高中数学必修四期末试题及答案
- 格式:doc
- 大小:647.50 KB
- 文档页数:6
一、选择题1.已知θ为锐角,且满足如tan 311tan θθ=,则tan 2θ的值为( ) A .34B .43 C .23D .322.若πtan 34α⎛⎫+=- ⎪⎝⎭,则sin 2α=( ) A .2B .1C .45D .35-3.函数2()3sin 3sin cos f x x x x =+的最大值为( )A .332B .23C .33 D .33+4.已知直线3x −y +1=0的倾斜角为α,则1sin22α= A .310 B .35 C .−310D .1105.已知平面向量a 与b 的夹角为23π,若(3,1)a =-,2213a b -=,则b ( ) A .3B .4C .3D .26.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .47.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-8.已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( )A .103B .103-C .2D .2-9.如图,一个质点在半径为1的圆O 上以点P 为起始点,沿逆时针方向旋转,每2s 转一圈,由该质点到x 轴的距离y 关于时间t 的函数解析式是( )A .2sin()3y t ππ=+ B .2sin()3y t ππ=- C .2sin()3y t ππ=-D .2sin()3y t ππ=+10.已知函数()f x 是定义在R 上的增函数,()0,1A -,()3,1B 是其图象上的两点,那么|(2sin 1)|1f x +≤ 的解集为( )A .,33x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ B .722,66x k x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ∣ C .,63xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ D .722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ 11.对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法:①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1B .2C .3D .412.已知函数2()[sin()]3)cos()f x x x x ωωω=+(0)>ω在[0,]π上有且只有四个零点,则实数ω的取值范围是( )A .5[,2]3B .5(,2)3C .5[,2)3D .5(,2]3二、填空题13.已知,2παπ⎛⎫∈⎪⎝⎭,3tan 24α=.则2sin 2cos αα+=______.14.tan 25tan 353tan 25tan 35++︒︒︒︒的值为________.15.设,(0,)αβπ∈,cos α,cos β是方程26320x x -=-的两根,则sin sin αβ=_________.16.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.17.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G ,作用在行李包上的两个拉力分别为1F ,2F ,且12F F =,1F 与2F 的夹角为θ.给出以下结论:①θ越大越费力,θ越小越省力; ②θ的范围为[]0,π; ③当2πθ=时,1F G =;④当23πθ=时,1F G =. 其中正确结论的序号是______.18.已知向量a =(1,0),b =(12-3c 满足22c =,且(c a b --)•c =0,则a 与c 的夹角为_____. 19.若函数()cos()(0)3f x x πωω=->的图象在(0,)π内有且只有两条对称轴,则ω的取值范围是___________. 20.若函数()cos()(0)4f x wx w π=+>在[]0,π的值域为21⎡-⎢⎣⎦,,则w 的取值范围是______三、解答题21.已知函数()23sin sin 2sin cos 344f x x x x x ππ⎛⎫⎛⎫=+-++⎪ ⎪⎝⎭⎝⎭(1)当[0,]x π∈时,求()f x 的单增区间; (2)将函数()f x 的图像向右平移3π个单位后得到函数()g x ,若关于x 的方程|()3|g x m -=在5,66ππ⎡⎤-⎢⎥⎣⎦上有解,那么当m 取某一确定值时,方程所有解的和记为m S ,求m S 所有可能值及相应的m 取值范围.22.已知函数()22sin cos 213f x x x π⎛⎫=+-- ⎪⎝⎭. (Ⅰ)求6f π⎛⎫⎪⎝⎭的值; (Ⅱ)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最大值和最小值; (Ⅲ)将函数()f x 的图象向左平移()0m m >个单位长度,所得函数图象与函数cos 2y x =的图象重合,求实数m 的最小值.23.已知平面向量34,55a ⎛⎫= ⎪⎝⎭,2||2b =,a与b 夹角为4π.(1)求向量a 在b 方向上的投影; (2)求a b -与a b +夹角的余弦值.24.(1)已知非零向量1e 、2e 不共线,欲使12ke e +和12e ke +共线,试确定实数k 的值. (2)已知向量1a =,2b =,()()23a b a b +⊥-,求a 与b 夹角的大小.25.如图,一个半径为4米的筒车按逆时针方向每π分钟转1圈,筒车的轴心O 距水面的高度为2米.设筒车上的某个盛水筒W 到水面的距离为d (单位:米)(在水面下则d 为负数).若以盛水筒W 刚浮出水面时开始计算时间,则d 与时间t (单位:分钟)之间的关系为sin()0,0,22d A t K A ππωϕωϕ⎛⎫=++>>-<< ⎪⎝⎭.(1)求,,,A K ωϕ的值;(2)求盛水筒W 出水后至少经过多少时间就可到达最高点?(3)某时刻0t (单位:分钟)时,盛水筒W 在过O 点的竖直直线的左侧,到水面的距离为5米,再经过6π分钟后,盛水筒W 是否在水中? 26.已知sin(2)cos 2()cos tan()2f ππαααπαπα⎛⎫-+ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭.(1)化简()f α,并求3f π⎛⎫⎪⎝⎭; (2)若tan 2α=,求224sin 3sin cos 5cos αααα--的值;(3)求函数2()2()12g x f x f x π⎛⎫=-++⎪⎝⎭的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先利用两角和的正切计算tan tan 2tan 31tan tan 2θθθθθ+=-,再利用二倍角的正切化简前者,结合tan 311tan θθ=可得1tan 2θ=,从而可求tan 2θ.【详解】32222tan tan tan tan 23tan tan 1tan tan 32tan 1tan tan 213tan 1tan 1tan θθθθθθθθθθθθθθ++--===---⨯-,故32223tan tan tan 33tan 13tan 11tan tan 13tan θθθθθθθθ---===-,故21tan 4θ=, 因为θ为锐角,故1tan 2θ=,故1242tan 21314θ⨯==-, 故选:B. 【点睛】思路点睛:已知θ的三角函数值,求()*n n N θ∈的三角函数值,应利用两角和的三角函数值逐级计算即可.2.C解析:C 【分析】先利用切化弦结合两角和的公式展开,平方后由二倍角正弦公式可得结果. 【详解】∵πsin πsin cos 4tan 3π4cos sin cos 4ααααααα⎛⎫+ ⎪+⎛⎫⎝⎭+===- ⎪-⎛⎫⎝⎭+ ⎪⎝⎭, ∴()()22sin cos 9cos sin αααα+=-,即1sin 291sin 2αα+=-,解得4sin 25α=, 故选:C. 【点睛】本题主要考查了两角和公式以及切化弦思想的应用,等式两边平方是解题的关键,属于中档题.3.A解析:A 【分析】利用降次公式、二倍角公式和辅助角公式化简()f x ,由此求得()f x 的最大值. 【详解】 依题意()1cos 233sin 2sin 2222222x f x x x x -=+=-+12cos 2226x x x π⎫⎛⎫=-+=-+⎪ ⎪⎪⎝⎭⎭, 所以()f x=. 故选:A 【点睛】本小题主要考查降次公式、二倍角公式和辅助角公式,考查三角函数的最值的求法,属于中档题.4.A解析:A 【分析】由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值. 【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,∴2221133sin222219110sin cos tan a sin cos sin cos tan αααααααα=⋅====+++, 故选A . 【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.5.A解析:A 【解析】分析:根据题设条件2213a b -=,平方化简,得到关于b 的方程,即可求解结果. 详解:由题意,(3,1)a =-且向量a 与b 的夹角为23π, 由2213a b -=,则222222444442cos523a b a b a b b b π-=+-⋅=+-⨯=, 整理得2120b b +-=,解得3b =,故选A.点睛:本题主要考查了向量的运算问题,其中熟记平面向量的数量积的运算公式,以及向量的模的计算公式是解答的关键,着重考查了推理与运算能力.6. C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零, 所以当232cos622b b a b t aaaπ⋅=-=-=-时,()g t 取得最小值1,所以22 233321222b b bg a a b ba a a⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=-+⋅-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得2114b=,所以2b=,故选:C【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题7.C解析:C【分析】建立直角坐标系,利用向量的坐标运算求解即可.【详解】以点A为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF∴==21124AE AF∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.8.D解析:D【分析】根据题意得出()12BD BA BC=+,13AE BC BA=-,运用数量积求解即可.【详解】解:等边△ABC的边长为2,3BC BE=,AD DC=,∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭, 2=-.故选:D . 【点睛】本题考查了平面向量的运算,数量积的求解,关键是分解向量,属于中档题.9.A解析:A 【分析】首先根据图象理解t 秒后23POx t ππ∠=+,再根据三角函数的定义求点P 的纵坐标和该质点到x 轴的距离y 关于时间t 的函数解析式. 【详解】由题意可知点P 运动的角速度是22ππ=(弧度/秒) 那么点P 运动t 秒后23POx t ππ∠=+, 又三角函数的定义可知,点P 的纵坐标是2sin 3t ππ⎛⎫+⎪⎝⎭, 因此该质点到x 轴的距离y 关于时间t 的函数解析式是2sin 3y t ππ⎛⎫=+ ⎪⎝⎭. 故选:A 【点睛】关键点点睛:本题的关键是理解三角函数的定义,并正确表示点23POx t ππ∠=+,即可表示函数的解析式.10.D解析:D 【分析】由题意可得()01f =-,()31f =,所要解的不等式等价于()()0(2sin 1)3f f x f ≤+≤,再利用单调性脱掉f ,可得02sin 13x ≤+≤,再结合正弦函数的图象即可求解. 【详解】由|(2sin 1)|1f x +≤可得1(2sin 1)1f x -≤+≤, 因为()0,1A -,()3,1B 是函数()f x 图象上的两点,所以()01f =-,()31f =,所以()()0(2sin 1)3f f x f ≤+≤, 因为()f x 是定义在R 上的增函数, 可得02sin 13x ≤+≤,解得:1sin 12x -≤≤, 由正弦函数的性质可得722,66k x k k Z ππππ-+≤≤+∈, 所以原不等式的解集为722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣, 故选:D 【点睛】关键点点睛:本题解题的关键点是将要解得不等式转化为()()0(2sin 1)3f f x f ≤+≤利用单调性可得02sin 13x ≤+≤.11.B解析:B 【分析】求出函数的最值,对称中心坐标,对称轴方程,以及函数的单调区间,即可判断正误. 【详解】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确; 当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即252,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④正确.故选:B 【点睛】关键点点睛:函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭的递增区间转化为sin 34y x π⎛⎫=+ ⎪⎝⎭的递减区间.12.C解析:C 【分析】先化简函数的解析式,然后利用x 的范围求出26x πω⎛⎫-⎪⎝⎭的范围,根据题意列不等式求解ω.【详解】221cos 21()[sin()])cos()2sin(2)262ωπωωωωω-=+=+=-+x f x x x x x x ,因为[0,]x π∈,得2,2666πππωωπ⎛⎫⎡⎤-∈-- ⎪⎢⎥⎝⎭⎣⎦x ,因为函数在[0,]π有且只有四个零点,则19232666πππωπ≤-<,解得523ω≤<. 故选:C. 【点睛】关于三角函数中求解ω的取值范围问题,一般要先求解出整体的范围,即x ωϕ+的范围,然后根据题意,分析x ωϕ+范围所在的区间,列不等式求解,即可求出ω.二、填空题13.【分析】由正切的二倍角公式求得用正弦二倍角公式变形化用1的代换化求值式为关于析二次齐次分式再弦化切后求值【详解】因为所以或(舍)所以故答案为:【点睛】本题考查二倍角公式考查同角间的三角函数解题关键是解析:12-【分析】由正切的二倍角公式求得tan α,用正弦二倍角公式变形化用“1”的代换化求值式为关于sin ,cos αα析二次齐次分式,再弦化切后求值.【详解】 因为22tan 3tan 21tan 4ααα==-,所以tan 3α=-或13(舍), 所以222222sin cos cos 2tan 11sin 2cos sin cos tan 12ααααααααα+++===-++.故答案为:12-. 【点睛】本题考查二倍角公式,考查同角间的三角函数.解题关键是由221sin cos αα=+化待求值式为关于sin ,cos αα析二次齐次分式,然后利用弦化切求值.14.【分析】根据展开化简得到答案【详解】故故答案为:【点睛】本题考查了正切和差公式的应用意在考查学生的计算能力【分析】根据()tan60tan 2535︒=︒+︒,展开化简得到答案. 【详解】()tan 25tan 35tan 60tan 25351tan 25tan 35︒+︒︒=︒+︒==-︒⋅︒故tan 25tan 3525n 3ta 5︒︒︒+︒=【点睛】本题考查了正切和差公式的应用,意在考查学生的计算能力.15.【分析】由韦达定理得由平方后化为然后凑配成的代数式再代入求值【详解】由是方程的两根所以从而又由知从而【点睛】关键点睛:本题考查三角函数的平方关系考查韦达定理解题关键是利用平方关系化正弦为余弦解答本题【分析】由韦达定理得cos cos ,cos cos αβαβ+,由sin sin αβ平方后化为cos ,cos αβ,然后凑配成cos cos ,cos cos αβαβ+的代数式,再代入求值. 【详解】由cos α,cos β是方程26320x x -=-的两根 所以11cos cos ,cos cos 23αβαβ+==-, 从而()()222(sin sin )1cos 1cos αβαβ=--22221cos cos cos cos αβαβ=--+222212cos cos cos cos (cos 2cos cos cos )αβαβααββ=++-++22(1cos cos )(cos cos )αβαβ=+-+22114171329436⎛⎫⎛⎫=--=-= ⎪ ⎪⎝⎭⎝⎭.又由,(0,)αβπ∈知sin sin 0αβ>,从而sin sin 6αβ=【点睛】关键点睛:本题考查三角函数的平方关系,考查韦达定理,解题关键是利用平方关系化正弦为余弦,解答本题的关键是将()()222(sin sin )1cos 1cos αβαβ=--化为22(1cos cos )(cos cos )αβαβ+-+的形式,属于中档题.16.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,2AB cos ABC BC ∠==, 故向量BA 在向量BC方向上的投影为3AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.17.①④【分析】根据为定值求出再对题目中的命题分析判断正误即可【详解】解:对于①由为定值所以解得;由题意知时单调递减所以单调递增即越大越费力越小越省力;①正确对于②由题意知的取值范围是所以②错误对于③当解析:①④. 【分析】根据12G F F =+为定值,求出()22121cos GF θ=+,再对题目中的命题分析、判断正误即可. 【详解】解:对于①,由12G F F =+为定值, 所以()2222121212cos 21cos G F F F F F θθ=++⨯⨯=+,解得(22121cos GF θ=+;由题意知()0,θπ∈时,cos y θ=单调递减,所以21F 单调递增, 即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是()0,π,所以②错误. 对于③,当2πθ=时,2212GF =,所以12F G =,③错误. 对于④,当23πθ=时,221F G =,所以1F G =,④正确. 综上知,正确结论的序号是①④. 故答案为:①④. 【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题18.或【分析】向量(10)设与的夹角为θ结合已知可得出坐标利用向量坐标运算建立关系式即可求解【详解】设与的夹角为θ则或且∴由得若∴∴且∴或∴或若且不存在∴或故答案为:或【点睛】本题考查向量的夹角向量的坐解析:12π或712π 【分析】向量a =(1,0),设a 与c 的夹角为θ,结合已知可得出c 坐标,利用向量坐标运算,建立θ关系式,即可求解. 【详解】设a 与c 的夹角为θ,则()2,c cos sin θθ=, 或()2,2c cos sin θθ=-且1322a b ⎛+= ⎝⎭,, ∴由()0c a b c --⋅=得,()2c a b c =+⋅, 若()2,2c cos sin θθ=,∴11226cos πθθθ⎫⎛⎫==+⎪ ⎪⎪⎝⎭⎝⎭, ∴62sin πθ⎛⎫+= ⎪⎝⎭,且7666πππθ≤+≤,∴64ππθ+=或34π, ∴12πθ=或712π. 若()2,c cos sinθθ=-,11222226cos sin sin πθθθ⎫⎛⎫=-=--⎪ ⎪⎪⎝⎭⎝⎭, 6sin πθ⎛⎫-= ⎪⎝⎭且5666πππθ-≤-≤, θ不存在.∴12πθ=或712π. 故答案为:12π或712π. 【点睛】本题考查向量的夹角、向量的坐标坐标运算,向量设为三角形式是解题的关键,属于中档题.19.【分析】求出函数图象的对称轴的一般形式再根据其所在的范围可求的取值范围【详解】令则其中由题设可得:存在整数使得由可得结合可得故即故答案为:【点睛】方法点睛:对于含参数的余弦型函数(正弦型函数)如果知解析:47(,33] 【分析】求出函数图象的对称轴的一般形式,再根据其所在的范围可求ω的取值范围. 【详解】 令3x k πωπ-=,则3k x πωπ+=,其中k Z ∈.由题设可得:存在整数k Z ∈,使得471033330k k k k πππππππππωωωω++++≤<<<≤,由4330k k ππππωω++≤<可得4133k -<≤-,结合k Z ∈可得1k =-, 故71033πππππωω-+-+<≤即4733ω<≤.故答案为:47(,33]. 【点睛】方法点睛:对于含参数的余弦型函数(正弦型函数),如果知道它在给定范围上的单调性或对称轴的条数、零点的个数等,一般是求出性质的一般形式,再把存在性问题转化为不等式的整数解问题,确定出整数的取值后可求参数的取值范围.20.【分析】先根据题意计算出的范围再根据函数的单调性结合值域列出不等式即可求得【详解】因为且故可得因为在区间单调递减在单调递增且故要满足题意只需解得故答案为:【点睛】本题考查由余弦型函数在区间上的值域求解析:3342⎡⎤⎢⎥⎣⎦,【分析】先根据题意计算出4wx π+的范围,再根据函数的单调性,结合值域,列出不等式,即可求得. 【详解】因为[]0,x π∈,且0w >, 故可得1,444wx w πππ⎡⎤⎛⎫+∈+ ⎪⎢⎥⎝⎭⎣⎦, 因为y cosx =在区间,4ππ⎡⎤⎢⎥⎣⎦单调递减,在7,4ππ⎡⎤⎢⎥⎣⎦单调递增,且7coscos424ππ==,1cos π=-, 故要满足题意,只需1744w πππ⎛⎫≤+≤ ⎪⎝⎭ 解得33,42w ⎡⎤∈⎢⎥⎣⎦.故答案为:3342⎡⎤⎢⎥⎣⎦,.【点睛】本题考查由余弦型函数在区间上的值域,求参数范围的问题,属中档题.三、解答题21.(1)单增区间为5012π⎡⎤⎢⎥⎣⎦,,1112ππ⎡⎤⎢⎥⎣⎦,;(2)答案见解析. 【分析】(1)首先利用两角和与差的正弦公式以及二倍角公式,辅助角公式将()f x 化简,再利用正弦的单调区间即可求解;(2)首先求出()g x 的解析式,再作出|()3|y g x =-,5,66x ππ⎡⎤∈-⎢⎥⎣⎦的图象,数形结合即可求出m 取某一确定值时方程的根的情况,分情况讨论即可求解. 【详解】(1)()222223cos sin sin cos sin 23f x x x x x x ⎛⎫⎛⎫=+⋅-++ ⎪ ⎪ ⎪ ⎪⎭⎝⎭=()223cos sin sin 233cos 2sin 232sin 233x x x x x x π⎛⎫-+++=-++=-+ ⎪⎝⎭则由222232k x k πππππ-+≤-≤+,可得5,1212k x k k Z ππππ-+≤≤+∈, 因为[0,]x π∈,所以0k =时,51212x ππ-≤≤;1k =时,11171212x ππ≤≤所以()f x 的单增区间为5012π⎡⎤⎢⎥⎣⎦,,1112ππ⎡⎤⎢⎥⎣⎦,. (2)由题意可得()2sin 233g x x π⎛⎫=++ ⎪⎝⎭故()532sin 2,,366y g x x x πππ⎛⎫⎡⎤=-=+∈- ⎪⎢⎥⎝⎭⎣⎦,图象如下:由图可知,当0m =时,()30g x =有三个解:5636πππ-,,,此时5636m S ππππ=-++=; 当2m =时,()3g x 有两个解:12π,712π, 此时7212123m S πππ=+=;当02m <<时,()g x 有四个解:1x ,2x ,3x ,4x , 此时123474663m S x x x x πππ=+++=+=. 【点睛】方法点睛:已知三角函数的解析式求单调区间先将解析式化为()sin y A ωx φ=+或()cos y A x ωϕ=+()0,0A ω>>的形式,然后将x ωϕ+看成一个整体,根据sin y x =与cos y x =的单调区间列不等式求解.22.(Ⅰ)12;(Ⅱ)最小值为12-,最大值为1;(Ⅲ)3π 【分析】(Ⅰ)利用二倍角公式、差的余弦公式和辅助角公式化简函数可得()sin 26f x x π⎛⎫=- ⎪⎝⎭,代入6x π=可求;(Ⅱ)由0,2x π⎡⎤∈⎢⎥⎣⎦可得52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,在利用正弦函数的性质即可求解; (Ⅲ)求出平移后的解析式,可得22,62m k k Z πππ-=+∈,即可解出m ,得出最小值.【详解】(Ⅰ)()22sin cos 213f x x x π⎛⎫=+-- ⎪⎝⎭cos 2cos 2cos sin 2sin33x x x ππ=-++12cos 22x x =- sin 26x π⎛⎫=- ⎪⎝⎭,1sin 26662f πππ⎛⎫⎛⎫∴=⨯-= ⎪ ⎪⎝⎭⎝⎭;(Ⅱ)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 则当266x ππ-=-,()f x 取得最小值为12-, 当226x ππ-=,()f x 取得最大值为1; (Ⅲ)将函数()f x 的图象向左平移()0m m >个单位长度,可得sin 226y x m π⎛⎫=+- ⎪⎝⎭,则sin 226y x m π⎛⎫=+-⎪⎝⎭和cos 2y x =的图象重合, 22,62m k k Z πππ∴-=+∈,解得,3m k k Z ππ=+∈,0m >,则当0k =时,m 取得最小值为3π. 【点睛】本题考查利用三角恒等变换化简求三角函数性质,解题的关键是利用二倍角公式、差的余弦公式和辅助角公式化简函数可得()sin 26f x x π⎛⎫=- ⎪⎝⎭. 23.(1). 【解析】试题分析:(1)由向量数量积的几何意义可求向量a 在b 方向上的投影; (2)由向量夹角公式可求a -b 与a +b 的夹角的余弦值 试题 (1)|a |=|(34,55)|=1 ∴向量a 在b 方向上的投影为a cosθ=a ?bb=2(2)cos<a -b ,a +b>=()()a b a b a b a b-+-+|a -b |2=|a |2+|b |2-2ab =12,|a b -|=22. |a b +|2=|a |2+|b |2+2ab =52,|a b + (a b -)(a b +)=a 2-b 2=12cos<,a b a b -+>=()()a b a b a b a b-+-+=5. 24.(1)1k =±;(2)3π. 【分析】(1)本题首先可以根据12ke e +和12e ke +共线得出()1212ke e e ke λ+=+,然后通过计算即可得出结果;(2)本题首先可根据()()23a b a b +⊥-得出()()230a b a b +⋅-=,然后根据1a =以及2b =求出1cos 2θ=,最后根据[]0,θπ∈即可得出结果. 【详解】(1)因为12ke e +和12e ke +共线,非零向量1e 、2e 不共线,所以存在唯一实数λ使()1212ke e e ke λ+=+,即1212ke e e ke λλ+=+,则1k kλλ=⎧⎨=⎩,即21k =,1k =±, 故当1k =±时,12ke e +和12e ke +共线.(2)因为()()23a b a b +⊥-,所以()()22233520a b a b a a b b+⋅-=+⋅-=,令a 与b 夹角为θ, 因为1a =,2b =,所以2235231512cos 240a a b b θ+⋅-=⨯+⨯⨯⨯-⨯=,解得1cos 2θ=, 因为[]0,θπ∈,所以a 与b 的夹角3πθ=.【点睛】本题考查向量共线以及向量垂直的相关性质,若非零向量a 、b 共线,则存在唯一实数λ使λab ,若非零向量a 、b 垂直,则0a b ⋅=,考查计算能力,是中档题.25.(1)4,2,,26A K πωϕ===-=;(2)3π分钟;(3)再经过6π分钟后盛水筒不在水中. 【分析】(1)先结合题设条件得到T π=,4,2A K ==,求得2ω=,再利用初始值计算初相ϕ即可;(2)根据盛水筒达到最高点时6d =,代入计算t 值,再根据0t >,得到最少时间即可; (3)先计算0t 时03sin 264t π⎛⎫-= ⎪⎝⎭,根据题意,利用同角三角函数的平方关系求0cos 26t π⎛⎫- ⎪⎝⎭,再由6π分钟后00sin()=sin 2sin 26663t t t ππππωϕ⎡⎤⎡⎤⎛⎫⎛⎫++-=-+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,进而计算d 值并判断正负,即得结果. 【详解】解:(1)由题意知,T π=,即2ππω=,所以2ω=,由题意半径为4米,筒车的轴心O 距水面的高度为2米,可得:4,2A K ==, 当0t =时,0d =,代入4sin(2)2d t ϕ=++得,1sin 2ϕ=-, 因为22ππϕ-<<,所以6πϕ=-;(2)由(1)知:4sin 226d t π⎛⎫=-+ ⎪⎝⎭, 盛水筒达到最高点时,6d =, 当6d =时,64sin 226t π⎛⎫=-+ ⎪⎝⎭,所以sin 216t π⎛⎫-= ⎪⎝⎭, 所以22,Z 62t k k πππ-=+∈,解得,Z 3t k k ππ=+∈,因为0t >,所以,当0k =时,min 3t π=, 所以盛水筒出水后至少经过3π分钟就可达到最高点; (3)由题知:04sin 2256t π⎛⎫-+= ⎪⎝⎭,即03sin 264t π⎛⎫-= ⎪⎝⎭, 由题意,盛水筒W 在过O 点的竖直直线的左侧,知0cos 206t π⎛⎫-< ⎪⎝⎭,所以0cos 26t π⎛⎫-=- ⎪⎝⎭,所以00313sin 2sin 2666342428t t ππππ⎛-⎡⎤⎡⎤⎛⎫⎛⎫+-=-+=⨯+-⨯= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎝⎭,所以,再经过6π分钟后3742082d --=⨯+=>, 所以再经过6π分钟后盛水筒不在水中. 【点睛】本题的解题关键在于准确求解出三角函数模型的解析式,才能利用三角函数性质解决实际问题,突破难点.26.(1)()cos f αα=,π132f;(2)1;(3)250,8⎡⎤⎢⎥⎣⎦. 【分析】(1)由诱导公式化简可得()cos f αα=,进而可得3f π⎛⎫ ⎪⎝⎭; (2)由平方关系和商数关系可转化条件为224tan 3tan 5tan 1ααα--+,即可得解; (3)转化条件为()21252sin 48g x x ⎛⎫=--+ ⎪⎝⎭,结合二次函数的性质即可得解. 【详解】(1)由题意可得sin(2)cos 2()cos tan()2f ππαααπαπα⎛⎫-+ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭sin (sin )cos sin tan ααααα-⋅-==⋅, 故1cos 332f ππ⎛⎫== ⎪⎝⎭; (2)∵tan 2α=,故224sin 3sin cos 5cos αααα--22224sin 3sin cos 5cos sin cos αααααα--=+ 224tan 3tan 51tan 1ααα--==+; (3)因为()cos f αα=, 所以22()2cos cos 12cos sin 12g x x x x x π⎛⎫=-++=++ ⎪⎝⎭22sin sin 3x x =-++21252sin 48x ⎛⎫=--+ ⎪⎝⎭, 因为sin [1,1]x ∈-, 所以当1sin 4x =时,max 25()8g x =,当sin 1x =-时,min ()0g x = 所以()g x 的值域为250,8⎡⎤⎢⎥⎣⎦. 【点睛】关键点点睛:解决本题的关键是利用诱导公式、同角三角函数的关系对原式进行合理变形.。
