数字逻辑-习题以及习题答案
- 格式:ppt
- 大小:2.31 MB
- 文档页数:41
数字电路与逻辑设计习题及参考答案一、选择题1. 以下表达式中符合逻辑运算法则的是 D 。
·C=C 2 +1=10 <1 +1=12. 一位十六进制数可以用 C 位二进制数来表示。
A . 1 B . 2 C . 4 D . 163. 当逻辑函数有n 个变量时,共有 D 个变量取值组合?A. nB. 2nC. n 2D. 2n 4. 逻辑函数的表示方法中具有唯一性的是 A 。
A .真值表 B.表达式 C.逻辑图 D.状态图5. 在一个8位的存储单元中,能够存储的最大无符号整数是 D 。
A .(256)10 B .(127)10 C .(128)10 D .(255)106.逻辑函数F=B A A ⊕⊕)( = A 。
C.B A ⊕D. B A ⊕ 7.求一个逻辑函数F 的对偶式,不可将F 中的 B 。
A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变D.常数中“0”换成“1”,“1”换成“0” 8.A+BC= C 。
A .A+B +C C.(A+B )(A+C ) +C9.在何种输入情况下,“与非”运算的结果是逻辑0。
DA .全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 10.在何种输入情况下,“或非”运算的结果是逻辑1。
AA .全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为111.十进制数25用8421BCD 码表示为 B 。
101 010112.不与十进制数()10等值的数或代码为 C 。
A .(0101 8421BCD B .16 C .2 D .813.以下参数不是矩形脉冲信号的参数 D 。
A.周期 B.占空比 C.脉宽 D.扫描期 14.与八进制数8等值的数为: BA. 2B.16C. )16D. 215. 常用的BCD码有 D 。
A.奇偶校验码B.格雷码码 D.余三码16.下列式子中,不正确的是(B)+A=A B.A A1⊕=⊕=A ⊕=A17.下列选项中,______是TTLOC门的逻辑符号。
第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制491100016153110101651271111111177635100111101111737.493111.11117.7479.4310011001.0110111231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010101211110161751011100921340.100110.593750.4610111147570110113153.将下列十进制数转换成8421BCD码1997=000110011001011165.312=01100101.0011000100103.1416=0011.00010100000101100.9475=0.10010100011101014.列出真值表,写出X的真值表达式A B C X00000010010001111000101111011111X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1)(A⊕B)⊕C=A⊕(B⊕C)A B C(A⊕B)⊕C A⊕(B⊕C)0000000111010110110010011101001100011111所以由真值表得证。
(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C00011001000100001111100001011111011111007.证明下列等式(1)A+A B=A+B 证明:左边=A+A B=A(B+B )+A B =AB+A B +A B =AB+A B +AB+A B =A+B =右边(2)ABC+A B C+AB C =AB+AC 证明:左边=ABC+A B C+AB C=ABC+A B C+AB C +ABC =AC(B+B )+AB(C+C )=AB+AC =右边(3)E D C CD A C B A A )(++++=A+CD+E证明:左边=ED C CD A C B A A )(++++=A+CD+A B C +CDE =A+CD+CD E =A+CD+E =右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=C B A C AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1)F=A+ABC+A C B +CB+C B =A+BC+C B (2)F=(A+B+C )(A+B+C)=(A+B)+C C =A+B (3)F=ABC D +ABD+BC D +ABCD+B C =AB+BC+BD (4)F=C AB C B BC A AC +++=BC(5)F=)()()()(B A B A B A B A ++++=B A 9.将下列函数展开为最小项表达式(1)F(A,B,C)=Σ(1,4,5,6,7)(2)F(A,B,C,D)=Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0 ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111AB CD 00 01 11 1000011110化简得F=DA B A +(3)F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111ABCD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4)F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。
