空间角的计算1
- 格式:doc
- 大小:1.28 MB
- 文档页数:11
空间角定理空间角定理是指在三维空间中,两个直线之间的夹角可以通过它们在平面上的投影以及它们在空间中的夹角来求得。
这个定理是空间几何中非常重要的定理之一,可以用在很多不同的数学和物理问题中。
首先,我们来看一下这个定理的几何图像。
假设有两个非平行的直线AB和CD,它们在空间中的夹角为α。
我们将这两个直线在一个平面上的投影分别表示为A'B'和C'D',它们在平面上的夹角为β。
那么空间角定理告诉我们,这两个夹角之间有一个关系式:cos(α) = cos(β)cos(γ) +sin(β)sin(γ)cos(δ)其中,γ表示A'B'和C'D'的夹角,δ表示这两条直线所在的两个平面的夹角。
这个公式可以用于计算任意两条直线之间的夹角,只需要知道它们在平面上的投影和它们在空间中的夹角即可。
空间角定理的推导可以通过向量的方法进行,它的基本思想是将直线的方向向量表示为一个向量,然后通过向量的点积和叉积来计算夹角。
这个方法虽然比较抽象,但是它的推导过程非常严密,也是空间向量运算的基础之一。
除了可以用于计算直线夹角之外,空间角定理还可以用于解决其他几何问题。
例如,我们可以利用它来计算球体的表面积和体积。
对于一个球体,我们可以将它切割成很多小块,然后计算每一小块的表面积和体积,并将它们加起来得到最终的结果。
在这个过程中,我们需要用到空间角定理来计算每一小块的表面积和体积。
空间角定理在物理学中也有广泛的应用。
例如,在电场和磁场的相互作用中,我们可以用它来计算两个电荷或者两个磁极之间的力和力矩。
在开发物理学理论和设计物理实验时,空间角定理也常常被用到。
总之,空间角定理是空间几何中非常重要的一个定理,它可以用于计算直线之间的夹角,解决球体表面积和体积的问题,以及在物理学中的应用等等。
对于那些热爱数学和物理的人来说,学习空间角定理是非常值得的。
空间角的求法(一)异面直线所成的角:]2,0(平移法:平移其中一条或两条使之成为相交直线所成的角。
题型一 求异面直线所成的角例1:正方体ABCD —A 1B 1C 1D 1中, (1) 求AC 与D A 1所成角的大小;(2)若E 、F 分别为AB 、AD 的中点,求A 1C 1与EF 所成角的大小. 练习1.如图, 正方体ABCD -A 1B 1C 1D 1中, 异面直线A 1B 与AD 1所成角的余弦值为 ;异面直线A 1B 与DC 1所成角为 ;异面直线A 1B 与CC 1所成角为 。
2.在长方体ABCD -A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3求异面直线A 1B 与B 1C 所成角的余弦值。
3.如图,在四棱锥P —ABCD 中,PO ⊥底面ABCD , O 为AD 中点,侧棱P A =PD =2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD , AD =2AB =2BC=2,. (1)求异面直线PB 与CD 所成角的余弦值;b ′Oba(二)直线和平面所成的角[0,2π] 定义法:(1)经过斜线上一点作面的垂线;(2)找出斜线在平面内的射影,从而找出线面角;(3)解直角三角形 题型二 求线面角例2:如图,正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面ABCD 所成角的大小。
练习1:在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的θ大小(用三角函数值表示).D1C1A1B1ABCDE(三)二面角[0,180]oo定义1(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角 定义2(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角二面角的平面角的特点:1) 角的顶点在棱上 ;2)角的两边分别在两个面内 ;3)角的边都要垂直于二面角的棱。
