x2)<0,故④正确.综上所述:①、④正确.故答案为①、④.【点评】本题主要考查二次函数图象与系数的关系,其中a决定于抛物线的开口方向,b决定于抛物线的开口方向及抛物线的对称轴相对于y轴的位置,c决定于抛物线与y轴的交点位置,2a与b的大小决定于a的符号及﹣与﹣1的大小关系,运用数形结合的思想准确获取相关信息是解决本题的关键.三、解答题(本大题共9小题,共72分)17.解方程:(1)x2+2x﹣15=0(2)3x(x﹣2)=(2﹣x)【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)先把方程变形得到3x(x﹣2)+(x﹣2)=0,然后利用因式分解法解方程.【解答】解:(1)(x+5)(x﹣3)=0,x+5=0或x﹣3=0,x+5=0或x﹣3=0,所以x1=﹣5,x2=3;(2)3x(x﹣2)+(x﹣2)=0,(x﹣2)(3x+)=0,x﹣2=0或3x+=0,所以x1=2,x2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.已知抛物线的顶点是(4,2),且在x轴上截得的线段长为8,求此抛物线的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】根据抛物线的对称性得到抛物线与x轴的两交点坐标为(0,0),(8,0),则可设交点式y=ax(x﹣8),然后把顶点坐标代入求出a即可.【解答】解:根据题意得抛物线的对称轴为直线x=4,而抛物线在x轴上截得的线段长为8,所以抛物线与x轴的两交点坐标为(0,0),(8,0),设抛物线解析式为y=ax(x﹣8),把(4,2)代入得a•4•(﹣4)=2,解得a=﹣,所以抛物线解析式为y=﹣x(x﹣8),即y=﹣x2+x.【点评】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.本题的关键是利用对称性确定抛物线与x轴的交点坐标.19.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,求m2+n2的值.【考点】根的判别式;一元二次方程的解.【专题】新定义.【分析】根据x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,列出方程组,求出m,n 的值,再代入计算即可.【解答】解:根据题意得:解得:,则m2+n2=(﹣2)2+12=5.【点评】本题考查了一元二次方程的解,根的判别式,关键是根据已知条件列出方程组,用到的知识点是一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.为响应党中央提出的“足球进校园”号召,我市在今年秋季确定了3所学校为我市秋季确定3所学校诶我市足球基地实验学校,并在全市开展了中小学足球比赛,比赛采用单循环制,即组内每两队之间进行一场比赛,若初中组共进行45场比赛,问初中共有多少个队参加比赛?【考点】一元二次方程的应用.【分析】赛制为单循环形式(每两队之间都赛一场),每个小组x个球队比赛总场数=x(x﹣1),由此可得出方程.【解答】解:设初中组共有x个队参加比赛,依题意列方程x(x﹣1)=45,解得:x1=10,x2=﹣19(不合题意,舍去),答:初中组共有10个队参加比赛.【点评】此题考查一元二次方程的实际运用,解决本题的关键是读懂题意,得到总场数与球队之间的关系.21.如图,在⊙O中,=,∠ACB=60°.(1)求证:∠AOB=∠BOC=∠AOC;(2)若D是的中点,求证:四边形OADB是菱形.【考点】圆心角、弧、弦的关系;菱形的判定;圆周角定理.【专题】证明题.【分析】(1)根据圆心角、弧、弦的关系,由=得AB=AC,加上∠ACB=60°,则可判断△ABC是等边三角形,所以AB=BC=CA,于是根据圆心角、弧、弦的关系即可得到∠AOB=∠BOC=∠AOC;(2)连接OD,如图,由D是的中点得=,则根据圆周角定理得∠AOD=∠BOD=∠ACB=60°,易得△OAD和△OBD都是等边三角形,则OA=AD=OD,OB=BD=OD,所以OA=AD=DB=BO,于是可判断四边形OADB是菱形.【解答】证明:(1)∵=,∴AB=AC,∵∠ACB=60°,∴△ABC是等边三角形,∴AB=BC=CA,∴∠AOB=∠BOC=∠AOC;(2)连接OD,如图,∵D是的中点,∴=,∴∠AOD=∠BOD=∠ACB=60°,又∵OD=OA,OD=OB,∴△OAD和△OBD都是等边三角形,∴OA=AD=OD,OB=BD=OD,∴OA=AD=DB=BO,∴四边形OADB是菱形.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了菱形的判定、等边三角形的判定与性质和圆周角定理.22.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.【考点】根的判别式;根与系数的关系;等腰三角形的性质.【分析】(1)先根据题意求出△的值,再根据一元二次方程根的情况与判别式△的关系即可得出答案;(2)根据△ABC的两边AB、AC的长是这个方程的两个实数根,设AB=x1=8,得出82﹣8(2m+1)+m(m+1)=0,求出m的值即可.【解答】解:(1)∵△=[﹣(2m+1)]2﹣4m(m+1)=1>0,∴不论m为何值,方程总有两个不相等的实数根.(2)由于无论m为何值,方程恒有两个不等实根,故若要△ABC为等腰三角形,那么必有一个解为8;设AB=x1=8,则有:82﹣8(2m+1)+m(m+1)=0,即:m2﹣15m+56=0,解得:m1=7,m2=8.则当△ABC为等腰三角形时,m的值为7或8.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E.(1)求证:CD是⊙O的切线;(2)若正方形ABCD的边长为10,求⊙O的半径.【考点】切线的判定;正方形的性质.【分析】(1)首先连接OE,并过点O作OF⊥CD,由OA长为半径的⊙O与BC相切于点E,可得OE=OA,OE⊥BC,然后由AC为正方形ABCD的对角线,根据角平分线的性质,可证得OF=OE=OA,即可判定CD是⊙O的切线;(2)由正方形ABCD的边长为10,可求得其对角线的长,然后由设OA=r,可得OE=EC=r,由勾股定理求得OC=r,则可得方程r+r=10,继而求得答案.【解答】(1)证明:连接OE,并过点O作OF⊥CD.∵BC切⊙O于点E,∴OE⊥BC,OE=OA,又∵AC为正方形ABCD的对角线,∴∠ACB=∠ACD,∴OF=OE=OA,即:CD是⊙O的切线.(2)解:∵正方形ABCD的边长为10,∴AB=BC=10,∠B=90°,∠ACB=45°,∴AC==10,∵OE⊥BC,∴OE=EC,设OA=r,则OE=EC=r,∴OC==r,∵OA+OC=AC,∴r+r=10,解得:r=20﹣10.∴⊙O的半径为:20﹣10.【点评】此题考查了切线的判定、正方形的性质、角平分线的性质以及勾股定理.注意准确作出辅助线是解此题的关键.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?【考点】二次函数的应用.【专题】综合题.【分析】(1)根据题意可知y与x的函数关系式.(2)根据题意可知y=﹣10﹣(x﹣5.5)2+2402.5,当x=5.5时y有最大值.(3)设y=2200,解得x的值.然后分情况讨论解.【解答】解:(1)由题意得:y=(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣10(x﹣5.5)2+2402.5.∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当y=2200时,﹣10x2+110x+2100=2200,解得:x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).【点评】本题考查二次函数的实际应用,借助二次函数解决实际问题,是一道综合题.25.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求二次函数解析式解答即可;(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC 与对称轴的交点即为所求点D;(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,解得:m=﹣,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为AF•sin45°=×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题.。
九年级上学期期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分。
在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填在该题相应的括号内)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.2:12.在△ABC中,∠C=90°,sinA=,则sinB的值是()A.B.C.D.3.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°4.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD •AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.45.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,每个小正方形边长均为1,则下列图中的三角形与左图中△ABC相似的是()A.B.C.D.7.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于()A.3 B.4 C.5 D.68.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④ C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分,只要求填写最后结果,每小题填对得3分)9.等腰三角形底边长10cm,周长为36cm,则一底角的正切值为.10.弧长为6π的弧所对的圆心角为60°,则该弧所在圆的半径是.11.将一副三角尺如图所示叠放在一起,则的值是.12.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,则= .13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC= 度.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.三、解答题(本大题共7个小题,共78分)解答应写出必要的证明过程或演算步骤15.计算:tan30°•sin60°+cos230°﹣sin245°•tan45°.16.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,求BC的长.17.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD ⊥AB交AB于D.已知cos∠ACD=,BC=4,求AC的长.18.如图,△ABC的三顶点分别为A(4,4),B(﹣2,2),C(3,0).请画出一个以原点O为位似中心,且与△ABC相似比为的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(只需画出一种情况,A1B1:AB=)19.如图1表示一个时钟的钟面垂直固定与水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直与桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距离桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?20.如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高.(精确到0.1米)(参考数据:sin43°=0.6820,cos43°=0.7314,tan43°=0.9325)21.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)23.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.24.如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分。
2016年九年级上册数学期中试卷及答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填在答题卡相应位置上)1.下列事件中,随机事件是()A.二月份有30天B.我国冬季的平均气温比夏季的平均气温低C.购买一张福利彩票,中奖D.有一名运动员奔跑的速度是30米/秒2.圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,则∠D的度数为()A.60° B.80° C.100° D.120°3. 用扇形纸片制作一个圆锥的侧面,要求圆锥的高是4 cm,底面周长是6π cm,则扇形的半径为()A.3 cm B.5 cm C.6 cm D.8 cm4. 抛物线的顶点坐标是()A.(-5,-2)B.(-2,-5)C.(2,-5)D.(-5,2)5. 随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是()A. B. C. D. 16.如图,AB是半圆O的直径,点P从点O出发,沿的路径运动一周.设的长为,运动时间为,则下列图形能大致地刻画与之间关系的是()7.抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为,则b、c 的值为()A. b=2,c=2B. b=2,c=0C. b= -2,c=-1D. b= -3,c=28. 如图,四边形OABC为菱形,点B、C在以点O为圆心的上,若OA=1,∠1=∠2,则扇形OEF的面积为()A. B.C. D.9. 二次函数的图象如图所示,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为()A.B. C. D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、等腰梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是.12. 边长为4的正六边形的面积等于.13.已知两圆的半径分别为2和3,两圆的圆心距为4,那么这两圆的位置关系是.14. 如图,AB为⊙O的直径,点P为其半圆上任意一点(不含A、B),点Q为另一半圆上一定点,若∠POA为x°,∠PQB为y°,则y与x的函数关系是.15.如图,⊙O的半径为2cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A 出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为s时,BP与⊙O相切.16.二次函数的图象上有两点(3,-8)和(-5,-8),则该拋物线的对称轴是.17. 已知⊙P的半径为1,圆心P在抛物线上运动,若⊙P与x轴相切,符合条件的圆心P 有个.18. 如图,把抛物线y= x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y= x2交于点Q,则图中阴影部分的面积为.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本小题8分)已知:如图,△ABC中,AC=2,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.20.(本小题8分)如图,已知⊙O的直径AB=6,且AB⊥弦CD于点E,若CD=2 ,求BE 的长.21.(本小题8分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x … -2 -1 0 1 2 …y … 0 -4 -4 0 8 …(1)根据上表填空:① 抛物线与x轴的交点坐标是和;② 抛物线经过点(-3, );③ 在对称轴右侧,y随x增大而;(2)试确定抛物线y=ax2+bx+c的解析式.22.(本小题8分)某市初中毕业男生体育测试成绩有四项,其中“立定跳远”“100米跑”“肺活量测试”为必测项目,另一项为“引体向上”和“推铅球”中选择一项测试. 请你用树状图或列表法求出小亮、小明和大刚从“引体向上”和“推铅球”中选择同一个项目的概率.23. (本题10分)有不透明的甲、乙两个口袋,甲口袋装有3张完全相同的卡片,标的数分别是、2、,乙口袋装有4张完全相同的卡片,标的数分别是1、、、4.现随机从甲袋中抽取一张将数记为x,从乙袋中抽取一张将数记为y.(1)请你用树状图或列表法求出从两个口袋中所抽取卡片的数组成的对应点(x,y)落在第二象限的概率;(2)求其中所有点(x,y)落在函数图象上的概率.24.(本小题10分)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=2 ,求⊙O的半径.25.(本小题10分)如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C 分别在x轴、y轴的正半轴上,二次函数y= 的图像经过B、C两点.(1)求该二次函数的解析式;(2)将该二次函数图象向下平移几个单位,可使平移后所得图象经过坐标原点?直接写出平移后所得图象与轴的另一个交点的坐标.26.(本小题10分)如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE 沿AC翻折得到△ACF,直线FC与直线AB相交于点G.(1)判断直线FC与⊙O的位置关系,并说明理由;(2)若,求CD的长.27.(本小题12分)如图,在平面直角坐标系中,⊙M与x轴交于A、B两点,AC是⊙M 的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为(0,),直线CD的函数解析式为.⑴求点D的坐标和BC的长;⑵求点C的坐标和⊙M的半径;⑶求证:CD是⊙M的切线.28.(本小题12分)如图,抛物线经过直线与坐标轴的两个交点A、B,此抛物线与轴的另一个交点为C,抛物线顶点为D.(1)求此抛物线的解析式;(2)已知点P为抛物线上的一个动点,若:5 :4,求出点P的坐标.2013~2014学年度第一学期中调研考试九年级数学答案一、选择题:本大题共10小题,每小题3分,共30分.题号1 2 3 4 5 6 7 8 9 10答案C C B C A C B C C B二、填空题:本大题共8小题,每小题3分,共24分.11.12.13.相交14.15.16.直线x= -1 17.3 18.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)不写作法,保留作图痕迹……………… ……4分(2)S=4π…………………………………………8分20. BE=1…………………………8分21.(1)①交点坐标是(-2,0)和(1,0);……………2分② (-3, 8 );………………………………………3分③ 在对称轴右侧,y随x增大而增大;………4分(2)………………………………………8分22. 解:分别用A,B代表“引体向上”与“推铅球”,画树状图得:…………………………4分∵共有8种等可能的结果,小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的有2种情况,∴小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的概率是: (8)分23. 解:(1)画树形图或列表……………… ……3分……………………………6分(2)……………………………10分24. 解:(1)AB=AC; ……………………………1分连接OB,则OB⊥AB,所以∠CBA+∠OBP=900,又OP=OB,所以∠OBP=∠OPB,又∠OPB=∠CPA,又OA⊥l于点A,所以∠PCA+∠CPA=900,故∠PCA=∠CBA,所以AB=AC………………………5分(2)设圆半径为r,则OP=OB=r,PA=5-r;∴AB2=OA2-OB2=52-r2,AC2=PC2-AP2=(2 )2-(5-r)2,从而建立等量关系,r=3…………………………………10分25.(1)由题意可得:B(2,2),C(0,2),将B、C坐标代入y= 得:c=2,b= ,所以二次函数的解析式是y= x2+ x+2………………………6分(2)向下平移2个单位……………………………8分另一交点(2,0)……………………………10分26.(1)相切. ……………………………1分理由:连接OC证∠OCF=90°……………………………5分(2)先求CE= ……………………………8分再得CD=2 ……………………………10分27. (1)D(5,0)……………………………2分BC=2 ……………………………4分(2)C(3,2 )……………………………6分⊙M的半径=2 ……………………………8分(3)证∠DCA=900 …………………………12分28. 解:(1)直线与坐标轴的交点A(3,0),B(0,-3).………1分则解得所以此抛物线解析式为.……………… ……………4分(2)抛物线的顶点D(1,-4),与轴的另一个交点C(-1,0). ……6分设P ,则.化简得, ……………………………8分当>0时,得∴P(4,5)或P(-2,5)…………………………10分当<0时,即,此方程无解.11分综上所述,满足条件的点的坐标为(4,5)或(-2,5).… ……12分。