For personal use only in study and research; not for commercialuse《数字逻辑》习题案例(计算机科学与技术专业、信息安全专业)2004年7月计算机与信息学院、计算机系统结构教研室一、选择题1.十进制数33的余3码为 。
A. 00110110B. 110110C. 01100110D. 1001002.二进制小数-0.0110的补码表示为 。
A .0.1010B .1.1001C .1.0110D .1.10103.两输入与非门输出为0时,输入应满足 。
A .两个同时为1B .两个同时为0C .两个互为相反D .两个中至少有一个为04.某4变量卡诺图中有9个“0”方格7个“1”方格,则相应的标准与或表达式中共有多少个与项 ?A . 9B .7C .16D .不能确定5. 下列逻辑函数中,与A F =相等的是 。
)(A 11⊕=A F )(B A F =2⊙1 )(C 13⋅=A F )(D 04+=A F6. 设计一个6进制的同步计数器,需要 个触发器。
)(A 3 )(B 4 )(C 5 )(D 67. 下列电路中,属于时序逻辑电路的是 。
)(A 编码器 )(B 半加器 )(C 寄存器 )(D 译码器8. 列电路中,实现逻辑功能n n Q Q =+1的是 。
)(A )(B)(C (D) 9. 的输出端可直接相连,实现线与逻辑功能。
)(A 与非门 )(B 一般TTL 门)(C 集电极开路OC 门 )(D 一般CMOS 门 10.以下代码中为无权码的为 。
A . 8421BCD 码B . 5421BCD 码C . 余三码D . 格雷码11.以下代码中为恒权码的为 。
A .8421BCD 码B . 5421BCD 码C . 余三码D . 格雷码12.一位十六进制数可以用 位二进制数来表示。
A . 1B . 2C . 4D . 1613.十进制数25用8421BCD码表示为。
第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制49 110001 6153 110101 65127 1111111 177635 1001111011 11737.493 111.1111 7.7479.43 10011001.0110111 231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010 10 12111101 61 751011100 92 1340.10011 0.59375 0.46101111 47 5701101 13 153.将下列十进制数转换成8421BCD码1997=0001 1001 1001 011165.312=0110 0101.0011 0001 00103.1416=0011.0001 0100 0001 01100.9475=0.1001 0100 0111 01014.列出真值表,写出X的真值表达式A B C X0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 1 X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1) (A⊕B)⊕C=A⊕(B⊕C)A B C (A⊕B)⊕C A⊕(B⊕C)0 0 0 0 00 0 1 1 10 1 0 1 10 1 1 0 01 0 0 1 11 0 1 0 01 1 0 0 01 1 1 1 1所以由真值表得证。
(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C0 0 0 1 10 0 1 0 00 1 0 0 00 1 1 1 11 0 0 0 01 0 1 1 11 1 0 1 11 1 1 0 07.证明下列等式(1)A+A B=A+B证明:左边= A+A B=A(B+B)+A B=AB+A B+A B=AB+A B+AB+A B=A+B=右边(2)ABC+A B C+AB C=AB+AC证明:左边= ABC+A B C+AB C= ABC+A B C+AB C+ABC=AC(B+B)+AB(C+C)=AB+AC=右边(3)EDCCDACBAA)(++++=A+CD+E 证明:左边=EDCCDACBAA)(++++=A+CD+A B C+CD E=A+CD+CD E=A+CD+E=右边(4) C B A C B A B A ++=C B C A B A ++ 证明:左边=C B A C B A B A ++=C B A C AB C B A B A +++)( =C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式9.将下列函数展开为最小项表达式 (1) F(A,B,C) = Σ(1,4,5,6,7)(2) F(A,B,C,D) = Σ(4,5,6,7,9,12,14) 10.用卡诺图化简下列各式(1)C AB C B BC A AC F +++=化简得F=C(2)C B A D A B A D C AB CD B A F++++=F=D A B A +(3) F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)化简得F=D BC D C A BC A C B D C ++++(4) F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)化简得F=AC AD B A ++11.利用与非门实现下列函数,并画出逻辑图。
数字逻辑复习题有答案1. 什么是数字逻辑中的“与”操作?答案:在数字逻辑中,“与”操作是一种基本的逻辑运算,它只有当所有输入信号都为高电平(1)时,输出信号才为高电平(1)。