空间角的计算(1)【基础平台】1.正方体111A B C D A B C D -中,1A B 与平面11BB D D 所成角的大小为 ( )A .90B .60C .45D .30 2.两异面直线所成角的范围是( )A .0,2π⎛⎫⎪⎝⎭B .0,2π⎡⎫⎪⎢⎣⎭C .0,2π⎛⎤⎥⎝⎦D .0,2π⎛⎫⎪⎝⎭3.已知异面直线a 与b 所成的角为40 ,过空间一点O 且与,a b 都成70 角的直线有 条;4.在A B C 中,M ,N 分别是A B A C ,的中点,PM ABC ⊥平面,18BC M P ==,,P N 和平面ABC 所成的角为_______;【自主检测】1.一直线l 与平面α斜交成θ角,则直线l 与平面α内所有直线所成的角中,关于最大角和最小角的叙述中,正确的是 ( )A .最小角θ,最大角2πB .最小角θ,最大角πθ-C .最小角θ,无最大角D .最小角0,最大角θ2.在正方体中1111ABC D A B C D -,表面对角线与1AD 成60 的角有 ( )A .4条 B .6条 C .8条 D .10条3.正方体1111ABC D A B C D -中,,E F 分别是11,BB C C 的中点,则A E 与B F 所成角的余弦为( ) A .15B .15-C .25D .25-4.在直三棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,M 是1C C 的中点,Q 是B C 中点,点P 在11A B 上,则直线PQ 与直线A M 所成的角等于_______;5.在正方体1111ABC D A B C D -中,,M N 分别是11,AB A B 的中点,1BC 与平面1M N D D 所成角的正切值为_______;6.在棱长为1的正方体1111ABC D A B C D -中,E F G ,,分别是11D D BD BB ,,的中点 (1)求证:EF C F ⊥;(2)求EF CG 与所成角的余弦值.7.如图,正方体1111ABC D A B C D -中,,,,,,E F G H K L 分别是棱 111111,,,,,AB BB B C C D D D D A的中点,(1)求证:,,,,,E F G H K L 共面; (2)求证:1A C EFG H K L ⊥平面;(3)求1D B 与平面E F G H K L 所成角的正弦值.【拓展延伸】已知平行六面体1111ABC D A B C D -中,底面是边长为3的正方形,棱15AA =,1160BAA D AA ∠=∠=.(1)求A C 与1BC 所成角的余弦;(2)P 为B C 的中点,在棱1A A 上是否存在一点Q ,使得1PQ BC ⊥.空间角的计算(1)【基础平台】1.D .2.C .3.3.4.30.【自主检测】1.A .2.A .3.A.4. 90 .5.13. 6.(1)略(2)13.7.(1)提示:证,,H G EF K L共面,(2)略(3)13.【拓展延伸】(1)7,(2)提示:令1AQ AA λ= ,63130λ=,存在。
在高中的空间几何学习中,常见的几何形状包括点、线、面、体等,涉及到各种角的计算。
以下是一些常见的角的公式:
1. 平面内的角:
-顶点在圆心的圆心角和半圆角:圆心角等于对应的圆周角,半圆角为180度。
-对顶角:对顶角相等。
-同位角:同位角相等。
-内错角和内错角互补:内错角之和等于180度,内错角互补。
2. 空间内的角:
-平行线与截线:平行线与截线的对应角相等。
-直线与平面:直线与平面的夹角等于其倾斜角。
-平面与平面:两平面的夹角等于它们法向量的夹角。
3. 立体几何中的角:
-直线与立体的交角:直线与平面或立体的夹角等于90度减去它们的夹角余补角。
-两平面之间的夹角:两平面的夹角是它们的法线之间的夹角。
这些公式是空间几何中常见的角度计算原则,通过理解和掌握这些规律,可以更好地解决空间几何题目中涉及到的各种角度问题。
PCDBA 空间角的求法空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。
空间角是异面直线所成的角、直线与平面所成的角及二面角总称。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三计算。
异面直线所成的角的范围:090θ<≤ (一)平移法【例1】已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA ⊥平面AC ,且2BC =,1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值的大小。
【解】过点C 作//CE BD 交AD 的延长线于E ,连结PE,则PC 与BD 所成的角为PCE ∠或它的补角。
CEBD ==PE=∴由余弦定理得 222cos 2PC CE PE PCE PC CE +-∠==⋅∴PC 与BD 所成角的余弦值为63 (二)补形法【变式练习】已知正三棱柱111ABC A B C -的底面边长为8,侧棱长为6,D 为AC 中点。
求异面直线1AB与1BC 所成角的余弦值。