江苏省盐城市东台市2016-2017学年九年级(上)期中数学试卷(解析版)一、选择题(本大题共8小题,每小题3分,共24分)1.下列图形,是中心对称图形但不是轴对称图形的是()A.等边三角形B.平行四边形C.圆D.正五边形2.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣23.在平面直角坐标系中,⊙P的圆心坐标为(4,8),半径为5,那么x轴与⊙P的位置关系是()A.相交 B.相离 C.相切 D.以上都不是4.在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为()A.y=2x2﹣2 B.y=2x2+2 C.y=2(x﹣2)2D.y=2(x+2)25.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:平均数()A.甲B.乙C.丙D.丁6.下列命题中,正确的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A.1个B.2个C.3个D.4个7.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.8.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题3分,共30分)9.在比例尺为1:40000的地图上,某条道路的长为7cm ,则该道路的实际长度是 km .10.数据1,2,3,4,5的方差为 .11.已知方程x 2+mx +3=0的一个根是1,则它的另一个根是 .12.已知圆锥的侧面积等于60πcm 2,母线长10cm ,则圆锥的底面半径是 .13.有四张不透明卡片,分别写有实数,﹣1,,,除正面的数不同外其余都相同,将它们背面朝上洗匀后,从中任取一张卡片,取到的数是无理数的可能性大小是 .14.当﹣1≤x ≤2时,二次函数y=(x ﹣m )2+m 2有最小值3,则实数m 的值为 .15.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD :DB=1:2,AE=2,则AC= .16.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE 、CF 交于点G ,半径BE 、CD 交于点H ,且点C 是的中点,若扇形的半径为2,则图中阴影部分的面积等于 .17.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y=x ﹣3与x 轴、y 轴分别交于点A ,B ,点M 是直线AB 上的一个动点,则PM 长的最小值为 .18.如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP=.三、解答题(本题有10个小题,共96分,解答要求写出文字说明,证明过程或计算步骤)19.(8分)解方程:(1)(4x﹣1)2﹣9=0(2)x2﹣3x﹣2=0.20.(8分)一种药品经过两次降价,由每盒60元调至48.6元,平均每次降价的百分率是多少?21.(10分)如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm,CD=8cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.22.(8分)已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.23.(8分)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)求图②中表示家长“无所谓”的扇形圆心角的度数.24.(8分)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.现在随机取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.25.(10分)如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.26.(12分)我校九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如表:(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在第50天至90天的销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.27.(12分)如图,⊙O是等边三角形ABC的外接圆,点P是上一点,连接AP,CP,作射线BP.(1)求证:PC平分∠APB;(2)试探究线段PA、PB、PC之间的数量关系,并证明你的结论;(3)若AP=2,PC=5,求△ABC的面积.28.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C (0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.2016-2017学年江苏省盐城市东台市第二教育联盟九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.下列图形,是中心对称图形但不是轴对称图形的是()A.等边三角形B.平行四边形C.圆D.正五边形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2【考点】解一元二次方程-因式分解法.【分析】利用因式分解法即可将原方程变为x(x﹣2)=0,即可得x=0或x﹣2=0,则求得原方程的根.【解答】解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选C.【点评】此题考查了因式分解法解一元二次方程.题目比较简单,解题需细心.3.在平面直角坐标系中,⊙P的圆心坐标为(4,8),半径为5,那么x轴与⊙P的位置关系是()A.相交 B.相离 C.相切 D.以上都不是【考点】直线与圆的位置关系;坐标与图形性质.【分析】欲求⊙P与x轴的位置关系,关键是求出点P到x轴的距离d再与⊙P的半径5比较大小即可.【解答】解:在直角坐标系内,以P(4,8)为圆心,5为半径画圆,则点P到x轴的距离为d=8,∵r=5,∴d>r,∴⊙P与x轴的相离.故选B.【点评】本题考查直线与圆的位置关系.做好本题的关键是画出简图,明白圆心坐标到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值.4.在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为()A.y=2x2﹣2 B.y=2x2+2 C.y=2(x﹣2)2D.y=2(x+2)2【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律解答.【解答】解:二次函数y=2x2的图象向上平移2个单位,得y=2x2+2.故选B.【点评】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.5.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:平均数()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】根据方差和平均数的意义找出平均数大且方差小的运动员即可.【解答】解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.下列命题中,正确的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】利用确定圆的条件、垂径定理、等弧的定义及正五边形的性质分别判断后即可确定正确的选项.【解答】解:(1)不在同一直线上的三点确定一个圆,错误;(2)平分弦(不是直径)的直径垂直于弦,错误;(3)相等的圆心角所对的弧相等,错误;(4)正五边形是轴对称图形,正确.故选A.【点评】本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、垂径定理、等弧的定义及正五边形的性质,难度不大.7.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点评】本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.8.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【分析】根据函数图象和题意,可以判断题目中①②③④的正确与否,从而解答本题,得到正确的选项.【解答】解:由题意和图象可知:x≤0时,N=y2,M=y1;0<x≤2时,N=y1,M=y2;x>2时,M=y1,N=y2∴当0<x<2时,N=y1,故①正确;由图象可知,N的值随x的增大而增大,x为全体实数,故②错误;因为二次函数的最大值为4,而M为y1,y2中的较小值,故M的最大值为4,故③正确;由图象和题意可知,N=2时,0<x<2,N=y1,故对应的x值只有一个,故④错误.由上可得,①③正确,②④错误.故选项A错误,选项B正确,选项C错误,选项D错误.故选B.【点评】本题考查二次函数和一次函数的图象的相关知识,关键是会看函数的图象,能弄懂题意,能找出所求问题需要的条件.二、填空题(本大题共10小题,每小题3分,共30分)9.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是 2.8km.【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【解答】解:设这条道路的实际长度为x,则:,解得x=280000cm=2.8km.∴这条道路的实际长度为2.8km.故答案为:2.8【点评】此题考查比例线段问题,能够根据比例尺正确进行计算,注意单位的转换.10.数据1,2,3,4,5的方差为2.【考点】方差.【分析】根据方差的公式计算.方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:数据1,2,3,4,5的平均数为(1+2+3+4+5)=3,故其方差S2= [(3﹣3)2+(1﹣3)2+(2﹣3)2+(4﹣3)2+(5﹣3)2]=2.故填2.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是3.【考点】根与系数的关系.【分析】利用一元二次方程的根与系数的关系,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.【点评】本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.12.已知圆锥的侧面积等于60πcm2,母线长10cm,则圆锥的底面半径是6.【考点】圆锥的计算.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:设底面半径为r,则60π=πr×10,解得r=6cm.故答案为:6.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.有四张不透明卡片,分别写有实数,﹣1,,,除正面的数不同外其余都相同,将它们背面朝上洗匀后,从中任取一张卡片,取到的数是无理数的可能性大小是.【考点】可能性的大小;无理数.【分析】先从四个数中找出无理数的个数,再根据概率公式进行计算即可得出答案.【解答】解:∵实数,﹣1,,中,无理数有一个,∴从中任取一张卡片,取到的数是无理数的可能性大小是;故答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为或.【考点】二次函数的最值.【分析】根据二次函数的最值问题列出方程求出m的值,再根据二次项系数大于0解答.【解答】解:∵二次函数y=(x﹣m)2+m2有最小值3,二次项系数a=1>0,故图象开口向上,对称轴为x=m,当m<﹣1时,最小值在x=﹣1取得,此时有(m+1)2+m2=3,求得m=,∵m<﹣1,∴m=;当﹣1≤m≤2时,最小值在x=m时取得,即有1﹣m2=﹣2求得m=或m=﹣(舍去)当m>2时,最小值在x=2时取得,即(2﹣m)2+m2=3求得m=(舍去)故答案为:或.【点评】本题考查了二次函数的最值问题,要注意二次函数有最小值,二次项系数大于0.15.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD:DB=1:2,AE=2,则AC=6.【考点】平行线分线段成比例.【分析】根据DE∥BC,求证=,将已知数值代入即可求出EC,再将AE加EC即可得出答案.【解答】解:∵DE∥BC,∴=,∵=,AE=2,∴EC=4,∴AC=AE+EC=2+4=6.故答案为:6.【点评】此题主要考查学生对平行线分线段成比例这一知识点的理解和掌握,此题的关键是利用平行线分线段成比例求出EC,难度不大,是基础题.16.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD 交于点H,且点C是的中点,若扇形的半径为2,则图中阴影部分的面积等于2π﹣4.【考点】扇形面积的计算;三角形的面积.【分析】根据扇形的面积公式求出面积,再过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,然后证明△CMG与△CNH全等,从而得到中间空白区域的面积等于以2为对角线的正方形的面积,从而得出阴影部分的面积.【解答】解:两扇形的面积和为:=2π,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是2的正方形面积,∴空白区域的面积为:×2×2=2,∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和=2π﹣4.故答案为:2π﹣4.【点评】此题主要考查了扇形的面积求法以及三角形的面积等知识,得出四边形EGCH的面积是解决问题的关键.17.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【考点】一次函数图象上点的坐标特征;垂线段最短.【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.【解答】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴=,即:,所以可得:PM=.【点评】本题主要考查了垂线段最短,以及三角形相似的性质与判定等知识点,是综合性比较强的题目,注意认真总结.18.如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP=40°或100°或20°.【考点】等腰三角形的性质;三角形内角和定理;圆的认识.【分析】点P是直线l上的一个动点,因而点P与线段AO有三种位置关系,在线段AO上,点P在AO延长线上,点P在OA的延长线上.分这三种情况进行讨论即可.【解答】解:①根据题意,画出图(1),在△QOC中,OC=OQ,∴∠OQC=∠OCP,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠AOC=30°,∴∠QPO=∠OCP+∠AOC=∠OCP+30°,在△OPQ中,∠QOP+∠QPO+∠OQC=180°,即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,整理得,3∠OCP=120°,∴∠OCP=40°.②当P在线段OA的延长线上(如图2)∵OC=OQ,∴∠OQP=(180°﹣∠QOC)×①,∵OQ=PQ,∴∠OPQ=(180°﹣∠OQP)×②,在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,把①②代入③得:60°+∠QOC=∠OQP,∵∠OQP=∠QCO,∴∠QOC+2∠OQP=∠QOC+2(60°+∠QOC)=180°,∴∠QOC=20°,则∠OQP=80°∴∠OCP=100°;③当P在线段OA的反向延长线上(如图3),∵OC=OQ,∴∠OCP=∠OQC=(180°﹣∠COQ)×①,∵OQ=PQ,∴∠P=(180°﹣∠OQP)×②,∵∠AOC=30°,∴∠COQ+∠POQ=150°③,∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,①②③④联立得∠P=10°,∴∠OCP=180°﹣150°﹣10°=20°.故答案为:40°或100°或20°.【点评】本题主要考查了圆的认识及等腰三角形等边对等角的性质,先假设存在并进行分类讨论是进行解题的关键.三、解答题(本题有10个小题,共96分,解答要求写出文字说明,证明过程或计算步骤)19.解方程:(1)(4x﹣1)2﹣9=0(2)x2﹣3x﹣2=0.【考点】解一元二次方程-公式法;解一元二次方程-直接开平方法.【分析】(1)移项后开方,即可得出两个一元一次方程,求出方程的解即可;(2)b2﹣4ac的值,再代入公式求出即可.【解答】解:(1)移项得:(4x﹣1)2=9,4x﹣1=±3,x1=1,x2=﹣;(2)x2﹣3x﹣2=0,b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=17,x=,x1=,x2=.【点评】本题考查了解一元二次方程的应用,主要考查学生能否选择适当的方法解一元二次方程,难度适中.20.一种药品经过两次降价,由每盒60元调至48.6元,平均每次降价的百分率是多少?【考点】一元二次方程的应用.