2.7 二次根式(第1课时)
- 格式:ppt
- 大小:1.10 MB
- 文档页数:12
二次根式课题 2.7 二次根式〔1〕 活动安排 例2 化简:〔1〕50;〔2〕72;〔3〕31;〔1〕你怎么发现50含有开得尽方的因数的?你怎么判断714是最简二次根式的? 〔2〕将二次根式化成最简二次根式时,你有哪些经验与体会或步骤,与同伴交流〔步骤〕。
达标小测:化简:(1)32;(2)72;(3)712;(4)5.1;(5)51新知拓展:如图,方格纸中每个小格的边长为1,画一条长为20的线段。
总结升华:1、本节课知识上你有哪些收获?2、在学法和解题方法上你有什么经验与大家分享?3、本节课是否还有疑惑?达标反应:1、化简: (1)489⨯; (2)716⨯; (3)2512; (4)27;(5)18; (6)133; (7)509(8)21。
2、一个直角三角形的斜边长为15cm ,一条直角边长为10cm ,求另一条直角边长。
3、如图,两个正方形的边长分别是多少?你能借助这个图形解释228=吗?学习目标 1、理解二次根式和最简二次根式的概念. 2、掌握二次根式的性质. 3、能用二次根式的性质将二次根式化为最简二次根式探究任务三:独学3分钟 组学2分钟 抽展〔展台展示〕2分钟评价归纳2分钟新知拓展:独立探索3分钟;小组交流、板展〔展台展示〕3分钟;讲评总结2分钟总结升华 3分钟 达标反应 活动安排 探究任务一:明晰二次根式的概念 请同学们围绕以下问题进行新知探索: 问题:5,11,2.7,12149,))((b c b c -+〔其中b=24,c=25〕,上述式子有什么共同特征?归纳小结:〔1〕都含有 运算,并且被开方数都是 。
〔2〕一般地,式子)0(≥a a 叫做 。
a 叫做 .强调条件:0≥a 〔3〕对于 二次根式概念的理解应注意哪些方面?〔从写法,被开方数的形式要求等〕 达标小测:以下哪些式子是二次根式,哪些不是二次根式? (1)6 〔2〕18- 〔3〕12+x 〔4〕38- 〔5〕122++x x 〔6〕2)12(--x 〔7〕x 〔8〕x 21+〔x<-21) 探究任务二:探究性质〔特殊到一般〕问题1:94⨯= ,94⨯= ; 94= ,94= ; 2516= ,2516= .问题2:用计算器计算:76⨯= ,76⨯= ;76= ,76= . 问题3:〔1〕观察上面的结果你可得出什么结论?试用自己的语言复述。
2.7.1 二次根式及其性质各位评委大家好今天我说课的题目是北师大版八年级上册第二章第七节二次根式,下面我将从说教材,说教法学法、说教学过程。
说作业布置等几个方面谈谈我对这节课的设计一、说教材二次根式这一节主要讲了二次根式的含义和性质。
教材从实际问题引出二次根式的概念,然后对二次根式的性质进行探究。
在八年级的时候学生已学习过了平方根和算术平方根等概念并能用根号表示平方根和算术平方根,知道开方与乘方互为逆运算,这些知识为本节课的学习打下了根底,同时学好本节知识对于后面学习二次根式的运算求解一元二次方程做准备,因此本节知识具有呈上起下的作用。
二、说学情我将要所面对的学生是普通班,学生虽然已经对根式有了一定了解,但是很多学生对于其性质和简单的计算都还存在问题,但是九年级的学生思维能力有了很大开展,抽象概括能力得到很大提高,对于简单的实际问题还是能够很好的解决,因此本节课我从简单的实际问题入手,降低难度,以激发学生的学习兴趣。
结合以上对教材和学情的分析,以及新课标对本节课要求必须掌握等情况,我指定了如下教学目标:知识与技能目标:理解二次根式的概念和非负性。
能够利用非负性求未知量的范围。
方法与过程目标:经历探究、总结、归纳、抽象的过程获得二次根式的概念。
通过教师讲解,学生练习评价的过程掌握二次根式的非负性。
情感态度价值观:培养学生的数学建模能力,培养学生的抽象概括能力和学习兴趣。
一、说教学重难点重点:理解二次根式的概念及非负性难点:二次根式的非负性的应用二、说教法学法。
为了提高本堂课的效率,根据本节课内容和学生特点。