【答案】125A 1C 1CBAB 1 DCP二、直线与平面所成角直线与平面所成角的范围:090θ≤≤ 方法:射影转化法(关键是作垂线,找射影)【例2】如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点P 在平面ABC内的射影O 在AB 上,求直线PC 与平面ABC 所成的角的大小。
【解】连接OC ,由已知,OCP ∠为直线PC 与平面ABC 所成角设AB 的中点为D ,连接,PD CD 。
AB BC CA ==,所以CD AB ⊥90,60APB PAB ∠=∠=,所以PAD ∆为等边三角形。
不妨设2PA =,则1,3,4OD OP AB ===2223,13CD OC OD CD ∴==+=在Rt OCP ∆中,339tan 13OP OCP OC ∠===【变式练习1】如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形。
空间角求法空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想.●锦囊妙计空间角的计算步骤:一作、二证、三算1.异面直线所成的角范围:0°<θ≤90°方法:①平移法;②补形法.2.直线与平面所成的角范围:0°≤θ≤90°方法:关键是作垂线,找射影.3.二面角方法:①定义法;②三垂线定理及其逆定理;③垂面法.注:二面角的计算也可利用射影面积公式S′=S cosθ来计算[例1]在棱长为a的正方体ABCD—A′B′C′D′中,E、F分别是BC、A′D′的中点.(1)求证:四边形B′EDF是菱形;(2)求直线A′C与DE所成的角;(3)求直线AD与平面B′EDF所成的角;(4)求面B′EDF与面ABCD所成的角.命题意图:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强,属★★★★★级题目.知识依托:平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角.错解分析:对于第(1)问,若仅由B′E=ED=DF=FB′就断定B′EDF是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B′、E、D、F四点共面.技巧与方法:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法.求二面角的大小也可应用面积射影法.1二面角α-l-β内有一点P,若P到面αβ的距离分别为5,8且P在面αβ内的射影的距离为7,则二面角α-l-β的度数是解:设P在平面α,β的内的射影分别为A和B,过A作α与β交线的垂线,垂足为C,连接BC,∵PA=5,PB=8,AB=7,∴cos∠APB= 1/2即∠APB=60°而∠ACB即为二面角α-l-β的平面角,∵∠ACB与∠APB互补,∴∠ACB=120°,故选C.三垂线定理及其逆定理定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。
在立体几何中,空间角和空间距离是非常关键的概念。
本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。
一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。
空间角的大小是依据两个向量的夹角计算得来的。
2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。
设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。
接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。
二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。
2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。
设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。
三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。
比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。
在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。
在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。