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是60(1﹣x),第二次后的价格是60(1﹣x)2,据此即可列方程求解.【解答】解:设平均每次降价的百分率是x,依题意得:60(1﹣x)2=48.6,解方程得:x1=0.1=10%,x2=1.9(舍去),答:平均每次降价的百分率是10%.故答案为:10%.【点评】此题主要考查了一元二次方程的应用﹣﹣增长率(下降率)问题,关键是读懂题意,掌握公式:“a (1±x)n=b”,理解公式是解决本题的关键.21.(10分)(2002•扬州)如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB 于点D.已知:AB=24cm,CD=8cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.【考点】确定圆的条件.【分析】(1)、由垂径定理知,垂直于弦的直径是弦的中垂线,故作AC,BC的中垂线交于点O,则点O 是弧ACB所在圆的圆心;(2)、在Rt△OAD中,由勾股定理可求得半径OA的长.【解答】解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12cm,OD=(x﹣8)cm,则根据勾股定理列方程:x2=122+(x﹣8)2,解得:x=13.答:圆的半径为13cm.【点评】本题利用了垂径定理,中垂线的性质,勾股定理求解.22.已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.【考点】三角形的外接圆与外心;全等三角形的判定与性质;菱形的判定.【分析】(1)由∠ABC=∠DBE可知∠ABC+∠CBD=∠DBE+∠CBD,即∠ABD=∠CBE,根据SAS定理可知△ABD≌△CBE;(2)由(1)可知,△ABD≌△CBE,故CE=AD,根据点D是△ABC外接圆圆心可知DA=DB=DC,再由BD=BE可判断出BD=BE=CE=CD,故可得出四边形BDCE是菱形.【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBD=∠DBE+∠CBD,∴∠ABD=∠CBE,在△ABD与△CBE中,∵,∴△ABD≌△CBE(SAS)(2)解:四边形BDCE是菱形.证明如下:同(1)可证△ABD≌△CBE,∴CE=AD,∵点D是△ABC外接圆圆心,∴DA=DB=DC,又∵BD=BE,∴BD=BE=CE=CD,∴四边形BDCE是菱形.【点评】本题考查的是三角形的外接圆与外心、全等三角形的判定与性质及菱形的判定定理,先根据题意判断出△ABD≌△CBE是解答此题的关键.23.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为600.家长表示“不赞同”的人数为80;(2)求图②中表示家长“无所谓”的扇形圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据赞成的人数与所占的百分比列式计算即可求调查的家长的总数,然后求出不赞成的人数;(2)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解.【解答】解:(1)调查的家长总数为:360÷60%=600(人),很赞同的人数:600×20%=120(人),不赞同的人数:600﹣120﹣360﹣40=80(人);故答案为:600,80;(2)表示家长“无所谓”的圆心角的度数为:×360°=24°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.现在随机取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图,可求得一次打开锁的情况,再利用概率公式求解即可求得答案.【解答】解:(1)设两把不同的锁为A、B,能把两锁打开的钥匙分别为a、b,第三把钥匙为c,根据题意,可以画出如下树形图:由上图可知,上述试验所有可能结果分别为Aa,Ab,Ac,Ba,Bb,Bc.(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有6种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P(一次打开锁)==.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比25.(10分)(2016•武城县一模)如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.【考点】切线的判定;等腰三角形的性质;圆周角定理.【分析】(1)连接AD,根据中垂线定理不难求得AB=AC;(2)要证DE为⊙O的切线,只要证明∠ODE=90°即可.【解答】证明:(1)连接AD;∵AB是⊙O的直径,∴∠ADB=90°.又∵DC=BD,∴AD是BC的中垂线.∴AB=AC.(2)连接OD;∵OA=OB,CD=BD,∴OD∥AC.∴∠0DE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.【点评】此题主要考查了切线的判定,等腰三角形的性质及圆周角的性质等知识点的综合运用.26.(12分)(2016秋•东台市期中)我校九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销量的相关信息如表:(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在第50天至90天的销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意可以分别求得1≤x<50和50≤x≤90时的y与x的函数关系式;(2)根据题意可以分别求得两段的函数的最大值,从而可以解答本题;(3)根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数y=﹣2x2+180x+2000的图象开口向下,对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y=﹣120x+12000中y随x的增大而减小,=6000,∴当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)该商品第50天至90天的在销售过程中,共11天每天销售利润不低于4800元,理由:当50≤x≤90时,﹣120x+12000≥4800,解得x≤60,∴利润不低于4800元的天数是50≤x≤60,共11天,即该商品第50天至90天的在销售过程中,共11天每天销售利润不低于4800元.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.27.(12分)(2016秋•东台市期中)如图,⊙O是等边三角形ABC的外接圆,点P是上一点,连接AP,CP,作射线BP.(1)求证:PC平分∠APB;(2)试探究线段PA、PB、PC之间的数量关系,并证明你的结论;(3)若AP=2,PC=5,求△ABC的面积.【考点】三角形的外接圆与外心;等边三角形的性质.【分析】(1)根据等边三角形的性质得∠ABC=∠BAC=60°,再根据圆周角定理得∠APB=∠ABC=60°,∠BPC=∠BAC=60°,所以∠APC=∠BPC;(2)首先在线段PC上截取PF=PB,连接BF,进而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;(3)先证明△ADP∽△CAP,根据相似的性质得PD:PA=PA:PC,即PD:2=2:5,可计算出PD=,再证明△ADP∽△BDA,由相似比得到AD:DP=DB:DA=AB:PA,计算出AD=,AB=AD=,即得到等边三角形的边长,接着求得等边三角形的高,即可求得面积.【解答】(1)证明:∵△ABC为等边三角形,∴∠ABC=∠BAC=60°,∵∠APB=∠ABC=60°,∠BPC=∠BAC=60°,∴∠APC=∠BPC,∴PC平分∠APB;(2)解:PA+PB=PC,证明:在线段PC上截取PF=PB,连接BF,∵PF=PB,∠BPC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,。
九年级(上)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C. D.2.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+2的值等于()A.4 B.1 C.0 D.﹣13.已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A.(﹣3,﹣2)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)4.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位5.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2﹣4ac>0;②2a+b<0;③4a ﹣2b+c=0;④a:b:c=﹣1:2:3.其中正确的是()A.①②B.②③C.③④D.①④二、填空题(本大题共8小题,每小题3分,共24分)7.一元二次方程x2﹣3x=0的根是.8.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是.10.二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,则ax2+bx+c≤mx+n时,x的取值范围是.11.方程x2﹣2x﹣k=0的一个实数根为3,则另一个根为.12.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是.13.已知抛物线y=x2﹣2(k+1)x+16的顶点在x轴上,则k的值是.14.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为.三、(本大题共4小题,每小题6分,共24分)15.解方程:x(2x+3)=4x+6.16.如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC 逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是.17.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1,(只画出图形).(2)作出△ABC关于原点O成中心对称的△A2B2C2,(只画出图形),写出B2和C2的坐标.18.已知x1,x2是关于x的一元二次方程x2﹣6x+k=0的两个实数根,且x12x22﹣x1﹣x2=115.(1)求k的值;(2)求x12+x22+8的值.四、(本大题共4小题,每小题8分,共32分)19.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标.20.已知等腰△ABC的一边长a=3,另两边长b、c恰好是关于x的方程x2﹣(k+2)x+2k=0的两个根,求△ABC的周长.21.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB 上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.22.在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.五、(本大题共10分)23.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系(如图1),y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?六、(本大题共12分)24.如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C (3,0).(1)求A、B的坐标;(2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P,使得△PAB的周长最小,并求出最小值;(4)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选D.【点评】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+2的值等于()A.4 B.1 C.0 D.﹣1【考点】一元二次方程的解.【分析】把x=m代入方程x2﹣x﹣2=0求出m2﹣m=2,代入求出即可.【解答】解:把x=m代入方程x2﹣x﹣2=0得:m2﹣m﹣2=0,m2﹣m=2,所以m2﹣m+2=2+2=4.故选A.【点评】本题考查了一元二次方程的解,求代数式的值的应用,能求出m2﹣m=2是解此题的关键.3.已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A.(﹣3,﹣2)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y),关于原点的对称点是(﹣x,﹣y).【解答】解:∵点P关于x轴的对称点P1的坐标是(2,3),∴点P的坐标是(2,﹣3).∴点P关于原点的对称点P2的坐标是(﹣2,3).故选D.【点评】考查了平面内两个点关于坐标轴对称和原点对称的坐标关系.4.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.【点评】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.5.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠1【考点】根的判别式;一元二次方程的定义.【专题】计算题;压轴题.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选:D.【点评】此题考查了根的判别式,以及一元二次方程的定义,弄清题意是解本题的关键.6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2﹣4ac>0;②2a+b<0;③4a ﹣2b+c=0;④a:b:c=﹣1:2:3.其中正确的是()A.①②B.②③C.③④D.①④【考点】二次函数图象与系数的关系.【专题】计算题.【分析】由二次函数图象与x轴有两个交点,得到根的判别式大于0,可得出选项①正确;由二次函数的对称轴为直线x=1,利用对称轴公式列出关系式,化简后得到2a+b=0(i),选项②错误;由﹣2对应的函数值为负数,故将x=﹣2代入抛物线解析式,得到4a﹣2b+c小于0,选项③错误;由﹣1对应的函数值等于0,将x=﹣1代入抛物线解析式,得到a﹣b+c=0(ii),联立(i)(ii),用a表示出b及c,可得出a:b:c的比值为﹣1:2:3,选项④正确,即可得到正确的选项.【解答】解:由二次函数图象与x轴有两个交点,∴b2﹣4ac>0,选项①正确;又对称轴为直线x=1,即﹣=1,可得2a+b=0(i),选项②错误;∵﹣2对应的函数值为负数,∴当x=﹣2时,y=4a﹣2b+c<0,选项③错误;∵﹣1对应的函数值为0,∴当x=﹣1时,y=a﹣b+c=0(ii),联立(i)(ii)可得:b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,选项④正确,则正确的选项有:①④.故选D【点评】此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符合由抛物线的开口方向决定;c的符合由抛物线与y轴交点的位置确定;b的符合由对称轴的位置与a的符合决定;抛物线与x轴的交点个数决定了根的判别式的符合,此外还有注意二次函数图象上的一些特殊点,比如1,﹣1或2对应函数值的正负.二、填空题(本大题共8小题,每小题3分,共24分)7.一元二次方程x2﹣3x=0的根是x1=0,x2=3.【考点】解一元二次方程-因式分解法.【专题】方程思想;因式分解.【分析】首先利用提取公因式法分解因式,由此即可求出方程的解.【解答】解:x2﹣3x=0,x(x﹣3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.【点评】此题主要考查了因式分解法解一元二次方程,解题的关键会进行因式分解.8.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是②⑤.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形以及轴对称图形的定义即可作出判断.【解答】解:①等边三角形,是轴对称图形,不是中心对称图形,故选项错误;②矩形,既是轴对称图形,又是中心对称图形,故选项正确;③平行四边形,不是轴对称图形,是中心对称图形,故选项错误;④等腰三角形,是轴对称图形,不是中心对称图形,故选项错误;⑤菱形,既是轴对称图形,又是中心对称图形,故选项正确;故答案为:②⑤.【点评】本题主要考查了中心对称图形和轴对称图形的定义,正确理解定义是关键.10.二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,则ax2+bx+c≤mx+n时,x的取值范围是﹣2≤x≤1.【考点】二次函数与不等式(组).【分析】求关于x的不等式ax2+bx+c≤mx+n的解集,实质上就是根据图象找出函数y=ax2+bx+c的值小于或等于y=mx+n的值时x的取值范围,由两个函数图象的交点及图象的位置,可求范围.【解答】解:依题意得求关于x的不等式ax2+bx+c≤mx+n的解集,实质上就是根据图象找出函数y=ax2+bx+c的值小于或等于y=mx+n的值时x的取值范围,由两个函数图象的交点及图象的位置可以得到此时x的取值范围是﹣2≤x≤1.故填空答案:﹣2≤x≤1.【点评】解答此题的关键是把解不等式的问题转化为比较函数值大小的问题,然后结合两个函数图象的交点坐标解答,本题锻炼了学生数形结合的思想方法.11.方程x2﹣2x﹣k=0的一个实数根为3,则另一个根为﹣1.【考点】一元二次方程的解.【分析】根据题意把3代入原方程求得k的值,然后把k的值代入原方程,从而解得原方程的两个根,即可求解.【解答】解:∵方程x2﹣2x﹣k=0的一个实数根为3,∴把3代入方程得:9﹣6﹣k=0,∴k=3,∴把k=3代入原方程得:x2﹣2x﹣3=0,∴解得方程的两根分别为3和﹣1,故答案为:﹣1.【点评】本题主要考查了一元二次方程的解(根)的意义.解答本题的关键就是把3代入原方程求得k的值,然后再解得原方程的两个根.本题属于基础题比较简单.12.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是x≤1.【考点】二次函数的性质.【分析】根据二次函数的解析式的二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的单调区间.【解答】解:∵二次函数的解析式的二次项系数是,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(1,4),∴该二次函数图象在[﹣∞1m]上是减函数,即y随x的增大而减小;即:当x≤1时,y随x的增大而减小,故答案为:x≤1.【点评】本题考查了二次函数图象的性质.解答该题时,须熟知二次函数的系数与图象的关系、二次函数的顶点式方程y=(k﹣h)x2﹣b中的h,b的意义.13.已知抛物线y=x2﹣2(k+1)x+16的顶点在x轴上,则k的值是3或﹣5.【考点】二次函数的性质.【分析】抛物线y=ax2+bx+c的顶点纵坐标为,当抛物线的顶点在x轴上时,顶点纵坐标为0,解方程求k的值.