高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k ·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k ·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k ·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k ·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k ·360°,k ∈Z },-245°,115°; (5){β|β=90°+k ·360°,k ∈Z },-270°,90°; (6){β|β=270°+k ·360°,k ∈Z },-90°,270°; (7){β|β=180°+k ·360°,k ∈Z },-180°,180°; (8){β|β=k ·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k ·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k ·360°<β<180°+k ·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k ·360°<β<270°+k ·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k ·360°<β<360°+k ·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k ·360°<α<90°+k ·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n ≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a ≠0,求sin α,cos α,tan α的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin2446663ππππππ-+-++; (4)2423sin cos tan 323πππ+-.答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sin θ·tan θ<0; (2)角θ为第三或第四象限角当且仅当cos θ·tan θ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cos α-sin α的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cos β-1)2+sin 2β=2-2cos β;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cos β+cos 2β+sin 2β=2-2cos β;(4)左边=(sin 2x +cos 2x )2-2sin 2x ·cos 2x=1-2sin 2x ·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tan α说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tan α=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x ·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________;(4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2k π],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2k π,(2k +1)π],k ∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx ≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(k π,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=k π,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g ≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式.t 0 t 0 2t 0 3t 04t 05t 0 6t 0 7t 0 8t 0 9t 010t 0 11t 0 12t 0s-20.0-17.8-10.10.110.317.720.017.710.30.1 -10.1-17.8-20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π;(4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2k π,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sin φ,tan φ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sin φ的值,再求tan φ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cos α表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sin α)(1+cos α)=(1-sin α+cos α)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sin α+2cos α-2sin αcos α=1+sin 2α+cos 2α-2sin α+2cos α-2sin αcos α =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tan α=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sin αcos α;(3)(sin α+cos α)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12- 02232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2k π,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x ≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.17 0.34 0.50 0.64 0.77 0.87 0.94 0.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。
人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。
)。
A。
4.B。
8.C。
16.D。
322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。
)。
A。
(-∞,-1)。
B。
(1,+∞)。
C。
(-1,1)U(1,+∞)。
D。
(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。
)。
A。
a<b<c。
B。
b<c<a。
C。
c<a<b。
D。
c<b<a4.函数y=-x^2+4x+5的单调增区间是(。
)。
A。
(-∞,2]。
B。
[-1,2]。
C。
[2,+∞)。
D。
[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。
)。
A。
a≤2.B。
-2≤a≤2.C。
a≤-2.D。
a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。
)。
A。
y=x-2.B。
y=x-1.C。
y=x^2.D。
y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。
)。
A。
1/2.B。
2/3.C。
3/4.D。
1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。
)。
A。
1/5.B。
-1/5.C。
5.D。
-59.若tanα=3,则sinαcosα=(。
)。
A。
3.B。
3/2.C。
3/4.D。
9/410.sin600°的值为(。
)。
A。
3/2.B。
-3/2.C。
-1/2.D。
1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。
)。
A。
1.B。
-1.C。
5/8.D。
-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。
山东省聊城四中第二学期高一期末考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,本试卷120分,考试时间100分钟。
2.答题前请将自己的学校、班级、姓名、考场号等填写在答题卷密封线内的相应栏目。
3.请将答案按题序号填写在答题卷上,考后仅收答题卷。
第Ⅰ卷(选择题 共48分)一、选择题:(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,选择一个符合题目要求的选项.)1.5sin()6π-的值是A .B .12C .D .12- 2.已知(1,2),(5,4),(.3),(3,)A B C x D y -,且AB CD =,则,x y 的值分别为A 、-7,-5B 、-7,5C 、7,-5D 、7,5 3.下列给出的赋值语句中正确的是 ( )A . 4M =B .M M =-C 3B A ==D 0x y +=4.某经济研究小组对全国50个中小城市进行职工人均工资x 与居民人均消费水平y 进行了统计调查,发现y 与x 具有相关关系,其回归方程为ˆ0.3 1.65y x =+(单位:千元).某城市居民人均消费水平为6.60,估计该城市职工人均消费水平额占居民人均工资收入的百分比为 A .66%B .55.3%C .45.3%D .40%5.右图是某学校举行的运动会上,七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数及方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4 6.如图,已知正方形的面积为10,向正方形内随机地撒200颗黄豆,数得落在阴影外 的黄豆数为114颗,以此实验数据为依据, 可以估计出阴影部分的面积约为( ) A .5.3 B .4.3C .4.7D .5.77.已知)1,1(-A ,)5,2(B ,点P 在线段AB 上,且||3||=,则点P 的坐标为 ( )A .)4,1(-B .)313,23(C .)4,45(D .)213,411(8.函数x x y cos -=的部分图象是( )10.从分别写有A 、B 、C 、D 、E 的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为( )A .51B .52C .103 D .107 11.要得到函数x y cos 2=的图象,只需将函数)42sin(2π+=x y 的图象上所有的点的( )A .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度; B .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度;C .横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度;D .横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度。
高中数学必修4习题和复习参考题及对应答案A组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角:(1)-265°;(2)-1000°;(3)-843°10′;(4)3900°.答案:(1)95°,第二象限;(2)80°,第一象限;(3)236°50′,第三象限;(4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x轴上的角的集合.答案:S={α|α=k·180°,k∈Z}.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k·360°,k∈Z},-300°,60°;(2){β|β=-75°+k·360°,k∈Z},-75°,285°;(3){β|β=-824°30′+k·360°,k∈Z},-104°30′,255°30′;(4){β|β=475°+k·360°,k∈Z},-245°,115°;(5){β|β=90°+k·360°,k∈Z},-270°,90°;(6){β|β=270°+k·360°,k∈Z},-90°,270°;(7){β|β=180°+k·360°,k∈Z},-180°,180°;(8){β|β=k·360°,k∈Z},-360°,0°.说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合.说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角C .小于180°的正角D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k·360°<α<90°+k·360°,k∈Z ,所以180451802k k α︒<<︒+︒,k∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角. 6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念. 7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算. 9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618SS =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由. (提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =. 用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以144011n ≤,于是n≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm. 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°.答案:(1)1sin ,tan 22ααα===(2)sin tan 122ααα=-=-=;(3)1sin ,cos tan 2ααα===(4)1sin ,tan 2ααα=== 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a≠0,求sinα,cosα,tanα的三角函数值.答案:当a >0时,434sin ,cos ,tan 553ααα===;当a <0时,434sin ,cos ,tan 553ααα=-=-=-.说明:根据定义求三角函数值. 3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin 2446663ππππππ-+-++;(4)2423sincos tan 323πππ+-. 答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值. (1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题. 6、确定下列三角函数值的符号:(1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号. 7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号. 8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值. 9、求证:(1)角θ为第二或第三象限角当且仅当sinθ·tanθ<0; (2)角θ为第三或第四象限角当且仅当cosθ·tanθ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0. 答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0. 当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0; 当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0, 所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0. 再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0, 当sinθ>0且tanθ<0时,角θ为第二象限角; 当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角. 综上所述,原命题成立. (其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知sin α=,且α为第四象限角,求cosα,tanα的值; (2)已知5cos 13α=-,且α为第二象限角,求sinα,tanα的值; (3)已知3tan 4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,2 (2)1212,135-;(3)当α为第二象限角时,34sin ,cos 55αα==-, 当α为第四象限角时,34sin ,cos 55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1. 说明:要注意角α是第几象限角.11、已知1sin 3x =-,求cosx ,tanx 的值.答案:当x 为第三象限角时,cos tan x x ==当x 为第四象限角时,cos tan 34x x ==- 说明:要分别对x 是第三象限角和第四象限角进行讨论.12、已知3tan 2απαπ=<<,求cosα-sinα的值.答案:11)2说明:角α是特殊角. 13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cosβ-1)2+sin 2β=2-2cosβ;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cosβ+cos 2β+sin 2β=2-2cosβ;(4)左边=(sin 2x +cos 2x )2-2sin 2x·cos 2x=1-2sin 2x·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2α为第二象限角. 答案:-2t anα说明:先变形,再根据同角三角函数的基本关系进行化简. 3、已知tanα=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式. 4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________; (4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π;(4)sin3π; (5)2cos 9π-;(6)-cos75°34′; (7)-tan87°36′; (8)tan6π-. 说明:利用诱导公式转化为锐角三角函数. 2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′);(5)cos1615°8′;(6)26sin()3π-.答案:(1)2;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)-说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+;(3)3cos()2πα-; (4)tan()2πα-. 答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x∈[0,2π]; (2)y=3cosx +1,x∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32; 使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-; (4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期: (1)2sin 3y x =,x∈R ; (2)1cos 42y x =,x∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx+φ)和函数y=Acos (ωx+φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究. 5、求下列函数的单调区间: (1)y=1+sinx ,x∈R ; (2)y=-cosx ,x∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k∈Z 时,y=1+sinx 是减函数. (2)当x∈[(2k -1)π,2kπ],k∈Z 时,y=-cosx 是减函数; 当x∈[2kπ,(2k +1)π],k∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性. 6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期. 答案:2π. 说明:可直接由函数y=Atan (ωx+φ)的周期T πω=得解. 8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°; (3)93tan 6tan(5)1111ππ-与; (4)7tantan 86ππ与. 答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tantan 86ππ<. 说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合:(1)1+tanx≥0;(2)tan 0x . 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式. 10、设函数f (x )(x∈R )是以 2为最小正周期的周期函数,且x∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题. 11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(kπ,0),k∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k∈Z ,对称轴的方程是x=kπ,k∈Z ;正切曲线的对称中心坐标为(,0)2k π,k∈Z ,正切曲线不是轴对称图形. 说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)sin )2x x ∈R ≥;(22cos 0()x x ∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z . 说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题: (1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x∈[2k-1,2k +1],k∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x∈[-1,1]的解析式为y=|x|,x∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x∈[2k-1,2k +1],k∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度 D .向右平行移动13个单位长度(2)为了得到函数cos5xy =,x∈R 的图象,只需把余弦曲线上所有的点的( )、 A .