两条直线的位置关系(夹角)
- 格式:ppt
- 大小:113.51 KB
- 文档页数:16
两条直线的夹角直线是几何中最基础的概念之一,而直线之间的夹角则是我们常常会遇到的几何问题之一。
夹角的概念指的是两条直线在交汇处形成的角度,这个角度可以用来描述直线之间的关系和相对位置。
在本文中,我们将讨论两条直线的夹角以及它在几何学中的应用。
一、夹角的定义夹角是由两条直线在交汇处形成的角度,通常用字母α、β等来表示。
夹角的度量通常以角度的单位来表示,即使用度(°)来度量。
夹角的度量范围一般是0°到180°之间,若夹角大于180°则称之为反向夹角。
二、夹角的分类夹角可以根据角度的大小和两条直线的相对位置进行分类。
1.锐角:夹角的度数小于90°,两条直线在交汇处形成一个尖角。
2.直角:夹角的度数等于90°,两条直线在交汇处形成一个相互垂直的角。
3.钝角:夹角的度数大于90°,两条直线在交汇处形成一个较为开阔的角。
4.平角:夹角的度数等于180°,两条直线在交汇处形成一条直线。
三、夹角的计算方法在计算夹角时,我们可以利用几何学中的一些定理与公式来求解。
1.利用三角函数:当两条直线已知斜率时,可以通过求解斜率的差值并使用反三角函数计算夹角的度数。
2.利用向量:当两条直线已知方向向量时,可以利用向量的点积公式求解夹角的余弦值,然后通过反余弦函数计算夹角的度数。
3.利用坐标:当两条直线已知方程时,可以通过求解两条直线的斜率并使用斜率差值的反切函数计算夹角的度数。
四、夹角的应用夹角是几何学中一个非常重要的概念,它在很多领域都有广泛的应用。
1.几何推理:夹角可以用来推导和证明很多几何定理,例如余角定理、同位角定理、内错角定理等。
2.图像处理:在计算机视觉领域,夹角可以用来描述图像中两个线段的相对位置和方向关系,用于目标检测、图像匹配等应用。
3.工程测量:夹角在工程测量中起着重要的作用,可以用来测量建筑物的方向、查勘地形的坡度等。
4.物体运动:夹角可以用来描述物体的运动轨迹和方向,例如在物理学中用来描述质点的运动轨迹、在航空航天领域用来描述飞机的航向等。
解析几何学问点一、基本内容(一)直线的方程1、 直线的方程确定直线方程须要有两个相互独立的条件,而其中一个必不行少的条件是直线必需经过一已知点.确定直线方程的形式许多,但必需留意各种形式的直线方程的适用范围.2、两条直线的位置关系两条直线的夹角,当两直线的斜率k 1,k 2都存在且k 1·k 2≠外留意到角公式与夹角公式的区分.(2)推断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来推断.但若直线斜率不存在,则必需用一般式的平行垂直条件来推断.(二)圆的方程(1)圆的方程1、 驾驭圆的标准方程及一般方程,并能娴熟地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若已知圆上三点,则用一般式便利,留意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化.2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标(,)22D E --,半径为22142D E F +-。
3、 在圆(x -a )2+(y -b )2=r 2,若满意a 2+b 2=r 2条件时,能使圆过原点;满意a=0,r >0条件时,能使圆心在y 轴上;满意b r =时,能使圆与x 轴相切;满意2a b r -=条件时,能使圆与x -y =0相切;满意|a |=|b |=r 条件时,圆与两坐标轴相切.4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ),1PA PBk k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系①在解决的问题时,肯定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,探讨直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式(三)曲线与方程(1)求曲线方程的五个步骤:(1)建立适当的直角坐标系,用(x ,y )表示曲线上随意一点M 的坐标;建标(2)写出适合条件P 的点M 的集合P ={M |P (M )}; 设点(3)用坐标表示条件P (M ),列出方程f (x ,y )=0 列式(4)化方程f (x ,y )=0为最简方程 化简(5)证明以化简后的方程的解为坐标的点都是这条曲线上的点.