【解答】解:根据顶点纵坐标公式,抛物线y=x2﹣2(k+1)x+16的顶点纵坐标为,∵抛物线的顶点在x轴上时,∴顶点纵坐标为0,即=0,解得k=3或﹣5.故本题答案为3或﹣5.【点评】本题考查了二次函数的顶点坐标的运用.抛物线y=ax2+bx+c的顶点坐标为(﹣,).14.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为(,2).【考点】二次函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】先根据待定系数法求得抛物线的解析式,然后根据题意求得D(0,2),且DC∥x轴,从而求得P的纵坐标为2,代入求得的解析式即可求得P的坐标.【解答】解:∵Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,∴4=4a,解得a=1,∴抛物线为y=x2,∵点A(﹣2,4),∴B(﹣2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入y=x2,得2=x2,解得x=±,∴P(,2).故答案为(,2).【点评】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,根据题意求得P的纵坐标是解题的关键.三、(本大题共4小题,每小题6分,共24分)15.解方程:x(2x+3)=4x+6.【考点】解一元二次方程-因式分解法.【分析】先移项;然后提取公因式(2x+3)分解因式,利用因式分解法解方程.【解答】解:x(2x+3)﹣2(2x+3)=0,∴(2x+3)(x﹣2)=0,∴2x+3=0或x﹣2=0,∴x1=﹣,x2=2.【点评】本题考查了解一元二次方程﹣﹣因式分解法.因式分解法解一元二次方程的思想就是把未知方程化成2个因式相乘等于0的形式,如(x﹣a)(x﹣b)=0的形式,这样就可直接得出方程的解为x﹣a=0或x﹣b=0,即x=a或x=b.注意“或”的数学含义,这里x1和x2就是“或”的关系,它表两个解中任意一个成立时方程成立,同时成立时,方程也成立.16.如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC 逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是90°.【考点】作图-旋转变换.【专题】作图题.【分析】分别作出AC,CE的垂直平分线进而得出其交点O,进而得出答案.【解答】解:如图所示:旋转角度是90°.故答案为:90°.【点评】此题主要考查了旋转变换,得出旋转中心的位置是解题关键.17.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1,(只画出图形).(2)作出△ABC关于原点O成中心对称的△A2B2C2,(只画出图形),写出B2和C2的坐标.【考点】作图-旋转变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C以O为旋转中心顺时针旋转90°后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点O成中心对称的点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出B2和C2的坐标.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示,B2(4,﹣1),C2(1,﹣2).【点评】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.已知x1,x2是关于x的一元二次方程x2﹣6x+k=0的两个实数根,且x12x22﹣x1﹣x2=115.(1)求k的值;(2)求x12+x22+8的值.【考点】根与系数的关系;解一元二次方程-直接开平方法;根的判别式.【专题】压轴题.【分析】(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数k的取值范围,再利用根与系数的关系,x12x22﹣x1﹣x2=115.即x12x22﹣(x1+x2)=115,即可得到关于k的方程,求出k的值.(2)根据(1)即可求得x1+x2与x1x2的值,而x12+x22+8=(x1+x2)2﹣2x1x2+8即可求得式子的值.【解答】解:(1)∵x1,x2是方程x2﹣6x+k=0的两个根,∴x1+x2=6,x1x2=k,∵x12x22﹣x1﹣x2=115,∴k2﹣6=115,解得k1=11,k2=﹣11,当k1=11时,△=36﹣4k=36﹣44<0,∴k1=11不合题意当k2=﹣11时,△=36﹣4k=36+44>0,∴k2=﹣11符合题意,∴k的值为﹣11;(2)∵x1+x2=6,x1x2=﹣11∴x12+x22+8=(x1+x2)2﹣2x1x2+8=36+2×11+8=66.【点评】总结:(1)一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.(2)根与系数的关系是:x1+x2=,x1x2=.根据根与系数的关系把x12x22﹣x1﹣x2=115转化为关于k的方程,解得k的值是解决本题的关键.四、(本大题共4小题,每小题8分,共32分)19.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标.【考点】待定系数法求二次函数解析式;三角形的面积.【分析】(1)直接把原点坐标代入y=x2+(2k﹣1)x+k+1求出k的值即可得到二次函数解析式;(2)先确定A(3,0)和抛物线的对称轴,设B(x,x2﹣3x),再根据三角形面积公式得到•3•|x2﹣3x|=6,则x2﹣3x=4或x2﹣3x=﹣4,然后分别解方程求出x即可确定满足条件的B点坐标.【解答】解:(1)把(0,0)代入得k+1=0,解得k=﹣1,所以二次函数解析式为y=x2﹣3x;(2)当y=0时,x2﹣3x=0,解得x1=0,x2=3,则A(3,0),抛物线的对称轴为直线x=,设B(x,x2﹣3x),因为△AOB的面积等于6,所以•3•|x2﹣3x|=6,当x2﹣3x=4时,解得x1=﹣1,x2=4,则B点坐标为(4,4);当x2﹣3x=﹣4时,方程无实数解.所以点B的坐标为(4,4).【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.已知等腰△ABC的一边长a=3,另两边长b、c恰好是关于x的方程x2﹣(k+2)x+2k=0的两个根,求△ABC的周长.【考点】等腰三角形的性质;解一元二次方程-因式分解法.【分析】先利用因式分解法求出两根:x1=2,x2=k.先分类讨论:若a=3为底边;若a=3为腰,分别确定b,c的值,求出三角形的周长.【解答】解:x2﹣(k+2)x+2k=0(x﹣2)(x﹣k)=0,则x1=2,x2=k,当b=c,k=2,则△ABC的周长=2+2+3=7,当b=2,c=3或c=2,b=3则k=3,则△ABC的周长=2+3+3=8.故△ABC的周长是7或8.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.也考查了解等腰三角形的性质.21.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB 上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.【考点】矩形的性质;二次函数的最值.【专题】动点型.【分析】(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解;(2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答.【解答】解:(1)∵S△PBQ=PB•BQ,PB=AB﹣AP=18﹣2x,BQ=x,∴y=(18﹣2x)x,即y=﹣x2+9x(0<x≤4);(2)由(1)知:y=﹣x2+9x,∴y=﹣(x﹣)2+,∵当0<x≤时,y随x的增大而增大,而0<x≤4,∴当x=4时,y最大值=20,即△PBQ的最大面积是20cm2.【点评】本题考查了矩形的性质,二次函数的最值问题,根据题意表示出PB、BQ的长度是解题的关键.22.在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.【考点】旋转的性质;平行四边形的判定;菱形的判定.【专题】几何综合题.【分析】(1)根旋转的性质得AB=DF,BD=FA,由于AB=BD,所以AB=BD=DF=FA,则可根据菱形的判定方法得到四边形ABDF是菱形;(2)由于四边形ABDF是菱形,则AB∥DF,且AB=DF,再根据旋转的性质易得四边形ABCE为平行四边形,根据平行四边形的性质得AB∥CE,且AB=CE,所以CE∥FD,CE=FD,所以可判断四边形CDEF是平行四边形.【解答】(1)解:四边形ABDF是菱形.理由如下:∵△ABD绕着边AD的中点旋转180°得到△DFA,∴AB=DF,BD=FA,∵AB=BD,∴AB=BD=DF=FA,∴四边形ABDF是菱形;(2)证明:∵四边形ABDF是菱形,∴AB∥DF,且AB=DF,∵△ABC绕着边AC的中点旋转180°得到△CEA,∴AB=CE,BC=EA,∴四边形ABCE为平行四边形,∴AB∥CE,且AB=CE,∴CE∥FD,CE=FD,∴四边形CDEF是平行四边形.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行四边形的判定和菱形的判定.五、(本大题共10分)23.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系(如图1),y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?【考点】二次函数的应用.【分析】(1)抛物线的解析式为y=ax2+c,根据E点及D点的坐标由待定系数法就可以求出结论;(2)当y=2.4时代入(1)的解析式求出x的值就求出结论;(3)将(2)求出的宽度﹣0.4m后除以2的值与2.4比较就可以求出结论.【解答】解:(1)∵OE为线段BC的中垂线,∴OC=BC.∵四边形ABCD是矩形,∴AD=BC=8m,AB=CD=2m,∴OC=4.∴D(4,2,).E(0,6).设抛物线的解析式为y=ax2+c,由题意,得,解得:,∴y=﹣x2+6;(2)由题意,得当y=4.4时,4.4=﹣x2+6,解得:x=±,∴宽度为:>2.4,∴它能通过该隧道;(3)由题意,得(﹣0.4)=﹣0.2>2.4,∴该辆货运卡车还能通过隧道.【点评】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键.六、(本大题共12分)24.如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C (3,0).(1)求A、B的坐标;(2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P,使得△PAB的周长最小,并求出最小值;(4)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质.【分析】(1)对于直线y=3x+3,分别令x与y为0求出对应y与x的值,确定出A与B坐标即可;(2)根据A,C坐标,设出抛物线解析式,将C坐标代入即可确定出解析式;(3)连接BC,与抛物线对称轴交于点P,连接AP,此时△PAB的周长最小,并求出最小值即可;(4)在抛物线的对称轴上存在点Q,使△ABQ是等腰三角形,分四种情况考虑,求出满足题意Q 坐标即可.【解答】解:(1)对于直线y=3x+3,令x=0,得到y=3;令y=0,得到x=﹣1,则A(﹣1,0),B(0,3);(2)由A(﹣1,0),C(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把B(0,3)代入得:3=﹣3a,即a=﹣1,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(3)连接BC,与抛物线对称轴交于点P,连接AP,由对称性得AP=CP,如图1所示,此时△ABP 周长最小,由抛物线解析式y=﹣x2+2x+3=﹣(x﹣1)2+4,得到对称轴为直线x=1,设直线BC解析式为y=mx+n,将B(0,3),C(3,0)代入得:,解得:m=﹣1,n=3,即直线BC解析式为y=﹣x+3,联立得:,解得:,即P(1,2),根据两点间的距离公式得:AB==,BC==3,则P(1,2),周长为AB+BP+AP=AB+BP+PC=AB+BC=3+;(4)在抛物线的对称轴上存在点Q,使△ABQ是等腰三角形,如图2所示,分四种情况考虑:当AB=AQ1==时,在Rt△AQ1Q3中,AQ3=2,AQ1=,根据勾股定理得:Q1Q3==,此时Q1(1,);由对称性可得Q2(1,);当AB=BQ3时,可得OQ3=OA=1,此时Q3(1,0);当AQ4=BQ4时,Q4为线段AB垂直平分线与对称轴的交点,∵A(﹣1,0),B(0,3),∴直线AB斜率为=3,中点坐标为(﹣,),∴线段AB垂直平分线方程为y﹣=﹣(x+),令x=1,得到y=1,此时Q4(1,1),综上,Q的坐标为(1,)或(1,﹣)或(1,0)或(1,1).【点评】此题属于二次函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定二次函数解析式,待定系数法确定一次函数解析式,一次函数与坐标轴的交点,等腰三角形的性质,线段垂直平分线定理,勾股定理,以及对称的性质,熟练掌握性质及定理是解本题的关键.。
九年级(上)期中数学试卷一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣22.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=253.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣14.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=25.下列标志中,可以看作是轴对称图形的是()A.B.C.D.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B 的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.39.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.16.观察下列图形规律:当n=时,图形“●”的个数和“△”的个数相等.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.18.解方程:2x2﹣7x+6=0.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP 沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.九年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣2【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、a=0,ax2+bx+c=0是一元一次方程,故A错误;B、()2+﹣2=0是分式方程,故B错误;C、3(x+1)2=2(x+1)是一元二次方程,故C正确;D、2x2+3x=2x2﹣2是一元一次方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=25【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣1【考点】根的判别式.【专题】计算题.【分析】根据根的判别式,令△>0即可求出根的判别式.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×m>0,∴4﹣4m>0,解得m<1.故选A.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】直接利用十字相乘法分解因式,进而得出方程的根【解答】解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.【点评】此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.5.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B 的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°【考点】旋转的性质.【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【专题】数形结合.【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3【考点】垂径定理;勾股定理.【分析】过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.【解答】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.【点评】本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.9.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°【考点】圆周角定理.【专题】几何图形问题.【分析】由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠A=35°,即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选:C.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m<0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是3.【考点】根与系数的关系.【分析】利用一元二次方程的根与系数的关系,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.【点评】本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=﹣或1.【考点】换元法解一元二次方程.【分析】设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x即(a+b)的值.【解答】解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得16x2﹣8x﹣8=0,即2x2﹣x﹣1=0,分解得:(2x+1)(x﹣1)=0,解得:x1=﹣,x2=1.则a+b的值是﹣或1.故答案是:﹣或1.【点评】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为y=2(x+1)2﹣2.【考点】二次函数图象与几何变换.【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为(4,2).【考点】坐标与图形变化-旋转.【专题】几何变换.【分析】画出旋转后的图形位置,根据图形求解.【解答】解:AB旋转后位置如图所示.B′(4,2).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.16.观察下列图形规律:当n=5时,图形“●”的个数和“△”的个数相等.【考点】规律型:图形的变化类.