横坐标伸长到原来的5倍,纵坐标不变 B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x∈R ; (2)1cos32y x =,x∈R ; (3)3sin(2)6y x π=+,x∈R ;(4)112cos()24y x π=-,x∈R .答案:(1)(2)(3)(4)说明:研究了参数A 、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48xy π=-,x∈[0,+∞);(2)1sin(3)37y x π=+,x∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-.先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x∈R的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x∈R的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx+φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,2i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s)的函数关系是),[0,)3s t π=+∈+∞. (1)求小球摆动的周期;(2)已知g≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm ) 答案:(1)2(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x∈[0,+∞). 说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题: (1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2);(2)最高点和最低点与平衡位置的距离都是2;(3)经过2π秒小球往复运动一次;(4)每秒钟小球能往复振动12π次.说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P是半径为r cm的砂轮边缘上的一个质点,它从初始位置P0开始,按逆时针方向以角速度ω rad/s做圆周运动.求点P的纵坐标y关于时间t的函数关系,并求点P的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos A=-;(3)tanA=1;(4)3 tan A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B 组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场? 答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论. P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π; (4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ;(2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ; (4){β|β=2kπ,k∈Z },-2π,0,2π.说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解. 3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断. 4、已知1cos 4ϕ=,求sinφ,tanφ.答案:当φ为第一象限角时,sin tan 4ϕϕ==当φ为第四象限角时,sin tan ϕϕ== 说明:先求sinφ的值,再求tanφ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值.答案:当x 为第一象限角时,tanx=2,cos x x ==;当x 为第三象限角时,tanx=2,cos x x == 说明:先求tanx 的值,再求另外两个函数的值.6、用cosα表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形. 7、求证:(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sinα+2cosα-2sinαcosα=1+sin 2α+cos 2α-2sinα+2cosα-2sinαcosα =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形. 8、已知tanα=3,计算:(1)4sin 2cos 5cos 3sin αααα-+;(2)sinαcosα;(3)(sinα+cosα)2. 答案:(1)57;(2)310;(3)85.说明:第(2)题可由222sin tan 9cos ααα==,得21cos 10α=,所以23sin cos tan cos 10αααα==.或2222sin cos tan 33sin cos 10sin cos tan 131αααααααα====+++. 9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号. 10、已知1sin()2πα+=-,计算: (1)cos (2π-α);(2)tan (α-7π).答案:(1)当α为第一象限角时,cos(2)πα-=,当α为第二象限角时,cos(2)πα-=(2)当α为第一象限角时,tan(7)3απ-=,当α为第二象限角时,tan(7)απ-= 说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算. 11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°; (2)sin (-879°),3313tan(),cos()810ππ--; (3)sin3,cos (sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216; (2)sin (-879°)=-0.358,3313tan()0.414,cos()0.588810ππ-=--=-; (3)sin3=0.141,cos (sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证. 12、设π<x <2π,填表:说明:熟悉各特殊角的三角函数值. 13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos x =cos x =1,1><-,所以原式不能成立;(2)因为sin x =,而|1<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合:(1)sin xy π=,x∈R ;(2)y=3-2cosx ,x∈R .答案:(11π,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;1π,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k∈Z }; 最小值为1,此时x 的集合为{x|x=2kπ,k∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质. 15、已知0≤x≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数. 答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证. 17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x∈[0,2π]的图象? (3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.170.340.500.640.770.870.940.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x∈[0,π]的图象关于直线2x =对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.B 组1、已知α为第四象限角,确定下列各角的终边所在的位置:(1)2α; (2)3α; (3)2α. 答案:(1)3(1)42k k παππ+<<+,所以2α的终边在第二或第四象限; (2)9012030901203k k α︒+︒<<︒+︒+︒,所以3α的终边在第二、第三或第四象限;(3)(4k +3)π<2α<(4k +4)π,所以2α的终边在第三或第四象限,也可在y 轴的负半轴上.说明:不要求探索α分别为各象限角时,nα和nα的终边所在位置的规律.。
一、选择题1.已知函数2()2sin cos (0)f x x x x ωωωω=->图像的相邻两条对称轴之间的距离为2π,则2f π⎛⎫= ⎪⎝⎭( )A .1B .1--C .0D .-2.函数()2cos ||cos 2f x x x =-在[,]x ππ∈-上的单调增区间为( ) A .,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦B .,03π⎡⎤-⎢⎥⎣⎦和,3ππ⎡⎤⎢⎥⎣⎦C .,06π⎡⎤-⎢⎥⎣⎦和,6ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦和06,π⎡⎤⎢⎥⎣⎦ 3.已知4sin cos 3θθ+=,,42ππθ⎛⎫∈ ⎪⎝⎭,则sin cos θθ-的值为( )A .13- B .13C .3-D .34.已知0,2x π⎛⎫∈ ⎪⎝⎭,3cos 45x π⎛⎫+= ⎪⎝⎭,则sin x 的值为( )A .BCD . 5.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( )A .4B .C .3+D .66.过点()3,1P 的直线l 与函数21()26x f x x -=-的图象交于A ,B 两点,O 为坐标原点,则()OA OB OP +⋅=( )A B .210C .10D .207.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+8.设O 是△ABC 20OB OC ++=,则∠BOC =( ) A .6π B .3π C .2π D .23π9.在平面直角坐标系中,AB 是单位圆上的一段弧(如右图),点P 是圆弧AB 上的动点,角α以Ox 为始边,OP 为终边.以下结论正确的是( )A .tan α<cos α<sin αB .cos α<tan α<sin αC .sin α<cos α<tan αD .以上答案都不对10.已知函数()cos2sin 2f x x x =-,将()y f x =的图象向左平移a (0a >)个单位长度可以得到一个奇函数的图象,将()y f x =的图象向右平移b (0b >)个单位长度可以得到一个偶函数的图象,则a b -的最小值等于( ) A .0B .8π C .4π D .2π 11.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 12.将函数()3sin()2f x x =--图象上每一点的纵坐标不变,横坐标缩短为原来的13,再向右平移29π个单位得到函数()g x 的图象,若()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则θ的最小值为( )A .12πB .6πC .3π D .18π 二、填空题13.若5,24ππα⎛⎫∈ ⎪⎝⎭,3cos 45πα⎛⎫-= ⎪⎝⎭,则cos2=α______.14.已知sin 3α=,()1cos 3αβ+=-,且,0,2παβ⎛⎫∈ ⎪⎝⎭,则sin β=_____.15.已知πsin(π)3sin()02αα+--=,则cos2α的值为________. 16.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______ 17.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 18.已知非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=.若n →⊥t m n →→⎛⎫+ ⎪⎝⎭,则实数t的值为_____________.19.已知函数cos ,[],y a x x ωππ=+∈-(其中,a ω为常数,且0>ω)有且仅有3个零点,则ω的最小值是_________. 20.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______. 三、解答题21.如图,在扇形OPQ 中,半径OP =1,圆心角3POQ π∠=,C 是扇形弧上的动点,矩形ABCD 内接于扇形.记POC α∠=,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.22.在①2sin 3sin 2αα=,②6cos 2α=,③tan 22α=这三个条件中任选一个,补充在下面问题中,并解决问题. 已知10,,0,,cos()224ππαβαβ⎛⎫⎛⎫∈∈+=- ⎪ ⎪⎝⎭⎝⎭,_______,求cos β. 注:如果选择多个条件分别解答,按第一个解答计分.23.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值; (2)若2t =,求向量a ,b 的夹角.24.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=,若()//(2)a kc b a +-,求实数k .25.函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间,并求()f x 取最小值时的自变量x 的集合. 26.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R . (1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定1ω=,再求2f π⎛⎫ ⎪⎝⎭. 【详解】因为()21cos 22sin cos sin 22xf x x x x x ωωωωω-=-=- πsin 222sin 23x x x ωωω⎛⎫=+=+- ⎪⎝⎭由题意知()f x 的最小正周期为π22π⨯=,所以2π2πω=,即1ω=,所以()π2sin 23f x x ⎛⎫=+⎪⎝⎭π2sin 23f ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭.故选:D. 【点睛】本题考查了三角函数的性质,关键点是根据已知条件先化简正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.2.A解析:A 【分析】先把函数解析式化简,然后令cos t x =,利用复合函数单调性求解即可 【详解】 当[]0,x π∈时,22()2cos ||cos 2=2cos (2cos 1)2cos 2cos 1f x x x x x x x =---=-++,令cos [1,1]t x t =∈-,,则cos t x =在[]0,x π∈上为减函数;而2221y t t =-++ 对称轴为12t =,∴2221y t t =-++在1[1,]2t ∈-上单增,在1[,1]2t ∈上单减, ∴()y f x =在0,3x π⎡⎤∈⎢⎥⎣⎦上为增函数,在,3x ππ⎡⎤∈⎢⎥⎣⎦上为减函数. 又()2cos ||cos 2f x x x =-为偶函数,其图像关于y 轴对称, ∴()y f x =在,3ππ⎡⎤--⎢⎥⎣⎦上为增函数,在,03π⎡⎤-⎢⎥⎣⎦上为减函数. 故()y f x =的单调增区间为,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦. 故选:A 【点睛】复合函数的单调性口诀:同增异减,其具体含义为: 内外函数的单调性相同(同),则复合函数为增函数(增); 内外函数的单调性相反(异),则复合函数为减函数(减).3.D解析:D 【分析】首先根据题意得到72sin cos 9θθ=,再计算()22sin cos 9θθ-=,根据,42ππθ⎛⎫∈ ⎪⎝⎭判断出sin cos θθ-的符号再进行开方计算即可得到答案. 【详解】 因为4sin cos 3θθ+=,所以()216sin cos 12sin cos 9θθθθ+=+=, 所以72sin cos 9θθ=, 所以()22sin cos 12sin cos 9θθθθ-=-=, 因为,42ππθ⎛⎫∈⎪⎝⎭,所以sin cos θθ>,即sin θcos θ0,所以sin cos θθ-= 故选:D . 【点睛】易错点睛:本题求sin cos θθ-的值时,采用的方法是先对其平方而后再开方,再开方时应注意根据θ的取值范围正确判断sin cos θθ-的符号,从而得到正确的答案.4.B解析:B 【分析】先求得πsin 4x ⎛⎫+ ⎪⎝⎭的值,然后利用ππsin sin 44x x ⎛⎫=+-⎪⎝⎭,展开后计算得出正确选项. 【详解】由于πππ3π0,,,2444x x ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭, 所以π4sin 45x ⎛⎫+== ⎪⎝⎭.故ππsin sin 44x x ⎛⎫=+- ⎪⎝⎭ππππsin cos cos sin4444x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭43525210=⨯-⨯=,故选B. 【点睛】本小题主要考查同角三角函数的基本关系式,考查化归与转化的数学思想方法,属于基础题.5.B解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b-=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.6.D解析:D 【分析】判断函数()f x 的图象关于点P 对称,得出过点()3,1P 的直线l 与函数()f x 的图象交于A ,B 两点时,得出A ,B 两点关于点P 对称,则有 2OA OB OP +=,再计算()OA OB OP +⋅的值.【详解】()52121263x f x x x -==+-- ,∴函数21()26x f x x -=-的图象关于点()3,1P 对称,∴过点()3,1P 的直线l 与函数()2126x f x x -=-的图象交于A ,B 两点,且A ,B 两点关于点()3,1P 对称,∴ 2OA OB OP +=,则()()222223120OA OB OP OP +⋅==⨯+=.故选D . 【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.7.C解析:C 【分析】先根据题意得1AD =,3CD =,进而得2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,3CD =,所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.8.B解析:B 【分析】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,可得1,2,7===OC OF OE ,利用余弦定理,再利用两角和余弦公式可得3BOC π∠=【详解】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,+=OC OF OE ,所以1,2,7===OC OF OEcos sin∠==∠=EOC EOC ,22cos sin∠==∠=EOF EOF1cos cos()2∠=∠+∠==BOC COE EOF 3π∴∠=BOC故选:B 【点睛】本题考查了平面几何和向量的综合,考查了运算求解能力和逻辑推理能力,属于中档题目.9.D解析:D 【分析】根据三者的符号可得sin cos ,sin tan αααα>>,利用作差法可得tan ,cos αα大小关系不确定,从而可得正确的选项. 【详解】由题设可得AB 上的动点P 的坐标为()cos ,sin αα且()()1122cos ,sin ,cos ,sin A B θθθθ,其中122πθαθπ<<<<,12324ππθθπ<<<<, 注意到当13,4παθ⎛⎤∈ ⎥⎝⎦,tan 1α≤-,故按如下分类讨论: 若1324ππθα<<≤,则sin 0,cos 1,tan 1ααα>>-≤-, 故sin cos tan ααα>>.若234παθ<≤,则sin 0,cos 0,tan 0ααα><<,且20sin sin 2θα<≤<所以2222sin sin 1sin sin 1θθαα+-≤+-<,因为234πθπ<<,故20sin 2θ<<,故22211sin sin 12θθ-<+-<, 所以222sin sin 1θθ+-有正有负,所以2sin sin 1αα+-有正有负,而2sin sin 1tan cos cos ααααα+--=,cos 0α<,故tan cos αα-有正有负,故tan ,cos αα大小关系不确定.故选:D. 【点睛】方法点睛:三角函数式的大小比较,可先依据终边的位置判断出它们的符号,也可以利用作差作商法来讨论,注意根据三角函数值的范围确定代数式的符号.10.A解析:A 【分析】先整理函数,再根据平移后函数的奇偶性得到a ,b 的值,即可得结果. 【详解】解:函数()cos 2sin 224f x x x x π⎛⎫=-=+ ⎪⎝⎭,函数()24f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移a 个单位得到()224g x x a π⎛⎫=++ ⎪⎝⎭,又因为函数为奇函数,则242a k πππ+=+(k Z ∈),整理得28k a ππ=+(k Z ∈);函数()24f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移b 个单位得到()224h x x b π⎛⎫=-+ ⎪⎝⎭,由于得到的函数的图象为偶函数,2=4b k ππ-+-,=,()82k b k Z ππ+∈; 当0k =时,min 0a b -= 故选:A. 【点睛】本题考查了三角函数的平移变换和奇偶性,属于中档题.11.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期是π所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭, 对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误;对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.12.D解析:D 【分析】由题先求出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,可得3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要满足题意,则332ππθ+≥,即可求出.【详解】将()f x 横坐标缩短为原来的13得到3sin(3)2y x =--,再向右平移29π个单位得到()23sin 323sin 3293g x x x ππ⎡⎤⎛⎫⎛⎫---=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=,,18x πθ⎡⎤∈-⎢⎥⎣⎦,则3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要使()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则332ππθ+≥,即18πθ≥,则θ的最小值为18π. 故选:D. 【点睛】本题考查正弦型函数的性质,解题的关键是通过图象变化得出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,再根据正弦函数的性质求解.二、填空题13.【分析】由已知利用诱导公式求得然后分析角的范围得到的范围则答案可求【详解】∵即又∴则∴得∴故答案为:【点睛】角变换用已知角构造所求角是解决问题的关键如上:解析:2425-. 【分析】由已知利用诱导公式求得sin 2α,然后分析角α的范围,得到2α的范围,则答案可求. 【详解】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫∴-=--=⨯-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,即7sin 225α=, 又5,24ππα⎛⎫∈ ⎪⎝⎭,∴,44ππαπ⎛⎫-∈ ⎪⎝⎭,3cos cos 0445ππαα⎛⎫⎛⎫-=-=> ⎪ ⎪⎝⎭⎝⎭, 则,442πππα⎛⎫-∈ ⎪⎝⎭,∴3,24ππα⎛⎫∈ ⎪⎝⎭,得32,2παπ⎛⎫∈ ⎪⎝⎭,∴24cos 225α==-.故答案为:2425-. 【点睛】角变换用已知角构造所求角是解决问题的关键,如上:2=224ππαα⎛⎫-- ⎪⎝⎭14.【分析】由已知分别求得再由展开两角差的正弦得答案【详解】解:∵∴∴∴又∴则故答案为:【点睛】本题考查同角三角函数间的关系正弦的差角公式给值求值型的问题属于中档题解析:9【分析】由已知分别求得cos α,()sin αβ+,再由()sin sin βαβα=+-⎡⎤⎣⎦,展开两角差的正弦得答案. 【详解】解:∵sin 3α=,0,2πα⎛⎫∈ ⎪⎝⎭,∴1cos 3α==, ∴,0,2παβ⎛⎫∈ ⎪⎝⎭,∴()0,αβπ+∈,又()1cos 3αβ+=-,∴()sin 3αβ+==. 则()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦1133339⎛⎫=⨯--⨯=⎪⎝⎭.故答案为:9. 【点睛】本题考查同角三角函数间的关系,正弦的差角公式,给值求值型的问题,属于中档题.15.【分析】根据利用诱导公式结合商数关系得到然后由求解【详解】因为所以解得所以故答案为:【点睛】本题主要考查诱导公式和二倍角公式以及同角三角函数基本关系式的应用还考查了运算求解的能力属于中档题解析:45-【分析】根据πsin(π)3sin()02αα+--=,利用诱导公式结合商数关系得到tan 3α=-,然后由222222cos sin cos 2cos sin cos sin ααααααα-=-=+求解. 【详解】因为πsin(π)3sin()02αα+--=, 所以sin 3cos 0αα--=, 解得tan 3α=-,所以222222cos sin cos 2cos sin cos sin ααααααα-=-=+,()()2222131tan 41tan 513αα---===-++-, 故答案为:45- 【点睛】本题主要考查诱导公式和二倍角公式以及同角三角函数基本关系式的应用,还考查了运算求解的能力,属于中档题.16.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.17.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①得:22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,2OC λλ⎫=︒︒⎪⎪⎝⎭,又()(()1,0OC mOA nOB m n m =+=+=,得()1,=2m λ⎫⎪⎪⎝⎭,即=12m λ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.18.【分析】利用向量的数量积公式向量垂直的性质直接直解【详解】非零向量满足=⊥解得故答案为:【点睛】本题主要考查了向量的数量积公式向量垂直的性质等基础知识考查运算能力属于中档题 解析:4-【分析】利用向量的数量积公式、向量垂直的性质直接直解. 