第7讲_用倒推法解分数应用题
- 格式:doc
- 大小:45.00 KB
- 文档页数:3
六年级奥数专项用倒推法解题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】用倒推法解题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。
这种方法对于解答一些分数应用题同样适用。
【例题精讲】例题1:有一条铁丝,第一次剪下它的12又1米;第二次剪下剩下的13又1米;此时还剩下15米。
这条铁丝原来长多少米模仿练习1:一堆水泥,第一次用去它的12又3吨,第二次用剩下水泥的13又3吨,第三次又用去第二次余下的14又3吨,这时这堆水泥正好剩下3吨。
这堆水泥原来有多少吨例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15运到甲仓库,再将甲仓库此时存粮的14运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。
那么,原来甲仓库和乙仓库中各存粮多少吨模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27多12个,第二只分到余下的23少4个,第三只分到20个。
这筐桃子共有多少个(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。
后来擦掉其中一个,剩下的数的平均数是。
那么,被擦掉的那个自然数是多少模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。
其余各数的平均数是35517。
擦去的数是多少(奥赛初赛A卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒 模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要多少小时【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。
分数应用题(二)一、知识点概述我们已经学习了几种常见的分数应用题的解答方法,会根据题目提供的信息分析数量关系,选择合适的方法解答分数应用题,今天我们重点探究“总量与部分量”这一类分数应用题的解答方法。
二、重点知识归纳及讲解(一)“总量与部分量”这一类分数应用题的基本特点:这一类分数应用题往往是把总量(如:一条路的全长、一项工程、一个班级的总人数、一本书的总页数等)看作单位“1”,部分量作为分率的对应量,反映的是总量与部分量之间的关系。
(二)解答这一类分数应用题同样要用到下面的数量关系:对应量÷单位“1”的量=分率单位“1”的量×分率=对应量对应量÷分率=单位“1”的量(三)解答这一类分数应用题常用的几种方法:1、已知单位“1”的量(即总量),求分率的对应量,往往运用依次递进的方法解决问题。
2、已知分率的对应量,求单位“1”的量(即总量),一般运用倒推还原的方法解决问题。
3、如果单位“1”的量不统一,我们一般先统一单位“1”,再解决问题。
三、难点知识剖析例1、一条公路,全长300千米,一辆汽车第一小时行了全长的,第二小时行了全长的多5千米,这时离全程的中点还有多少千米?解析:本例以公路的全长为单位“1”,已知单位“1”,用乘法解决问题。
解答:答:这时离全程的中点还有35千米。
例2、一本故事书,第一天看了全书的,第二天看了全书的,还剩66页没有看完,已经看了多少页?解析:本例以一本书的总页数为单位“1”,要解决后面的问题,应该先求单位“1”的量,所以首先应该找到剩下的“66页”所对应的分率。
如下图:解答:答:已经看了42页。
例3、一段公路,已修的比全长的还多80千米,还剩200千米没有修完,这条公路全长多少千米?解析:本例以一段公路的全长作单位“1”,要求单位“1”,关键是找准未修的与整体做比较,找出量(200+80)与对应分率(1-)。
如下图:解答:答:这条公路全长360千米。
解决应用题的神兵利器
——倒推法和图示法
例1
(★★)
孙果果发现了一条魔道,下面有一个存钱的小箱子,当他从魔道走过去的时候,箱子里的一些钱会飞到他的身上使他身上的钱增加一倍,孙果果很高兴;但是当他走回来时,身上的钱会飞到箱子里,使箱子里的钱增加一倍;他一连走了3个来回后,箱子里的钱和他身上的钱都是64个铜板,那么原来孙果果身上有多少个?
箱子里有多少个?
例2
(★★)
孙果果去果园采桃子,第一天孙果果吃了一个桃子,并摘下了剩下桃子的一半,第二天孙果果吃了两个桃子并摘下了剩下桃子的一半,最后一天孙果果吃了三个桃子并摘下了剩下桃子的一半,这时果园里刚好还剩四个桃子。
原来果园一共有几个桃子?
例3
(★★★)
甲、乙两个油桶各装了15千克油,孙果果卖了14千克。
后来,孙果果从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍。
问:孙果果从两个桶里各卖了多少千克油?