空间角的范围什么是空间角空间角是物体之间相对位置的一种度量,用于描述在三维空间中两个向量之间的夹角。
它是向量的方向性特征的量化表示。
在数学上,空间角可以通过向量的点积和模长来计算。
给定两个向量A和B,它们的空间角θ可以通过以下公式计算:θ = arccos(A·B / |A|·|B|)其中,A·B表示向量A和向量B的点积,|A|和|B|分别表示向量A和向量B的模长。
空间角的范围空间角的范围是从0到π之间的实数。
这是因为点积的值范围是从-1到1之间,而空间角θ的取值范围是从0到π之间。
当两个向量的方向相同时,它们的空间角为0。
当两个向量的方向完全相反时,它们的空间角为π。
当两个向量的方向相互垂直时,它们的空间角为π/2。
在实际应用中,空间角的范围可以用于描述物体之间的相对位置关系。
例如,在机器人技术中,空间角可以用于判断机器人的朝向和目标位置之间的夹角,从而实现精确的导航和定位。
空间角的应用空间角在物理学、工程学和计算机图形学等领域中具有广泛的应用。
在物理学中,空间角被用于描述光线的传播方向和反射方向之间的夹角。
通过测量空间角,可以计算出光线的折射角和反射角,从而研究光的传播规律和光学器件的设计。
在工程学中,空间角被用于描述机械零件之间的相对位置关系。
通过测量空间角,可以确定机械零件的装配方式和运动轨迹,从而实现机械系统的设计和优化。
在计算机图形学中,空间角被用于描述三维模型之间的相对位置关系。
通过计算空间角,可以确定三维模型的旋转角度和投影方向,从而实现计算机图形的渲染和动画效果。
总结空间角是一种用于描述物体之间相对位置的度量,可以通过向量的点积和模长来计算。
空间角的范围是从0到π之间的实数,用于表示两个向量之间的夹角。
空间角在物理学、工程学和计算机图形学等领域中具有广泛的应用,可以用于研究光的传播规律、机械系统的设计和优化,以及计算机图形的渲染和动画效果等方面。
通过深入理解空间角的概念和应用,我们可以更好地理解和应用三维空间中的向量和位置关系。
空间的角的计算教学过程一、问题情境我们能不能用直线的方向向量和平面法向量来刻画空间线面位置关系? 我们知道,空间两条异面直线所成的角可转化为两条相交直线所成的锐角或直角;斜线与平面所成的角是指斜线与它在平面内的射影所成的锐角;两个平面所成的角是用二面角的平面角来度量.这就是说,空间的角最终都可以通过转化,用两条相交直线所成的角来度量.如何用向量的方法来求空间的角的大小呢?二、概念讲解1. 两条异面直线所成的角与它们的方向向量所成的角 .2. 直线的方向向量与平面的法向量的夹角为锐角时,直线与平面所成的角与这个夹角互余.3. 二面角的平面角与这两个平面的法向量的夹角相等或互补.其中,当两个平面的法向量方向相反,则二面角的平面角与法向量的夹角 ;当两个平面的法向量方向相同,则二面角的平面角与法向量的夹角 .三、例题讲解例1 (课本例1) 如图,在正方体1111D C B A ABCD -中,点,分别在,上,且111141B A B E =,111141C D F D =,求与所成的角的余弦值.思路:1、构造异面直线所成的角;2、向量方法;3、坐标法.例2. (课本例2) 在正方体1111D C B A ABCD -中,是的中点,点在上,且111141C D E D =,试求直线与平面AC D 1所成的角的余弦值. 思考:把题设中的条件“点是的中点”改为“CB CF 41=”,你能得到什么结论?本例怎样用综合法求解?试求两种方法加以比较.三、课堂精练课本100P 页1、2、3四、回顾小结向量的方法解决线线、线面、面面的夹角的计算问题.五、拓展延伸1、课本P102页第12题2、如图4,已知111ABC A B C -是各条棱长均等于的正三棱柱,是侧棱的中点.求点到平面1AB D 的距离.解析:11ABB A 为正方形,11A B AB ∴⊥.易得平面1AB D ⊥平面11ABB A ,1A B ∴⊥面1AB D ,1A B ∴是平面1AB D 的一个法向量.设点到平面1AB D的距离为,则111()06024 AC A B AC A A ABd aA B+====.六、课后作业:同步练习七、教学反思:。
空间角的概念与计算在几何学中,角是一个基本的概念,用于描述物体之间的相对方向。
而空间角则是在三维空间中描述物体之间方向关系的重要指标。
本文将介绍空间角的概念及其计算方法。
一、空间角的概念空间角是用来描述三维空间中两个矢量之间的夹角关系。
在二维空间中,我们可以通过一条射线和一条直线之间的夹角来描述角度,而在三维空间中,空间角则需要考虑更多的因素。
具体而言,对于任意两个非零矢量a和b,它们之间的空间角被定义为它们的夹角θ,满足0 ≤ θ ≤ π。
其中,θ=0时表示a和b共线,θ=π/2时表示a和b正交,θ=π时表示a和b反向。