【专题】规律型.【分析】首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.【解答】解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.【点评】此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣(2015+π)0=2+3﹣2﹣3﹣1=﹣1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解方程:2x2﹣7x+6=0.【考点】解一元二次方程-因式分解法.【分析】利用十字相乘法因式分解得到(2x﹣3)(x﹣2)=0,推出2x﹣3=0,x﹣2=0,求出方程的解即可.【解答】解:2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,∴2x﹣3=0,x﹣2=0,x1=,x2=2,【点评】此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).【考点】根与系数的关系.【分析】(1)根据根与系数的关系得出α+β和αβ,再把α2+β2变形(α+β)2﹣2αβ,代入计算即可;(2)把化为,再代入计算即可.【解答】解:(1)∵方程x2+3x﹣1=0的两个实数根为α、β,∴α+β=﹣3,αβ=﹣1,∴α2+β2=(α+β)2﹣2αβ=9+2=11;(2)∵α+β=﹣3,αβ=﹣1,∴===﹣11.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】根据A点坐标得到OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB 绕原点O顺时针旋转90°得到RtOA′C,根据旋转的性质得到A′C=AB=3,OC=OB=4,再写出A′点的坐标.【解答】解:AB⊥y轴于B,A′C⊥x轴于C,如图,OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB绕原点O顺时针旋转90°得到RtOA′C,则A′C=AB=3,OC=OB=4,所以点A′的坐标为(4,﹣3).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.【考点】圆心角、弧、弦的关系;圆周角定理.【分析】(1)根据∠AOD=∠BOE可知=,再由=即可得出结论;(2)先根据等腰三角形的性质求出∠BOE的度数,再由BE=CE可得出∠BOE=∠COE,根据补角的定义即可得出结论.【解答】(1)证明:∵∠AOD=∠BOE,∴=.∵=,∴=,∴BE=CE;(2)解:∵∠B=50°,OB=OE,∴∠BOE=180°﹣50°﹣50°=80°.∵由(1)知,BE=CE,∴∠COE=∠BOE=80°,∴∠AOC=180°﹣80°﹣80°=20°.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP 沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【专题】证明题.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ 的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.【解答】解:(1)设每年市政府投资的增长率为x,根据题意得:3(1+x)2=6.75,解得:x=0.5,或x=﹣2.5(不合题意,舍去),∴x=0.5=50%,即每年市政府投资的增长率为50%;(2)∵12(1+50%)2=27,∴2015年建设了27万平方米廉租房.【点评】本题考查了一元一次方程的应用;熟练掌握列一元一次方程解应用题的方法,根据题意找出等量关系列出方程是解决问题的关键.24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【考点】抛物线与x轴的交点;根的判别式.【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴A B2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==2【点评】本题考查了抛物线与x轴的交点,利用了根的判别式,根据根与系数的关系,利用完全平方公式得出二次函数是解题关键,又利用了二次函数的性质.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.【考点】二次函数综合题.【分析】(1)根据题意联立抛物线和直线的解析式,化为一元二次方程,运用△>0即可求出a的取值范围和交点的坐标;(2)根据轴对称性质表示出点P的坐标并代入抛物线,求出a的值,用△ACP的面积减去△ADC 的面积即可求出△PCD的面积.【解答】解:(1)由题意联立,整理得:2x2+5x﹣4a=0,由△=25+32a>0,解得:,∵a≠0,∴且a≠0,当x=0时,y=a,∴A(0,a),∵y=﹣x2﹣2x+a=﹣(x+1)2+a+1,∴M(﹣1,a+1).(2)设直线MA为:y=kx+b,代入A(0,a),M(﹣1,a+1)得,,解得:,所以直线MA为y=﹣x+a,联立,解得,所以:N(,),∵点P是N关于y轴的对称点,∴P(﹣,),代入y=﹣x2﹣2x+a,得,解得:a=,或a=0(舍去),∴抛物线为y=﹣x2﹣2x+,直线BC为y=﹣,当x=0时,y=﹣,∴C(0,﹣),A(0,),M(﹣1,),∴|AC|=,∴S△PCD=S△PAC﹣S△DAC=|AC|×|x p|﹣|AC|×|x D|=××3﹣××1=.【点评】此题主要考查二次函数的综合问题,会运用待定系数法求函数解析式,会求函数图象的交点和三角形的面积是解题的关键.。
2015-2016学年度第一学期期中检测九年级数学试卷考试时间:120分钟 满分150分一.选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上)1. 如果2是方程x 2﹣c=0的一个根,那么c 的值是 【 ▲ 】 A .4 B .﹣4 C . 2 D .-22.函数y=x 2+3x -4的图象与y 轴的交点坐标是 【 ▲ 】 A.(2,0) B.(-2,0) C.(0,4) D.(0,-4)3.有下列四个说法:①半径确定了,圆就确定了; ② 直径是弦; ③弦是直径 ;④半圆是弧,但弧不一定是半圆;其中说法错误的个数是 【 ▲ 】 A .1 B .2 C .3 D .4 4. 已知一元二次方程22530x x -+=,则该方程根的情况是 【 ▲ 】A.有两个不相等的实数根 B .有两个相等的实数根C .两个根都是自然数D .无实数根5.根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是 【 ▲ 】A. 6 6.17x <<B. 6.17 6.18x <<C. 6.18 6.19x <<D. 6.19 6.20x <<6. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在【 ▲ 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限7.已知 ⊙O 是△ABC 的内切圆,分别切AB 、BC 、CA 于点D 、E 、F ;则△DEF 一定【 ▲ 】 A .锐角三角形 B .直角三角形 C.钝角三角形 D .不能确定8. 若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是 A .m =l B .m >l C .m ≥l D .m ≤l 【 ▲ 】 二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9.方程042=-x x 的解是____▲ __;10. 已知方程x 2-4x+1=0的两个根分别为x 1,x 2,则=∙21x x ▲ ;11.数据-5,3,4,0,1,8,2的极差为___▲ ___;12.事件A 发生的概率为0.05,大量重复做这种试验,事件A 平均每100次发生的次数是▲ ;学校: 班级: 姓名: 考试号:装订线内请勿答题13. 已知圆锥的底面半径是3,母线长为514.在⊙O 中,直径AB =4,弦CD ⊥AB 于P ,OP =3,则弦CD 的长为 ▲ ; 15.如图,ABCD 是⊙O 的内接四边形,∠B=140°,则∠AOC 的度数是 ▲ 度;第14题 第15题 第17题16.已知三角形的三边分别为5、12、13,则这个三角形的内切圆半径是 ____▲___; 17.如图是二次函数 y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx+c=0的两根分别为-3和1;④a-b <m (ma+b ) (m ≠-1的实数); 其中正确的命题是 ▲ ;(只要求填写正确命题的序号) 18.已知抛物线bx x y +=221经过点A (4,0)。
2016-2017学年江苏省盐城市东台市第四教育联盟九年级(上)期中数学试卷一、选择题:(本大题8小题,每小题3分,共24分)1.(3分)在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.2.(3分)下列方程中是关于x的一元二次方程的是()A.x2+2x=x2﹣1 B.x3+2x2+3=0C.x(x﹣1)=1 D.3x2﹣2xy﹣5y2=03.(3分)某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是154.(3分)下列调查中,更适合采用普查方式的是()A.调查收看里约奥运会女排决赛的人数B.调查某种灯泡的使用寿命C.调查东台市居民对“中国梦”的知晓率D.调查“天宫二号”零件的质量情况5.(3分)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y 轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.5 B.6 C.8 D.106.(3分)如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B=()A.15°B.40°C.75°D.35°7.(3分)已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是()A.m≥B.m>C.m≤D.m<8.(3分)要使关于x的一元二次方程ax2+2x﹣1=0有两个实数根,且使关于x 的分式方程+=2的解为非负数的所有整数a的个数为()A.5个 B.6个 C.7个 D.8个二、填空题(本大题共有10小题,每小题3分,共30分)9.(3分)若x2=4,则x=.10.(3分)正十边形的每个内角为.11.(3分)如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是.12.(3分)将二次函数y=x2的图象沿x轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为.13.(3分)已知圆锥的底面直径为4cm,其母线长为10cm,沿着它的一条母线剪开后得到的扇形的圆心角的度数为.14.(3分)已知二次函数y=x2﹣2x﹣1的图象与x轴的一个交点为(a,0),那么代数式2a2﹣4a+2016的值为.15.(3分)如图,AB为⊙O的弦,△ABC的两边BC、AC分别交⊙O于D、E两点,其中∠B=60°,∠EDC=70°,则∠C=度.16.(3分)P为⊙O外一点,PA、PB分别切⊙O于点A、B,∠APB=70°,点C 为⊙O上一点(不与A、B重合),则∠ACB的度数为.17.(3分)如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为.18.(3分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的序号是.三、解答题(本大题共有10小题,共96分.)19.(8分)解方程:(1)2(x﹣1)+x(x﹣1)=0;(2)2x2﹣5x+1=0.20.(8分)已知抛物线y=x2﹣2x﹣3.(1)直接写出抛物线的开口方向、对称轴和顶点坐标;(2)若抛物线与x轴的两个交点为A、B,与y轴的一个交点为C,画草图,求△ABC的面积.21.(8分)如图,在平面直角坐标系中,一段圆弧经过格点A、B、C,其中点B 坐标为(4,3).(1)请写出该圆弧所在圆的圆心D的坐标.(2)求弧的长(结果保留π).22.(8分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次共抽查了个家长;(2)请补全条形统计图和扇形统计图(友情提醒:条形图补画家长持“反对”态度的人数条,扇形图填上“反对”及“赞成”的百分数);(3)已知该校共有1200名学生,持“赞成”态度的学生估计约有人.23.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)△ABC的内切圆的半径为;(2)将△ABC绕着点B顺时针旋转90°后得到△A1BC1,请在图中画出△A1BC1,并求出线段AC旋转过程中所扫过的面积(结果保留π).24.(10分)在两只不透明的袋子中分别装有4张和3张除数字外完全相同的卡片,甲袋中的卡片上分别标有1、2、3、4四个数字,乙袋中的卡片上分别标有1、2、3三个数字,现分别从两个袋子中各抽出一张卡片,试解答下列问题:(1)分别用A、B表示从甲、乙两个袋子中抽出的卡片上的数字,请用树状图法或列表法写出(A,B)的所有取值;(2)求在(A,B)中使关于x的一元二次方程x2﹣Ax+2B=0有实数根的概率.25.(10分)如图,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)建立如图所示的坐标系,求抛物线的解析式;(2)一艘装满物资的小船,露出水面部分的高为0.8m、宽为4m(横断面如图所示).若暴雨后,水位达到警戒线CD,此时这艘船能从这座拱桥下通过吗?请说明理由.26.(10分)直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=8,⊙O的半径为10,求四边形FGDE的面积.27.(10分)一快餐店试销售某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为500元(不含套餐成本).若每份售价为10元,每天可销售300份;若每份售价超过10元,每提高1元,每天的销售量就减少30份.设该店每份套餐的售价为x元(10≤x≤18),每天的利润为W元.(利润=销售额﹣套餐成本﹣固定支出)(1)写出W与x的函数关系式;(2)若该店既要吸引顾客,使每天的销售量较大,又要获取最大的利润,则每份套餐的售价应定为多少元(为了便于计算,每份套餐的售价取整数)?此时,最大利润为多少元?28.(14分)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A、B,点A的横坐标为﹣1.与y轴交于点C,点C的纵坐标为2.顶点为P.过动点H (0,m)作平行于x轴的直线l,直线l与抛物线相交于点D、E.(1)求抛物线的解析式以及顶点P的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求出m 是多少?此时在直线l上存在一点F,满足|PF﹣AF|有最大值,求直线AF的函数表达式;(3)若在直线l上找出一点G,使得△ACG是等腰直角三角形,请直接写出所有符合条件的m的值.2016-2017学年江苏省盐城市东台市第四教育联盟九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题8小题,每小题3分,共24分)1.(3分)在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.【解答】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.2.(3分)下列方程中是关于x的一元二次方程的是()A.x2+2x=x2﹣1 B.x3+2x2+3=0C.x(x﹣1)=1 D.3x2﹣2xy﹣5y2=0【解答】解:A、不是关于x的一元二次方程,故此选项错误;B、不是一元二次方程,故此选项错误;C、是一元二次方程,故此选项正确;D、不是一元二次方程,故此选项错误;故选:C.3.(3分)某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是15【解答】解:A、80出现的次数最多,所以众数是80,A正确;B、把数据按大小排列,中间两个数为80,80,所以中位数是80,B错误;C、平均数是=80,C正确;D、极差是90﹣75=15,D正确.故选:B.4.(3分)下列调查中,更适合采用普查方式的是()A.调查收看里约奥运会女排决赛的人数B.调查某种灯泡的使用寿命C.调查东台市居民对“中国梦”的知晓率D.调查“天宫二号”零件的质量情况【解答】解:A、调查收看里约奥运会女排决赛的人数,调查范围广适合抽样调查,故本选项错误;B、调查某种灯泡的使用寿命,调查范围广适合抽样调查,故本选项错误;C、调查东台市居民对“中国梦”的知晓率,调查范围广适合抽样调查,故本选项错误;D、调查“天宫二号”零件的质量情况,是事关重大的调查,适合普查,故本选项正确;故选:D.5.(3分)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y 轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.5 B.6 C.8 D.10【解答】解:过点A作AD⊥OB于点D,作AE⊥OC于点E,连接OA∵B(8,0),C(0,6),∴OB=8,OC=6,∴由垂径定理可知:OD=OB=4,OE=OC=3∴由勾股定理可知:OA=5,故选:A.6.(3分)如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B=()A.15°B.40°C.75°D.35°【解答】解:∵∠APD=75°,∴∠BPD=105°,由圆周角定理可知∠A=∠D(同弧所对的圆周角相等),在三角形BDP中,∠B=180°﹣∠BPD﹣∠D=35°,故选:D.7.(3分)已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是()A.m≥B.m>C.m≤D.m<【解答】解:已知二次函数的解析式为:y=x2+x+m,∴函数的图象开口向上,又∵当x取任意实数时,都有y>0,∴有△<0,∴△=1﹣4m<0,∴m>,故选:B.8.(3分)要使关于x的一元二次方程ax2+2x﹣1=0有两个实数根,且使关于x 的分式方程+=2的解为非负数的所有整数a的个数为()A.5个 B.6个 C.7个 D.8个【解答】解:∵关于x的方程ax2+2x﹣1=0有两个实数根,∴a≠0且△=22﹣4a•(﹣1)≥0,∴a≥﹣1且a≠0,对于分式方程+=2,去分母得x﹣(a+2)=2(x﹣4),解得x=﹣a+6,因为分式方程的解为非负数,所以﹣a+6≥0且﹣a+6≠4,解得a≤6且a≠2,所以﹣1≤a≤6且a≠0,a≠2,所以整数a的值为﹣1,1,3,4,5,6.故选:B.二、填空题(本大题共有10小题,每小题3分,共30分)9.(3分)若x2=4,则x=±2.【解答】解:x2=4,x=±2,故答案为:±2.10.(3分)正十边形的每个内角为144°.【解答】解:方法一:正十边形的内角和为(10﹣2)•180°=1440°,每个内角为1440°÷10=144°;方法二:每一个外角度数为360°÷10=36°,每个内角度数为180°﹣36°=144°.故答案为:144°.11.