除个别状况外,化简过程都是同解变形过程,步骤(5)可以不写,也可以省略步骤(2),干脆列出曲线方程.(2)求曲线方程主要有四种方法:(1)条件直译法:假如点运动的规律就是一些几何量的等量关系,这些条件简洁、明确,易于表达,我们可以把这些关系直译成含“x ,y ”(或ρ,θ)的等式,我们称此为“直译法”.(2)代入法(或利用相关点法):有时动点所满意的几何条件不易求出,但它随另一动点的运动而运动,称之为相关点.假如相关点满意的条件简明、明确,就可以用动点坐标把相关的点的坐标表示出来,再用条件直译法把相关点的轨迹表示出来,就得到原动点的轨迹.(3)几何法:利用平面几何或解析几何的学问分析图形性质,发觉动点运动规律.(4)参数法:有时很难干脆找出动点的横纵坐标之间关系.假如借助中间参量(参数),使x ,y 之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程.(四)圆锥曲线(1)椭圆(1)椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.这里应特殊留意常数大于|F1F2|因为,当平面内的动点与定点F1,F2的距离之和等于|F1F2|时,其动点轨迹就是线段F1F2;当平面内的动点与定点F1,F2的距离之和小于|F1F2|时,其轨迹不存在.(2)椭圆的标准方程之所以称它为标准方程,是因为它的形式最简洁,这与利用对称性建立直角坐标系有关.同时,还应留意理解下列几点,1)标准方程中的两个参数a和b,确定了椭圆的形态和大小,是椭圆的定形条件.2)焦点F1,F2的位置,是椭圆的定位条件,它确定椭圆标准方程的类型.也就是说,知道了焦点位置,其标准方程只有一种形式,不知道焦点位置,其标准方程具有两种类型.3)任何一个椭圆,只需选择适当的坐标系,其方程均可以写成标准形式,当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.1)范围:焦点在x轴时,椭圆位于直线x=±a和y=±b所围成的矩形里.2)对称性:椭圆关于x轴,y轴和原点都是对称的,这时坐标轴为椭圆的对称轴,原点是椭圆的对称中心.椭圆的对称中心叫做椭圆中心.3)顶点:椭圆与对称轴的交点为椭圆的顶点A1(-a,0)A2(a,0)B1(0,b)B2(0,-b)线段A1A2,B1B2分别叫做椭圆的长轴,短轴,长分别为2a,2b.<1.e越接近于1,则椭圆越扁,反之,e越接近于0,椭圆越接近于圆.5)焦半径:椭圆上任一点到焦点的距离为焦半径.如图所示,当焦点在x轴上时,任一点到左焦点的焦半径为r1=a+ex0.6)|A1F1|=a-c|A1F1|=a+c10)椭圆的其次定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(e<1=的点的轨迹.。
11.3两条直线的夹角(2)教学目标理解直线夹角公式的推导,能正确使用夹角公式求两条直线的夹角.进一步理解运用平行、垂直、夹角等概念求直线方程的一般方法..通过两条直线夹角公式的推导,形成运用数形结合、分类讨论的思想解决问题的能力教学重点理解两条直线夹角公式的推导,会求两条直线的夹角教学难点理解两条直线夹角公式的推导,会求两条直线的夹角教学方法师生互动教学过程设计说明引入1.引例:判断下列各组直线的位置关系,如果相交,则求出交点的坐标(课本p16例1).