例4
(★★★)
口渴的师徒三人分别捧着一个水罐。
最初,师父的水最多,并且有一个徒弟没水喝,于是师父把自己的水全部平均分给了大、小两个徒弟;接着,大徒弟又把自己的水全部平均分给师父和师弟;然后,小徒弟又把自己的水全部平均分给了师父和师兄。
就这样,三人轮流谦让了一阵。
结果太阳落山时,师父的水罐里有10升水,小徒弟的水罐则装着20升水。
请问:最初大徒弟的水罐里有多少升水?。
小学数学倒推法练习题对于小学生来说,学习数学是一个重要且有挑战性的任务。
其中,倒推法作为数学解题中常用的方法之一,可以帮助学生培养逻辑思维和解决问题的能力。
本文将提供一些小学数学倒推法练习题,帮助学生掌握和巩固倒推法的应用。
一、简单倒推法练习题1. 小英参加了一个拔河比赛,她站在第五个位置上。
如果她的队伍有11人,问小英所在队伍的前面还有几个人?解析:根据题意可知,小英所在队伍的前面有4个人。
因此,可以使用倒推法得到结果。
2. 小明乘坐地铁去动物园,他从第六站下车,并且在第十站上车。
如果小明乘坐了5站地铁,问他在动物园坐了几站?解析:小明乘坐地铁的总站数为10站,而他下车的站数为6站,因此,在动物园坐了4站。
二、数字运算倒推法练习题1. 有一些连续的整数,将其中的奇数全部相加,和是255。
问这些连续整数中一共有多少个奇数?解析:假设这些连续整数的首个奇数为x,那么第二个奇数为x+2,第三个奇数为x+4,以此类推。
由题意可知,若共有n个奇数,则它们的和为n * (x + (x + 2n - 2)) / 2 = 255。
化简方程可得n * (2x + 2n - 2) =510。
根据倒推法,我们可以从小到大依次尝试n的值,找到满足方程的整数解。
2. 一个三位数的数字由4、6、8组成,如果把这个三位数的百位数与个位数对调,得到一个新的三位数。
问这个新的三位数比原来的三位数多多少?解析:首先,根据题意可知这个三位数为468。
当把百位数与个位数对调后,得到一个新的三位数为864。
新的三位数比原来的三位数多864-468=396。
三、推理倒推法练习题1. 当小明放学后,他回家的路上看到了一只猫。
小猫的主人告诉小明,这只猫的年龄相当于人的7岁。
已知这只猫比小明的妈妈年龄大2岁,那么猫的年龄是多少岁?解析:根据题意可得,小明的妈妈年龄为7*2 + 2 = 16岁。
因此,这只猫的年龄也是16岁。
2. 甲、乙两人同时从相距60公里的A、B两地相向而行,相距4小时后,两人相遇在C地,甲到达B地时,乙到达A地。
小学奥数之倒推法例题讲解例题:商店购进一种商品来销售,第一天卖出总数的17又8个,第二天卖出余下的14又5个,第三天卖出余下的25又15个,正好卖完。
求这种商品原有多少个?分析:有时候一些应用题里面有多个单位“1”,或者说单位“1”不统一,这时候我们该怎么办呢?就像上面这题,“原来的商品个数”是一个单位“1”,第二天余下的商品是另一个单位“1”,第三天余下的商品又是另一个单位“1”。
这个时候我们就可以运用“倒推法”,从结果出发一步步往前推。
首先我们画出线段图:先推理①的数量:根据题意“第三天卖出余下的25又15个,正好卖完。
”,可知15个占了①的(1-25),因此我们用除法可以求出①的数量。
15÷(1-25)=15÷35=25(个)再推理②的数量:根据题意“第二天卖出余下的14又5个”,可知②的数量+5,就占了②的(1-14),因此我们用除法可以求出②的数量。
(25+5)÷(1-14)=40(个)最后推理③的数量:根据题意“第一天卖出总数的17又8个”,可知③的数量+8,就占了③的(1-17),因此我们用除法可以求出③的数量。
(40+8)÷(1-17)=56(个)答:这种商品原有56个。
老司机的话:这种题型虽然也可以用初中的“一元一次方程”做出来,但小学生不好理解。
我们灵活运用“线段图”和“倒推法”,可以有效率地提高小学生的思维能力,促进他们智力的开发。
“倒推法”在其他领域也有不少用处,例如名侦探查案的时候,可以根据现场的蛛丝马迹查出坏人是谁。
是一种很有趣的方法呢~。
二年级倒推法的例题一、简单数字运算类。
1. 一个数加上5,再减去3,结果是8,这个数是多少?- 解析:我们从结果8开始倒推。
因为是先减去3得到8的,所以在减3之前的数是8 + 3=11;而这个11是一个数加上5得到的,那么这个数就是11 - 5 = 6。
2. 一个数先乘2,再除以4后是3,这个数是多少?- 解析:从结果3开始倒推。
因为是除以4后得到3的,所以在除以4之前的数是3×4 = 12;而12是这个数乘2得到的,所以这个数是12÷2 = 6。