(3分)如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是.【解答】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故答案为:.12.(3分)将二次函数y=x2的图象沿x轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为y=x2+4x+4.【解答】解:平移后二次函数解析式为:y=(x+2)2=x2+4x+4,故答案为:y=x2+4x+413.(3分)已知圆锥的底面直径为4cm,其母线长为10cm,沿着它的一条母线剪开后得到的扇形的圆心角的度数为72°.【解答】解:∵圆锥的底面直径为4cm,∴底面周长是4πcm.设侧面展开图的圆心角度数是n°,∵母线长为10cm,∴=4π,解得:n=72,故答案是:72°.14.(3分)已知二次函数y=x2﹣2x﹣1的图象与x轴的一个交点为(a,0),那么代数式2a2﹣4a+2016的值为2018.【解答】解:∵抛物线y=x2﹣2x﹣1与x轴的一个交点为(a,0),∴a2﹣2a﹣1=0,∴a2﹣2a=1,则代数式2a2﹣4a+2016=a2﹣2a+a2﹣2a+2016=1+1+2016=2018.故答案为:2018.15.(3分)如图,AB为⊙O的弦,△ABC的两边BC、AC分别交⊙O于D、E两点,其中∠B=60°,∠EDC=70°,则∠C=50度.【解答】解:∵四边形ABDE是圆内接四边形,∴∠CED=∠B=60°,∴∠C=180°﹣70°﹣60°=50°,故答案为:50°.16.(3分)P为⊙O外一点,PA、PB分别切⊙O于点A、B,∠APB=70°,点C 为⊙O上一点(不与A、B重合),则∠ACB的度数为55°或125°.【解答】解:连接OA、OB.∵PA,PB分别切⊙O于点A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=70°,∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣70°=110°,∴∠ADB=×∠AOB=×110°=55°,即当C在D处时,∠ACB=55°.在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣55°=125°.于是∠ACB的度数为55°或125°,故答案为:55°或125°.17.(3分)如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为5π.【解答】解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB﹣∠DOB=50°,∴的长为=5π.故答案是:5π.18.(3分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的序号是③⑤.【解答】解:①∵抛物线的对称轴为x=﹣=1,抛物线开口朝下,∴b=﹣2a,a<0,∴b>0,2a﹣b=2a+2a=4a<0,①错误;②∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0,②错误;③将抛物线y1=ax2+bx+c往下平移三个单位长度,抛物线与x轴只有一个交点(1,0),∴方程ax2+bx+c=3有两个相等的实数根,③正确;④∵抛物线的对称轴为x=1,与x轴的一个交点坐标为(4,0),∴与x轴另一交点横坐标为:1×2﹣4=﹣2,④错误;⑤观察函数图象可知:当1<x<4时,抛物线在直线的上方,∴y2<y1,⑤正确.综上可知:正确的结论有③⑤.故答案为:③⑤.三、解答题(本大题共有10小题,共96分.)19.(8分)解方程:(1)2(x﹣1)+x(x﹣1)=0;(2)2x2﹣5x+1=0.【解答】解:(1)由原方程可得(x﹣1)(2+x)=0,∴x﹣1=0或2+x=0,解得:x=1或x=﹣2;(2)∵a=2,b=﹣5,c=1,∴b2﹣4ac=25﹣8=17>0∴x=,即x1=,x2=.20.(8分)已知抛物线y=x2﹣2x﹣3.(1)直接写出抛物线的开口方向、对称轴和顶点坐标;(2)若抛物线与x轴的两个交点为A、B,与y轴的一个交点为C,画草图,求△ABC的面积.【解答】解:(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该抛物线开口向上,对称轴为x=1,顶点坐标为(1,﹣4).(2)按点A在点B的左侧画出草图,如图所示.∵y=x2﹣2x﹣3=(x+1)(x﹣3),∴点A(﹣1,0),点B(3,0),当x=0时,y=﹣3,∴点C(0,﹣3),∴S=AB•OC=×[3﹣(﹣1)]×|﹣3|=6.△ABC21.(8分)如图,在平面直角坐标系中,一段圆弧经过格点A、B、C,其中点B 坐标为(4,3).(1)请写出该圆弧所在圆的圆心D的坐标(2,﹣1).(2)求弧的长(结果保留π).【解答】解:(1)作AB和BC的垂直平分线,它们相交于点D,如图,则D点坐标为(2,﹣1).故答案为(2,﹣1),(2)连接AD,则AD===2;在△ADF和△DCG中,∵,∴△ADF≌△DCG(SAS),∴∠ADF=∠DCG,∵∠DCG+∠CDG=90°,∴∠ADF+∠CDG=90°,即∠ADC=90°,∴的长为:=π.22.(8分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次共抽查了100个家长;(2)请补全条形统计图和扇形统计图(友情提醒:条形图补画家长持“反对”态度的人数条,扇形图填上“反对”及“赞成”的百分数);(3)已知该校共有1200名学生,持“赞成”态度的学生估计约有300人.【解答】解:(1)根据题意得:20÷20%=100(个),则这次调查了100个家长;(2)家长“反对”的人数为100﹣(10+20)=70(个);占的百分比为70÷100=70%;“赞成”占的百分比为10÷100=10%;补全统计图,如图所示:(3)根据题意得:1200×=300(个),则持“赞成”态度的学生估计约有300个,故答案为:(1)100;(3)30023.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)△ABC的内切圆的半径为;(2)将△ABC绕着点B顺时针旋转90°后得到△A1BC1,请在图中画出△A1BC1,并求出线段AC旋转过程中所扫过的面积(结果保留π).【解答】解:(1)AB=2,AC=3,BC==,所以△ABC的内切圆的半径==;故答案为;(2)如图,△A1BC1为所作;∵△ABC绕着点B顺时针旋转90°后得到△A1BC1,∴S△BA1C1=S△BAC,线段AC旋转过程中所扫过的面积=S扇形CBB1+S△BA1C1﹣S△BAC﹣S扇形ABA1=S扇形CBB1﹣S扇形ABA1=﹣=π.24.(10分)在两只不透明的袋子中分别装有4张和3张除数字外完全相同的卡片,甲袋中的卡片上分别标有1、2、3、4四个数字,乙袋中的卡片上分别标有1、2、3三个数字,现分别从两个袋子中各抽出一张卡片,试解答下列问题:(1)分别用A、B表示从甲、乙两个袋子中抽出的卡片上的数字,请用树状图法或列表法写出(A,B)的所有取值;(2)求在(A,B)中使关于x的一元二次方程x2﹣Ax+2B=0有实数根的概率.【解答】解:(1)画树状图如下:;(2)∵方程x2﹣Ax+2B=0有实数根,∴△=A2﹣8B≥0,∴使A2﹣8B≥0的(A,B)有(3,1),(4,1),(4,2),∴P(△≥0)==.25.(10分)如图,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)建立如图所示的坐标系,求抛物线的解析式;(2)一艘装满物资的小船,露出水面部分的高为0.8m、宽为4m(横断面如图所示).若暴雨后,水位达到警戒线CD,此时这艘船能从这座拱桥下通过吗?请说明理由.【解答】解:(1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b﹣3),把D、B的坐标分别代入y=ax2得:,解得.∴y=﹣x2;(2))∵b=﹣1,∴拱桥顶O到CD的距离为1m,∵x=2时,y=﹣=﹣0.16,1﹣0.8=0.2>0.16,∴水位达到警戒线CD,此时这艘船能从这座拱桥下通过.26.(10分)直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=8,⊙O的半径为10,求四边形FGDE的面积.【解答】(1)证明:连接FO,∵OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵CE是⊙O的直径,∴∠EDG=90°,又∵FG∥ED,∴∠FGC=180°﹣∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)解:延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=8.∴ED=16.∵在Rt△OHE中,∠OHE=90°,∴OH==6.∴FH=FO+OH=10+6=16.S四边形FGDH=(FG+ED)•FH=×(16+8)×16=192.27.(10分)一快餐店试销售某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为500元(不含套餐成本).若每份售价为10元,每天可销售300份;若每份售价超过10元,每提高1元,每天的销售量就减少30份.设该店每份套餐的售价为x元(10≤x≤18),每天的利润为W元.(利润=销售额﹣套餐成本﹣固定支出)(1)写出W与x的函数关系式;(2)若该店既要吸引顾客,使每天的销售量较大,又要获取最大的利润,则每份套餐的售价应定为多少元(为了便于计算,每份套餐的售价取整数)?此时,最大利润为多少元?【解答】解:(1)W=[300﹣30(x﹣10)]•(x﹣5)﹣500=﹣30x2+750x﹣3500.(2)∵W=[300﹣30(x﹣10)]•(x﹣5)﹣500=﹣30x2+750x﹣3500=﹣30(x﹣12)2+1187,∵﹣30<0,易得顶点坐标:(12,1187),∵a<0.∴抛物线有最高点,二次函数有最大值.∵要使每天的销售量较大,又要获取最大的利润.又∵10≤x≤18,x取整数.结合二次函数图象的性质∴当x=12时,W 最大,最大值为1180.答:当x=12时,W 最大,最大值为1180.28.(14分)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A、B,点A的横坐标为﹣1.与y轴交于点C,点C的纵坐标为2.顶点为P.过动点H (0,m)作平行于x轴的直线l,直线l与抛物线相交于点D、E.(1)求抛物线的解析式以及顶点P的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求出m 是多少?此时在直线l上存在一点F,满足|PF﹣AF|有最大值,求直线AF的函数表达式;(3)若在直线l上找出一点G,使得△ACG是等腰直角三角形,请直接写出所有符合条件的m的值.【解答】解:(1)由题意:把A点坐标(﹣1,0),C点坐标(0,2)代入y=﹣x2+bx+c 中解得:∴b=,c=2.∴y=﹣x2+x+2=﹣(x﹣)2+∴顶点P的坐标:(,),(2)如图1,令y=m,﹣x2+x+2=m,设D(x 1,0),E(x2,0),∴x1、x2是该方程的两个根,则x2﹣3x﹣4+2m=0,所以x1+x2=3,x1x2=﹣4+2m,∴DE2=|x1﹣x2|2=(x1+x2)2﹣4x1x2=9﹣(﹣4+2m)=25﹣8m.∵以DE为直径的⊙O与x轴相切,∴DE=2m,即25﹣8m=4m2,解得m=﹣1±.∵m>0,∴m=﹣1+.∵此时在直线l上存在一点F,满足|PF﹣AF|有最大值.令顶点P关于直线l的对称点为P1,可求得P1坐标为(,)根据轴对称性质得:PF=P1F,∴|PF﹣AF|=|P1F﹣AF|.易得A、P1、F在同一条直线上时,|P1F﹣AF|值最大为A P1.∴直线AF的函数表达式和直线A P1相同,设为y1=kx+n代入A点坐标(﹣1,0)得,P1点坐标(,)得k=n=∴直线AF的函数表达式y1=()(x+1)y1=()x+(3)①以点C为直角顶点时,∵A点坐标(﹣1,0),C点坐标(0,2).∴直线AC解析式为y=2x+2,AC=∴直线CP解析式为y=﹣x+2,∵点P在直线y=m上.∴点P的坐标为(4﹣2m,m),∴CP=∵△ACG是等腰直角三角形,∴AC=CP,∴=∴m=1或m=3②以点A为直角顶点时,直线AP解析式为y=﹣x﹣,设P(﹣2m﹣1,m),∴AP=,∵△ACG是等腰直角三角形,∴AC=AP,∴=,∴m=±1,③以点P为直角顶点时,设P(n,m),∴PA=,PC=∵A(﹣1,0),C(0,2),∴AC的中点M(﹣,1),∴PM=,∵△ACG是等腰直角三角形,∴PM=AC,PA=PC,∴=①,=②,联立①②解得,m=或m=综上所述,m的值为﹣1、、1、、3.。
九年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列关于x的方程中,一定是一元二次方程的为()A. x2−2=(x+3)2B. ax2+bx+c=0C. x2+3x−5=0D. x2−1=02.下列方程中有实数根的是()A. x2+2x+2=0B. x2−2x+3=0C. x2−3x+1=0D. x2+3x+4=03.已知⊙O的半径为5cm,点A到圆心O的距离OA=5cm,则点A与⊙O的位置关系为()A. 点A在圆上B. 点A在圆内C. 点A在圆外D. 无法确定4.已知直角三角形的两条直角边长分别为6和8,它的内切圆半径是()A. 2B. 2.4C. 5D. 65.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6.二次函数y=(x-1)2+1的图象顶点坐标是()A. (1,−1)B. (−1,1)C. (1,1)D. (−1,−1)7.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A. 130∘B. 100∘C. 50∘D. 65∘8.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共8小题,共24.0分)9.数据2,3,4,4,5的众数为______.10.已知函数y=(m-2)x m2+m−4-2是关于x的二次函数,则m=______.11.一只自由飞行的小鸟,如果随意落在如图所示的方格地面上(每个小方格形状完全相同),那么小鸟落在阴影方格地面上的概率是______.12.如图半径为30cm的转动轮转过80°时,传送带上的物体A平移的距离为______.13.一圆锥型的冰淇淋纸筒,其底面直径为6cm,母线长为5cm,围成这样的冰淇淋纸筒所需纸片的面积是______.14.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为______.15.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为13,则点P的坐标为______.16.如图,AB是半圆O的直径,AB=10,弦AC长为8,点D是弧长BC上一个动点,连接AD,作CP⊥AD,垂足为P,连接BP,则BP的最小值是______三、解答题(本大题共11小题,共102.0分)17.解下列方程:(1)(x+1)2=9(2)x2-2x-2=018.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):()根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.19.甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.(1)用列表法(或画树状图)求甲获胜的概率;(2)你认为这个游戏规则对双方公平吗?请简要说明理由.20.已知关于x的方程x2+ax-2=0.(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若x=2是方程的一个根,求a的值及该方程的另一根.21.如图所示,PA、PB是⊙O的切线,A、B为切点,∠APB=80°,点C是⊙O上不同于A、B的任意一点,求∠ACB的度数.22.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为______千克、销售利润为______元;(2)若将这种水果每千克降价x元,则每天的销售量是______千克(用含x的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?23.如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.(1)判断AC与⊙O的位置关系,并证明你的结论;(2)若OA=5,OD=1,求线段AC的长.24.已知二次函数y=x2+2x-1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标.(4)当x取何值时y的值大于0.25.如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.(1)求∠A的度数;(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=43,求图中阴影部分的面积.26.如图,在Rt△ABC中,∠C=90°,AC=BC=8,点P为AB的中点,E为BC上一动点,过P点作FP⊥PE交AC于F点,经过P、E、F三点确定⊙O.(1)试说明:点C也一定在⊙O上.(2)点E在运动过程中,∠PEF的度数是否变化?若不变,求出∠PEF的度数;若变化,说明理由.(3)求线段EF的取值范围,并说明理由.27.如图,已知直线l的函数表达式为y=34x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标;(2)设F是x轴上一动点,⊙P经过点B且与x轴相切于点F,设⊙P的圆心坐标为P(x,y),求y与x的函数关系式;(3)是否存在这样的⊙P,既与x轴相切又与直线l相切于点B?若存在,求出圆心P的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:A.此方程整理后为6x+11=0,不是一元二次方程;B.ax2+bx+c=0未明确a,b,c的取值情况,不是一元二次方程;C.x2+-5=0不是整式方程,不是一元二次方程;D.x2-1=0是一元二次方程;故选:D.依据一元二次方程的定义进行解答即可.本题考查了一元二次方程的定义,注意:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2.;一元二次方程的一般形式是ax2+bx+c=0(a≠0).2.【答案】C【解析】解:A、△=22-4×1×2=-6<0,则该方程无实数根,故本选项错误;B、△=(-2)2-4×1×3=-8<0,则该方程无实数根,故本选项错误;C、△=(-3)2-4×1×1=5>0,则该方程有实数根,故本选项正确;D、△=32-4×1×4=-7<0,则该方程无实数根,故本选项错误;故选:C.由选项中的方程即可得根的判别式的符号,根据根的判别式的符号来判定该方程的根的情况.本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.【答案】A【解析】解:∵⊙O的半径为5cm,点A到圆心O的距离为5cm,∴d=r,∴点A与⊙O的位置关系是:点A在圆上,故选:A.要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.此题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.4.