(1)01243:1=-+yxl,01127:2=--yxl;(2)01243:1=--yxl,3:2=xl;(3)01243:1=--yxl,0586:2=+-yxl.解:(参考课本p16~17)[说明]复习判断两直线的平行、重合、相交,以及求相交直线的交点坐标的方法.由此引出新的课题.思考并回答下列问题1.(对于上述(1)、(2)这样),当两条直线相交时,用什么“量”来描述两条直线的相对位置呢?教具演示:两条直线相交,使其中一条直线绕定点旋转,让学生观察这两条直线的关系.解答:两条直线的夹角.2.回顾旧知:在初中平面几何中“两直线夹角”的定义是什么?解答:角是有公共端点的两条射线所组成的几何图形(如右图).[说明]在复习旧知的基础上引人新课.概念分析关于两直线的夹角1、概念形成两条直线的夹角如右图,两条直线相交,一共构成几个角?它们有什么关系?怎样定义两条直线的夹角呢?平面上两条直线1l和2l相交构成四个角,它们是两组互补的对顶角,因为相对而言,锐角比较简单.我们规定两条相交直线所成的锐角或直角为两条直线的夹角.如果两条直线平行或重合,规定它们的夹角为0.因此,两条直线的夹角的取值范围是⎥⎦⎤⎢⎣⎡2,0π,而两条相交直线夹角的取值范围是(]2,0π.现在我们可以用夹角来描述两直线的相对位置关系,当给出两条直线的方程时,它们的相对位置就确定了,它们的夹角也随之确定,那么,如何根据直线方程求两直线的夹角呢?[说明]①为什么规定锐角或直角为两直线的夹角,说明其合理性;②提出问题,给学生造成认知冲突,激发学生探索欲2、夹角公式的推导分析:直线的方向——方向向量——斜率——倾斜角——夹角之间的关系.由于直线的方向是由直线的方向向量或者斜率决定的,下面我们借助于这两条直线的方向向量来求得两直线的夹角. [说明] 引导学生画图分析,寻找夹角、倾斜角、方向向量之间的关系.通过类比,寻求思路. 设两条直线的方程分别为1l :111=++c y b x a (11,b a 不全为零)2l :0222=++c y b x a (22,b a 不全为零).设1l 与2l 的夹角为α,1l 与2l 的一方向向量分别为1d 与2d ,其夹角为θ,且1d =),(11a b -,2d =),(22a b -,当]2,0[πθ∈时,则θα=如图甲所示;当],2(ππθ∈时,则θπα-=,如图乙所示.于是得:2222212121212121|||||||||cos |cos b a b a b b a a d d d d +⋅++=⋅⋅==θα.即为直线1l 与2l 的夹角公式.特别地,当且仅当02121=+b b a a 时, 1l 与2l 的夹角为2π,即1l 与2l 垂直.也就是说:1l ⊥2l ⇔1d 垂直2d ⇔1n 垂直2n ⇔02121=+b b a a (其中1n ,2n 分别为1l 与2l 的一个法向量)补角;③小题(2),注意结合图形,正确取舍课堂练习练习11.3(2)----1,3课堂小结1.本节课研究了两条直线的夹角,推导出两条直线的夹角公式的方法,要理解、体会其中的思想方法;2.会用两条直线垂直的充要条件解决与垂直有关的问题;3.熟练运用夹角公式求两条直线的夹角.注意不垂直的两条相交直线的夹角为锐角;4.进一步讨论了求直线方程的方法:运用待定系数法时,可设直线方程为点法向式、或点斜式方程,而在用点斜式方程时,需要分类讨论.作业1、书面作业:练习11.3(2)----2,4习题11.3 A组----10,11,122、思考题:光线沿直线l1:022=-+yx照射到直线l2:022=++yx上后反射,求反射线所在直线3l的方程.解由)2,2(2222-⎩⎨⎧=++=-+,得反射点的坐标为yxyx.设3l的方程为0)2()2(=++-ybxa(其中),(ban=为一法向量,ba,不同时为零)由反射原理,直线1l与2l的夹角等于2l与3l的夹角,得babababa211252552222-==⇒+⋅+=⋅+或,舍去ba2=(否则与l1重合) ,所以ba112-=,得3l的方程为26112=--yx.3.思考题:在y轴的正半轴上给定两点A(0,a),B(0,b),点A在点B上方,试在x轴正半轴上求一点C,使∠ACB取到最大值. 答:abC=.[说明] ①作业1是课本习题,通过它来反馈知识掌握效果,巩固所学知识,强化基本技能的训练,培养学生良好的学习习惯和品质;②作业2、3设计成思考题,是为了给学有余力的学生留出自由发展的空间,学生可以根据实际情况选用.。
