精品课程-logistic回归分析
- 格式:ppt
- 大小:878.50 KB
- 文档页数:53
19Logistic回归分析第十九章 Logistic 回归分析[教学要求]了解:logistic 回归模型的基本结构;参数估计的基本思想;如何用logistic 回归模型做预测。
熟悉:logistic 回归系数的假设检验和区间估计方法;条件logistic 回归与非条件logistic 回归的适用条件;如何用logistic 回归校正混杂因素和筛选因素。
掌握:logistic 回归分析的用途;logistic 回归系数的流行病学意义及其与优势比或相对危险度的关系。
[重点难点]第一节 Logistic 回归模型的基本概念基本概念线性logistic 回归模型为X PP Y ββ+=?=0)1ln(。
Logistic 回归模型又可表示为XX e e P ββββ+++=001。
第二节 Logistic 回归的参数估计及假设检验一、基本概念最大似然法的基本思想:先建立似然函数和对数似然函数;求似然函数或对数似然函数达到极大时参数的取值,称为参数的最大似然估计值。
Logistic 回归模型常数项:表示在其它自变量均为零时死亡(或发病)优势(odds) 的对数值,当死亡(或发病)概率很低时,不死亡(或不发病)的概率接近1,该值近似等于自然死亡率(或发病率)。
βLogistic 回归系数的意义:设是变量X 的logistic 回归系数,exp()是其它变量取值固定时,该变量与疾病关联的优势比(),反映了危险因素X 与疾病关联的程度。
ββ?∧OR二、计算似然比检验的统计量是G =-2ln L -(-2ln L ’)Wald 检验统计量是22))?(?(ββχSE =回归系数的区间估计: )?(?2/ββαSE Z ±第三节条件l ogistic 回归模型一、基本概念条件logistic 回归模型的结构:设只有一个自变量X ,假定个体得病的概率正比于)exp(0X ββ+,即)exp()1(0A A X Y P ββ+∝=,)exp()1(0B B X Y P ββ+∝=。
第十二章Logistic 回归分析一、Logistic 回归概述:Logistic 回归主要用于筛选疾病的危险因素、预后因素或评价治疗措施; 通常以疾病的死亡、痊愈等结果发生的概率为因变量,以影响疾病发生和预后的 因素为自变量建立模型。
、Logistic 回归的分类及资料类型:第一节非条件Logistic 回归分析、Logistic 回归模型:Logistic 回归模型:exp ( • :i X i ——亠」p X p )p 二1 +exp ( B o + B i X i i + Pp X p ) 1二、回归系数的估计(参数估计):回归模型的参数估计:Logistic 计法。
二、假设检验: 1. Logistic 回归方程的检验:•检验模型中所有自变量整体来看是否与所研究事件的对数优势比存在线性 关系,也即方程是否成立。
检验的方法有似然比检验、比分检验(score test )和Wald 检验(wald test )。
上述三种方法中,似然比检验最可靠。
•似然比检验(likehood ratio test ):通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似然函数变化来进行,其统计量为 G=-2l n(L)(又称Devia nee )。
无效假设H O : B =0。
当H 0成立时,检验统计量 G 近似服从自由度为N-P-1的X 2分布。
当G 大于临界值时,接受H,拒绝无效假设, 认为从整体上看适合作Logistic 回归分析,回归方程成立。
2. Logistic 回归系数的检验:•为了确定哪些自变量能进入方程,还需要对每个自变量的回归系数进行假 设检验,判断其对模型是否有贡献。
•检验方法常用 WaldX 检验,无效假设H0 B =0。
当X 2大于临界值时,拒 绝无效假设,自变量能进入方程。
1亠elogit (P )= ln (±)=B o +B * 1 x 1 + , + B n x n回归模型的参数估计通常利用最大似然估3.Logistic 回归模型的拟合优度检验:•Logistic 回归模型的拟合优度检验是通过比较模型预测的与实际观测的事件发生与不发生的频数有无差别来进行检验。
11 Logistic回归分析在中医药科研中,经常遇到因变量是分类变量(包括二分类和多分类)的资料,如治 愈与未治愈,生存与死亡,发病与未发病,疗效评价分显效、好转、无效等级等。
这类资 料,由于因变量是分类变量不具有连续性和正态性,直接用一般多元线性回归分析是不妥 的,需用Logistic 回归分析。
Logistic 回归分析是一种适用于因变量为分类变量的回归分析, 近年来在许多研究领域得到了广泛的应用。
Logistic 回归属于概率型非线性回归, 它分为非条件Logistic 回归和条件Logistic 回归(又 称配比Logistic 回归),二者根本的差别在于构造 Logistic 模型时是前者未使用条件概率, 后 者使用了条件概率。
11.1二分类资料的Logistic 回归分析如果因变量Y 是二分类变量,其取值只有两种,如阳性(编码为1)和阴性(编码为0), 这时要说明的问题是阳性率p 二P (Y =1)与自变量X 间的关系,可进行因变量为二分类资料的Logistic 回归。
二分类Logistic 回归对自变量没有特殊要求,自变量可以是分类变量和 连续变量。
11.1.1一个两分类自变量的二分类 Logistic 回归1操作步骤(1)指定频数变量:选择菜单Data T Weight cases,在弹出的Weight cases 对话框中,将频数变量 f 送入Frequency 框中;单击 OK 。
(2)进行二分类 Logistic 回归分析。
选择菜单 AnalyzeT Regression T Binary Logistic (二分类 Logistic ),弹出 Logistic Regression 对话框,如图 11-2;将因变量 lx 送入 Dependent (因变量)框内,将自变量 fz 送入Covariates (协变量)框内;单击 Options (选项)按钮,一个自变量的二分类 Logistic 回归要拟合的 Logistic 回归方程为:log it ( p )二 ln (~^) = b o bX1 -P例11-1 《实用中医药杂志》2006年1月 第22卷1期,复方血栓通胶囊配合肌苷片治疗 青少年近视,数据见表11-1。