3. 某数加上7,乘7,减去7,除以7,结果还是7,这个数是多少?- 解析:从最后的结果7开始倒推。
因为是除以7得到7的,所以在除以7之前的数是7×7 = 49;49是减去7得到的,那么在减7之前是49+7 = 56;56是乘7得到的,所以原来的数是56÷7 = 8;8是加上7得到的,所以这个数是8 - 7 = 1。
4. 一个数减去8后,再加上10,结果是15,这个数是多少?- 解析:从结果15开始倒推。
因为是加上10得到15的,所以在加10之前的数是15 - 10 = 5;而5是这个数减去8得到的,所以这个数是5+8 = 13。
5. 一个数除以3后,再乘5得到25,这个数是多少?- 解析:从结果25开始倒推。
因为是乘5得到25的,所以在乘5之前的数是25÷5 = 5;而5是这个数除以3得到的,所以这个数是5×3 = 15。
二、图形表示数类(用简单图形代表数)6. 如果□+5 - 3 = 9,那么□里的数是多少?- 解析:从结果9开始倒推。
因为是先减去3得到9的,所以减3之前是9+3 = 12;12是□加5得到的,所以□里的数是12 - 5 = 7。
7. 已知△×3÷2 = 6,求△代表的数。
- 解析:从结果6开始倒推。
因为是除以2得到6的,所以除以2之前是6×2 = 12;12是△乘3得到的,所以△代表的数是12÷3 = 4。
倒推法在分数计算中的应用
在有些小学应用题中,如果涉及事情发展的先后顺序,在解题过程中可以考虑从后向前逐步分析,最终得到问题的初始状态,这个思路我们可以称为倒推法。
【例】水果店售卖一批水果,第一天卖了全部的1
2多1
2
千克,第二天卖了余
下的1
3多1
3
千克,第三天卖了第二天余下的1
4
多1
4
千克,第四天卖了第三天
余下的1
5多1
5
千克,第五天卖了剩余的19千克,那么水果店原有水果多少?
【分析】题中涉及多个“单位1”,而且出现了量和率共同存在的现象,我们采用倒推的想法。
【解答】第三次余下:11
(19)(1)24
55
+÷-=(千克)
第二次余下:1197
(24)(1)
443
+÷-=(千克)
第一次余下:9711
()(1)49
333
+÷-=(千克)
全部水果:11
(49)(1)99
22
+÷-=(千克)。
用 倒 推 法 解 题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。
这种方法对于解答一些分数应用题同样适用。
【例题精讲】例题1:有一条铁丝,第一次剪下它的12 又1米;第二次剪下剩下的13又1米;此时还剩下15米。
这条铁丝原来长多少米?模仿练习1:一堆水泥,第一次用去它的12 又3吨,第二次用剩下水泥的13 又3吨,第三次又用去第二次余下的14 又3吨,这时这堆水泥正好剩下3吨。
这堆水泥原来有多少吨?例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15 运到甲仓库,再将甲仓库此时存粮的14 运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。
那么,原来甲仓库和乙仓库中各存粮多少吨?模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27 多12个,第二只分到余下的23 少4个,第三只分到20个。
这筐桃子共有多少个?(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。
后来擦掉其中一个,剩下的数的平均数是10.8。
那么,被擦掉的那个自然数是多少?模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。
其余各数的平均数是35517 。
擦去的数是多少?(奥赛初赛A 卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒?模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要多少小时?【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁?2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少?3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16 ,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少?(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。