【详解】非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=,n →⊥t m n →→⎛⎫+ ⎪⎝⎭,n →∴⋅22+||||cos ,||t m n t m n n t m n m n n →→→→→→→→→→⎛⎫+=⋅=<>+ ⎪⎝⎭223||||034t n n →→=⨯+=, 解得4t =-, 故答案为:4- 【点睛】本题主要考查了向量的数量积公式、向量垂直的性质等基础知识,考查运算能力,属于中档题.19.2【分析】根据函数为偶函数可知函数必有一个零点为可得根据函数的图象可知解得即可得解【详解】因为函数为偶函数且有且仅有3个零点所以必有一个零点为所以得所以函数的图象与直线在上有且仅有3个交点因为函数的解析:2 【分析】根据函数为偶函数可知函数必有一个零点为0x =,可得1a =-,根据函数cos y x ω=(0)>ω的图象可知222πππωω≤<⨯,解得24ω≤<即可得解.【详解】因为函数cos ,[],y a x x ωππ=+∈-为偶函数,且有且仅有3个零点,所以必有一个零点为0x =,所以cos00a +=,得1a =-,所以函数cos y x ω=(0)>ω的图象与直线1y =在[,]-ππ上有且仅有3个交点, 因为函数cos y x ω=(0)>ω的最小正周期2T πω=,所以2T T π≤<,即222πππωω≤<⨯,得24ω≤<,所以ω的最小值是2.故答案为:2 【点睛】关键点点睛:根据偶函数图象的对称性求出a 是解题关键.20.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴, 故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数,故②错误; ()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④. 【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.三、解答题21.6πα=时,矩形ABCD 的面积,最大面积为3 【分析】由题意可得cos sin 3CD αα=-,sin BC α=,从而可得矩形ABCD 的面积为S CD BC =⋅(cos sin )sin 3ααα=-⋅sin(32)623πα=+-,再由03πα<<可得52666πππα<+<,由此可得262ππα+=时,S 取得最大值 【详解】在Rt OBC 中,sin BC α=,cos OC α=, 在Rt ADO 中,tan 33AD OD π==, 所以sin 333OD AD BC α===, 所以cos sin 3CD OC OD αα=-=-, 设矩形ABCD 的面积为S ,则S CD BC =⋅(cos sin )sin 3ααα=-⋅ 2sin cos sin 3ααα=-1sin 2cos 222323αα=+- sin(32)623πα=+-,由03πα<<,得52666πππα<+<,所以当262ππα+=,即6πα=时, max 3323S == 因此,当6πα=时,矩形ABCD 的面积,最大面积为36, 【点睛】关键点点睛:此题考查三角函数的应用,解题的关键是将四边形ABCD 的面积表示为S CD BC =⋅(cos )sinααα=-⋅2)6πα=+,再利用三角函数的性质可求得其最大值,属于中档题22 【分析】①②③任选一个条件,均可求出sin ,cos αα,求出sin()αβ+,利用()βαβα=+-,结合两角差的余弦公式,即可求解.【详解】 若选条件①因为2sin 3sin 2αα=,所以2sin 32sin cos ααα=⨯,即1cos 3α=. 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 3α== 因为1cos()4αβ+=-,由平方关系22sin ()cos ()1αβαβ+++=, 解得215sin ()16αβ+=. 因为0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,所以0αβ<+<π,所以sin()4αβ+=, 所以cos cos[()]βαβα=+-cos()cos sin()sin αβααβα=+++1143=-⨯=若选条件②因为cos23α=,所以21cos 2cos 123αα=-=. 由平方关系22sin cos 1αα+=,得28sin 9α=.因为0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 3α=以下同①的解法. 若选条件③因为tan α=sin cos αα= 由平方关系22sin cos 1αα+=,解得sin 31cos 3αα⎧=⎪⎪⎨⎪=⎪⎩ 或sin 31cos 3αα⎧=-⎪⎪⎨⎪=-⎪⎩ 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 31cos 3αα⎧=⎪⎪⎨⎪=⎪⎩. 以下同①的解法. 【点睛】关键点点睛:本题根据不同的条件,利用三角恒等变换、同角三角函数的基本关系求出sin α,cos α,再利用1cos()4αβ+=-求出sin()αβ+,根据角的变换()βαβα=+-求解是关键,属于中档题.23.(1)1t =-;(2)23π. 【分析】(1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11ktk =-⎧⎨=⎩,解可得t 的值;(2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a bθ⋅=计算可得答案.【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =, 则有122112()()e e k e te kte ke +=-=-+, 则有11ktk=-⎧⎨=⎩,解可得1t =-;(2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =, 又由12a e e =+,则2212||()3a e e =+=,则||3a =,又由12213()(2)2a b e e e e =+-=-,则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.24.1613k =-【分析】根据向量平行的坐标公式求解即可. 【详解】(3,2)(4,)(34,2)a kc k k k k +=+=++,2(2,4)(3,2)(5,2)b a -=--=-()//(2)a kc b a +-(34)2(2)(5)k k ∴+⨯=+⨯-解得1613k =- 【点睛】本题主要考查了由向量平行求参数,属于中档题.25.(1)()22sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)递增区间为7,,1212ππππ⎡⎤-+-+∈⎢⎥⎣⎦k k k Z ,x 的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【分析】(1)先求出2A =,根据图形得出周期,可求出2ω=,再代入,06π⎛⎫⎪⎝⎭可求出ϕ;(2)令2222,232k x k k Z πππππ-+≤+≤+∈可求出增区间,当2322,32x k k Z πππ+=+∈时可得最小值. 【详解】(1)由图可知,2A =, 46124T πππ⎛⎫=--= ⎪⎝⎭,即T π=,22πωπ∴==,则()()2sin 2f x x ϕ=+,2sin 2066f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即,3k k Z πϕπ+=∈,则,3k k Z πϕπ=-∈,0πϕ<<,23πϕ∴=, ()22sin 23f x x π⎛⎫∴=+⎪⎝⎭; (2)令2222,232k x k k Z πππππ-+≤+≤+∈,解得27,121ππππ-+≤≤-+∈k x k k Z , 故()f x 的单调递增区间为7,,1212ππππ⎡⎤-+-+∈⎢⎥⎣⎦k k k Z ,当2322,32x k k Z πππ+=+∈,即25,1ππ=+∈x k k Z 时,()f x 取得最小值为2-, 此时x 的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【点睛】方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ.26.(1)答案见解析;(2)2⎡⎤⎣⎦;(3)5,6ππ⎡⎤-⎢⎥⎣⎦【分析】(1)利用五点法作图,按照列表、描点、连线的步骤作图即可; (2)根据x ππ-≤≤求出126x π+的范围,再利用正弦函数的性质求出1sin 26x π⎛⎫+ ⎪⎝⎭的范围即可求值域; (3)先求出()12sin 6212g x f x x ππ⎛⎫=+⎛⎫=-⎪⎝⎭ ⎪⎝⎭,再令12222122k x k πππππ-+≤+≤+, ()k Z ∈,不等式的解集与[],ππ-求交集即可.【详解】(1)利用五点法作图列表如下:126x π+ 02ππ32π 2πx3π-23π 53π 83π 113π()f x0 2 02-(2)因为x ππ-≤≤,所以123263x πππ-≤+≤, 所以31sin 1226x π⎛⎫-≤+≤ ⎪⎝⎭, 所以()12sin 2263x f x π⎛⎫=+≤⎪⎝⎭-≤, 函数()f x 在[],ππ-内的值域为3,2⎡⎤-⎣⎦(3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象, 则()112sin 2sin 6266212g x x x x f ππππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎛⎫=- ⎪⎝⎝⎦⎭⎭⎣, 令12222122k x k πππππ-+≤+≤+()k Z ∈,解得:754466k x k ππππ-+≤≤+()k Z ∈, 当0k =时,7566x ππ-≤≤,当1k =时172966x ππ≤≤, 又因为[],x ππ∈-,所以56x ππ-≤≤, ()g x 在[],ππ-内的单调增区间为5,6ππ⎡⎤-⎢⎥⎣⎦,【点睛】关键点点睛:在求三角函数单调区间时,要把x ωϕ+看成一个整体让其满足正弦的单调区间,解出的x的范围即为所求三角函数的单调区间.。
人教A版高中数学必修四测试题及答案全套人教A版高中数学必修四测试题及答案全套阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在0°~360°的范围内,与-510°终边相同的角是()A。
330° B。
210° C。
150° D。
30°2.若sinα = 3/3,π/2 < α < π,则sin(α+π/2) = ()A。
-6/3 B。
-1/2 C。
16/2 D。
33.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A。
2 B。
2sin1 C。
2sin1 D。
sin24.函数f(x) = sin(x-π/4)的图象的一条对称轴是()A。
x = π/4 B。
x = π/2 C。
x = -π/4 D。
x = -π/25.化简1+2sin(π-2)·cos(π-2)得()A。
sin2+cos2 B。
cos2-sin2 C。
sin2-cos2 D。
±cos2-sin26.函数f(x) = tan(x+π/4)的单调增区间为()A。
(kπ-π/2.kπ+π/2),k∈Z B。
(kπ。
(k+1)π),k∈ZC。
(kπ-4π/4.kπ+4π/4),k∈Z D。
(kπ-3π/4.kπ+3π/4),k∈Z7.已知sin(π/4+α) = 1/√2,则sin(π/4-α)的值为()A。
1/3 B。
-1/3 C。
1/2 D。
-1/28.设α是第三象限的角,且|cosα| = α/2,则α的终边所在的象限是()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限9.函数y = cos2x+sinx在[-π/6.π/6]的最大值与最小值之和为()A。
3/4 B。
2 C。
1/3 D。
4/310.将函数y = sin(x-π/3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移一个单位,得到的图象对应的解析式为()A。
必修四期末测试题一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.sin 150°的值等于( ). A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ). A .2B .3C .4D .53.在0到2?范围内,与角-34π终边相同的角是( ). A .6πB .3πC .32π D .34π 4.若cos ?>0,sin ?<0,则角 ??的终边在( ). A .第一象限B .第二象限C .第三象限D .第四象限5.sin 20°cos 40°+cos 20°s in 40°的值等于( ). A .41B .23 C .21D .43 6.如图,在平行四边形ABCD 中,下列结论中正确的是( ). A .= B .-= C .+= D .+=7.下列函数中,最小正周期为 ??的是( ). A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ). A .10B .5C .-25 D .-109.若tan ?=3,tan ?=34,则tan(?-?)等于( ). A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-111.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥BC ,那么c 的值是( ). A .-1B .1C .-3D .3BAC (第6题)12.下列函数中,在区间[0,2π]上为减函数的是( ). A .y =cos x B .y =sin x C .y =tan xD .y =sin(x -3π) 13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ). A .254B .257 C .2512 D .2524 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).A .(-3,-2)B .(3,-2)C .(-2,-3)D .(-3,2)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 ??的终边经过点P (3,4),则cos ??的值为 .16.已知tan ?=-1,且 ?∈[0,?),那么 ??的值等于 .17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 .18.某地一天中6时至14时的温度变化曲线近似 满足函数T =A sin(?t +?)+b (其中2π<?<?),6 时至14时期间的温度变化曲线如图所示,它是上 述函数的半个周期的图象,那么这一天6时至14 时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.19.(本小题满分8分) 已知0<?<2π,sin ?=54.(1)求tan ??的值; (2)求cos 2?+sin ⎪⎭⎫ ⎝⎛2π + α的值.(第18题)20.(本小题满分10分)已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=21. (1)求|b |;(2)当a ·b =21时,求向量a 与b 的夹角 ??的值.21.(本小题满分10分) 已知函数f (x )=sin ?x (?>0).(1)当 ?=?时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式; (2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求 ??的值.期末测试题参考答案一、选择题: 1.A解析:sin 150°=sin 30°=21. 2.B=0+9=3. 3.C解析:在直角坐标系中作出-34π由其终边即知. 4.D解析:由cos ?>0知,??为第一、四象限或 x 轴正方向上的角;由sin ?<0知,??为第三、四象限或y 轴负方向上的角,所以 ??的终边在第四象限.5.B解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 6.C解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知+=. 7.B 解析:由T =ωπ2=?,得 ?=2.8.D解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D解析:tan(?-?)=βαβαtan tan +1tan -tan =4+134-3=31. 10.B解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.11.D解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3.12.A解析:画出函数的图象即知A 正确. 13.D解析:因为0<A <2π,所以sin A =54=cos -12A ,sin 2A =2sin A cos A =2524.14.A解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以q =(-3,-2).二、填空题: 15.53. 解析:因为r =5,所以cos ?=53. 16.43π. 解析:在[0,?)上,满足tan ?=-1的角 ??只有43π,故 ?=43π. 17.(-3,-5).解析:3b -a =(0,-3)-(3,2)=(-3,-5). 18.20;y =10sin(8πx +43π)+20,x ∈[6,14]. 解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin(?x +?)+b 的半个周期的图象,所以A =21(??-??)=10,b =21(30+10)=20. 因为21·ωπ2=14-6,所以 ?=8π,y =10sin ⎪⎭⎫⎝⎛ϕ + 8πx +20.将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<?<?,可得 ?=43π.综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题: 19.解:(1)因为0<?<2π,sin ?=54, 故cos ?=53,所以tan ?=34.(2)cos 2?+sin ⎪⎭⎫ ⎝⎛α + 2π=1-2sin 2? +cos ?=?-2532+53=258.20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21, 所以|b |2=|a |2-21=1-21=21,故|b |=22.(2)因为cos ?=ba ba ·=22,故 ?=??°.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫⎝⎛0 , 32π点,得sin 32π?=0,所以32π?=k ?,k ∈Z .即 ?=23k ,k ∈Z .又?>0,所以k ∈N*. 当k =1时,?=23,f (x )=sin 23x ,其周期为34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数; 当k ≥2时,?≥3,f (x )=sin ?x 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,?=23.。
高中数学习题必修4及答案篇一:人教版高一数学必修四测试题(含详细答案)高一数学考试(必修4)(特别适合按14523顺序的省份)必修4第1章三角函数(1)一、选择题:1.如果a={第一象限角},B={锐角},C={角度小于90°},那么a,B和C之间的关系是()a.b=a∩cb.b∪c=cc.acd.a=b=c2sin21200等于()?133c?d22223.已知sin??2cos?3sin??5cos5,那么tan?的值为b.2c.()16164.在下列函数中,最小正周期为π的偶数函数为()A.-223D.-23x1?tan2xa.y=sin2xb.y=cosc.sin2x+cos2xd.y=21?tan2x5.转角600的端边是否有点??4,a那么a的值是()04b?43c?43d6.得到函数y=cos(a.向左平移x?x?)的图象,只需将y=sin的图象()242??个单位b.同右平移个单位22c、将装置向左移动D.将装置向右移动447.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移?1个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象22Y=f(x)是()a.y=1?1?sin(2x?)?1b.y=sin(2x?)?122221.1.c、 y=sin(2x?)?1d。
罪(2x?)?一万二千四百二十四8.函数y=sin(2x+5?)的图像的一条对轴方程是()25.a、 x=-b.x=-c.x=d.x=42481,则下列结论中一定成立的是229.如果罪??余弦??()罪恶??2b.罪22罪??余弦??1d.罪??余弦??0c。
()10.函数y?2sin(2x??3)形象a.关于原点对称b.关于点(-11.功能y?罪(x?a.[,0)对称c.关于y轴对称d.关于直线x=对称66?2x?r是()??,]上是增函数b.[0,?]上是减函数22c、 [?,0]是减法函数D.[?,?]上限是一个减法函数12.功能y?()3,2k??a、 2k b、 2k??,2k??(k?z)(k?z)3.66??2??3.c、 2k3,2k(k?Z)d?2k23,2k2(kz)3二、填空:13.函数y?cos(x2)(x?[,?])的最小值是.863和2002年相同端边的最小正角度为_________015.已知sin??cos??1??,且,则cos??sin??.842如果设置一个??x | kx?k???,k?z?,b??x|?2?x?2?,3?然后是a?b=_______________________________________三、解答题:17.认识辛克斯吗?Coxx?1和0?x??。
一、选择题1.已知矩形ABCD 中,AB AD >.设点B 关于AC 的对称点为B ',AB '与CD 交于点P ,若3CP PD =,则tan BCB '∠=( )A .-B .C .2-D .4-2.已知sin 410πα⎛⎫-= ⎪⎝⎭,02πα<<,则tan α的值为( ) A .12-B .12C .2D .12-或2 3.若α∈(2π,π),且3cos 2α=sin(4π-α),则sin 2α的值为( ) A .-118 B .118C .-1718D .17184.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .3-B .3C .13-D .135.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17116.设O 为ABC 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与BOC 的面积的比值为( )A .6B .83C .127D .47.设O 是△ABC 20OB OC ++=,则∠BOC =( ) A .6π B .3π C .2π D .23π 8.已知正项等比数列{}n a ,若向量()28,a a =,()8,2b a =,//a b ,则212229log log log (a a a ++⋯+= )A .12B .28log 5+C .5D .189.已知函数()sin 213f x x π⎛⎫=++ ⎪⎝⎭,下列说法错误的是( ) A .3π是函数()f x 的一个周期B .函数()f x 的图象关于,13π⎛⎫⎪⎝⎭成中心对称 C .函数的一条对称轴为712x π= D .函数图象向左平移6π个单位后关于y 轴对称 10.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 11.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A .1B .151+ C .1916D .3412.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于0二、填空题13.已知tanα=2tan 8π,则3cos 8sin 8αππα⎛⎫- ⎪⎝⎭⎛⎫- ⎪⎝⎭=_____.14.若函数()()()sin cos 2f x x x πϕϕϕ⎛⎫=+++< ⎪⎝⎭为偶函数,则ϕ=______. 15.已知α,()0,βπ∈,且()23tan αβ-=,53tan β=-,2αβ-的值为_______.16.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.17.设123,,e e e 为单位向量,且()312102e e ke k =+>,若以向量12,e e 为邻边的三角形的面积为12,则k 的值为__________. 18.已知3a =,2b =,()()2318a b a b +⋅-=-,则a 与b 的夹角为_____. 19.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________. 20.函数()()0,0,2(f x Asin x A πωϕωϕ=+>><)的部分图像如图所示.则()f x 的解析式是_____.三、解答题21.已知函数()2133sin cos 1224f x x x x =-+-(x ∈R ) (1)求()f x 的最小正周期; (2)求()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值,并分别写出相应的x 的值. 22.三角形ABC 中,D 为BC 上一点,2BD DC =,设AD a =,AC b =,可以用a ,b 来表示出AD ,方法如下:方法一:23AD AB A D BC B B ==++,∵BC AC AB =-,∴21212()33333AD AB AC AB AB AC a b =+-=+=+. 方法二:13AC CD AC AD CB =+=+,∵CB AB AC =-,∴11212()33333AD AC AB AC AB AC a b =+-=+=+. 方法三:如图所示,过点D 作AC 的平行线,交AB 于点E ,过点D 作AB 的平行线,交AC 于点F ,则四边形AEDF 为平行四边形.∵//DF AB 且2BD DC =,∴13FD CD AB CB ==,13FD AE AB ==.∵//ED AC ,2BD DC =.∴23ED BD AC BC ==,得23ED AF AC ==.∴12123333AD AE ED AE AF AB AC a b =+=+=+=+. 请参照上述方法之一(用其他方法也可),解决下列问题: (1)三角形ABC 中,D 为BC 的中点,设AB a =,AC b =,试用a ,b 表示出AD ;(2)设D 为直线BC 上任意一点(除B 、C 两点),BD kDC =.点A 为直线BC 外任意一点,AB a =,AC b =,证明:存在唯一实数对λ,μ,使得:AD a b λμ=+,且1λμ+=.23.如图,在ABC ∆中,已知点D E 、分别在边AB BC 、上,且3AB AD =,2BC BE =. (1)用向量AB 、AC 表示DE ;(2)设6AB =,4AC =,60A =︒,求线段DE 的长.24.已知函数2()2sin 2sin cos 1f x x x x =+-. (1)求()f x 的最小正周期; (2)若0,2πα⎛⎫∈ ⎪⎝⎭,422245f απ⎛⎫+= ⎪⎝⎭,求cos α的值. 25.若,63x ππ⎡⎤∈⎢⎥⎣⎦时,tan 23k x π⎛⎫+- ⎪⎝⎭的值总不大于零,求实数k 的取值范围.26.已知向量a =(cosωx -sinωx ,sinωx),b =(-cosωx -sinωx,2cosωx).