专题07 手拉手模型(知识解读)(学生版)
- 格式:pdf
- 大小:893.96 KB
- 文档页数:9
专题07手拉手模型(知识解读)
【专题说明】
手拉手模型是指有共同顶点的两个等腰三角形,顶角相等。
因为过共同顶点的四条边,像人的两双手,所以通常称为手拉手模型。
手拉手模型常和旋转结合,在考试中作为几何综合题目出现。
【方法技巧】
类型一:等边三角形手拉手
(1)如图,B、C、D三点共线,▲ABC和▲CDE是等边三角形,连接AD、BE,交于点P
(2)记AC、BE交点为M,AD、CE交点为N
(2)连接MN
(4)记AD、BE交点为P,连接PC:
(5)结论五:∠APB=∠BPC=∠CPD=∠DPE=60°
(6)连AE:
结论六:P点是▲ACE的费马点(PA+PC+PE值最小)
类型二:正方形手拉手
如图,四边形ABCD和四边形CEFG均为正方形,连接BE、DG
【类型一:等边三角形手拉手】
【典例1】(2021春•西安期末)如图,在△ABC中,BC=5,以AC为边向外作等边△ACD,以AB为边向外作等边△ABE,连接CE、BD.
(1)若AC=4,∠ACB=30°,求CE的长;
(2)若∠ABC=60°,AB=3,求BD的长.
【变式1-1】(2021九上·吉林期末)如图①,在△ABC中,∠C=90°,AC=BC=6,点D,E分别在边AC,BC上,且CD=CE=2,此时AD=BE,AD⊥BE成立.
(1)将△CDE绕点C逆时针旋转90°时,在图②中补充图形,并直接写出BE的长度;
(2)当△CDE绕点C逆时针旋转一周的过程中,AD与BE的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;
(3)将△CDE绕点C逆时针旋转一周的过程中,当A,D,E三点在同一条直线上时,请直接写出AD的长度.
【变式1-2】(2021九上·宜春期末)如图
(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:
①∠ACB的度数为;
②线段BE,CE与AE之间的数量关系是.
(2)拓展研究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上.若CE=2,BE=2,求AB的长度.
(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.
【变式1-3】(2021春•金牛区校级期中)类比探究:
(1)如图1,等边△ABC内有一点P,若AP=8,BP=15,CP=17,求∠APB的大小;(提示:将△ABP绕顶点A 旋转到△ACP′处)
(2)如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°.求证:EF2=BE2+FC2;(3)如图3,在△ABC中,∠C=90°,∠ABC=30°,点O为△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB =∠BOA=120°,若AC=1,求OA+OB+OC的值.
【典例2】如图,在△ABC与△DEC中,已知∠ACB=∠DCE=90°,AC=6,BC=3,CD=5,CE=2.5,连接AD,BE.
(1)求证:△ACD∽△BCE;
(2)若∠BCE=45°,求△ACD的面积.
【变式2-1】如图1,在Rt△ABC中,AC=BC=5,等腰直角△BDE的顶点D,E分别在边BC,AB上,且BD=,将△BDE绕点B按顺时针方向旋转,记旋转角为α(0°≤α<360°).
(1)问题发现
当α=0°时,的值为,直线AE,CD相交形成的较小角的度数为;
(2)拓展探究
试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明:
(3)问题解决
当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.
【类型二:正方形手拉手】
【典例3】【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.
【初步探究】
(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;
【类比探究】
(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.
①判断线段BF与DE的数量关系,并说明理由;
②连接DF,BE,若CE=6,AB=12,求DF 2
+BE
2
的值.
【变式3】(2021秋•荔湾区校级期中)以△ABC的AB,AC为边分别作正方形ADEB,正方形ACGF,连接DC,BF.(1)CD与BF有什么数量与位置关系?说明理由.
(2)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的.。