我采用了如下教法:1、发现教学法:通过实际问题总结归纳发现共性,得出二次根式概念。
2、讲解法:通过教师讲解相关知识,学生练习,到达知识应用的目的3、启发教学法:教师课堂上巧设问题启发学生思考加深对概念的理解。
在学法指导上,为了表达学生的主体性,我鼓励学生自主探究学习,同时在教师的引导下进行学习,然学生大胆尝试对知识的应用,通过亲自实践活动的过程,获得相关知识技能。
课题:二次根式教学目标:1.认识二次根式和最简二次根式的概念.积的算术平方根与商的算术平方根的性质.积的算术平方根和商的算术平方根的性质将二次根式化为最简二次根式.4.通过利用二次根式的性质进行计算,理解最简二次根式的含义.在探究中培养学生的思维能力和归纳概括的意识.教学重点与难点:重点:二次根式的概念、性质及二次根式的化简.难点:(a≥0,b≥0)=(a≥0, b>0).并用它们进行二次根式化简.教学过程:一、创设情境,导入新课活动内容:求下列各数,思考下面的两个问题:1.我校有两个正方形的花坛,一个面积为8平方米,一个面积为2平方米,大家说这两个正方形的边长是多少?2. 5的算术平方根是多少?3.一个正数的平方是,这个数多少?4.直角三角形的斜边长是c,一条直角边是b,那么另一条直角边的长为多少?问题1:它们的值有什么共同特点?问题2:它们的值是最简形式吗?处理方式:学生独立完成,然后同伴交流所提出的两个问题。
引入我们今天要学习的内容.设计意图:由生活中的数学引出新课要探究的数学问题,一是,使学生感知数学在生活中的应用,激发学生的求知欲,为下一环节奠定了良好的基础.二是加强前后知识间的联系,使学生认识到学习的必要性,从而增强学习的积极性.同时也顺利的引入了新课.二、探究学习,感悟新知活动内容1:(多媒体出示)观察下列各数并思考下面的问题:5,11,2.7,12149,))((b c b c -+(其中b=24,c=25),上述式子有什么共同特征?处理方式:以小组为单位,让学生充分讨论后回答,只要学生回答的合情合理均给予肯定和鼓励,通过式子的特点介绍二次根式的概念. 一般地,式子)0(≥a a 叫做二次根式.a 叫做被开方数.强调条件:0≥a .设计意图:学生通过观察并与小组成员的讨论这些式子的共同点,使学生能够形成二次根式的概念,初步感知二次根式的形态.同时教会学生在探究中培养学生的思维能力和归纳概括的意识,使学生学会学习.练一练:1.下列式子,哪些是二次根式,哪些不是二次根式?2.当x X 围内有意义?3.m 能取得最小整数值是(). 参考答案:, 2. 13x ≥ 3. 1处理方式:学生独立完成后进行交流讨论,使学生对二次根式有一个较深刻、全面的认识.使学生认识到:看一个式子是否为二次根式,关键看是否满足)0(≥a a 的形式.即:二次根式应满足两个条件:第一,有二次根号;第二,被开方数是非负数.设计意图:通过练习,让学生加强对二次根式定义的认识. 第1题着眼于弄清二次根式的形式,巩固二次根式有意义的条件.第2题和第3题都是用不同的形式来考察学生对二次根式有意义的理解.让学生在练习中发现乐趣,掌握知识.1x活动内容2:(多媒体出示)计算下列各题,你发现了什么规律?(1). 计算下列各式,你能得到哪些猜想?94⨯=; 94⨯=,2516⨯=2516⨯=,;处理方式:让学生完成题目后交流,发现算式的特点及规律.设计意图:引导学生发现算式的特点及规律,并产生猜想, 增强学生的求知欲.(2). 猜猜76⨯=76⨯=,也有类似的关系吗?你还能举出类似的例子吗?并用计算器验证.设计意图:引导学生验证猜想,得出规律,使学生获得成功的喜悦.并且收获了研究数学问题的探究方法.问题1:你能用字母表示这个规律吗?问题2:能用语言描述这个结论的意义吗?处理方式:小组内交流展示,重点引导学生认识算式的特点及二次根式有意义的条件.小组总结出结论a b = ( a ≥0,b ≥0),这里应强调a ,b 的取值X 围.预设:如果不能得出a ,b 的取值X 围,教师应及时引导学生根据二次根式有意义的条件去发现。