设函数f(x)=a b ⋅+λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈1,12⎛⎫⎪⎝⎭.(1)求函数f(x)的最小正周期;(2)若y =f(x)的图象经过点,04π⎛⎫⎪⎝⎭,求函数f(x)在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据对称性可得BAC CAP ACP ∠=∠=∠,设1PD =,可计算出AB 的长,利用勾股定理可得BC 的长,在Rt ABC 中,由ABBC可得tan BCA ∠,再利用正切函数的二倍角公式可得答案. 【详解】如图,由题意得BAC CAP ACP ∠=∠=∠. 不妨设1PD =,则3AP CP ==,4AB CD ==, 在Rt APD 中,223122AD =-=,即22BC AD ==. 在Rt ABC 中,tan 222AB BCA BC ∠===. 则22tan 22tan tan 2221tan 12BCA BCB BCA BCA ∠'∠=∠===--∠-, 故选:A.【点睛】本题考查了利用三角函数解决几何图形问题,关键点是利用对称性找到边长之间的关系然后利用正切函数求解,考查了学生分析问题、解决问题的能力.2.C解析:C 【分析】由同角间的三角函数关系先求得cos()4πα-,再得tan()4πα-,然后由两角和的正切公式可求得tan α. 【详解】 ∵02πα<<,∴444πππα-<-<,∴cos 410πα⎛⎫-=⎪⎝⎭, ∴sin 14tan 43cos 4παπαπα⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭, ∴tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦1tan 11432111tan 34παπα⎛⎫-++ ⎪⎝⎭===⎛⎫--- ⎪⎝⎭.故选:C . 【点睛】思路点睛:本题考查三角函数的求值.考查同角间的三角函数关系,两角和的正切公式.三角函数求值时首先找到“已知角”和“未知角”之间的联系,选用恰当的公式进行化简求值.注意三角公式中“单角”与“复角”的区别与联系,它们是相对的.不同的场景充当的角色可能不一样.如题中4πα-在tan tan4tan 41tan tan 4παπαπα-⎛⎫-=⎪⎝⎭+作为复角,但在tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦中充当“单角”角色.3.C解析:C 【分析】按照二倍角的余弦以及两角差的正弦展开可得()3cos sin 2αα+=,对等式平方即可得结果. 【详解】 由3cos 2sin 4παα⎛⎫=-⎪⎝⎭, 可得())223cos sin cos sin αααα-=-, 又由,2παπ⎛⎫∈⎪⎝⎭,可知cos sin 0αα-≠,于是()3cos sin αα+=,所以112sin cos 18αα=+, 故17sin 218α=-, 故选:C. 【点睛】本题主要考查了两角差公式以及二倍角公式的应用,属于中档题.4.A解析:A 【分析】首先根据三角函数诱导公式,可由等式()cos 2cos 2παπα⎛⎫+=-⎪⎝⎭求出tan 2α=;再由两角和的正切公式可求出tan 4απ⎛⎫+ ⎪⎝⎭. 【详解】 解:()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭, ∴由三角函数诱导公式化简得:sin 2cos αα-=-,即得tan 2α=,tantan 124tan()34121tan tan 4παπαπα++∴+===---⋅.故选:A. 【点睛】本题主要考查三角函数的诱导公式、两角和的正切公式,考查运算求解能力,属于基础题型.5.D解析:D 【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可.【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-,即11222mOD AB mAB nAC AB nAC -=--=-,同理122nOE AE AO AC mAB -=-=-, 因为212·||?02mOD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02nOE AC AC mAB AC -=-=, 所以129502nm -⨯-=,联立方程组124502129502mn n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩,解得922811m n ⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m -=. 故选D 【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.6.A解析:A 【分析】作2OA OA '=,7OB OB '=,3OC OC '=,由已知可得O 是'''A B C 的重心,由重心性质可得所求面积比. 【详解】作2OA OA '=,7OB OB '=,3OC OC '=,如图,∵2730OA OB OC ++=,∴O 是'''A B C 的重心,则''''''OA B OB C OC A S S S ==△△△,设''''''OA B OB C OC A S S S t ===△△△,设,,OAB OAC y OBC S x S S z ===△△△, ∵2OA OA '=,7OB OB '=,3OC OC '=,∴''1''sin ''2141sin 2OA B OABOA OB A OB S S OA OB AOB ⋅∠==⋅∠△△,即114x t =,同理16y t =,121z t =,11161462121ABC S x y z t t t t =++=++=△, ∴6216121ABC OBCtS S t ==△△. 故选:A .【点睛】本题考查三角形面积的计算,考查向量的加法与数乘法则,体现了向量在解决平面图形问题中的优越性.7.B解析:B 【分析】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,可得1,2,7===OC OF OE ,利用余弦定理,再利用两角和余弦公式可得3BOC π∠=【详解】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,+=OC OF OE ,所以1,2,7===OC OF OE 2221723cos sin 21777+-∠==∠=⨯⨯EOC EOC , 2273cos sin 2272727∠==∠=⨯⨯EOF EOF 3331cos cos()2727727∠=∠+∠==BOC COE EOF3π∴∠=BOC故选:B 【点睛】本题考查了平面几何和向量的综合,考查了运算求解能力和逻辑推理能力,属于中档题目.8.D解析:D 【分析】本题先根据平行向量的坐标运算可得2816a a =,再根据等比中项的知识,可计算出54a =,在求和时根据对数的运算及等比中项的性质可得到正确选项.【详解】解:由题意,向量()28,a a =,()8,2b a =,//a b 则28820a a ⨯-⨯=,即2816a a =,根据等比中项的知识,可得228516a a a ==, 50a >,54a ∴=,212229log log log a a a ∴++⋯+ 2129log ()a a a =⋯2192837465log [()()()()]a a a a a a a a a =925log a =29log 4=18=.故选:D . 【点睛】本题主要考查等比数列的性质应用,以及数列与向量的综合问题.考查了转化与化归思想,平行向量的运算,对数的计算,逻辑思维能力和数学运算能力.属于中档题.9.D解析:D 【分析】根据正弦函数性质周期,对称性,图象变换判断各选项. 【详解】函数()f x 的最小正周期为π,故3π是函数()f x 的一个周期,A 正确;当3x π=时,sin 203x π⎛⎫+= ⎪⎝⎭,故B 正确;当712x π=时,函数()f x 取得最小值,712x π=为对称轴,C 正确;函数图象向左平移6π个单位后函数解析式为sin 2163y x ππ⎡⎤⎛⎫=+++ ⎪⎢⎥⎝⎭⎣⎦,即2sin 213y x π⎛⎫=++ ⎪⎝⎭,不是偶函数,图象不关于y 轴对称,D 错误. 故选:D. 【点睛】本题考查正弦型函数的性质,考查周期的概念,对称轴与对称中心、奇偶性等性质,属于基础题.10.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.11.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫-⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫- ⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便. 12.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫ ⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。
2017-高中数学必修4期末考试2017年高一数学必修4模块期末考试一、选择题1.若向量OO=(-5,4),OO=(7,9),则与向量OO同向的单位向量坐标是()A.(−13,−13)B.(13,13)C.(−13,13)D.(13,−13)2.下列各式中值等于125的是()A。
5^3 B。
25^2/5 C。
3^5 D。
125^1/33.已知O(O)=OOOO+3OOOO(O∈O),函数y=f(x+φ)的图象关于直线x=0对称,则φ的值可以是()A。
2 B。
3 C。
4 D。
64.在四边形ABCD中,则四边形ABCD OO=O+2O,OO=−4O−O,OO=−5O−3O,的形状是()A。
长方形 B。
平行四边形 C。
菱形 D。
梯形5.如图所示,在△ABC中,AD=DB,F在线段CD上,设OO=O,OO=O,则O+O的最小值为()A。
6+2√2 B。
9/4 C。
9 D。
6+4√26.在△ABC中,OO=O,OO=O.若点D满足OO=(O+3O)/3=2OOOO,则O的坐标为()A。
(2b/3.c/3) B。
(b/3.2c/3) C。
(2c/3.b/3) D。
(c/3.2b/3)7.在△ABC中,tanAsin2B=tanBsin2A,则△ABC一定是()三角形.A。
锐角 B。
直角 C。
等腰 D。
等腰或直角8.将函数f(x)=cos2ωx的图象向右平移4π个单位,得到函数y=g(x)的图象,若y=g(x)在[−4,6]上为减函数,则正实数ω的最大值为()A。
2 B。
1 C。
2/π D。
39.cos555°的值为()A。
6+2√13/2 B。
2-6√13/2 C。
6-2√13/2 D。
-6+2√13/210.满足条件a=4,b=5,A=45°的△ABC的个数是()A。
1 B。
2 C。
无数个 D。
不存在11.已知角α是第四象限角,角α的终边经过点P(4,y),且sinα=5/13,则tanα的值是()A。
一、选择题1.已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα-=,则cos α=( )A .15B C .35D 2.已知3(,)4παβπ∈,,3sin()5αβ+=-,12sin()413πβ-=,则cos()4πα+=( ) A .5665-B .3365-C .5665D .33653.若α∈(2π,π),且3cos 2α=sin(4π-α),则sin 2α的值为( ) A .-118 B .118C .-1718D .17184.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形5.已知点G 是ABC 的重心,(),AG AB AC R λμλμ=+∈,若120,2,A AB AC ∠=︒⋅=-则AG 的最小值是( )A B .2C .12D .236.已知O 为正三角形ABC 内一点,且满足()10OA OB OC λλ+++=,若OAB 的面积与OAC 的面积之比为3,则λ=( ) A .12B .14C .34D .327.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( )A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-8.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .239.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (512AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④10.已知函数()cos2sin 2f x x x =-,将()y f x =的图象向左平移a (0a >)个单位长度可以得到一个奇函数的图象,将()y f x =的图象向右平移b (0b >)个单位长度可以得到一个偶函数的图象,则a b -的最小值等于( ) A .0B .8π C .4π D .2π 11.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( ) A .()f x 的最小正周期23T π=B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦12.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .59169二、填空题13.给出下列命题:①存在实数α使得sin cos 1αα=; ②存在实数α使得3sin cos 2αα+=; ③5sin 22y x π⎛⎫ ⎪⎝=⎭-是偶函数; ④8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程; ⑤若α、β是第一象限角,且αβ>,则tan tan αβ>, 其中正确命题的序号是______.14.化简tan 20tan 25tan 20?tan 25︒+︒+︒︒=_____.15.已知角θ的终边经过点(4,3)P -,则22cos sin 12)4--=+θθπθ_____________.16.已知向量a ,b 及实数t 满足|(1)(1)|1t a t b ++-=,若22||||1a b -=,则t 的最大值是________.17.已知向量()3,2OA =,()2,1OB =,O 点为坐标原点,在x 轴上找一个点M ,使得AM BM ⋅取最小值,则M 点的坐标是___________.18.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.19.函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下结论中正确的是______(写出所有正确结论的编号). ①图象C 关于直线1112π=x 对称; ②图象C 关于点2,03π⎛⎫⎪⎝⎭对称; ③函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数; ④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C . 20.如图,某地一天从614时的温度变化曲线近似满足函数()sin y A x b ωϕ=++,则这段曲线的函数解析式为______________.三、解答题21.如图,设A 是一块麦田,射线,AB AC 夹角为60°,若将水管P 设在BAC ∠围成的区域内(不含边界)(1)若P 到,AB AC 的距离之和为定值20,设PAB θ∠=,试将PA 的长用含θ的式子表示,并求出水管想要浇灌到麦田的最小射程;(2)若P 在以A 为圆心,10为半径的圆弧上运动,过P 作AP 的垂线分别交,AB AC 于,Q R 两点,求AQ AR +的最小值.22.在①36f π⎛⎫-= ⎪⎝⎭,②()f x 的最大值在12x π=处取到,③当()()121f x f x -=,则12min 2x x π-=这三个条件中任选一个,补充并解答下面问题.问题:已知函数()sin cos 3f x x x πωω⎛⎫=+ ⎪⎝⎭,(]0,3ω∈.若_______,求实数ω的值.注:如果选择多个条件分别解答,按第一个解答计分.23.在ABCD 中,2AB =,23AC =,向量AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值.24.如图,某公园摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在距地面最近处.(1)已知在(min)t 时点P 距离地面的高度为()sin()0,0,||2f t A t h A πωϕωϕ⎛⎫=++>>≤ ⎪⎝⎭,求2020t =时,点P 距离地面的高度;(2)当离地面(503)m +以上时,可以看到公园的全貌,求转一圈中在点P 处有多少时间可以看到公园的全貌.25.已知函数1()2sin cos 62f x x x π⎛⎫=-- ⎪⎝⎭. (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[]0,π上的单调递增区间. 26.已知向量()cos ,sin m x x =-,()3,3n =,[]0,x π∈. (1)若m 与n 共线,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题解析:D 【分析】先利用二倍角公式化简整理得到1sin cos 2αα=,再利用同角三角函数的平方关系,结合范围解出cos α即可. 【详解】由2sin 2cos21αα-=,0,2πα⎛⎫∈ ⎪⎝⎭,得2sin 21cos2αα=+,cos 0α>,所以24sin cos 2cos ααα=,即2sin cos αα=,故1sin cos 2αα=, 代入22sin cos 1αα+=得,25cos 14α=,故24cos 5α=,因为cos 0α>,所以cos α=. 故选:D. 【点睛】 关键点点睛:本题解题关键在于熟记公式并准确运算,还要注意角的范围的限制,才能突破难点.2.A解析:A 【分析】 由角的变换可知()()44ππααββ+=+--,利用同角三角基本关系及两角差的余弦公式求解即可. 【详解】3(,)4παβπ∈,, 3(,2)2παβπ∴+∈,3(,)424πππβ-∈,4cos()5αβ∴+=,5cos()413πβ-=-,cos()cos[()()cos ()]cos (()s )sin ()444in 4πππααβαβαπββββ∴+=+-++-=-+-453125651351365=-⨯-⨯=-,故选:A 【点睛】本题主要考查了角的变换,同角三角函数的基本关系,两角差的余弦公式,属于中档题.解析:C 【分析】按照二倍角的余弦以及两角差的正弦展开可得()3cos sin 2αα+=,对等式平方即可得结果. 【详解】由3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,可得())223cos sin cos sin 2αααα-=-, 又由,2παπ⎛⎫∈⎪⎝⎭,可知cos sin 0αα-≠,于是()3cos sin 2αα+=,所以112sin cos 18αα=+, 故17sin 218α=-, 故选:C. 【点睛】本题主要考查了两角差公式以及二倍角公式的应用,属于中档题.4.B解析:B 【分析】利用两角和与差公式化简原式,可得答案. 【详解】因为sin 2sin cos B A C =, 所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C += 所以sin cos cos sin 0A C A C -= 所以sin()0A C -=, 所以0A C -=, 所以A C =.所以三角形是等腰三角形. 故选:B. 【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.5.D解析:D 【分析】先根据重心得到()13AG AB AC =+,设0,0AB x AC y =>=>,利用数量积计算4xy =,再利用重要不等式求解()2219A AGB AC =+的最小值,即得结果.【详解】点G 是ABC 的重心,设D 为BC 边上的中点,则()2133AG AD AB AC ==+, 因为120,2,A AB AC ∠=︒⋅=-设0,0AB x AC y =>=>,则cos1202xy ︒=-,即4xy =,故()()()222211144249999AG x y x B ACy A =+-≥-=+=,即23AG ≥, 当且仅当2x y ==时等号成立,故AG 的最小值是23. 故选:D. 【点睛】 关键点点睛:本题的解题关键在于通过重心求得向量关系()13AG AB AC =+,利用数量积得到定值,才能利用重要不等式求最值,突破难点,要注意取条件的成立.6.A解析:A 【分析】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,由平面向量的线性运算可得OD OE λ=-,进而可得13OACAEC S S =△△,即可得解. 【详解】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,如图,所以DE 是ABC 的中位线,因为()10OA OB OC λλ+++=,所以()OA OC OB OC λ+=-+, 所以OD OE λ=-,所以D 、E 、O 三点共线,所以111363OAC OAB ABC AEC S S S S ===△△△△,所以13OD ED =即12OD OE =-,所以12λ-=-即12λ=.故选:A. 【点睛】本题考查了平面向量共线、线性运算及基本定理的应用,考查了运算求解能力与转化化归思想,属于中档题.7.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭,∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭, ∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.8.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.9.A解析:A 【分析】设1AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】不妨设1AB =,则2BC =,所以)12l BE π==⨯,)213ED =-=所以(32m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(222234m π⨯==,))2122l n ππ⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l n l n l n ++===⋅(1132m π==⨯,所以211m l n ≠+, 故④不正确;所以①②正确, 故选:A 【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n 的值.10.A解析:A 【分析】先整理函数,再根据平移后函数的奇偶性得到a ,b 的值,即可得结果. 【详解】解:函数()cos 2sin 224f x x x x π⎛⎫=-=+ ⎪⎝⎭,函数()24f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移a 个单位得到()224g x x a π⎛⎫=++ ⎪⎝⎭,又因为函数为奇函数,则242a k πππ+=+(k Z ∈),整理得28k a ππ=+(k Z ∈);函数()24f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移b 个单位得到()224h x x b π⎛⎫=-+ ⎪⎝⎭,由于得到的函数的图象为偶函数,2=4b k ππ-+-,=,()82k b k Z ππ+∈; 当0k =时,min 0a b -= 故选:A. 【点睛】本题考查了三角函数的平移变换和奇偶性,属于中档题.11.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=-⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即 ,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确.故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 12.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.二、填空题13.③④【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;解析:③④ 【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式,结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;利用特殊值法可判断⑤的正误. 【详解】对于命题①,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦, 所以,不存在实数α使得sin cos 1αα=,①错误;对于命题②,sin cos 4πααα⎛⎫⎡+=+∈ ⎪⎣⎝⎭, 所以,不存在实数α使得3sin cos 2αα+=,②错误; 对于命题③,si o 5s 2n c 2i s n 222x y x x ππ⎛⎫⎛⎫== ⎪⎪⎝-⎭-⎭=⎝, ()cos 2cos2x x -=,所以,函数5sin 22y x π⎛⎫⎪⎝=⎭-是偶函数,③正确;对于命题④,当8x π=时,min 53sin 2sin 1842y y πππ⎛⎫=⨯+==-= ⎪⎝⎭, 所以,8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程,命题④正确; 对于命题⑤,取9244παππ=+=,4πβ=,αβ>,但tan 1tan αβ==,⑤错误.因此,正确命题的序号为③④. 故答案为:③④. 【点睛】本题考查有关三角函数命题真假的判断,考查了三角函数的有界性、正弦型函数的奇偶性、对称性以及正切值大小的比较,考查计算能力与推理能力,属于中等题.14.1【详解】分析:首先从式子中分析得出角的大小借助于两角和的正切公式得到与之间的关系借助于角的正切值求得结果详解:因为所以所以有故答案为:1点睛:该题考查的是有关三角函数化简求值问题在解题的过程中涉及解析:1 【详解】分析:首先从式子中分析得出2025︒︒+角的大小,借助于两角和的正切公式,得到tan 20tan 25︒︒+与tan 20tan 25︒︒⋅之间的关系,借助于45︒角的正切值,求得结果. 详解:因为tan 20tan 25tan(2025)1tan 20tan 25︒︒︒︒︒︒++=-,所以1tan 20tan 25tan 20tan 25︒︒︒︒-=+, 所以有tan 20tan 25tan 20tan 251︒︒︒︒++=, 故答案为:1.点睛:该题考查的是有关三角函数化简求值问题,在解题的过程中,涉及到的知识点有两角和的正切公式的逆用,注意45︒角的正切值的大小.15.7【分析】根据角终边定义得将所求分式用倍角公式和差公式化简化为齐次式代化简即可【详解】解:由角的终边经过点得所以故答案为:7【点睛】任意角的三角函数值:(1)角与单位圆交点则;(2)角终边任意一点则;解析:7 【分析】根据角终边定义得3tan 4θ=-,将所求分式用倍角公式、和差公式化简,化为齐次式,代3tan 4θ=-化简即可.【详解】解:由角θ的终边经过点(4,3)P -得3tan 4θ=-所以222cos sin 1(2cos 1)sin cos sin 22sin cos )coscos sin )444-----==+++θθθθθθπππθθθθθ31cos sin 1tan 473sin cos tan 114θθθθθθ⎛⎫-- ⎪--⎝⎭====++-+.故答案为:7 【点睛】任意角的三角函数值:(1)角α与单位圆交点(,)P x y ,则sin ,cos ,tan (0)yy x x xααα===≠; (2)角α终边任意一点(,)P x y,则sin tan (0)yx xααα===≠; 16.