第7讲用倒推法解分数应用题知识要点在数学问题中,当顺着题目的条件的叙述去寻找解法时,往往有一定的困难,但是,如果改变一下思考的顺序,从问题的最后结果出发,一步一步倒推着思考,一步一步地往回算,加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,那么问题就很容易解决,这种解题的方法,我们称之为倒推法。
能用倒推法解决的数学问题常常须满足如下三个条件:(1)最初的数据是未知的;(2)中间的每个步骤是明确的;(3)最后的结果数据是已知的。
对于一些较复杂的还原问题,还要学会用线段图和列表的方法处理,借助线段图、表格来倒推,既能弄清数量关系,又便于验算。
小明看一本书,第一天看了这本书的1/2还多6页,第二天看了余下的1/3,这时还剩下42页。
这本书一共有多少页?我是这样想的:由第二天看了余下的1/3后,还剩42页,可知:余下的页为:42÷(1-1/3)=63(页)全书页数的1/2为:63+6=69(页)全书的页数为:69÷1/2=138(页)解:42÷(1-1/3)=63(页)(63+6)÷(1-1/2)=138(页)答:这本书一共有138页。
例题精讲1修路队修一条路,第一天修了全长的13,第二天修了余下的13,还剩180米没有修,问这条路全长多少米?2某仓库有橡胶原料若干,运出52后,剩下的橡胶原料全部分给了甲、乙、丙三个工厂,甲厂分得21,乙厂分得31,丙厂分得7吨。
问:该仓库原有橡胶原料多少吨?3修路队修一条路,第一周修了全长的12还多2千米,第二周修了余下的27还多1千米,第三周修了9千米刚好修完这条路,问这条路全长多少千米?4山坡上有一棵桃树,一只猴子偷吃桃子,第一天偷吃了110,以后八天分别偷吃了当天树上桃子的11111,,,,,98732,偷了九天,树上还剩下10个桃子,这棵树上原有多少个桃子?5有一堆桃,第一个猴子拿走了这堆桃的21多21个,第二个猴子又拿走了剩下桃的21多21个,第三个猴子又拿走了最后剩下桃的21多21个,这时桃子正好被拿光。
《倒推法的妙用》自学教材在分析应用题的过程中,倒推法是一种常用的思考方法。
这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题.例1 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56。
”小朋友,你知道于昆得多少分吗?【分析】这道题如果顺推思考,比较麻烦,很难理出头绪来。
如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56。
如何求出□中的数呢?我们可以从结果56出发倒推回去。
因为56是乘以4后得到的,而乘以4之前是56÷4=14。
14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88。
88是减8以后得到的,减8以前是88+8=96。
这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10〕÷7=56÷4答:于昆这次数学考试成绩是96分.通过以上例题说明,用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算。
③列式时注意运算顺序,正确使用括号.例2马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111。
问正确答案应是几?【分析】马小虎错把减数个位上1看成7,使差减少7-1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:111-(70—10)+(7—1)=57答:正确的答案是57。
例3树林中的三棵树上共落着48只鸟。
用倒推法巧解分数应用题如东县曹埠镇曹埠小学六年级王翀宇(226402)最近我们学习了分数应用题, 通过学习, 我发现了有些分数应用题, 我们可以用倒推的方法, 也就是按照题目中叙述过程的相反顺序来思考、分析, 从而比较顺利地求出了结果。
例如: 一只猴子在山上摘桃子吃。
第一天吃了一棵树上桃子数的1/10, 以后两天分别吃了当天这棵树上剩下桃子数的1/5.1/3。
这样, 这棵树上还留下48个桃子。
这棵树上原有多少个桃子?我想:从已知条件的最后结果出发, 倒推过去思考。