如果任何一个输入信号为低电平(0),则输出信号为低电平(0)。
2. 描述数字逻辑中的“或”操作。
答案:在数字逻辑中,“或”操作是另一种基本的逻辑运算,它只要至少有一个输入信号为高电平(1),输出信号就为高电平(1)。
只有当所有输入信号都为低电平(0)时,输出信号才为低电平(0)。
3. 如何理解数字逻辑中的“非”操作?答案:“非”操作是数字逻辑中最基本的逻辑运算之一,它将输入信号的电平状态取反。
如果输入信号为高电平(1),输出信号则为低电平(0);反之,如果输入信号为低电平(0),输出信号则为高电平(1)。
4. 解释数字逻辑中的“异或”操作。
答案:数字逻辑中的“异或”操作是一种逻辑运算,它只有在输入信号中有一个为高电平(1)而另一个为低电平(0)时,输出信号才为高电平(1)。
如果输入信号相同,即都是高电平或都是低电平,输出信号则为低电平(0)。
5. 什么是数字逻辑中的“同或”操作?答案:“同或”操作是数字逻辑中的一种逻辑运算,它只有在输入信号都为高电平(1)或都为低电平(0)时,输出信号才为高电平(1)。
如果输入信号不同,即一个为高电平一个为低电平,输出信号则为低电平(0)。
6. 什么是触发器,它在数字逻辑中的作用是什么?答案:触发器是一种具有记忆功能的数字逻辑电路,它可以存储一位二进制信息。
在数字逻辑中,触发器用于存储数据、实现计数、寄存器和移位寄存器等功能。
7. 简述D触发器的工作原理。
答案:D触发器是一种常见的触发器类型,它的输出状态由输入端D的电平决定。
当触发器的时钟信号上升沿到来时,D触发器会将输入端D的电平状态锁存到输出端Q,从而实现数据的存储和传递。
8. 什么是二进制计数器,它的功能是什么?答案:二进制计数器是一种数字逻辑电路,它能够按照二进制数的顺序进行计数。
13.一个4位移位寄存器,现态为0111,经右移1位后其次态为( A )A.0011或1011 B.1101或1110C.1011或1110D.0011或111119.逻辑函数F=A⊕B和G=A⊙B满足关系(ABD )。
A.GF= B. GF=' C. GF=' D. 1GF⊕=22.组合逻辑电路的输出与输入的关系可用(AB)描述。
A.真值表 B. 流程表C.逻辑表达式 D. 状态图根据需要选择一路信号送到公共数据线上的电路叫___数据选择器_____。
7.下列所给三态门中,能实现C=0时,F=AB;C=1时,F为高阻态的逻辑功能的是____A______。
.TTL电路的电源是__5__V,高电平1对应的电压范围是__2.4-5____V。
.N个输入端的二进制译码器,共有___N2____个输出端。
对于每一组输入代码,有____1____个输出端是有效电平。
13.给36个字符编码,至少需要____6______位二进制数。
14.存储12位二进制信息需要___12____个触发器。
写出描述触发器逻辑功能的几种方式___特性表、特性方程、状态图、波形图24.(本题满分16分)今有A、B、C三人可以进入某秘密档案室,但条件是A、B、C三人在场或有两人在场,但其中一人必须是A,否则报警系统就发出警报信号。
试:(1)列出真值表;(2)写出逻辑表达式并化简;(3)画出逻辑图。
解:设变量A、B、C表示三个人,逻辑1表示某人在场,0表示不在场。
F表示警报信号,F=1表示报警,F=0表示不报警。
根据题意义,列出真值表由出真值表写出逻辑函数表达式,并化简BACAF⊕+B=++=+BCCA(B)CCAAABC画出逻辑电路图26.下图是由三个D触发器构成的寄存器,试问它是完成什么功能的寄存器?设它初始状态Q2 Q1 Q0 =110,在加入1个CP脉冲后,Q2 Q1 Q0等于多少?此后再加入一个CP脉冲后,Q2 Q1 Q0等于多少?解: 时钟方程CPCP CP CP ===210激励方程n Q D 20= ,nQ D 01=,n Q D 12=状态方程n n Q D Q 2010==+,n n Q D Q 0111==+,n n Q D Q 1212==+ 状态表画出状态图11.将2004个“1”异或起来得到的结果是( 0 )。
数字逻辑期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪个是数字逻辑中的基本逻辑门?A. 与门B. 或门C. 非门D. 所有选项都是答案:D2. 一个三输入的与门,当输入全为1时,输出为:A. 0B. 1C. 随机D. 无法确定答案:B3. 一个异或门的真值表中,当输入相同时,输出为:A. 1B. 0C. 随机D. 无法确定答案:B4. 下列哪个不是触发器的类型?A. SR触发器B. JK触发器C. D触发器D. AND触发器答案:D5. 在数字电路中,同步计数器和异步计数器的主要区别在于:A. 计数范围B. 计数速度C. 计数精度D. 计数方式答案:B6. 一个4位二进制计数器,其最大计数值为:A. 15B. 16C. 32D. 64答案:A7. 以下哪个不是数字逻辑设计中常用的简化方法?A. 布尔代数简化B. 卡诺图简化C. 逻辑门替换D. 逻辑表简化答案:C8. 在数字电路中,一个信号的上升沿指的是:A. 信号从0变为1的瞬间B. 信号从1变为0的瞬间C. 信号保持不变D. 信号在变化答案:A9. 一个D触发器的Q输出端在时钟信号上升沿时:A. 保持不变B. 翻转状态C. 跟随D输入端D. 随机变化答案:C10. 以下哪个不是数字逻辑中的状态机?A. Moore机B. Mealy机C. 有限状态机D. 无限状态机答案:D二、填空题(每空2分,共20分)11. 在布尔代数中,逻辑与操作用符号______表示。
答案:∧12. 一个布尔函数F(A,B,C)=A∨B∧C的最小项为______。
答案:(1,1,1)13. 在数字电路设计中,卡诺图是一种用于______的工具。
答案:布尔函数简化14. 一个4位二进制加法器的输出端最多有______位。