【分析】根据整理为再两边平方结合得到然后利用基本不等式求解【详解】因为所以两边平方得因为即所以而所以解得当且仅当时等号成立所以的最大值是故答案为:【点睛】关键点点睛:本题关键是由这一信息将转化为再遇解析:14【分析】根据|(1)(1)|1t a t b ++-=,整理为()()||1t a b a b ++-=,再两边平方结合22||||1a b -=,得到()()22212t a ba bt ++-=-,然后利用基本不等式求解.【详解】因为|(1)(1)|1t a t b ++-=,所以()()||1t a b a b ++-=,两边平方得()()()()22221t a b t a b a b a b +++-+-=, 因为22||||1a b -=,即()()1a b a b +-=, 所以()()22212t a b a b t ++-=-,而()()()()22222t a b a b t a b a b t ++-≥+⋅-=,所以122t t -≥, 解得14t ≤,当且仅当()()t a b a b +=-时等号成立, 所以t 的最大值是14故答案为:14【点睛】关键点点睛:本题关键是由22||||1a b -=这一信息,将|(1)(1)|1t a t b ++-=,转化为()()||1t a b a b ++-=,再遇模平方,利用基本不等式从而得解.17.【分析】设点的坐标是求出再利用配方法可得答案【详解】设点的坐标是即因为向量所以当时有最小值此时点的坐标是故答案为:【点睛】方法点睛:平面向量求最值有三种常见方法:1几何法;2三角函数有界法;3二次函解析:5,02⎛⎫⎪⎝⎭【分析】设M 点的坐标是(),0t ,求出AM BM ⋅,再利用配方法可得答案. 【详解】设M 点的坐标是(),0t ,即(),0OM t =, 因为向量()3,2OA =,()2,1OB =, 所以()3,2AM OM OA t =-=--,()2,1BM OM OB t =-=--,()()()()3221AM BM t t ⋅=--+-⨯-22575824t t t ⎛⎫=-+=-+ ⎪⎝⎭,当52t =时,AM BM ⋅有最小值74,此时M 点的坐标是5,02⎛⎫⎪⎝⎭, 故答案为:5,02⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:平面向量求最值有三种常见方法:1、几何法;2、三角函数有界法;3、二次函数配方法.18.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.19.①②③【分析】利用整体代入的方式求出对称中心和对称轴分析单调区间利用函数的平移方式检验平移后的图象【详解】由题:令当时即函数的一条对称轴所以①正确;令当时所以是函数的一个对称中心所以②正确;当在区间解析:①②③ 【分析】利用整体代入的方式求出对称中心和对称轴,分析单调区间,利用函数的平移方式检验平移后的图象. 【详解】由题:()3sin 23x f x π⎛⎫=- ⎪⎝⎭,令2,32x k k Z πππ-=+∈,5,122k x k Z ππ=+∈, 当1k =时,1112π=x 即函数的一条对称轴,所以①正确; 令2,3x k k Z ππ-=∈,,62k x k Z ππ=+∈,当1k =时,23x π=, 所以2,03π⎛⎫⎪⎝⎭是函数的一个对称中心,所以②正确; 当5,1212x ππ⎛⎫∈- ⎪⎝⎭,,2223x ππ⎛⎫∈- ⎪⎝π⎭-,()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数,所以③正确;3sin 2y x =的图象向右平移3π个单位长度得到23sin 23sin 233y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,与函数()3sin 23x f x π⎛⎫=- ⎪⎝⎭不相等,所以④错误. 故答案为:①②③ 【点睛】此题考查三角函数的图象和性质,利用整体代入的方式求解对称轴对称中心,求解单调区间,根据函数的平移变换求解平移后的函数解析式.20.【分析】根据图象得出该函数的最大值和最小值可得结合图象求得该函数的最小正周期可得出再将点代入函数解析式求出的值即可求得该函数的解析式【详解】由图象可知从题图中可以看出从时是函数的半个周期则又得取所以解析:310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[]6,14x ∈ 【分析】根据图象得出该函数的最大值和最小值,可得max min 2y y A -=,max min2y y b +=,结合图象求得该函数的最小正周期T ,可得出2Tπω=,再将点()10,20代入函数解析式,求出ϕ的值,即可求得该函数的解析式.【详解】由图象可知,max 30y =,min 10y =,max min 102y y A -∴==,max min202y y b +==, 从题图中可以看出,从614时是函数()sin y A x b ωϕ=++的半个周期,则()214616T =⨯-=,28T ππω∴==. 又10228k πϕππ⨯+=+,k Z ∈,得()324k k Z πϕπ=+∈,取34πϕ=,所以310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[]6,14x ∈. 故答案为:310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[]6,14x ∈. 【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.三、解答题21.(1)2003sin 3x πθπθ⎛⎫=<< ⎪⎛⎫⎝⎭+ ⎪⎝⎭,最小射程为20;(2)3. 【分析】(1)过点P 作PE AB ⊥于点,E PF AC ⊥于点F ,设PA x =,则可表示出,PE PF ,根据20PE PF +=,列出等式,化简整理,即可得PA 的表达式,根据θ的范围,即可求得答案;(2)设PAQ α∠=,则1010cos cos 3AQ AR παα+=+⎛⎫- ⎪⎝⎭,令6t πα=-,则,化简整理可得4cos cos AQ AR t t+=-,根据t 的范围,结合14cos cos y t t=-的单调性,即可求得答案. 【详解】(1)过点P 作PE AB ⊥于点,E PF AC ⊥于点F ,则20PE PF += 设PA x =,则sin ,sin 3x E PF x P πθθ⎛-==⎫⎪⎝⎭, 所以sin sin 203x x πθθ⎛⎫+-=⎪⎝⎭,即202003sin sin sin 33x πθππθθθ⎛⎫==<< ⎪⎛⎫⎛⎫⎝⎭+-+ ⎪ ⎪⎝⎭⎝⎭ 所以20PA ≥(当且仅当6πθ=时取“=”),即水管想要浇灌到麦田的最小射程为20. (2)由题可知:10PA =,设,(0,)3PAQ παα∠=∈,则1010cos cos 3AQ AR παα+=+⎛⎫- ⎪⎝⎭,令6t πα=-,则66t ππ-<<则10104cos cos cos cos 66AQ AR t t t t ππ+=+==⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭由66t ππ-<<,所以cos 12t <≤,且14cos cos y t t =-在为增函数,所以当cos 1t =时,14cos cos y t t=-有最大值3,所以10104cos cos cos cos 66AQ AR t t t t ππ+=+==≥⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭, 所以AQ AR +【点睛】解题的关键是根据题意,结合三角函数的概念,进行求解,以实际问题作为载体,考查三角函数的综合应用,属中档题. 22.①6f π⎛⎫-= ⎪⎝⎭,1ω=; ②()f x 的最大值在12x π=处取到,1ω=;③当()()121f x f x -=,则12min2x x π-=,1ω=.【分析】可先利用倍角公式将()f x 化简为()sin A x B ωϕ++的形式,再利用其性质逐一求解. 【详解】()sin cos 3f x x x πωω⎛⎫=+ ⎪⎝⎭1sin cos 2x x x ωωω⎛⎫=- ⎪ ⎪⎝⎭21sin cos sin 22x x x ωωω=⋅-11cos 2sin 2422x x ωω-=-11sin 2222x x ωω⎛⎫=+- ⎪ ⎪⎝⎭1sin 223x πω⎛⎫=+ ⎪⎝⎭. 选①64f π⎛⎫-=- ⎪⎝⎭,则sin 033ωππ-⎛⎫+= ⎪⎝⎭,()33k k Z ωπππ-+=∈ 解得13k ω=-,(]0,3ω∈,1ω∴= 选②()f x 的最大值在12x π=处取到,则有sin 163ωππ⎛⎫+=⎪⎝⎭()2632k k Z ωππππ+=+∈112k ω=+,(]0,3ω∈,1ω∴=选③当()()121f x f x -=,则12min 2x x π-= 代入可得1211sin 2sin 212323x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭ 12sin 2sin 2233x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,12min 2x x π-= 意味着函数()sin 23g x x πω⎛⎫=+⎪⎝⎭的相邻两条对称轴距离为2π T π∴=22T πππωω∴=== 1ω∴=【点睛】方法点睛:对于三角函数,解决最小正周期和最值,单调区间,对称轴等问题时,可先把所给三角函数式化为()sin A x B ωϕ++或()cos A x B ωϕ++的形式,再利用其性质求解.它们的最小正周期为2T πω=,最大值为A B +,最小值为A B -+.23.(Ⅰ)2AD =;(Ⅱ)0.【分析】(Ⅰ)设AB a =,AD b =,利用平面向量加法的平行四边形法则可得AC a b =+,由23AC =b 的方程,即可解得AD b =;(Ⅱ)计算得出0AC BD ⋅=,可得出AC BD ⊥,进而可得出结果.【详解】(Ⅰ)设AB a =,AD b =,则AC a b =+,BD AD AB b a =-=-.向量AB 与AD 的夹角为3π,cos 3a b a b b π∴⋅=⋅=. ()22222242AC a b a b a a b b b b ∴=+=+=+⋅+=++= 整理得2280b b +-=,0b ≥,解得2b =,即2AD =;(Ⅱ)()()220AC BD a b b a b a ⋅=+⋅-=-=,则AC BD ⊥,因此,AC 和BD 夹角的余弦值为0.【点睛】本题考查利用平面向量的数量积求向量的模,同时也考查了平面向量夹角余弦值的计算,考查计算能力,属于中等题.24.(1)70m ;(2)0.5min .【分析】(1)根据题意,确定()sin()f t A t h ωϕ=++的表达式,代入2020t =运算即可;(2)要求()50f t >+2cos3t π<,解不等式即可. 【详解】(1)依题意,40A =,50h =,3T =, 由23πω=得23πω=,所以2()40sin 503f t t πϕ⎛⎫=++ ⎪⎝⎭. 因为(0)10f =,所以sin 1ϕ=-,又||2πϕ≤,所以2πϕ=-. 所以2()40sin 50(0)32f t t t ππ⎛⎫=-+≥ ⎪⎝⎭, 所以2(2020)40sin 2020507032f ππ⎛⎫=⨯-+= ⎪⎝⎭. 即2020t =时点P 距离地面的高度为70m .(2)由(1)知22()40sin 505040cos (0)323f t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭.令()50f t >+2cos32t π<-, 从而()*52722N 636k t k k πππππ+<<+∈, ∴()*5733N 44k t k k +<<+∈. ∵()*751330.5N 442k k k ⎛⎫+-+==∈ ⎪⎝⎭, ∴转一圈中在点P 处有0.5min 的时间可以看到公园的全貌.【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题.25.(1)π;(2)单调递增区间为0,3π⎡⎤⎢⎥⎣⎦,5,6ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)先根据二倍角公式、辅助角公式化简函数,再根据正弦函数的周期公式求周期;(2)根据正弦函数性质求单调区间,再取对应区间即得结果.【详解】(1)11()2sin sin 22f x x x x ⎫=+-⎪⎪⎝⎭1cos21222x x -=+-12cos 2sin 2226x x x π⎛⎫=-=- ⎪⎝⎭, 所以()f x 的最小正周期22T ππ==. (2)令26z x π=-,[]0,x π∈,则11,66z ππ⎡⎤∈-⎢⎥⎣⎦, 因为sin y z =,11,66z ππ⎡⎤∈-⎢⎥⎣⎦的单调增区间是,62ππ⎡⎤-⎢⎥⎣⎦,311,26ππ⎡⎤⎢⎥⎣⎦, 由2662x πππ-≤-≤或3112266x πππ≤-≤, 得:03x π≤≤或56x ππ≤≤, 所以()f x 在[]0,π内的单调递增区间为0,3π⎡⎤⎢⎥⎣⎦,5,6ππ⎡⎤⎢⎥⎣⎦. 【点睛】本题考查二倍角公式、辅助角公式、正弦函数性质,解题关键是要熟练掌握三角函数的性质,考查分析求解能力,属基础题.26.(1)2)6π 【分析】(13sin =-x x ,进而可得结果.(2)由平面向量的数量积可得3cos -x x ,进而可得结果.【详解】(1)由//m n 3sin tan =-⇒=x x x(2)13cos 3sin cos 132π⋅=-=⋅⋅=⨯m n x x m n 可得1sin()32x π-=-,因为2[0,],[,]333ππππ∈-∈-x x 所以366πππ-=-⇒=x x【点睛】本题考查了平面向量共线的坐标表示、平面向量数量积运算的坐标表示和三角恒等变换,考查了运算求解能力和逻辑推理能力,属于中档题目.。
一、选择题1.函数()2cos ||cos 2f x x x =-在[,]x ππ∈-上的单调增区间为( )A .,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦B .,03π⎡⎤-⎢⎥⎣⎦和,3ππ⎡⎤⎢⎥⎣⎦C .,06π⎡⎤-⎢⎥⎣⎦和,6ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦和06,π⎡⎤⎢⎥⎣⎦2.若1sin 34a π⎛⎫-= ⎪⎝⎭,则sin 26a π⎛⎫-= ⎪⎝⎭( )A .78-B .78C .1516-D .15163.已知函数()sin cos f x a x b x =+,其中,a b ∈R ,且0ab ≠,若()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ).A .ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .()5π2f x f x ⎛⎫=- ⎪⎝⎭C .π4f x ⎛⎫- ⎪⎝⎭是偶函数 D .π4f x ⎛⎫+⎪⎝⎭是奇函数 4.0=( )A .1B .2CD 5.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A 1B .221-C .1-D .716.已知向量,a b ,满足||1,||2a b ==,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤,则向量,a b 的夹角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,63ππ⎡⎤⎢⎥⎣⎦ D .20,3π⎡⎤⎢⎥⎣⎦7.已知1a =,2b =,则a b a b ++-的最大值等于( )A .4B C .D .58.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b ,则实数m =( )A .2±B .2C .D9.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 10.已知0>ω,2πϕ≤,在函数()()sin f x x ωϕ=+,()()cos g x x ωϕ=+的图象的交点中,相邻两个交点的横坐标之差的绝对值为2π,当,64x ππ⎛⎫∈- ⎪⎝⎭时,函数()f x 的图象恒在x 轴的上方,则ϕ的取值范围是( ) A .,63ππ⎛⎫⎪⎝⎭ B .,63ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎛⎫⎪⎝⎭D .,32ππ⎡⎤⎢⎥⎣⎦ 11.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 12.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度C .向左平移3π个单位长度 D .向左平移4π个单位长度 二、填空题13.已知α、0,2πβ⎛⎫∈ ⎪⎝⎭,sin α=,()cos 5αβ+=,则()cos 2αβ+=______.14.若cos()3πα-=-,02πα⎛⎫∈- ⎪⎝⎭,则tan α的值是____________.15.已知02x π-<<,1sin cos 5x x +=,则22sin cos cos x x x -的值为___________. 16.已知点()0,1A ,()3,2B ,向量()4,3AC =,则向量BC =______.17.已知(2,1)a =-,(1,)b t =,若(2)a b a -⊥,则b =__________18.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.19.函数3()2sin 34f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下说法: (1)其中最小正周期为23π; (2)图象关于点(,0)4π对称;(3)由2sin3y x =的图象向右平移34π个单位长度可以得到图象C ; (4)直线4πx =-是其图象的其中一条对称轴. 其中正确命题的序号是__________.20.已知函数sin cos |sin cos |()22+--=+x x x x f x [0,]m 上恰有4个零点,则实数m 的取值范围为________.三、解答题21.已知函数()2sin cos 144f x x x ππ⎛⎫⎛⎫=+--⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的最小正周期;(2)若函数()()2g x f x x =-,求函数()g x 的单调增区间.22.在①2sin 3sin 2αα=,②cos 2α=③tan α=个,补充在下面问题中,并解决问题.已知10,,0,,cos()224ππαβαβ⎛⎫⎛⎫∈∈+=- ⎪ ⎪⎝⎭⎝⎭,_______,求cos β. 注:如果选择多个条件分别解答,按第一个解答计分.23.已知()sin()(0,0)f x x ωϕϕπω=+<<>为偶函数,且()y f x =图像的两相邻对称中心点间的距离为2π. (1)求()f x 的解析式;(2)函数()y f x =的图像向右平移6π个单位后,再将得到的图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到()y g x =的图像,求()g x 的单调递减区间. 24.已知函数()2sin 1f x x =-.(1)求函数f (x )的最大值,并求此时x 的值; (2)写出()0f x >的解集.25.已知向量()cos ,sin m x x =-,()3,3n =,[]0,x π∈. (1)若m 与n 共线,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 26.已知a =(1,2)b =(-3,2),当k 为何值时. (1)ka b +与3a b -垂直; (2)ka b +与3a b -平行.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先把函数解析式化简,然后令cos t x =,利用复合函数单调性求解即可 【详解】 当[]0,x π∈时,22()2cos ||cos 2=2cos (2cos 1)2cos 2cos 1f x x x x x x x =---=-++,令cos [1,1]t x t =∈-,,则cos t x =在[]0,x π∈上为减函数;而2221y t t =-++ 对称轴为12t =,∴2221y t t =-++在1[1,]2t ∈-上单增,在1[,1]2t ∈上单减, ∴()y f x =在0,3x π⎡⎤∈⎢⎥⎣⎦上为增函数,在,3x ππ⎡⎤∈⎢⎥⎣⎦上为减函数. 又()2cos ||cos 2f x x x =-为偶函数,其图像关于y 轴对称, ∴()y f x =在,3ππ⎡⎤--⎢⎥⎣⎦上为增函数,在,03π⎡⎤-⎢⎥⎣⎦上为减函数. 故()y f x =的单调增区间为,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦. 故选:A 【点睛】复合函数的单调性口诀:同增异减,其具体含义为: 内外函数的单调性相同(同),则复合函数为增函数(增); 内外函数的单调性相反(异),则复合函数为减函数(减).2.B解析:B 【分析】 化简sin 2cos 2()63a ππα⎛⎫-=- ⎪⎝⎭,再利用二倍角公式化简求值. 【详解】22sin 2sin[(2)]cos(2)=cos 2()cos 2()632333a ππππππαααα⎛⎫-=-+=--=- ⎪⎝⎭=21712sin ()123168πα--=-⨯=. 故选:B 【点睛】方法点睛:三角恒等变换常用的方法有:三看(看角、看名、看式)三变(变角变名变式),要根据已知条件灵活选择方法化简求值.3.B解析:B 【分析】利用辅助角公式可得()()f x x ϕ=+,又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立知π422f a ⎛⎫=+=⎪⎝⎭a b =,整理得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项.【详解】由0ab ≠知0a ≠且0b ≠,利用辅助角公式可得()()sin cos f x a x b x x ϕ=+=+,其中tan b aϕ=, 又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫⎪⎝⎭是()f x 的最值,所以πππsin cos 44422f b a a b ⎛⎫=+=+= ⎝⎪⎭, 即22221122a b ab a b +++=,所以2211022a b ab +-=,即()2102a b -=, 所以a b =,tan 1b a ϕ==,可得4πϕ=,所以()sin 4f x x π⎛⎫=+ ⎪⎝⎭,对于选项A :9sin sin 55420f ππππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 5sin sin 66412f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,又因为5912202πππ<<,则59sin sin 1220ππ<, 当0a >时,ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,当0a <时,ππ56f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选项A 不正确; 对于选项B :sin sin 5π5π11π3π2244sin 4f x x x x π⎛⎫-=--- ⎪⎝⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭()ππ4sin sin 4x f x x π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭--+,故选项B 正确;对于选项C :sin sin ππ444x x f x π⎛⎫--⎛⎫=+= ⎪⎝⎭ ⎪⎝⎭是奇函数,故选项C 不正确;对于选项D :si πππ442n sin cos 4f x x x x π⎛⎫⎛⎫=+== ⎪ ⎪⎛⎫+++ ⎪⎭⎝⎭⎝⎭⎝是偶函数,故选项D 不正确, 故选:B 【点睛】关键点点睛:本题的关键点是从已知条件()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫ ⎪⎝⎭是()f x 的最值,π422f a ⎛⎫=+= ⎪⎝⎭,从而得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,属于中档题.4.C解析:C 【解析】202000000000cos 10sin 10cos10sin1055cos35(cos10sin10)cos35cos35-+===-选C. 5.C解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC += 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立.因此,AP 的最小值为1. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 6.B解析:B 【分析】根据向量不等式得到7a b +≤,平方得到1a b ⋅≤,代入数据计算得到1cos 2α≤得到答案. 【详解】由||1a =,||2b =,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤ 可得:()()27a b c a b c a c b c +⋅≤+⋅≤⋅+⋅≤ 可得:()227a b +⋅≤7a b +≤平方得到2227a b a b ++⋅≤,即1a b ⋅≤1cos 1,cos ,23a b a b παααπ⋅=⋅≤∴≤∴≤≤故选:B 【点睛】本题考查了向量夹角的计算,利用向量三角不等式的关系进行求解是解题的关键.7.C解析:C 【分析】利用基本不等式得到222a b a b a b a b ++-++-≤,然后利用平面向量数量积运算求解. 【详解】因为1a =,2b =,所以222222252a b a ba b a b a b ++-++-≤=+=,当且仅当a b a b +=-,即a b ⊥时取等号,故选:C 【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于中档题.8. A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合||cos 5a θ=,列出等式,即可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=,所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=,所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 9.A解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+-⎪ ⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.10.D解析:D 【分析】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=,可求得()4k x k Z ππϕω+-=∈,再利用,相邻两个交点的横坐标之差的绝对值为2π,可得2x ππω∆==,即可得2ω=,再利用正弦函数图象的特点,可得032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,即可求出ϕ的取值范围. 