直线与平行线的夹角关系的证明与应用直线与平行线的夹角关系是几何学中一个重要的概念,它在证明定理和解决实际问题时经常被应用。
本文将探讨直线与平行线夹角关系的证明,并介绍一些应用实例。
证明直线与平行线夹角关系的方法有多种,其中一种常用的方法是基于平行线的定义以及夹角的基本性质。
首先,根据平行线的定义,如果两条直线在平面上内侧的任一点上的角相等,则这两条直线是平行的。
基于这一定义,我们可以得出结论:如果两条直线平行,那么它们与横切这两条直线的任一直线的夹角相等。
而根据夹角的基本性质,我们知道两条直线的夹角等于相邻角的补角。
也就是说,如果两条直线的夹角为θ,则这两条直线与横切这两条直线的任意一条直线的夹角之和为180°。
基于这些性质,我们可以得出结论:如果两条直线平行,那么它们与横切这两条直线的任意一条直线的夹角之和为180°。
这一夹角关系的证明可以用一个简单的实例来说明。
假设有两条平行线L1和L2,以及一条横切这两条平行线的直线L3。
现在我们在L1和L2上选择两个点A和B,并在L3上选择一个点C。
我们可以分别连接线段AC和BC,并标记角ACB为θ。
根据平行线的定义,我们知道L1和L2上的角A和角B相等。
同时,根据夹角的基本性质,我们知道角ACB的补角为180°-θ。
从而,我们可以得到以下等式:角A + 角ACB + 角B = 180°代入角A和角B相等的条件,我们得到:2角A + θ = 180°将等式两边同时减去θ,我们得到:2角A = 180° - θ最后,将等式两边同时除以2,我们得到:角A = (180° - θ)/2这个结果可以应用于实际问题中。
例如,如果我们知道两条平行线与一条横切线的夹角之和为180°,那么我们可以通过计算夹角的一半来确定两条平行线与横切线上的某一角的大小。
除此之外,直线与平行线夹角关系还可以应用于解决其他几何问题,如证明定理、计算角度等。
角度计算公式
角度是指在两条直线或弧线之间的夹角,是衡量两个位置关系的一种角度度量,最常用的是角度单位`度`(degrees)。
一般计算角度有以下几种方法:
1. 根据两条线段的斜率计算:斜率`K` = `Δy/Δx`,倾斜角度α = arctan K,其中arctanK表示K的反正切,得出的角度α的单位为弧度(rad)。
2.三角形的内角和公式:一个三角形的三个内角国α、β、γ满足内角和公式α+β+γ=180°,因此只要知道两个角度,就可以求出第三个角度。
3. 利用余弦定理和正弦定理:给出三角形的三边a、b、c,通过余弦定理求出角C的余弦值cosC,再由cosC=arccosC求出角C的大小,就是该三角形的第三个角度;另外,利用正弦定理可以得出其他两个角度的值。
4.利用角度的绝对值:把给出的角度的绝对值加起来,得到的和减去360°后,则为角度的大小。
两条直线的夹角(2)教学目标理解直线夹角公式的推导,能正确使用夹角公式求两条直线的夹角.进一步理解运用平行、垂直、夹角等概念求直线方程的一般方法..通过两条直线夹角公式的推导,形成运用数形结合、分类讨论的思想解决问题的能力教学重点理解两条直线夹角公式的推导,会求两条直线的夹角教学难点理解两条直线夹角公式的推导,会求两条直线的夹角教学方法师生互动教学过程设计说明引入1.引例:判断以下各组直线的位置关系,如果相交,那么求出交点的坐标〔课本p16例1〕.〔1〕01243:1=-+yxl,01127:2=--yxl;〔2〕01243:1=--yxl,3:2=xl;〔3〕01243:1=--yxl,0586:2=+-yxl.解:〔参考课本p16~17〕[说明]复习判断两直线的平行、重合、相交,以及求相交直线的交点坐标的方法.由此引出新的课题.思考并答复以下问题1.〔对于上述〔1〕、〔2〕这样〕,当两条直线相交时,用什么“量〞来描述两条直线的相对位置呢?