二、空间角的计算1. 余弦定理计算空间角余弦定理是空间角计算中常用的方法之一。
对于两个非零矢量a和b,它们之间的空间角θ满足以下关系:cosθ = (a·b) / (|a|·|b|)其中,·表示矢量的点积,|a|和|b|分别表示矢量a和b的模长。
通过求解上式,我们可以得到空间角θ的值。
2. 向量叉积计算空间角另一种常用的空间角计算方法是利用向量的叉积。
对于两个非零矢量a和b,它们之间的空间角θ满足以下关系:sinθ = |a×b| / (|a|·|b|)其中,×表示矢量的叉积。
通过求解上式,我们可以得到空间角θ的正弦值,进而计算出空间角的值。
三、实例演示下面通过一个实例来演示如何计算空间角。
假设有两个矢量a = (1, 2, 3)和b = (4, 5, 6)。
我们希望计算出它们之间的空间角θ。
首先,我们可以通过求解余弦定理来计算空间角的余弦值:cosθ = (1×4 + 2×5 + 3×6) / √(1² + 2² + 3²) × √(4² + 5² + 6²)= (4 + 10 + 18) / √14 × √77= 32 / √1078 ≈ 0.979然后,通过反余弦函数可以求得空间角的弧度值:θ = arccos(0.979) ≈ 0.199 rad最后,将弧度值转换为度数,即可得到空间角的度数表示:θ ≈ 0.199 × (180/π) ≈ 11.4°因此,矢量a和b之间的空间角约为11.4°。
3.2.3空间的角的计算(1)姜堰市蒋垛中学孟进教学目标:能用向量方法解决线线、线面的夹角的计算问题.教学重点:能用向量方法解决线线、线面的夹角的计算问题.教学难点:异线角与线面角的计算.教学方法:新授课、启发式――引导发现、合作探究.教学过程:一、问题情境我们知道,空间两条异面直线所成的角可转化为两条相交直线所成的锐角或直角;斜线与平面所成的角是指斜线与它在平面内的射影所成的锐角.这就是说,空间的角最终都可以通过转化,用两条相交直线所成的角来度量.如何用向量的方法求空间角的大小呢?二、学生活动(1)画个正方体,观察正方体内异面直线所成的角;(2)画一个线面角,并做出它的平面角,思考如何用向量来表示它.三、建构数学1.两条异面直线所成的角与它们的方向向量所成的角.2.直线的方向向量与平面的法向量的夹角为锐角时,直线与平面所成的角与这个夹角互余.四、数学运用1.例题.例1在正方体ABCD—A1B1C1D1中,E1,F1分别在A1B1,C1D1上,且E1B1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小.解1 (几何法)作平行线构造两条异面直线.所成的角AHG ∠,15cos 17AHG ∠=. 解2 (向量法)设14DD a =,11D F b =,则||||a b=且a b ⊥ ,2222211||||(4)17DF BE a b a ==+= . 211(4)(4)15DF BE a b a b a ⋅=+-= .11111115cos 17||||BE DF BE DF BE DF ⋅< >,==. 解3 (坐标法)设正方体棱长为4,以DA ,DC ,1DD为正交基底,建立如图所示空间坐标系D —xyz ,1(014)BE =,-,,1(014)DF =,, ,1BE ·1DF =15,11111115cos 17||||BE DF BE DF BE DF ⋅< >,==. 例2 在正方体ABCD —A 1B 1C 1D 1中,F 分别是BC 的中点,点E 在D 1C 1上,且11D E =41D 1C 1,试求直线E 1F 与平面D 1AC 所成角的大小.解 设正方体棱长为1,以DA ,DC ,1DD为单位正交基底,建立如图所示坐标系D -xyz ,1DB 为D 1AC 平面的法向量,1DB=(1,1,1),113(1)24E F =,,- ,11cos 87DB E F < >,= , 所以直线E 1F 与平面D 1AC所成角的正弦值为87. 2.练习.(1)作业:课后练习1,2,3.(2) 直线l 与平面α斜交成n °角,则l 与α内的任意直线所成角中最大的角是 .(3)将正方形ABCD 沿对角线AC 折成直二面角后,异面直线AB 与CD 所成角的大小为 .(4)已知三角形顶点是A (1,-1,1),B (2, 1,-1),C (-1,-1,-2),则这个三角形的面积等于 .五、要点归纳与方法小结 本节课学习了以下内容:1.能用向量方法解决线线、线面的夹角的计算问题.2.空间向量要注重数形结合,注重培养我们的空间想象能力.。
空间角的求法方法归纳
空间角的求法方法归纳
在数学和物理学中,空间角是一种非常重要的概念。