答案:515. 一个同步计数器在计数时,所有的触发器都______时钟信号。
答案:接收16. 一个JK触发器在J=K=1时,其状态会发生______。
第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制491100016153110101651271111111177635100111101111737.493111.11117.7479.4310011001.0110111231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010101211110161751011100921340.100110.593750.4610111147570110113153.将下列十进制数转换成8421BCD码1997=000110011001011165.312=01100101.0011000100103.1416=0011.00010100000101100.9475=0.10010100011101014.列出真值表,写出X的真值表达式A B C X00000010010001111000101111011111X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1)(A⊕B)⊕C=A⊕(B⊕C)A B C(A⊕B)⊕C A⊕(B⊕C)0000000111010110110010011101001100011111所以由真值表得证。
(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C00011001000100001111100001011111011111007.证明下列等式(1)A+A B=A+B 证明:左边=A+A B=A(B+B )+A B =AB+A B +A B =AB+A B +AB+A B =A+B =右边(2)ABC+A B C+AB C =AB+AC 证明:左边=ABC+A B C+AB C=ABC+A B C+AB C +ABC =AC(B+B )+AB(C+C )=AB+AC =右边(3)E D C CD A C B A A )(++++=A+CD+E证明:左边=ED C CD A C B A A )(++++=A+CD+A B C +CDE =A+CD+CD E =A+CD+E =右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=C B A C AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1)F=A+ABC+A C B +CB+C B =A+BC+C B (2)F=(A+B+C )(A+B+C)=(A+B)+C C =A+B (3)F=ABC D +ABD+BC D +ABCD+B C =AB+BC+BD (4)F=C AB C B BC A AC +++=BC(5)F=)()()()(B A B A B A B A ++++=B A 9.将下列函数展开为最小项表达式(1)F(A,B,C)=Σ(1,4,5,6,7)(2)F(A,B,C,D)=Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0 ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111AB CD 00 01 11 1000011110化简得F=DA B A +(3)F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111ABCD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4)F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。
数字逻辑试题1答案一、填空:(每空1分,共20分)1、(20.57)8=(10.BC)162、(63.25)10=(111111.01)23、(FF)16=(255)104、[X]原=1.1101,真值X=-0.1101,[X]补=1.0011。
5、[X]反=0.1111,[X]补=0.1111。
6、-9/16的补码为1.0111,反码为1.0110。
7、已知葛莱码1000,其二进制码为1111,已知十进制数为92,余三码为110001018、时序逻辑电路的输出不仅取决于当时的输入,还取决于电路的状态。
9、逻辑代数的基本运算有三种,它们是_与_、_或__、_非_。
10、FAB1,其最小项之和形式为_。
FA B AB11、RS触发器的状态方程为_Q n1SRQ n_,约束条件为SR0。
12、已知F1AB、F2ABAB,则两式之间的逻辑关系相等。
13、将触发器的CP时钟端不连接在一起的时序逻辑电路称之为_异_步时序逻辑电路。
二、简答题(20分)1、列出设计同步时序逻辑电路的步骤。
(5分)答:(1)、由实际问题列状态图(2)、状态化简、编码(3)、状态转换真值表、驱动表求驱动方程、输出方程(4)、画逻辑图(5)、检查自起动2、化简FABABCA(BAB)(5分)答:F03、分析以下电路,其中RCO为进位输出。
(5分)答:7进制计数器。
4、下图为PLD电路,在正确的位置添*,设计出FAB函数。
(5分)15分注:答案之一。
三、分析题(30分)1、分析以下电路,说明电路功能。
(10分)解:XY m(3,5,6,7)m(1,2,4,7)2分ABCiXY0000000101010010111010001101101101011111该组合逻辑电路是全加器。
以上8分2、分析以下电路,其中X为控制端,说明电路功能。
(10分)解:FXA B C XABCXABCXABCXABCXABC4分FX(ABC)X(A B C ABC)4分所以:X=0完成判奇功能。