由猴子在第三天吃剩下桃子数的1/3后, 树上还有48个桃子这个条件出发, 可以知道, 猴子吃了2天后树上的桃子数为:48÷(1-1/3)=72(个)同理推出, 猴子第一天吃了以后树上的桃子数为:72÷(1-1/5)=90(个)树上原有的桃子数为:90÷(1-1/10)=100(个)答: 这棵树上原有桃子100个。
比如: 小明看一本书, 第一天看了这本书的1/2还多6页, 第二天看了余下的1/3, 这时还剩下42页。
这本书一共有多少页?我是这样想的:由第二天看了余下的1/3后, 还剩42页, 可知:余下的页为: 42÷(1-1/3)=63(页)全书页数的1/2为: 63+6=69(页)全书的页数为: 69÷1/2=138(页)解: 42÷(1-1/3)=63(页)(63+6)÷(1-1/2)=138(页)答: 这本书一共有138页。
还有这样一题: 白兔、黑兔各采蘑菇若干千克, 白兔拿出1/5给黑兔, 黑兔再拿出现有蘑菇的1/4给白兔, 这时它们都有蘑菇18千克。
它们原来各采蘑菇多少千克?这道题我是这样想的:从题目中的最后一个条件去想, 黑兔拿出现有蘑菇的1/4后还剩18千克, 那么它在未拿出之前应有蘑菇是:18÷(1-1/4)=24(千克)。
这也就是说, 黑兔拿出了24-18=6(千克)蘑菇给白兔, 白兔在得到黑兔蘑菇之前应有蘑菇是: 18-6=12(千克)。
第7讲用倒推法解分数应用题
知识要点
在数学问题中,当顺着题目的条件的叙述去寻找解法时,往往有一定的困难,但是,如果改变一下思考的顺序,从问题的最后结果出发,一步一步倒推着思考,一步一步地往回算,加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,那么问题就很容易解决,这种解题的方法,我们称之为倒推法。
能用倒推法解决的数学问题常常须满足如下三个条件:(1)最初的数据是未知的;(2)中间的每个步骤是明确的;(3)最后的结果数据是已知的。
对于一些较复杂的还原问题,还要学会用线段图和列表的方法处理,借助线段图、表格来倒推,既能弄清数量关系,又便于验算。
小明看一本书,第一天看了这本书的1/2还多6页,第二天看了余下的1/3,这时还剩下42页。
这本书一共有多少页?
我是这样想的:由第二天看了余下的1/3后,还剩42页,可知:
余下的页为:42÷(1-1/3)=63(页)
全书页数的1/2为:63+6=69(页)
全书的页数为:69÷1/2=138(页)
解:42÷(1-1/3)=63(页)
(63+6)÷(1-1/2)=138(页)
答:这本书一共有138页。
例题精讲
1修路队修一条路,第一天修了全长的13,第二天修了余下的13
,还剩180米没有修,问这条路全长多少米?
2某仓库有橡胶原料若干,运出5
2后,剩下的橡胶原料全部分给了甲、乙、丙三个工厂,甲厂分得21,乙厂分得3
1,丙厂分得7吨。
问:该仓库原有橡胶原料多少吨?
3修路队修一条路,第一周修了全长的12还多2千米,第二周修了余下的27
还多1千米,第三周修了9千米刚好修完这条路,问这条路全长多少千米?
4山坡上有一棵桃树,一只猴子偷吃桃子,第一天偷吃了110
,以后八天分别偷吃了当天树上桃子的11111,,,,,98732
,偷了九天,树上还剩下10个桃子,这棵树上原有多少个桃子?
5有一堆桃,第一个猴子拿走了这堆桃的21多21个,第二个猴子又拿走了剩下桃的21多21个,第三个猴子又拿走了最后剩下桃的21多2
1个,这时桃子正好被拿光。
问:这堆桃原有多少个?
3、妈妈买来一些桃子,小明吃了其中的一半,爸爸又吃了剩下的一半,妈妈最后又吃了剩下的一半。
结果还有一个桃子。
妈妈原来买了多少个桃子?
数学家的故事
开始讲D.Hilbert(希尔伯特)吧。
David Hilbert并不是Gottingen毕业的。
19世纪80年代,Berlin大学的博士论文答辩,需要2名学生作为对手,他们向你不停的发问。
Hilbert的一个对手是Emil Wiechert(埃米尔.魏恰特),后来是最著名的地震学家。
那时候,德国(也许叫做普鲁士)的大学教授特别少。
Berlin只有3名数学教授,一般的大学至多2个。
Hilbert的博士宣誓仪式,校长主持:“我庄严的要你回答,宣誓是否能使你用真诚的良心承担如下的许诺和保证:你将勇敢的去捍卫真正的科学,将其开拓,为之添彩;既不为厚禄所驱,也不为虚名所赶,只求上帝真理的神辉普照大地,发扬光大。
”很想知道现在北大的授予博士仪式是不是也有类似的话。
Hilbert上了年纪的时候,一次听到一群年轻人正在谈论一个他知道的数学家。
那时候,Minkowski这些他很熟的人,有很多都已经故去。
他特别关心正在被谈论的这个人,当大家说完这个人有几个孩子之类的事情之后,他就问说:“他还‘存在’么……”。