【答案】A【解析】解:如图,⊙O内切于直角△ABC中,切点分别为D、E、F;其中AC=8,BC=6;连接OD、OF;则OD⊥BC,OF⊥AC;OD=OF;∵∠C=90°,∴四边形ODCF为正方形,∴CD=CF=R(R为⊙O的半径);由勾股定理得:AB2=AC2+BC2=36+64=100,∴AB=10;由切线的性质定理的:AF=AE,BD=BE;∴CD+CF=AC+BC-AB=6+8-10=4,∴R=2,它的内切圆半径为2.故选:A.如图,作辅助线,首先证明四边形ODCF为正方形;求出AB的长度;证明AF=AE,BD=BE问题即可解决.本题主要考查了三角形的内切圆的性质、勾股定理等几何知识点的应用问题;解题的关键是灵活运用有关定理来分析、判断、解答.5.【答案】D【解析】解:∵=0.65,=0.55,=0.50,=0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选:D.根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在解题时要能根据方差的意义和本题的实际,得出正确结论是本题的关键.6.【答案】C【解析】解:二次函数y=(x-1)2+1的图象的顶点坐标是(1,1).故选:C.根据顶点式的意义直接解答即可.本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:y=a(x-h)2+k(a≠0)的顶点坐标为(h,k).7.【答案】A【解析】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-80°)=50°,∴∠BOC=180°-50°=130°.故选:A.由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线,利用三角形内角和定理和角平分线的性质可得∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.本题通过三角形内切圆,考查切线的性质.8.【答案】A【解析】解:根据题意得:抛物线的顶点坐标为(-m,n),且在第四象限,∴-m>0,n<0,即m<0,n<0,则一次函数y=mx+n不经过第一象限.故选:A.由二次函数解析式表示出顶点坐标,根据图形得到顶点在第四象限,求出m 与n的正负,即可作出判断.此题考查了二次函数与一次函数图象与系数的关系,熟练掌握二次函数及一次函数的图象与性质是解本题的关键.9.【答案】4【解析】解:∵4出现了2次,出现的次数最多,∴这组数据的众数是4;故答案为:4.根据众数的定义直接解答即可.此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.10.【答案】-3【解析】解:由题意,得m2+m-4=2且m-2≠0.解得:m=-3,故答案为:-3.根据二次函数的定义列方程即可得到结论.本题考查了二次函数的定义.二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a 是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.11.【答案】14【解析】解:∵正方形被等分成16份,其中黑色方格占4份,∴小鸟落在阴影方格地面上的概率为:=.故答案为.根据几何概率的计算方法,用阴影方格的面积除以总面积即可.本题考查了几何概率:概率=某事件占的面积与总面积之比.12.【答案】403π【解析】解:由题意得,R=30cm,n=80°,故l==π(cm).故答案为:π.传送带上的物体A平移的距离为半径为30cm的转动轮转过80°角的扇形的弧长,根据弧长公式即可求解.本题考查了弧长公式的运用,关键是理解传送带上的物体A平移的距离为半径为30cm的转动轮转过80°角的扇形的弧长.13.【答案】15πcm2【解析】解:底面圆的直径为6cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为15π.cm2圆锥的侧面积=底面周长×母线长÷2.本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.14.【答案】y=(x-2)2+3【解析】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向上平移2个单位,再向右平移3个单位得到的点的坐标为(2,3),所以平移后抛物线的解析式为y=(x-2)2+3.故答案为:y=(x-2)2+3.先确定抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移2个单位,再向上平移3个单位后得到的点的坐标为(2,3),然后根据顶点式写出平移后抛物线的解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.【答案】(3,2)【解析】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.【答案】213-4【解析】解:如图,连接BC,∵CP⊥AD,∴∠APC=90°,∴P在以AC为直径的⊙M的上(不含点C、可含点N),∴BP最短时,即为连接BM与⊙M的交点(图中点P′点),∵AB=10,AC=8,∴BC=6,CM=4,则BM==2,∴BP长度的最小值BP′=BM-MP′=2-4,故答案为:2-4.由∠APC=90°知P在以AC为直径的⊙M的上(不含点C、可含点N),从而得BP最短时,即为连接BM与⊙M的交点(图中点E′点),在Rt△BCM中利用勾股定理求得BM,从而得出答案.本题主要考查圆周角定理、勾股定理等知识点,根据题意得出BE最短时,即为连接BM与⊙M的交点是解题的关键.17.【答案】解:(1)x+1=±3,所以x1=2,x2=-4;(2)x2-2x=2,x2-2x+1=3,(x-1)2=3,x-1=±3,所以x1=13,x2=1-3.【解析】(1)两边开方得到x+1=±3,然后解两个一次方程;(2)先配方得到(x-1)2=3,然后利用直接开平方法解方程.本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了直接开平方法.18.【答案】解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差=16[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=23.乙的方差=16[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]=43.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【解析】(1)根据图表得出甲、乙每次数据和平均数的计算公式列式计算即可;(2)根据方差公式S2=[(x 1-)2+(x2-)2+…+(x n-)2],即可求出甲乙的方差;(3)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可.此题主要考查了平均数的求法以及方差的求法,正确的记忆方差公式是解决问题的关键,一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2= [(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.【答案】解:方法一画树状图(5分)由上图可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种.∴P(和为奇数)=0.5(7分)方法二列表如下:由上表可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种.∴P(和为奇数)=0.5(7分);(2)∵P(和为奇数)=0.5,∴P(和为偶数)=0.5(9分),∴这个游戏规则对双方是公平的.(10分)【解析】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】(1)证明:△=a2-4×1×(-2)=a2+8.∵a2≥0,∴a2+8>0,即△>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)解:将x=2代入原方程,得:4+2a-2=0,解得:a=-1.方程的另一根为-2÷2=-1.∴a的值为-1,方程的另一根为-1.【解析】(1)根据方程的系数结合根的判别式,即可得出△=a2+8>0,由此即可证出:不论a取何实数,该方程都有两个不相等的实数根;(2)将x=2代入原方程可求出a值,再利用根与系数的关系结合方程的一个根为2即可求出方程的另一根.本题考查了根与系数的关系、根的判别式以及一元二次方程的解,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=2求出a 值.21.【答案】解:连接OA、OB,在AB弧上任取一点C;∵PA、PB是⊙O的切线,A、B为切点,连接AC、BC,∴∠OAP=∠OBP=90°,∵∠APB=80°,在四边形OAPB中,可得∠AOB=100°;则有①若C点在劣弧AB上,则∠ACB=130°;②若C点在优弧AB上,则∠ACB=50°.【解析】此题注意要分情况讨论:C点在劣弧AB上或点C点在优弧AB上.连接过切点的半径,发现四边形,根据四边形的内角和定理求得∠AOB的度数,进一步根据圆周角定理进行计算.此题主要考查圆的切线的性质、四边形的内角和、同弧所对的圆心角与圆周角的关系等知识.22.【答案】260 312 (100+200x)【解析】解:(1)销售量:100+20×=100+160=260,利润:(100+160)(6-4-0.8)=312,则每天的销售量为260千克、销售利润为312元;故答案为:260,312;…2分(2)将这种水果每千克降低x元,则每天的销售量是100+×20=100+200x (千克);…4分故答案为:(100+200x);(3)设这种水果每千克降价x元,根据题意得:(6-4-x)(100+200x)=300,2x2-3x=1=0,解得:x=0.5或x=1,…6分当x=0.5时,销售量是100+200×0.5=200<240;当x=1时,销售量是100+200=300>240.∵每天至少售出240千克,∴x=1.6-1=5,…9分答:张阿姨应将每千克的销售价降至5元.…10分(1)销售量=原来销售量+下降销售量,销售量×每千克利润=总利润,据此列式即可;(2)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每千克利润=总利润列出方程求解即可.本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量,从而利润.第二问,根据售价和销售量的关系,以利润做为等量关系列方程求解.23.【答案】解:(1)线段AC是⊙O的切线;理由如下:∵∠CAD=∠CDA(已知),∠BDO=∠CDA(对顶角相等),∴∠BDO=∠CAD(等量代换);又∵OA=OB(⊙O的半径),∴∠B=∠OAB(等边对等角);∵OB⊥OC(已知),∴∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°,∴线段AC是⊙O的切线;(2)设AC=x(x>0).∵∠CAD=∠CDA(已知),∴DC=AC=x(等角对等边);∵OA=5,OD=1,∴OC=OD+DC=1+x;∵由(1)知,AC是⊙O的切线,∴在Rt△OAC中,根据勾股定理得,OC2=AC2+OA2,即(1+x)2=x2+52,解得x=12,即AC=12.【解析】(1)根据已知条件“∠CAD=∠CDA”、对顶角∠BDO=∠CDA可以推知∠BDO=∠CAD;然后根据等腰三角形OAB的两个底角相等、直角三角形的两个锐角互余的性质推知∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°.所以线段AC是⊙O的切线;(2)根据“等角对等边”可以推知AC=DC,所以由图形知OC=OD+CD;然后利用(1)中切线的性质可以在Rt△OAC中,根据勾股定理来求AC的长度.本题综合考查了勾股定理、切线的判定与性质.欲证某线是圆的切线,只需证明连接圆心与此线过圆上的点的线段(圆的半径)与该直线垂直即可.24.【答案】解:(1)y=x2+2x-1=(x+1)2-2,∴顶点坐标为:(-1,-2);(2)∵y=x2+2x-1=(x+1)2-2的对称轴为:x=-1,开口向上,∴当x>-1时,y随x的增大而增大;(3)令y=x2+2x-1=0,解得:x=-1-2或x=-1+2,∴图象与x轴的交点坐标为(-1-2,0),(-1+2,0).(4)∵抛物线的开口向上,与x轴的交点坐标为(-1-2,0),(-1+2,0),∴当x<-1-2或x>-1+2时,y>0.【解析】(1)把二次函数解析式化为顶点式即可求得答案;(2)由(1)可求得其对称轴及开口方向,根据二次函数的增减性可求得答案;(3)令y=0可求得相应方程的两根,则可求得抛物线与x轴的交点坐标;(4)根据开口方向和与x轴的交点即可写出y的值大于0时的x的取值.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.25.【答案】解:(1)连接OC,∵CD切⊙O于点C∴∠OCD=90°(1分)∵∠D=30°∴∠COD=60°(2分)∵OA=OC∴∠A=∠ACO=30°;(4分)(2)∵CF⊥直径AB,CF=43∴CE=23(5分)∴在Rt△OCE中,tan∠COE=CEOE,OE=CEtan60∘=233=2,∴OC=2OE=4(6分)∴S扇形BOC=60π×42360=83π,S△EOC=12×2×23=23(8分)∴S阴影=S扇形BOC-S△EOC=83π−23.(10分)【解析】(1)连接OC,则△OCD是直角三角形,可求出∠COD的度数;由于∠A与∠COD 是同弧所对的圆周角与圆心角.根据圆周角定理即可求得∠A的度数;(2)由图可知:阴影部分的面积是扇形OCB和Rt△OEC的面积差;那么解决问题的关键是求出半径和OE的长;在Rt△OCE中,∠OCE=∠D=30°,已知了CE 的长,通过解直角三角形,即可求出OC、OE的长,由此得解.本题主要考查了切线的性质、垂径定理以及扇形面积的计算方法.不规则图形的面积,可以转化为几个规则图形的面积的和或差来求.26.【答案】解:(1)由于FP⊥PE,经过P、E、F三点确定⊙O,由圆周角定理可知:⊙O的直径为EF,∵∠FCE=90°,∴点C在圆O上.(2)连接PC∵AC=BC,∴△ABC是等腰直角三角形,∵点P是AB的中点,∴CP平分∠ACB,∴∠ACP=45°,∵FP=FP,∴∠ACP=∠PEF=45°,由于∠ACP的度数不变,∴∠PEF的度数不会发生变化.(3)∵△EFP是等腰直角三角形,∴FE=2PE当PE⊥BC时,此时PE=12AC=4,当P与C或B重合时,此时PE=42,∴4≤PE≤42,∴42≤EF≤8【解析】(1)根据圆周角定理可求知FE是⊙O的直径,从而可知点C在⊙O上.(2)根据圆周角定理即可求出∠PEF的度数.(3)由于△FEP是等腰直角三角形,从而可知EF=EP,所以求出EP的范围即可.本题考查圆的综合问题,涉及圆周角定理,等腰直角三角形的性质,动点问题等知识,综合程度较高,综合考查学生灵活运用知识的能力.27.【答案】解:(1)当x=0时,y=34x+3=3;当y=0时,34x+3=0,解得x=-4,所以A点坐标为(-4,0),B点坐标为(0,3);(2)过点P作PD⊥y轴于D,如图1,则PD=|x|,BD=|3-y|,∵⊙P经过点B且与x轴相切于点F∴PB=PF=y,在Rt△BDP中,∴PB2=PD2+BD2,∴y2=x2+(3-y)2,∴y=16x2+32;(3)存在.∵⊙P与x轴相切于点F,且与直线l相切于点B,∴AB=AF∵AB2=OA2+OB2=52,∴AF=5,∵AF=|x+4|,∴|x+4|=5,∴x=1或x=-9,当x=1时,y=16x2+32=16+32=53;当x=-9时,y=16x2+32=16×(-9)2+32=15,∴点P的坐标为(1,53)或(-9,15).【解析】(1)根据坐标轴上点的坐标特征易得以A点坐标为(-4,0),B点坐标为(0,3);(2)过点P作PD⊥y轴于D,则PD=|x|,BD=|3-y|,根据切线的性质得PF=y,则PB=y,在Rt△BDP中,根据勾股定理得到y2=x2+(3-y)2,然后整理得到y=x2+;(3)由于⊙P与x轴相切于点F,且与直线l相切于点B,根据切线长定理得到AB=AF,而AB=5,所以AF=|x+4|=5,解得x=1或x=-9,再把x=1和x=-9分别代入y=x2+计算出对应的函数值,即可确定P点坐标.本题考查了圆的综合题:熟练掌握切线的性质和切线长定理、一次函数的性质;会利用坐标表示线段和运用勾股定理进行几何计算.。
2015-2016学年度第一学期期中检测九年级数学试卷考试时间:120分钟满分150分一. 选择题(本大题共有8小题,每小题3分,共24分.在每小题 所给出的四个选项中,只有一项是符合题目要求的,请将正确选 项的字母代号填涂在答题纸相应位置上)1.如果2是方程x 2 - c=0的一个根,那么c 的值是 3•有下列四个说法:①半径确定了,圆就确定了; ② 直径是弦; ③ 弦是直径;④半圆是弧,但弧不一定是半圆;其中说法错误的个数是 【▲】 A . 1B . 2C . 3D . 44.已知一元二次方程2x 2 -5x • 3 = 0 ,则该方程根的情况是 【▲】A.有两个不相等的实数根B .有两个相等的实数5 .根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的 对应、+ 11试 |*|I考I I名| | 姓;; :题;I II I:答和请 班 I:内I I:线;I II I订II I I I:装;I II I I I : I校; 学I IA . 4B . -4C . 2D . -22 .函数y=x 2+3x — 4的图象 与y 轴的交点坐标是【▲】A.(2,0)B.( — 2,0)C.(0,4)D.(0, — 4)C .两个根都是自然数D .无实数根【▲】值,判断方程aX+bx+c=0 (0, a, b, c为常数)的一个解x 的范围是【▲】A 6<xc6.17 6.1<7X£ 6.1 6.18<x <6.19 6.19 <x c6.206. 若直线y =3x m经过第一、三、四象限,则抛物线y=(x—m)2T的顶点必在【▲】A .第一象限B .第二象限C.第三象限 D .第四象限7. 已知O O是厶ABC的内切圆,分别切AB、BC、CA于点D、E、卩;则4 DEF 一定【▲】A .锐角三角形B .直角三角形 C.钝角三角形D .不能确定8. 若二次函数y=(x-m)2-1.当x W时,y随x的增大而减小,则m的取值范围是A . m =l B . m>l C. m > l D . m <l 【▲】二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9方程x2-4x =0的解是_____ ▲—__;10. 已知方程x2-4x+1=0的两个根分别为X1, X2,则x「X2二11. 数据-5, 3, 4, 0, 1, 8, 2 的极差为___▲12 .事件A发生的概率为0.05,大量重复做这种试验,事件A平均每100次发生的次数是▲;13. 已知圆锥的底面半径是3,母线长为5,贝卩圆锥的侧面积为14. 在O O中,直径AB= 4,弦CD丄AB于P, OP= •、3,则弦CD的长为▲;题16. 已知三角形的三边分别为5、12、13,则这个三角形的内切圆半径是____ ▲__ ;17. 如图是二次函数y= ax2+ bx + c (0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3 和1;④a-b v m (ma+b) (m^—1 的实数);其中正确的命题是▲;(只要求填写正确命题的序号)18. 已知抛物线y=[2+bx经过点A(4, 0)。