物体在空间中的角度关系经常被用到各种计算和分析中。
因此,求解空间角的方法也变得尤为重要。
本文将按类划分,总结空间角的求法方法。
立体角的求法
立体角是三维空间中用来描述四面体的角度大小的量,并且与其各个顶点相对应。
求解四面体的立体角可以通过以下公式进行计算:
V5 = 1/3(arccos(A1) + arccos(A2) + arccos(A3) - π )
其中V5指四面体的立体角,A1、A2、A3为三个向量的夹角余弦,pi 为圆周率。
平面角的求法
平面角是在二维平面中两个射线之间的角度大小,于是端点重合,两条射线叫做角的顶点,并记为O。
平面角的计算公式如下:
cosθ = a·b / |a||b|
其中,a和b分别表示两个向量,|a|和|b|表示向量的模,lala和lblb都为0,则cosθ没有定义。
球面角的求法
球面角是指在球面上相互靠近的两条弧(或线)之间的角度大小。
求解球面角需要先计算其对应的球面扇形的面积,然后进行换算即可,具体公式如下:
S = R²θ
其中R表示球体半径,θ表示对应的球面角。
总结
空间角的求法方法主要包括立体角、平面角和球面角三种。
其中立体角的求解需要根据四面体的三个向量夹角余弦值计算,平面角的计算需要先计算两个向量的点积并除以其模,而球面角的求解则需要先计算出对应的球面扇形面积。
这些空间角的求法方法可以帮助我们更准确地分析并解决各类问题。
立体几何---空间角的计算一、运用向量的坐标运算解决立体几何中的角的问题在立体几何中,涉及的角有异面直线所成的角、直线与平面所成的角、二面角等.关于角的计算,均可归结为求两个向量夹角.对于空间向量a ,b ,有cos ,||||a ba b a b <>=.利用这一结论,我们可以较方便地处理立体几何中的角的问题.求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,可求两向量的坐标,也可以把所求向量用一组基向量表示,两向量的夹角范围是[0,]π,而两异面直线所成角的范围是(0,]2π,应注意区别.直线l 与平面α的夹角θ,是直线l 的方向向量l与平面α的法向量n 的夹角β(锐角)的余角,故有sin θ=cos β=,||||l nl n arcsin ||||l n l n θ=.设n 1,n 2分别是二面角l αβ--的面,αβ的法向量,则<n 1,n 2>就是所求二面角的平面角或其补角的大小.①解决异面直线所成角问题例1已知直四棱柱1111D C B A ABCD -中, 21=AA 底面ABCD 是直角梯形,A ∠为直角,AB ∥CD ,4=AB ,2=AD ,1=DC ,.求异面直线1BC 与DC 所成角的大小.(结果用反三角函数值表示)解:如图,以D 为坐标原点,分别以DA 、DC 、1DD 所在直线为x 、y 、z 轴建立直角坐标系.则)2,1,0(1C ,)0,4,2(B ,∴)2,3,2(1--=BC ,)0,1,0(-=,设1BC 与所成的角为θ,则=cos θ=17173,17173arccos =θ.∴异面直线1BC 与DC 所成角的大小为173arccosC D②解决二面角问题例2在四棱锥ABCD V -中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD . (Ⅰ)证明AB ⊥平面VAD ;(Ⅱ)求面VAD 与面VDB 所成的二面角的大小.证明:(Ⅰ)同例1. (Ⅱ)由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量 设(1,,)n y z =是面VDB 的法向量,则110(1,,)(,1,020(1,,)(1,1,0)0x n VB y z z n BD y z =-⎧⎧⎧⋅=⋅-=⎪⎪⎪⇒⇒⎨⎨⎨=⋅=⎪⎪⎪⎩⋅--=⎩⎩∴(0,1,0)(1,cos ,7AB n ⋅-<>==-又由题意知,面VAD 与面VDB 所成的二面角为锐角,所以其大小为. 评注:求二面角大小可转化为求两个平面的法向量的夹角大小,两平面法向量的夹角与二面角的大小相等或互补,解题时要注意结合题目条件进一步确定二面角的大小. 练习:1、如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.A C D VAB CD EA 1B 1C 1D 12、如图,直三棱柱111ABC A B C -中,,AB AC D ⊥、E 分别为1AA 、1B C 的中点,DE ⊥平面1BCC(I )证明:AB AC =(II )设二面角A BD C --为60°,求1B C 与平面BCD 所成的角的大小。