【详解】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=, 可得:()4x k k Z πωϕπ+=+∈,所以因为相邻两个交点的横坐标之差的绝对值为2x ππω∆==, 所以2ω=,所以()()sin 2f x x ϕ=+,当,64x ππ⎛⎫∈- ⎪⎝⎭时,232x ππϕϕϕ-+<+<+,要满足函数()f x 的图象恒在x 轴的上方,需满足方程032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩ ,解得32ππϕ≤≤, 故选:D 【点睛】本题主要考查正弦函数的图象和性质,属于中档题.11.C解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.12.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】 由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.二、填空题13.【分析】利用同角三角函数的平方关系求得的值然后利用两角和的余弦公式可求得的值【详解】因为则又所以所以故答案为:【点睛】本题考查利用两角和的余弦公式求值同时也考查了同角三角函数基本关系的应用考查计算能解析:2【分析】利用同角三角函数的平方关系求得cos α、()sin αβ+的值,然后利用两角和的余弦公式可求得()cos 2αβ+的值. 【详解】因为α、0,2πβ⎛⎫∈ ⎪⎝⎭,则0αβ<+<π,又10sin10,()cos 5αβ+=,所以,cos 10α==,()sin αβ+==所以()()()()cos 2cos cos cos sin sin αβααβααβααβ+=++=+-+⎡⎤⎣⎦2-=. 【点睛】本题考查利用两角和的余弦公式求值,同时也考查了同角三角函数基本关系的应用,考查计算能力,属于中等题.14.【分析】由诱导公式化简再利用同角三角函数间的关系和角的范围可得答案【详解】由且得故答案为:【点睛】本题考查三角函数的诱导公式和同角三角函数间的关系在运用公式时注意角的范围属于基础题解析:2-【分析】由诱导公式化简cos()πα-,再利用同角三角函数间的关系和角的范围可得答案. 【详解】由cos()3πα-=-,且,02πα⎛⎫∈- ⎪⎝⎭,得cos tan332ααα===-==-.故答案为:2-. 【点睛】本题考查三角函数的诱导公式和同角三角函数间的关系,在运用公式时,注意角的范围,属于基础题.15.【分析】根据得到将已知等式两边平方利用同角三角函数基本关系式可求的值然后利用二倍角公式化简求解【详解】∵∴∴∵两边平方可得∴故答案为:【点睛】本题主要考查三角函数的同角基本关系式以及倍角公式的应用还解析:85-【分析】 根据1sin cos 5x x +=得到|cos ||sin |x x >, 将已知等式两边平方,利用同角三角函数基本关系式可求sin 2x ,cos2x 的值,然后利用二倍角公式化简求解. 【详解】 ∵02x π-<<,1sin cos 5x x +=, ∴|cos ||sin |x x >, ∴04x π-<<,π202x -<< ∵1sin cos 5x x +=,两边平方, 可得24sin 225x =-,7cos 225x =,∴21cos 282sin cos cos sin 225x x x x x +-=-=-. 故答案为:85-.【点睛】本题主要考查三角函数的同角基本关系式以及倍角公式的应用,还考查了运算求解的能力,属于中档题.16.【分析】根据向量的坐标运算即可求出【详解】因为所以故答案为:【点睛】本题考查了向量的坐标运算向量模的坐标公式属于基础题目【分析】根据向量的坐标运算即可求出. 【详解】 因为()0,1A ,()3,2B,所以()3,1AB =,()()()4,33,11,2BC AC AB =-=-=,21BC ==【点睛】本题考查了向量的坐标运算,向量模的坐标公式,属于基础题目.17.【分析】根据向量垂直得数量积为0从而求得的值利用求模公式求得向量的模【详解】若则即求得故故答案为:【点睛】本题主要考查平面向量数量积的坐标运算及向量的模的求法意在考查学生的数学运算的学科素养属中档题【分析】根据向量垂直得数量积为0,从而求得t 的值,利用求模公式求得向量的模. 【详解】(2,1)a =-,(1,)b t =,2a b -()3,2t =--,若(2)a b a -⊥,则(2)0a b a -⋅=,即()620t ++=,求得8t故 b ==【点睛】本题主要考查平面向量数量积的坐标运算及向量的模的求法,意在考查学生的数学运算的学科素养,属中档题.18.【分析】由已知得由得由不等式可知再由得最后由可得解【详解】由得即由得即由得由得所以故答案为:【点睛】本题考查了向量及其模的运算考查了向量的夹角公式和基本不等式考查了计算能力属于中档题解析:0,3π⎡⎤⎢⎥⎣⎦【分析】由已知,得22222923a a b b a a b b +⋅⎧⎪⎨⎪+=-⋅+=⎩②①,由+①②,得226a b +=,由不等式可知3a b ≤,再由-①②,得32a b ⋅=,最后由cos ,a b a b a b ⋅=可得解.【详解】由3a b +=,3a b -=,得()()2239ba ab ⎧⎪⎨⎪-==+⎩,即22222923a a b b a a b b +⋅⎧⎪⎨⎪+=-⋅+=⎩②①由+①②,得226a b +=,即226a b += 由-①②,得32a b ⋅=由222a b a b +≥,得3a b ≤1cos ,2a b a b a b⋅=≥所以,0,3a b π≤≤.故答案为:0,3π⎡⎤⎢⎥⎣⎦【点睛】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.19.(1)(2)(4)【分析】根据正弦型函数周期公式正弦型函数对称中心坐标正弦型函数对称轴等知识逐项验证即可求得答案【详解】对于(1)根据正弦型函数周期公式:可得:函数最小正周期为:故(1)正确;对于(解析:(1)(2)(4) 【分析】根据正弦型函数周期公式,正弦型函数对称中心坐标,正弦型函数对称轴等知识,逐项验证,即可求得答案. 【详解】对于(1),根据正弦型函数周期公式:2T ωπ=可得:函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭最小正周期为:2233T ππ==,故(1)正确;对于(2),根据正弦函数sin ()y x x R =∈的图象的对称中心为(0),k π 正弦型函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭∴令334,k Z x k ππ=∈-,解得4,3k k Z x ππ=+∈ ∴其对称中心坐标为(,0),34k k Z ππ+∈当0k =时,对称中心坐标为(,0)4π,故(2)正确;对于(3),将2sin3y x =的图象向右平移34π个单位长度 可得:392sin 32sin 344y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭92sin 322sin 344x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭∴将2sin3y x =的图象向右平移34π个单位长度不能得到图象C ,故(3)错误; 对于(4),根据正弦函数sin ()y x x R =∈的图象的对称轴方程为,2x k k Z ππ=+∈,正弦型函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭∴令,2334Z x k k πππ=+∈-,解得51,32k k x Z ππ=+∈ 当2k =-时,512342x πππ=+=--, ∴3()2sin 34f x x π⎛⎫=-⎪⎝⎭一条对称轴4πx =-,故(4)正确; 故答案为:(1)(2)(4).【点睛】本题解题关键是掌握整体法求正弦函数图象的对称中心和对称轴的方法,考查了分析能力和计算能力,属于中档题.20.【分析】周期为先考查一个周期函数判断零点个数及坐标再结合周期性即可求解【详解】是函数的一个周期当时当时只有四个零点在上恰有4个零点实数m 的取值范围为故答案为:【点睛】本题考查函数的零点个数求参数注意 解析:517[,)36ππ【分析】()f x 周期为2π,先考查一个周期函数,判断零点个数及坐标,再结合周期性,即可求解【详解】2x π=是函数()f x 的一个周期,当[0,2]x π时,5cos [,]44()5sin [0,][,2]44x x f x x x πππππ⎧∈⎪⎪=⎨⎪+∈⋃⎪⎩当[0,2]x π时,()f x 只有四个零点5745,,,6633ππππ, 在[0,]m 上恰有4个零点,实数m 的取值范围为517[,)36ππ. 故答案为:517[,)36ππ. 【点睛】本题考查函数的零点个数求参数,注意函数图像和性质的应用,属于中档题.三、解答题21.(1)最小正周期为π;(2)5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,. 【分析】(1)由三角函数恒等变换化简函数得()sin 2f x x =,由三角函数的周期公式可得答案;(2)由余弦的二倍角公式和辅助角公式得()gx 2sin23x π=-(),再由正弦函数的性质可求得函数的单调增区间. 【详解】 解:(1)函数()22sin cos 12cos 1cos 2sin 24444f x x x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+--=--=⨯-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以函数()f x 的最小正周期为22ππ=. (2)()()22sin 22cos 1sin 2g x f x x x x x x =-=-=)2sin 23x π=-(),令222232k x k k Z πππππ-≤-≤+∈,,得51212k x k k Z ππππ-≤≤+∈,, 所以函数()g x 的单调增区间为51212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,,. 【点睛】方法点睛:解决三角函数的周期和单调性等相关问题,先利用三角函数的恒等变换化简函数为一个角一个三角函数,再运用整体思想代入是常用的方法.22.112【分析】①②③任选一个条件,均可求出sin ,cos αα,求出sin()αβ+,利用()βαβα=+-,结合两角差的余弦公式,即可求解.【详解】 若选条件①因为2sin 3sin 2αα=,所以2sin 32sin cos ααα=⨯,即1cos 3α=. 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 3α== 因为1cos()4αβ+=-,由平方关系22sin ()cos ()1αβαβ+++=, 解得215sin ()16αβ+=. 因为0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,所以0αβ<+<π,所以sin()4αβ+=, 所以cos cos[()]βαβα=+-cos()cos sin()sin αβααβα=+++1143=-⨯=若选条件②因为cos2α=21cos 2cos 123αα=-=. 由平方关系22sin cos 1αα+=,得28sin 9α=.因为0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 3α=以下同①的解法.若选条件③因为tan α=sin cos αα= 由平方关系22sin cos 1αα+=,解得sin 31cos 3αα⎧=⎪⎪⎨⎪=⎪⎩ 或sin 31cos 3αα⎧=-⎪⎪⎨⎪=-⎪⎩ 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 31cos 3αα⎧=⎪⎪⎨⎪=⎪⎩. 以下同①的解法. 【点睛】关键点点睛:本题根据不同的条件,利用三角恒等变换、同角三角函数的基本关系求出sin α,cos α,再利用1cos()4αβ+=-求出sin()αβ+,根据角的变换()βαβα=+-求解是关键,属于中档题.23.(1)()cos 2f x x =;(2)42,2,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【分析】(1)根据函数()sin()f x x ωϕ=+为偶函数求出ϕ,根据()y f x =图像的两相邻对称中心点间的距离求出ω,则可得()f x 的解析式;(2)根据图象变换规律求出()g x ,再根据余弦函数的递减区间列式可解得结果. 【详解】(1)由于函数()sin()f x x ωϕ=+为偶函数,则,2k k πϕπ=+∈Z .又0ϕπ<<,则2ϕπ=.又函数()f x 图象的两相邻对称中心点间的距离为2π,从而22T T ππ=⇒=,故22Tπω==. 故()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭. (2)函数()y f x =图象向右平移6π个单位得()cos 2cos 2663h x f x x x πππ⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;再由伸缩变换可得:()cos 3g x x π⎛⎫=- ⎪⎝⎭. 由223k x k ππππ-+.得4223k x k πππ≤≤+,k Z ∈, 故()g x 的单调递减区间为:42,2,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【点睛】关键点点睛:掌握三角函数的图象变换规律以及余弦函数的递减区间是解题关键. 24.(1)最大值1,2,2x k k Z ππ=+∈;(2)5{|22,}66x k x k k Z ππππ+≤≤+∈. 【分析】(1)当sin 1x =时,函数取最大值得解; (2)根据三角函数的图象解不等式得解集. 【详解】(1)当sin 1x =即2,2x k k Z ππ=+∈时,()2111max f x =⨯-=;(2)由题得1sin 2x >,所以不等式的解集为5{|22,}66x k x k k Z ππππ+≤≤+∈. 【点睛】关键点睛:解答这类题的关键是熟练掌握三角函数的图象和性质,再灵活利用其解题.25.(1)2)6π【分析】(13sin =-x x ,进而可得结果.(2)由平面向量的数量积可得3cos -x x ,进而可得结果. 【详解】(1)由//m n 3sin tan =-⇒=x x x(2)13cos 3sin cos 132π⋅=-=⋅⋅=⨯m n x x m n 可得1sin()32x π-=-,因为2[0,],[,]333ππππ∈-∈-x x 所以366πππ-=-⇒=x x【点睛】本题考查了平面向量共线的坐标表示、平面向量数量积运算的坐标表示和三角恒等变换,考查了运算求解能力和逻辑推理能力,属于中档题目.26.(1)19; (2)13-.【分析】(1)由题意,求得(3,22),3(10,4)ka b k k a b +=-+-=-,根据因为ka b +与3a b -垂直,列出方程,即可求解;(2)根据ka b +与3a b -平行,列出方程,即可求解.【详解】(1)由题意,向量(1,2),(3,2)a b ==-,则(3,22),3(10,4)ka b k k a b +=-+-=-,因为ka b +与3a b -垂直,所以()(3)10(3)4(22)0ka b a b k k +⋅-=--+=,即2380k -=,解得19k =.(2)若ka b +与3a b -平行,则满足4(3)10(22)0k k ---+=,即2480k -+=,解得13k =-.【点睛】本题主要考查了向量的坐标运算,以向量垂直和平行的判定及应用,其中解答中熟练应用向量的坐标运算公式,根据向量垂直和平行,列出方程求解是解答的关键,着重考查了推理与运算能力.。
一、选择题1.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =2,则有( ) A .c <a <bB .b <c <aC .a <b <cD .b <a <c2.已知αβ、均为锐角,满足sin cos αβ==,则αβ+=( ) A .6πB .4π C .3π D .34π3.人体满足黄金分割比的人体是最美人体,0.618是黄金分割比m =黄金分割比还可以表示为2cos72︒( )A .4B 1C .2D 14.已知()0,απ∈,sin cos 3αα+=cos2=α( )A .BC .9-D .95.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( )A .4B .C .3+D .66.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .(1,)⎛⋃+∞ ⎝⎭C .⎫⎪⎪⎝⎭D .(1,)+∞7.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(1⎤⎦B .(1⎤⎦C .1⎤⎦D .)1,+∞8.在ABC ∆中,2,3,60,AB BC ABC AD ==∠=为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,其中,R λμ∈,则λμ+等于( )A .1B .12C .13 D .239.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减10.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 11.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( )A .1B C .1916D .3412.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-二、填空题13.已知sin 4πα⎛⎫+= ⎪⎝⎭,()0,απ∈,则cos 26πα⎛⎫+= ⎪⎝⎭__________. 14.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别是A ,B ,双曲线的右焦点F 为()2,0,点P 在过F 且垂直于x 轴的直线l 上,当ABP ∆的外接圆面积达到最小时,点P 恰好在双曲线上,则该双曲线的方程为________.15.设函数()cos f x x x -的图像为C ,有如下结论: ①图象C 关于直线2π3x =对称; ②()f x 的值域为[]22-,;③函数()f x 的单调递减区间是π2π2π,2π33k k ⎡⎤-+⎢⎥⎣⎦()k Z ∈; ④图象C 向右平移π3个单位所得图象表示的函数是偶函数. 其中正确的结论序号是___________________.(写出所有正确结论的序号).16.如图所示,已知AOB ,点C 是点B 关于点A 的对称点,2OD DB =,DC 和OA 交于点E ,若OE OA λ=,则实数λ的值为_______.17.已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值 ________.18.已知|a |=2|b |,|b |≠0,且关于x 的方程x 2+|a |x a b -⋅=0有两相等实根,则向量a 与b 的夹角是_____. 19.若将函数()cos 212f x x π⎛⎫=+⎪⎝⎭的图象向左平移8π个单位长度,得到函数()g x 的图象,则下列说法正确的是_________.①()g x 的最小正周期为π ②()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减 ③12x π=不是函数()g x 图象的对称轴 ④()g x 在,66ππ⎡⎤-⎢⎥⎣⎦上的最小值为12-20.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .三、解答题21.已知函数2()cos sin 32233x x x f x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭.(1)若,2x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的递增区间和值域;(2)若004()54f x x ππ=+≤≤,求点02sin 3x ⎛⎫ ⎪⎝⎭.22.已知函数())2cos sin 34f x x x x x R π⎛⎫=++∈ ⎪⎝⎭. (1)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值; (2)设函数()g x 对任意x ∈R ,有()2g x g x π⎛⎫+= ⎪⎝⎭,且当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12g x f x =-.求()g x 在区间[],0π-上的解析式. 23.已知向量()sin ,cos a x x =,()3,1b =-,[]0,x π∈.(1)若a b ⊥,求x 的值;(2)记()f x a b =⋅,求()f x 的最大值和最小值以及对应的x 的值. 24.已知向量(1,2),(,2),(3,1)==-=-OA OB m OC ,O 为坐标原点. (1)若AB AC ⊥求实数m 的值; (2)在(1)的条件下,求△ABC 的面积.25.已知函数()sin(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭,函数12y f x π⎛⎫=- ⎪⎝⎭为奇函数. (1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向右平移6π个单位,然后将所得的图象上各点的横坐标缩小到原来的12倍(纵坐标不变),得到函数()y g x =的图象,证明:当0,4x π⎡⎤∈⎢⎥⎣⎦时,22()()10g x g x --≤.26.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和水深关系表:()()sin ,0,2f t A t B A πωϕωϕ⎛⎫=++>< ⎪⎝⎭来描述.(1)根据以上数据,求出函数()()sin f t A t B ωϕ=++的表达式;(2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用两角和的正弦函数公式化简a ,利用二倍角的余弦公式及诱导公式化简b ,再利用特殊角的三角函数值化简c ,根据正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,甶角度的大小,得到正弦值的大小,进而得到,a b 及c 的大小关系. 【详解】化简得()17cos45cos1745174562a sin sin sin sin =+=+=,()22cos 131cos26cos 906464b sin =-==-=,60c sin ==,正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,606264sin sin sin ∴<<,即c a b <<,故选A. 【点睛】本题考查了二倍角的余弦公式,两角和与差的正弦公式,诱导公式,以及特殊角的三角函数,正弦函数的单调性,属于中档题. 比较大小主要有四种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.2.B解析:B 【分析】依题意,求cos (α+β),结合角的范围可求得α+β的值. 【详解】由已知α、β均为锐角,sin αβ==,cos 510αβ∴==又cos (α+β)=cosαcosβ﹣sinαsinβ=2, ∵0<α+β<π,∴α+β=4π. 故选B . 【点睛】解答给值求角问题的一般思路:①求角的某一个三角函数值,此时要根据角的范围合理地选择一种三角函数;②确定角的范围,此时注意范围越精确越好;③根据角的范围写出所求的角.3.C解析:C 【分析】根据2cos72m ︒=,结合三角函数的基本关系式,诱导公式和余弦的倍角公式,准确运算,即可求解. 【详解】根据题意,可得2cos72m ︒=,则2sin144cos54︒==︒()2sin 90542cos542cos54cos54︒+︒︒===︒︒. 故选:C . 【点睛】本题主要考查了三角函数的化简、求值,其中解答中熟练应用三角函数的基本关系式,诱导公式和余弦的倍角公式,准确运算是解答的关键,着重考查推理与运算能力.4.A解析:A 【分析】在等式sin cos 3αα+=两边同时平方可求得cos sin αα-的值,然后利用二倍角的余弦公式可求得cos2α的值. 【详解】()0,απ∈,sin cos 3αα+=,两边平方后得:112sin cos 3αα+=,即1sin cos 3αα=-,sin 0α∴>,cos 0α<,()215cos sin 12sin cos 1233αααα⎛⎫-=-=-⨯-= ⎪⎝⎭,cos sin 3αα∴-=-,则()()22cos 2cos sin cos sin cos sin ααααααα=-=-+== 故选:A. 【点睛】本题考查利用二倍角的余弦公式求值,同时也考查了同角三角函数平方关系的应用,考查计算能力,属于中等题.5.B解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±. 则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.6.B解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a 所满足的条件,最后求得结果. 【详解】 由题意得24,(0,0),(,1),(3,1)2T a O A a B a aππ==-,因为OAB 为钝角三角形,所以0OA OB ⋅<或0AB AO⋅<,即2310a -<,或2220a -+<,从而0a <或1a >. 故选:B. 【点睛】该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题.7.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出OB d ==,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 1,O 在BM 的延长线上时,OB 1. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,ax cy +≤=,取等号条件:ay cx =,令OB d ==,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得11d ≤≤.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.8.D解析:D 【分析】根据题设条件求得13BD BC =,利用向量的线性运算法则和平面向量的基本定理,求得1126AO AB BC =+,得到11,26λμ==,即可求解.【详解】 在ABC ∆中,2,60,AB ABC AD =∠=为BC 边上的高, 可得1sin 212BD AB ABC =∠=⨯=, 又由3BC =,所以13BD BC =, 由向量的运算法则,可得13AD AB BD AB BC =+=+, 又因为O 为AD 的中点,111226AO AD AB BC ==+, 因为AO AB BC λμ=+,所以11,26λμ==,则23λμ+=. 故选:D. 【点睛】本题主要考查了平面向量的线性运算法则,以及平面向量的基本定理的应用,其中解答中熟记向量的运算法则,结合平面向量的基本定理,求得1126AO AB BC =+是解答的关键,着重考查推理与运算能力.9.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=- ⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=-⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD. 【点睛】本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.10.C【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.11.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.12.A【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-=⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭, 由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 二、填空题13.