2012-2013学年度第一学期期中检测九年级数学试题一、选择题:(每小题有且只有一个答案正确,请把你认为正确的答案前的字母涂到答题卡上,每小题3分,计24分)1、下列式子运算正确的是( )A.3-2=1B.8=4 2C.13= 3 D.12+3+12-3=42、一元二次方程x(x-1)=0的解是( )A. x=0B. x=1C. x=0或x=1D. x=0或x=-13、在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,43,47,45.则这组数据的极差为( )A.2 B.4 C.6 D.84、如图,等腰△ ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于( )A.60° B.70° C.80° D.50°5、已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3 B.有最小值-1,有最大值0C.有最小值-1,有最大值3 D.有最小值-1,无最大值6、如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB的度数为( )A.50° B.80°或50° C.130° D.50° 或130°7、关于x的方程(m-2)x2-2x+1=0有解,那么x的取值范围是()A.m<3B.m≤3C.m<3,且m≠2D.m≤3且m ≠28、已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根 二、填空题:(每题3分,共30分)9、计算(50-8)÷2的结果是________.10、将二次函数y =x 2-4x +5化成 y =(x -h)2+k 的形式,则y =________.11、某校为了选拔学生参加我市2011年无线电测向比赛中的装机比赛,教练对甲、乙两选手平时五次训练成绩进行统计,两选手五次训练的平均成绩均为30分钟,方差分别是S 甲2=51、S 乙2=12. 则甲、乙两选手成绩比较稳定的是_________.12、两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是_________.13、如图:矩形ABCD 的对角线AC =10,BC =8,则图中五个小矩形的周长之和为________.14、如图,⊙O 的弦CD 与直径AB 相交,若∠BAD =50°,则∠ACD =__________度.15、如图所示,半圆AB 平移到半圆CD 的位置时所扫过的面积为________.16、如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE =CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为a(0°<a <180°),则∠a =________.17、把一个正三角形分成四个全等的三角形,第一次挖去中间一个小三角形,对剩下的三个小正三角形再重复以上做法……,一直到第n 次挖去后剩下的三角形有________个.18、阅读材料:设一元二次方程ax 2+bx +c =0的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca.根据该材料填空:已知x 1,x 2是方程x 2+6x +3=0的两实数根,则x 2x 1+x 1x 2的值为________.三、解答题:(本大题有10题,共96分)19、(8分)(1) 计算:3(3-π)0-20-155+(-1)2012(2)解方程:x ()x -2+x -2=0.20、(本题满分8分)先化简,再求值:⎝ ⎛⎭⎪⎫a -1a 2-4a +4-a+2a 2-2a ÷⎝ ⎛⎭⎪⎫4a -1,其中a =2- 3.21、(本题满分8分)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是多少?22、(本题满分8分)已知关于x 的方程0)21(4)12(2=-++-k x k x 。
6.己知二次函数),=“工+加+。
的图象如图所示,则下列结论: ①c=2;②沪一4必>0;③2a+b = 0; ④d+b+c<0.其中正确的为( )•2015〜2016学年度第一学期期中考试九年级数学试题满分:150分,考试时间:120分一、精心选一选:(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字 题号12345678选项母填在相应的表格内) 1. A. 抛掷一枚质地均匀的硬币,落地后正面朝上 B. 东台市7月份某一天的最低气温是-3°C C. 通常加热到100C 时,水沸腾D. 打开电视,正在播放综艺节目《一站到底》2.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩 的平均数都是&9环,方差分别是弗=0.65, Si = 0.55 , 5^ = 0.50BS]- =0.45 ,则射箭成绩最稳定的是()3・如图,四边形ABCD 为OO 的内接四边形, 若Z BCD=110\ 则z BAD 为(ACA. 140° B ・ 110°C ・ 90° D ・ 70° 4,. 一元二次方程x 2 - 4x+5=0的根的情况是(A.有两个不相等的实数根 C ・只有一个实数根5.抛物线尸-2(—3)2+5的顶点坐标是()))B.有两个相等的实数根 D.没有实数根A. (3,5)B. (3-5)C. (-3,5)D. (-2,5)二、细心填一填:(共有10小题,每小题3分,共计30分.请把答案填写在下面相应 横线上)9・ ;10. ;11・;12. 13. ;14. ;15. 16.;17.;18.R 10. 2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm ): 168, 166, 168, 167, 169, 168,则她们身高的极差是 ________ cm. 11.己知两圆内切,圆心距为5cm,若其中一个圆的半径是3cm,则 另一个圆的半径是 __________ cm12. 将抛物线y=x?先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为 ____________ .13. 二次函数y=x 2 -2x-3与x 轴两交点之间的距离为_.14. 已知关于x 的一元二次方程工一加+£=0有两个相等的实数根,则k 的值为 ____________ . 15. 已知实数m 是关于x 的方程x 2 - 3x - 1=0的一根,则代数式2nr - 6m+2值为 _________ . 16. 如图,AB 是OO 的弦,OC 丄AB 于点D,交OO 于点C,若OO 的半径为5, CD=2, 那么AB 的长为 _________ .A.①②③B.①②④C.①②D.③④7・抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系的图象可能是(A. k=2 B ・ k>2 C ・ k>2 D ・17.如图,以为直径的00与△ABC的另两边分别相交于点£>、E.若ZA=70。
,BC=2,则图中阴影部分面积为_______________ ・B(第17題)18.如图,在平而直角坐标系xOy中,已知抛物线y=-x (x-3)(0^x^3)在x轴上方的部分,记作G,它与x轴交于点0,凡,将G绕点A】旋转180°得G,G与x轴交于另一点粧.请继续操作并探究:将G绕点短旋转-18(T得C3,与x轴交于另一点A3:将C3绕点比旋转180°得C”与x轴交于另一点汕,这样依次得到x轴上的点A” A:, A3,…,打,…, 及抛物线G, 5…,G,…则G的顶点坐标为—(n为正整数,用含n的代数式表示).三、用心做一做(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题8分)桌面上放有4张卡片,正面分别标有数字1, 2, 3,4.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽岀一张,记下卡片上的数字,然后将这两数相加.(1)请用列表或画树状图的方法求两数之和为5的槪率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜:当两数之和不为5时,则乙胜.若甲胜一次得12分,谁先达到120分为胜.那么乙胜一次得多少分,这个游戏对双方公平?20.(本题8分)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统讣出他们%自加工的合格品数是1-8这8个整数,现提供统计图的部分信息如图,请解答下列问题:(1)根据统讣图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工岀的合格品数的众数的可能取值:(3)厂方认泄,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.21.(本题8分)已知关于x的一元二次方程(a+1) x= - x+a: - 3a - 3=0有一根是1.(1)求a的值:(2)求方程的另一根.22.(木题8分)为建设美丽家园,某企业逐年增加对环境保护的经费投入,2012年投入了400万元,预计到2014年将投入576万元.(1)求2012年至2014年该单位环保经费投入的年平均增长率;(2)该单位预计2015年投入环保经费不低于680万元,若继续保持前两年的年平均增长率,该目标能否实现?请通过计算说明理由.23.(本题10分)如图,二次函数的图象与x轴相交于A ( -3, 0)、B (1, 0)两点,与y轴相交于点C(0, 3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、24.(本题10分)如图,有长为24加的篱笆,一面利用墙(墙的最大可用长度"为10/H),围成中间隔有一道篱笆的矩形花圃,设花圃的边AB的长为x(加),而积为)o(1)若y与兀之间的函数关系式;(2)若要围成面积为45加2的花圃,的长是多少米?(3)能围成面积比45加2更大的花圃吗?若能,请求出最大面积,并说明围法;若不能,请说明理由。
25.(本题10分)如图,AB为OO的直径,D、T是圆上的两点,但AT平分Z BAD,过点T 作AD的延长线的垂线PQ,垂足为C.(1)求证:PQ是OO的切线;(2)已知OO的半径为2,若过点O作OE丄AD,垂足为E, OE=AJ@,求弦AD的长.26(本题10分)如图,己知二次函数y =(X-/H)2-W(m > 0)的图象与x轴交于A、B两点.(1)写出A、B两点的坐标(坐标用加表示)(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式(3)设以AB为直径的OM与〉,轴交于C、D两点,求CD的长.27.(本题12分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y = -"亍+c 且过顶点C (0, 5)(长度单位:血)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1. 5 利的地毯,地毯的价格为20元/加2,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架"为矩形EFGH (H、G分别在抛物线的左右侧上),并铺设斜面EG.己知矩形EFGH的周长为27. 5加,求点G的坐标.28.(本题12分)已知:抛物线y=ax2+bx+c (a*0)经过点A (2, 0),它的顶点坐标为D (4, -2),并与x轴交于另一点B,交y轴于点C.(1)求抛物线和直线BC的函数表达式;(2)如图①,点P是直线BC下方抛物线上一动点,过点P作y轴的平行线,交直线BC 于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE的最大值;若不存在,请说明理由;(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC 沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动,设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求图①图②备用图I 奴工收主商ZHrAT 越加由朮M如畑杏初三数学答案■-、精心选~选:(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母填在相应的表格内)题号12345678选项C D D D A C A C二、细心填一填:横线上)9. 2 ;10. 3 : 11. 2 或8 : 12. y=(x+2)2-3; 13. 4 :——4— ------- ---------------------------- ----------------------------------------------14. 1 : 15. 4 : 16. 8 : 17. —11------- ------------------- --------------------- 1818.(3n -玄(-1) n+1 •卫)三、用心做一椒(本大题共着10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19 •解答:解:(1)共有16种等可能的情况,和为5的有(1, 4), (2, 3), (3, 2)可得:P (数字之和为5) =1:_______________________________________ (4分)4(2)因为P (甲胜)丄,P (乙胜)三,4 4故甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:12三3二4(分).(8 分)20 •解答:解:(1)•••把合格品数从小到大排列,第25, 26个数都为4,(共有10小3分,共计30分.请把答案填写在下面相应••冲位数为4:(2分)(2)众数要看剩余的18人可能落在哪里.有可能合格品是5的有10人,合格品是6 的有8人,或合格品是5的有8人,合格品是6的有10人,所以推出4, 5, 6都可能为众 数.故众数可能为4, 5, 6;(5分)(3)这50名工人中,合格品低于3件的人数为2+6=8 (人人21.解答:(1) a 二3 (4 分) (2) x 二一0.7522.解答:解:(1)设2012年至2014年该单位投入环保经费的年平 均增长率为X .............. 1分根 据 题意,得400(1+ 寸=576 .................................................................................. 3 分解得州=0.2, x 2 = -2.2 (不合题意,舍 去) ............................... 4分答:2012年至2014年该单位投入环保经费的年平均增长率为 20% ..........................5 分 ( 2 )576(1 + 20%) = 691.2>680....... 7分・・・ 该目标能实现 (8)故该厂将接受再培训的人数约有咙冷X 人).(8分)(8分)23•解答:解:(1) •・・抛物线的对称轴是x=- 1,而C. D关于直线x= - 1 X・・・D ( -2, 3);(2)设该抛物线的解析式为y=a (x+3) (x- 1) (a#0),把C (0, 3)代入,得3=a (0+3) (0-1),解得a=- 1,所以该抛物线的解析式为y= - (x+3) (x - 1) = - x2 - 2x+3,即y= - x2 - 2x+3:(3)根据图象知,一次函数值小于二次函数值的x的取值范用是:-2<X<1.(2分)(7分) (10 分)24•解答:(1)y=—3x2+24x(2) 5 (4分) (7分)(3)可以(10 分)25•解答:(1)证明:连接OT,如图1所示:•・・ OA=OT,・•・ Z OAT=Z OTA,•・• AT平分Z BAD,・•・ Z OAT=Z CAT,・•・ z OTA=Z CAT,・•・ OTII AC,•・• PQ 丄AC,・•・PQ丄OT,PQ是OO的切线:(5分)(2)解:如图2所示:•・・OE丄AD,・・・AE=DE, Z AEO=90%•■-AE=}/O A2 -0E2=j22 -(V3)2=1,*. AD=2AE=2. (10 分)图\26.解答:(1) V y= (x-m) 2-4m2,.••当y=0 时,(x-m) 2-4m2=0,解得x,=-m, x2=3m,Vm>0,「•A、B两点的坐标分■别是(-m, 0), (3m, 0);分)(2) VA (-m, 0), B (3m, 0), m>0,/.AB=3m- (-m) =4m,圆的半径为-AB=2m,2.•.OM=AM-OA=2m-m=m,・•・抛物线的顶点P的坐标为:(m,又:•二次函数y=(x-.m)2-4m2(m>0)的顶点P的坐标为:(m, -4m2),27•解答:解:(1) c=5. (2 分)(2)由(1)知,OC=5,令 y = 0,即一 J_X 2+5 = 0,解得 “=10,也=一10・ • 20 - ・•・地毯的总长度为:4B+2OC = 20+2x5 = 30, 二 30x1.5x20 = 900 (元)・ 答:购买地毯需要900元.(6分)(3 )可设G 的坐标为(m,--— m 2 + 5),其中m > 0, 20贝iEF = 2m.GF = - — m 2 +5.由己知得:2(EF + GF) = 27.5 ,20即2(2加--/H 2+5) = 27.5,解得:切=5,加2=35 (不合题意,舍去).・20・•・二次函数的解析式为y=(x ・1>-1,即y=X2・x ・| 分)(8(3)如图,连接CIV1.在 R IA OCM 中.V ZCOM=90°, CM=2m=2x - =1, OM=m= - 2 2•••CD=20C= >/3(10 分)把“ =5 代入一丄加2+5 =--L X52+5=3.75-20 20・••点G的坐标是(5, 3,75). (10分)2&解答:解:(1)如图1, •・•顶点坐标为D (4, -2),.•・对称轴x=4,•A (2, 0),・•・ B (6, 0),根据题意,设抛物线的解析式y=a (x-4) 2-2,把点A (2, 0)代入得,0=a (2-4) 2 - 2,解得a-1,2抛物线的解析式为y=-| (x -4) 2- 2=-|x2 - 4x+6. (2 分) :.C (0, 6),设直线BC的解析式为y=kx+b,/. < 6k+b=0,解得产 ~ 1,»二6 [b=6・•・直线BC的解析式为y= - x+6:(4分) (2)存在点P,使PE的长最长,设P(X』—x2 - 4x+6)»则E (x, -x+6),2PE 的长=(-x+6) - (―x2 - 4x+6) = - A X2+3X=-— (x - 3) 2+-^,2 2 2 2因为-1<0>所以线段PE的长有最大值,2所以,当x=3时,线段PE的长的最大值为2 (8分)2(3)・・• A (2, 0), D (4, -2),直线AD的解析式为y= - x+2,直线BC的解析式为y=- x+6,・•・ AD II BC,•A (2, 0), B (6, 0), C (0, 6),BC=6^2. F (2, 4), A OBC是等腰直角三角形,•・CF=2五Z ABC=45%・•・ z DAB=Z DBA=45%••・ z ADB=90°,・•・ Z DBC=90°,•・・ AB=6 - 2=4,A到直线BC的距离为2近,所以,当0<(<也时,S=2V5:当2 妊区皿时,如图2, S=1 (6+4) x2 - 1x2x2-1 (t-2佢)2= - lt2+2V5+4; «2 2 2当时,如图3, S=1 (6^2-1) 2=lt2- 675+36.薄雾浓云愁永昼,瑞脑消金兽。