教具演示:两条直线相交,使其中一条直线绕定点旋转,让学生观察这两条直线的关系.解答:两条直线的夹角.2.回忆旧知:在初中平面几何中“两直线夹角〞的定义是什么?解答:角是有公共端点的两条射线所组成的几何图形〔如右图〕.[说明]在复习旧知的根底上引人新课.概念分析关于两直线的夹角1、概念形成两条直线的夹角如右图,两条直线相交,一共构成几个角?它们有什么关系?怎样定义两条直线的夹角呢?平面上两条直线1l和2l相交构成四个角,它们是两组互补的对顶角,因为相对而言,锐角比较简单.我们规定两条相交直线所成的锐角或直角为两条直线的夹角.如果两条直线平行或重合,规定它们的夹角为0.因此,两条直线的夹角的取值范围是⎥⎦⎤⎢⎣⎡2,0π,而两条相交直线夹角的取值范围是〔]2,0π.现在我们可以用夹角来描述两直线的相对位置关系,当给出[说明]①为什么规定锐角或直角为两直线的夹角,说明其合理性;②提出问题,给学生造成认知冲突,激发学生探索欲2、夹角公式的推导分析:直线的方向——方向向量——斜率——倾斜角——夹角之间的关系.由于直线的方向是由直线的方向向量或者斜率决定的,下面我们借助于这两条直线的方向向量来求得两直线的夹角. [说明] 引导学生画图分析,寻找夹角、倾斜角、方向向量之间的关系.通过类比,寻求思路. 设两条直线的方程分别为1l :111=++c y b x a 〔11,b a 不全为零〕2l :0222=++c y b x a 〔22,b a 不全为零〕.设1l 与2l 的夹角为α,1l 与2l 的一方向向量分别为1d 与2d ,其夹角为θ,且1d =),(11a b -,2d =),(22a b -,当]2,0[πθ∈时,那么θα=如图甲所示;当],2(ππθ∈时,那么θπα-=,如图乙所示. 于是得:2222212121212121|||||||||cos |cos b a b a b b a a d d d d +⋅++=⋅⋅==θα.即为直线1l 与2l 的夹角公式.特别地,当且仅当02121=+b b a a 时, 1l 与2l 的夹角为2π,即1l 与2l 垂直.也就是说:1l ⊥2l ⇔1d 垂直2d ⇔1n 垂直2n ⇔02121=+b b a a (其中1n ,2n 分别为1l 与2l 的一个法向量)而由02121=+b b a a ,易得当0,021≠≠b b 时,有③小题〔2〕,注意结合图形,正确取舍课堂练习练习11.3〔2〕 ----1,3课堂小结1.本节课研究了两条直线的夹角,推导出两条直线的夹角公式的方法,要理解、体会其中的思想方法;2.会用两条直线垂直的充要条件解决与垂直有关的问题;3.熟练运用夹角公式求两条直线的夹角.注意不垂直的两条相交直线的夹角为锐角;4.进一步讨论了求直线方程的方法:运用待定系数法时,可设直线方程为点法向式、或点斜式方程,而在用点斜式方程时,需要分类讨论.作业1、书面作业:练习11.3〔2〕 ----2,4习题11.3 A组----10,11,122、思考题:光线沿直线l1:022=-+yx照射到直线l2:022=++yx上后反射,求反射线所在直线3l的方程.解由)2,2(2222-⎩⎨⎧=++=-+,得反射点的坐标为yxyx.设3l的方程为0)2()2(=++-ybxa〔其中),(ban=为一法向量,ba,不同时为零〕由反射原理,直线1l与2l的夹角等于2l与3l的夹角,得babababa211252552222-==⇒+⋅+=⋅+或,舍去ba2=(否那么与l1重合) ,所以ba112-=,得3l的方程为26112=--yx.3.思考题:在y轴的正半轴上给定两点A〔0,a〕,B〔0,b〕,点A 在点B上方,试在x轴正半轴上求一点C,使∠ACB取到最大值.答:abC=.[说明] ①作业1是课本习题,通过它来反响知识掌握效果,稳固所学知识,强化根本技能的训练,培养学生良好的学习习惯和品质;②作业2、3设计成思考题,是为了给学有余力的学生留出自由开展的空间,学生可以根据实际情况选用.如有侵权请联系告知删除,感谢你们的配合!实用文档.。