【分析】构造角再用两角和的余弦公式及二倍公式打开【详解】故答案为:【点睛】本题是给值求值题关键是构造角应注意的是确定三角函数值的符号【分析】 构造角22643πππαα⎛⎫+=+- ⎪⎝⎭,cos 4πα⎛⎫+ ⎪⎝⎭求,再用两角和的余弦公式及二倍公式打开. 【详解】()50,,,444πππαπα⎛⎫∈+∈ ⎪⎝⎭,sin 462πα⎛⎫+=< ⎪⎝⎭,cos 46πα⎛⎫∴+=- ⎪⎝⎭,22cos 22cos 1443ππαα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭,sin 22sin cos 444πππααα⎛⎫⎛⎫⎛⎫+=+⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 2cos 2cos 2cos sin 2sin 6434343πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2132⎛=⨯+= ⎝⎭【点睛】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.14.【分析】设点的坐标为由于为定值由正弦定理可知当取得最大值时的外接圆面积取得最小值也等价于取得最大值结合已知即可求得答案【详解】不妨设点的坐标为由于为定值由正弦定理可知当取得最大值时的外接圆面积取得最解析:22122x y -=.【分析】设点P 的坐标为()()2,0m m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值,结合已知,即可求得答案. 【详解】不妨设点P 的坐标为()()2,0m m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值,2tan a APF m +∠=,2tan aBPF m-∠=, ∴()2222tan tan 221a aa a m m APB APF BPF a ab b m m m m +--∠=∠-∠==≤=+-+⋅+, 当且仅当()20b m m m=>,即当m b =时,等号成立,此时APB ∠最大,即APB ∆的外接圆面积取最小值.点P 的坐标为()2,b ,代入22221x y a b-=,可得a =b =∴双曲线的方程为22122x y -=.故答案为:22122x y -=.【点睛】本题主要考查了求双曲线的方程,解题关键是掌握双曲线基础知识和灵活使用均值不等式,考查了分析能力和计算能力,属于难题.15.①②④【分析】化简函数代入求最值可判断①;求出的最值可判断②;求出函数的单调递减区间可判断③;求出向右平移个单位的解析式化简后可判断④【详解】当时取得最大值2故①正确;因为的最大值为2最小值为所以的解析:①②④. 【分析】化简函数()2sin 6f x x π⎛⎫=-⎪⎝⎭代入2π3x =求最值可判断①;求出()f x 的最值可判断②;求出函数()f x 的单调递减区间可判断③;求出()f x 向右平移π3个单位的解析式化简后可判断④. 【详解】()1cos 2cos 2f x x x x x ⎫=-=-⎪⎪⎝⎭2cos sin sin cos 2sin 666x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当2π3x =时,22π2sin 2336f ππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,取得最大值2,故①正确; 因为()π2sin 6f x x ⎛⎫=- ⎪⎝⎭的最大值为2,最小值为2-,所以()f x 的值域为[]22-,,故②正确; 令π322262k x k ππππ+≤-≤+()k Z ∈,得252233k x k ππππ+≤≤+, 即()f x 的单调递减区间是2π5π2π,2π33k k ⎡⎤++⎢⎥⎣⎦()k Z ∈,故③错误; 图象C 向右平移π3个单位得π2sin 2sin 2cos 362y x x x ππ⎛⎫⎛⎫=--=-=- ⎪ ⎪⎝⎭⎝⎭是偶函数,故④正确.故答案为:①②④. 【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质的应用,其中解答中利用三角恒等变换的公式,化简()f x 的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.16.【分析】设可得又因为即可求解【详解】如图所示:设由于所以由于点是点关于点的对称点则为中点所以得所以由于又因为得故答案为:【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法解析:45【分析】设,OA a OB b ==,可得523DC a b =-,()2EC a b λ=--,又因为//EC DC ,即可求解λ. 【详解】 如图所示:设,OA a OB b ==,由于2OD DB =,所以23OD b =,由于点C 是点B 关于点A 的对称点,则A 为BC 中点, 所以()12OA OB OC =+,得2OC a b =- 所以523DC OC OD a b =-=-由于()2EC OC OE a b λ=-=-- ,又因为//EC DC21523λ-=得45λ= . 故答案为:45【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.17.【详解】如图建立平面直角坐标系∴当sin 时得到最小值为故选 解析:48322-【详解】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B22M 02-,,,,,,,∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅-++⎣⎦,,()(22cos θ2sin θ2cos θ2sin θ16sin θθ32⎡⎤⋅+=++⎣⎦,,,当sin θ1=-时,得到最小值为48-48-18.【分析】由关于的方程有两相等实根可得解得即可求出与的夹角【详解】∵已知|且关于的方程有两相等实根∴设向量与的夹角为则可解得则向量与的夹角为故答案为:【点睛】本题考查向量的夹角考查方程的解的应用 解析:23π【分析】由关于x 的方程20x a b a x +-⋅=有两相等实根,可得240a a b ∆=+⋅=,解得1cos 2θ=-,即可求出a 与b 的夹角【详解】∵已知|2a b =,0b ≠,且关于x 的方程20x a b a x +-⋅=有两相等实根,∴240a a b ∆=+⋅=, 设向量a 与b 的夹角为θ, 则()2242cos 0bb b θ∆=+⨯=,可解得1cos 2θ=-0θπ≤≤,则向量a 与b 的夹角θ为23π 故答案为:23π 【点睛】本题考查向量的夹角,考查方程的解的应用19.①③④【分析】由函数图像的变换可得结合余弦函数的周期性单调性对称轴等即可判断选项得出答案【详解】的最小正周期为选项A 正确;当时时故在上有增有减选项B 错误;故不是图象的一条对称轴选项C 正确;当时且当即解析:①③④ 【分析】由函数图像的变换可得()cos 23π⎛⎫=+ ⎪⎝⎭g x x ,结合余弦函数的周期性、单调性、对称轴等即可判断选项,得出答案. 【详解】()cos 2cos 28123g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.()g x 的最小正周期为π,选项A 正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,42,333x πππ⎡⎤+∈⎢⎥⎣⎦ 时,故()g x 在0,2π⎡⎤⎢⎥⎣⎦上有增有减,选项B 错误;012g π⎛⎫= ⎪⎝⎭,故12x π=不是()g x 图象的一条对称轴,选项C 正确;当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,220,33x ππ⎡⎤+∈⎢⎥⎣⎦,且当2233x ππ+=,即6x π=时,()g x 取最小值12-,D 正确. 故答案为:①③④. 【点睛】本题考查了三角函数图像的变换、余弦函数的周期性、单调性和对称轴等基本知识,考查了运算求解能力和逻辑推理能力,属于一般题目.20.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重解析:1)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【详解】由图可知,15DAB ∠=︒()tan 45tan 30tan15tan 453021tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan15602120DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.三、解答题21.(1),24ππ⎡⎤-⎢⎥⎣⎦,值域1⎤+⎥⎣⎦;(2)02sin 3x ⎛⎫= ⎪⎝⎭ 【分析】(1)先利用诱导公式和降幂公式可将()f x 化为()2sin 332x f x π⎛⎫=++⎪⎝⎭数的性质可得函数的单调区间和值域. (2)利用两角差的正弦公式可求02sin 3x ⎛⎫⎪⎝⎭的值. 【详解】①2()sin cos 1cos 3323x x x f x ⎛⎫=++ ⎪⎝⎭2sin 33x π⎛⎫=+ ⎪⎝⎭, 由2222332x k k πππππ-≤+≤+得53344k x k ππππ-≤≤+,k Z ∈, 又2x ππ-≤≤,所以()f x 的递增区间为,24ππ⎡⎤-⎢⎥⎣⎦, 又2x ππ-≤≤,故2033x ππ≤+≤,所以20sin 133x π⎛⎫≤+≤ ⎪⎝⎭,()f x ∴值域为122⎤+⎥⎣⎦.②由024()sin 335x f x π⎛⎫=++= ⎪⎝⎭得024sin 335x π⎛⎫+=⎪⎝⎭, 因04x ππ≤≤,所以02233x πππ≤+≤,故023cos 335x π⎛⎫+=- ⎪⎝⎭00002222sin sin sin cos cos sin 3333333333x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦413525=⨯+=. 【点睛】 方法点睛:形如()22sinsin cos cos f x A x B x x C x ωωωω=++的函数,可以利用降幂公式和辅助角公式将其化为()()'sin 2'f x A x B ωϕ=++的形式,再根据复合函数的讨论方法求该函数的单调区间、对称轴方程和对称中心等.三角函数的化简求值问题,可以从四个角度去分析:(1)看函数名的差异;(2)看结构的差异;(3)看角的差异;(4)看次数的差异.对应的方法是:弦切互化法、辅助角公式(或公式的逆用)、角的分拆与整合(用已知的角表示未知的角)、升幂降幂法.22.(1)最大值为14,最小值为12-;(2)()11sin 2,0223211sin 2,2232x x g x x x πππππ⎧⎛⎫+--≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪---≤< ⎪⎪⎝⎭⎩.【分析】(1)利用两角和的正弦公式,二倍角公式以及辅助角公式将()f x 化简,再由三角函数的性质求得最值;(2)利用0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12g x f x =-,对x 分类求出函数的解析式即可. 【详解】(1)()2cos sin 34f x x x x ⎛⎫ ⎪⎝⎭π=++2cos sin cos cos sin 334x x x x ππ⎛⎫=++⎪⎝⎭1sin 2244x x =- 1sin 223x π⎛⎫=- ⎪⎝⎭, 因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,则1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 111sin 2,2324x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()f x 的最大值为14;()f x 的最小值为12-; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时, ()11sin 2223g x x π⎛⎫=-- ⎪⎝⎭, 当,02x ⎡⎤∈-⎢⎥⎣⎦π时,0,22x ππ⎡⎤+∈⎢⎥⎣⎦,()11sin 22223g x g x x ππ⎛⎫⎛⎫=+=+- ⎪ ⎪⎝⎭⎝⎭,当,2x ππ⎡⎫∈--⎪⎢⎣⎭时,0,2x ππ⎡⎫+∈⎪⎢⎣⎭;()()11sin 2223g x g x x ππ⎛⎫=+=-- ⎪⎝⎭, 综上:()g x 在区间[],0π-上的解析式为:()11sin 2,0223211sin 2,2232x x g x x x πππππ⎧⎛⎫+--≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪---≤< ⎪⎪⎝⎭⎩. 【点睛】关键点睛:本题考查了三角函数中的恒等变换应用,三角函数的周期性及其求法.熟练掌握两角和的正弦公式,二倍角公式以及辅助角公式是解决本题的关键.23.(1)6x π=;(2)23x π=时,()f x 取到最大值2,0x =时,()f x 取到最小值1-.【分析】(1)利用向量垂直的坐标表示可求得tan 3x =,结合x 的范围可求得x 的值; (2)将函数化简为()2sin 6f x x π⎛⎫=- ⎪⎝⎭,根据x 的范围可求得6x π-的范围,结合正弦函数图象可确定最大值和最小值取得的点,进而求得结果.【详解】解:(1)因为a b ⊥, 所以sin co 30s b x x a =-=⋅,于是sin tan s 3co x x x ==, 又[]0,x π∈,所以6xπ=;(2)()())sin ,1cos f x ax b x =⋅=⋅- cos x x =-2sin 6x π⎛⎫=- ⎪⎝⎭. 因为[]0,x π∈,所以5,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 从而12sin 26x π⎛⎫-≤-≤ ⎪⎝⎭ 于是,当62x ππ-=,即23x π=时,()f x 取到最大值2;当66x ππ-=-,即0x =时,()f x 取到最小值1-.【点睛】本题考查平面向量垂直的坐标表示、平面向量与三角函数的综合应用,涉及到三角函数最值的求解问题;求解三角函数最值的关键是能够利用整体对应的方式,结合正弦函数的图象来进行求解.24.(1)1;(2)【分析】(1)根据向量(1,2),(,2),(3,1)==-=-OA OB m OC ,得到向量,AB AC ,再由AB AC ⊥,利用坐标运算求解.(2)由(1)得到 ,AB AC ,然后由12ABC S AB AC =⨯⨯求解. 【详解】(1)因为向量(1,2),(,2),(3,1)==-=-OA OB m OC ,所以向量(1,4),(4,1)AB m AC =--=--,又因为AB AC ⊥,所以4(1)40m --+=,解得 2m =.(2)由(1)知:(0,4),(4,1)AB AC =-=--, 所以4,17AB AC ==所以11422ABC S AB AC =⨯⨯=⨯= 【点睛】本题主要考查平面向量的数量积的坐标运算,还考查了运算求解的能力,属于中档题. 25.(1),(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)证明见解析. 【分析】(1)根据sin 2126f x x ππϕ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数可得6π=ϕ,则()sin 26f x x π⎛⎫=+ ⎪⎝⎭,再由222,Z 262k x k k πππππ-≤+≤+∈可得答案; (2)根据三角函数图象的变换规律可得()sin 46g x x π⎛⎫=- ⎪⎝⎭,由0,4x π⎡⎤∈⎢⎥⎣⎦,求出1(),12g x ⎡⎤=-⎢⎥⎣⎦,进而可得结论. 【详解】(1)由题意知:sin 2126y f x x ππϕ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数 所以()6k k Z πϕπ-=∈,(Z)6k k πϕπ=+∈ 因为02πϕ<<,所以0k =,6π=ϕ 所以()sin 26f x x π⎛⎫=+⎪⎝⎭ 由222,Z 262k x k k πππππ-≤+≤+∈, 解得:,Z 36k x k k ππππ-≤≤+∈,所以()f x 的单调递增区间为,(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)由题知:将()y f x =的图象向右平移6π个单位得sin 266y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 即sin 26y x π⎛⎫=- ⎪⎝⎭,再将图象上各点的横坐标缩小到原来的12倍, 得()sin 46g x x π⎛⎫=-⎪⎝⎭, 因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以54,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 因此1()sin 4,162g x x π⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦, 则2()10g x +≥且()10g x -≤,所以22()()1[2()1][()1]0g x g x g x g x --=+-≤【点睛】方法点睛:函数sin()y A x ωϕ=+()0,0A ω>>的单调区间的求法:,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间;2222k x k πππωϕπ-+≤+≤+求得增区间.26.(1)()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭;(2)在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时.【分析】由表格易知()()max min 7,3f t f t ==,由()()()()max minmax min,22f t f t f t f t A B -+==,求得A ,B ,再根据14212T =-=和2t =时,函数取得最大值,分别求得,ωϕ即可.(2)根据货船需要的安全水深度为6,由()2sin 5666f t t ππ⎛⎫=++≥⎪⎝⎭求解. 【详解】由表格可知()()max min 7,3f t f t ==,,则()()()()max minmax min2,522f t f t f t f t A B -+====, 又214212,6T T ππω=-===, 当2t =时,()22sin 2576f πϕ⎛⎫=⨯++=⎪⎝⎭, 即sin 13πϕ⎛⎫+=⎪⎝⎭, 所以232k ππϕπ+=+, 又2πϕ<, 所以6π=ϕ, 所以()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭. (2)因为货船需要的安全水深度为6,所以()2sin 5666f t t ππ⎛⎫=++≥⎪⎝⎭, 即1sin 662t ππ⎛⎫+≥⎪⎝⎭, 所以5226666k t k ππππππ+≤+≤+, 即12412k t k ≤≤+,又因为[]0,24t ∈, 当0k =时,[]0,4t ∈,当1k =时,[]12,16t ∈,所以在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时.【点睛】方法点睛:由函数y =A sin(ωx +φ)的图象或表格确定A ,ω,φ的题型,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准“零点”或“最大(小)值点”的位置.要善于抓住特殊量和特殊点.。
必修四期末测试题
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.
1.sin 150°的值等于( ). A .
2
1
B .-
2
1 C .
2
3 D .-
2
3 2.已知=(3,0)
等于( ). A .2
B .3
C .4
D .5
3.在0到2π范围内,与角-3
4π
终边相同的角是( ). A .
6
π B .
3π
C .
3
2π D .
3
4π 4.若cos α>0,sin α<0,则角 α 的终边在( ). A .第一象限
B .第二象限
C .第三象限
D .第四象限
5.sin 20°cos 40°+cos 20°sin 40°的值等于( ). A .
4
1
B .
2
3 C .
2
1 D .
4
3 6.如图,在平行四边形ABCD 中,下列结论中正确的是( ). A .= B .-= C .+= D .+= 7.下列函数中,最小正周期为 π 的是( ). A .y =cos 4x
B .y =sin 2x
C .y =sin
2
x D .y =cos
4
x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ). A .10
B .5
C .-
2
5 D .-10
9.若tan α=3,tan β=3
4
,则tan (α-β)等于( ). A .-3
B .3
C .-3
1
D .3
1
10.函数y =2cos x -1的最大值、最小值分别是( ).
A .2,-2
B .1,-3
C .1,-1
D .2,-1
11.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若AB ⊥BC ,那么c 的值是( ). A .-1 B .1 C .-3 D .3
C (第6题)
12.下列函数中,在区间[0,2
π
]上为减函数的是( ). A .y =cos x
B .y =sin x
C .y =tan x
D .y =sin (x -
3
π) 13.已知0<A <2π,且cos A =53
,那么sin 2A 等于( ).
A .
25
4
B .
25
7 C .
25
12 D .
25
24 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).
A .(-3,-2)
B .(3,-2)
C .(-2,-3)
D .(-3,2)
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 α 的终边经过点P (3,4),则cos α 的值为 .
16.已知tan α=-1,且 α∈[0,π),那么 α 的值等于 .
17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 .
18.某地一天中6时至14时的温度变化曲线近似 满足函数T =A sin (ωt +ϕ)+b (其中
2
π
<ϕ<π),6 时至14时期间的温度变化曲线如图所示,它是上 述函数的半个周期的图象,那么这一天6时至14 时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.
三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.
19.(本小题满分8分) 已知0<α<2π,sin α=54.(1)求tan α 的值; (2)求cos 2α+sin ⎪⎭⎫ ⎝
⎛
2π + α的值.
(第18题)
20.(本小题满分10分)
已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=2
1. (1)求|b |;(2)当a ·b =2
1
时,求向量a 与b 的夹角 θ 的值.
21.(本小题满分10分) 已知函数f (x )=sin ωx (ω>0).
(1)当 ω=1时,写出由y =f (x )的图象向右平移6
π
个单位长度后得到的图象所对应的函数解析式; (2)若y =f (x )图象过点(3
π2,0),且在区间(0,3π
)上是增函数,求 ω 的值.
期末测试题参考答案
一、选择题: 1.A
解析:sin 150°=sin 30°=2
1. 2.B
=0+9=3. 3.C
解析:在直角坐标系中作出-3
4π
由其终边即知. 4.D
解析:由cos α>0知,α 为第一、四象限或 x 轴正方向上的角;由sin α<0知,α 为第三、四象限或y 轴负方向上的角,所以 α 的终边在第四象限.
5.B
解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=2
3
. 6.C
解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知+=. 7.B 解析:由T =ω
π
2=π,得 ω=2.
8.D
解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D
解析:tan (α-β)=βαβαtan tan +1tan -tan =
4+134
-
3=3
1. 10.B
解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.
11.D
解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3. 12.A
解析:画出函数的图象即知A 正确.
13.D
解析:因为0<A <2π
,所以sin A =5
4=cos -12A ,sin 2A =2sin A cos A =2524.
14.A
解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以 q =(-3,-2).
二、填空题: 15.
5
3
. 解析:因为r =5,所以cos α=5
3. 16.
4
3π. 解析:在[0,π)上,满足tan α=-1的角 α 只有43π,故 α=4
3π. 17.(-3,-5).
解析:3b -a =(0,-3)-(3,2)=(-3,-5). 18.20;y =10sin (
8πx +4
3π
)+20,x ∈[6,14]. 解析:由图可知,这段时间的最大温差是20°C .
因为从6~14时的图象是函数y =A sin (ωx +ϕ)+b 的半个周期的图象,
所以A =
21(30-10)=10,b =21
(30+10)=20. 因为21·ωπ2=14-6,所以 ω=8π,y =10sin ⎪⎭⎫
⎝⎛ϕ + 8πx +20.
将x =6,y =10代入上式,
得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭
⎫
⎝⎛ϕ + 43π=-1,
由于2π
<ϕ<π,可得 ϕ=4
3π.
综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8
π
x +20,x ∈[6,14].
三、解答题:
19.解:(1)因为0<α<
2
π,sin α=54
, 故cos α=53,所以tan α=34.
(2)cos 2α+sin ⎪⎭
⎫
⎝⎛α + 2π=1-2sin 2α +cos α=1-2532+53=258.
20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21
,
所以|b |2=|a |2-
21=1-21=2
1
,故|b |=22.
(2)因为cos θ=
b
a b a ·=22,故 θ=45°.
21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝
⎛
6π - x .
(2)由y =f (x )的图象过⎪⎭
⎫
⎝⎛0 , 32π点,得sin 32πω=0,所以32π
ω=k π,k ∈Z .
即 ω=
2
3
k ,k ∈Z .又ω>0,所以k ∈N*. 当k =1时,ω=
23,f (x )=sin 23x ,其周期为3
4π, 此时f (x )在⎪⎭
⎫ ⎝
⎛3π ,
0上是增函数; 当k ≥2时,ω≥3,f (x )=sin ωx 的周期为
ω
π
2≤
32π<3
4π, 此时f (x )在⎪⎭
⎫ ⎝
⎛3π ,
0上不是增函数. 所以,ω=2
3
.。