3、如图,在三棱锥P ABC -中,PA ⊥底面,,60,90ABC PA AB ABC BCA ︒︒=∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BC(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的大小;4、如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=12AD (I) 求异面直线BF 与DE 所成的角的大小; (II) 证明平面AMD ⊥平面CDE ; (III )求二面角A-CD-E 的余弦值。
EDC 1B 1A 1CBA5、如图,在长方体1111ABCD A BC D -中,,E P 分别是11,BC A D 的中点,,M N 分别是1,AE CD 的中点,1,2AD AA a AB a ===(Ⅰ)求证://MN 面11ADD A ; (Ⅱ)求二面角P AE D --的大小。
(Ⅲ)求三棱锥P DEN -的体积。
6、如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =2.(Ⅰ)证明:平面PBE ⊥平面P AB ;(Ⅱ)求平面P AD 和平面PBE 所成二面角(锐角)的大小.7、如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ︒==∠= (I )求证:EF BCE ⊥平面;(II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面(III )求二面角F BD A --的大小。
EP D CBA8、如图,已知等腰直角三角形RBC ,其中∠RBC =90º,2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC .求二面角P CD A --的平面角的余弦值.参考答案1、以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB == ,,,,,,11(224)(204)AC DA =--=,,,,,. ······················································································ 3分 (Ⅰ)因为10AC DB = ,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DB DE D = , 所以1AC ⊥平面DBE . ······································································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥ n ,1DA ⊥n . 故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ··································································· 9分1AC ,n 等于二面角1A DEB --的平面角,111cos 42AC AC AC ==,n n n . 所以二面角1A DE B --的大小为.………………………………………… 12分3、如图,以A 为原煤点建立空间直角坐标系A xyz -, 设PA a =,由已知可得 ()()10,0,0,,,0,0,,0,0,0,222A B a a C P a ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (Ⅰ)∵()10,0,,,0,02AP a BC a ⎛⎫== ⎪⎝⎭,∴0BC AP ⋅=,∴BC ⊥AP .又∵90BCA ︒∠=,∴BC ⊥AC ,∴BC ⊥平面PAC . (Ⅱ)∵D 为PB 的中点,DE//BC ,∴E 为PC 的中点,∴111,,,422D a a E a ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, ∴又由(Ⅰ)知,BC ⊥平面PAC ,∴∴DE ⊥平面PAC ,垂足为点E .∴∠DAE 是AD 与平面PAC 所成的角,∵111,,,422AD a a AE a ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ,∴cos 4AD AE DAE AD AE⋅∠==⋅ . ∴AD 与平面PAC所成的角的大小arccos 4. 4、如图所示,建立空间直角坐标系,点A 为坐标原点。