RLW方程的一种结点沿特征方向移动的有限元方法
- 格式:pdf
- 大小:139.50 KB
- 文档页数:3
有限元求解方法有限元求解方法是一种常用的数值计算方法,广泛应用于工程、科学和数学领域的求解问题。
本文将介绍有限元求解方法的基本原理、步骤和应用范围。
有限元求解方法是一种数值计算方法,通过将一个连续的问题离散化成有限个子问题,然后对这些子问题进行求解,最终得到整个问题的近似解。
在有限元求解方法中,将要求解的问题分割成许多小的单元,每个单元都有一个简单的数学模型。
通过对每个单元的求解,再通过组合这些单元的解,就可以得到整个问题的解。
有限元求解方法的步骤大致可以分为以下几个部分:建立数学模型、离散化、确定边界条件、求解、后处理。
首先,需要根据实际问题建立一个数学模型,这个模型可以是一个方程、一个微分方程或者一个变分问题。
然后,将问题离散化,将连续的问题分割成有限个单元,并在每个单元上建立一个简单的数学模型。
接下来,确定边界条件,即在模型的边界上给定一些已知条件。
然后,通过求解每个单元的数学模型,得到每个单元的解。
最后,将每个单元的解组合起来,得到整个问题的解。
在得到解之后,可以进行后处理,对解进行分析和验证。
有限元求解方法广泛应用于各个领域的问题求解中。
在工程领域,有限元方法可以用于结构力学、热传导、流体力学等问题的求解。
例如,在结构力学中,可以通过有限元求解方法来计算结构的应力和位移分布,进而评估结构的强度和稳定性。
在科学领域,有限元方法可以用于物理、化学、生物等问题的求解。
例如,在地震学中,可以通过有限元求解方法来模拟地震波的传播和地壳变形。
在数学领域,有限元方法可以用于偏微分方程的数值求解。
例如,在偏微分方程的数值解法中,有限元方法是一种常用的求解方法。
有限元求解方法的优点是可以处理复杂的几何形状和边界条件,并且可以灵活地调整离散化的精度。
同时,有限元求解方法还具有较高的计算效率和数值稳定性。
然而,有限元求解方法也存在一些限制和局限性。
首先,有限元方法的求解精度受到离散化的影响,离散化越精细,求解结果越接近真实解。
一类广义rlw方程的初值问题现在我们来回顾一类广义RLW方程的初值问题。
这类RLW方程包括KdV等数学模型。
具体来说,这类方程由一个非线性恒定系数组成,它以四阶导数的形式出现。
首先,我们考虑一个典型的RLW方程$$u_{t}+u_{xxxx}+u^{3}=0$$其中,$u$是任意定义在区域$\Omega\subseteq\mathbb{R}\setminus\{d\}$,即$$\Omega=\{(x,t):x\in R\}$$上的非负函数。
关于该方程的初值问题,$$u(x,t=0)=u_{0}(x), \;x\in \Omega$$与边界条件,$$u(d,t)=h(t),\;t\geq 0,$$其中$h(t)$是一个已知的函数,构成了一个非线性抛物型偏微分方程的初值边界问题。
在此过程中,我们有必要为该方程提供一个有效的数值求解方法,用以解决初值边界问题。
迄今为止,有许多求解方法可以应用于该问题。
有精确解、弹性孤立子方法等,也有一些现代数值方法,如有限元法、有限差分法、偏微分格式定积分方法、多点有限元方法等。
有限差分算法和有限元算法都具有非常好的精度,因此被广泛应用于此问题的求解。
有限元算法的优点在于可以更准确地模拟偏微分方程的初值边界条件,尤其是处理复杂的初值问题时。
通常,对于复杂的初值问题,利用有限差分算法将速度提高约两个数量级。
有限元算法也可以用于求解一类广义RLW方程的初值边界问题。
在有限元算法中,主要采用Galerkin有限元形式,将未知量$u$分解为有限个有界域函数的线性组合。
通过利用Galerkin有限元形式,可以用一组约束来确定待求解的未知函数,然后利用这些约束和初值条件,用有限差分方法来近似解出满足RLW方程的解。
最后,值得指出的是,所有上述方法都需要解决初值问题时,提供一个有效的初值,并将该初值不断更新,以用作参考,以帮助算法更进一步求解,以提高整体计算的精度。
有限元的基本原理
有限元方法是一种数值计算方法,常用于求解工程问题中的连续介质力学问题。
其基本原理是将复杂的连续介质分割成有限数量的简单几何形状的子域,称为有限元,然后利用数学方法和计算机技术对每个有限元进行离散化处理。
基于有限元原理,我们可以得到以下步骤:
1. 离散化:将连续的物理问题离散化为有限个由节点和单元组成的网格,在每个单元上选择适当的方程形式。
2. 建立本构方程:根据材料的力学性质,建立适当的本构关系表达式,将其转化为数学方程。
3. 单元形函数:在每个有限元上选择适当的单元形函数,将物理问题转换为离散问题。
4. 求解:对离散化后的方程进行求解,得到节点的未知位移。
5. 后处理:根据得到的位移信息,计算相应的应力和应变,以及其他感兴趣的物理量。
有限元方法的精度和收敛性与网格的划分有关,更精细的网格可以得到更准确的结果,但也会增加计算量。
因此,有限元方法是一个权衡计算效率和精度的方法。
有限元方法广泛应用于结构力学、流体力学、电磁场等领域的
建模和仿真中,可以有效地分析和解决各种工程问题。
其应用范围涉及机械、航空航天、汽车、建筑、电子等多个工程领域,为工程设计和优化提供了有力的工具。
§1有限元的基础理论§1-1 概述有限元法是一种数值计算的近似方法。
早在40年代初期就已有人提出,但当时由于没有计算工具而搁置,一直到50年代中期,高速数字电子计算机的出现和发展为有限元法的应用提供了重要的物质条件,才使有限元法得以迅速发展。
有限元法在西方起源于飞机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德的J.H.Argyris教授,于1954–1955年间,他在《Aircraft engineering》上发表了许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书成为有限元法的理论基础。
美国的M.T.Turner,R.W.Clough,H.C.Martin和L.J.Topp等人于1956年发表了一篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,说明了如何利用计算机进行分析。
美国教授R.W.Clough于1960年在一篇介绍平面应力分析的论文中,首次提出了有限元法的名字。
1965年英国的O.C.Zienliewice教授及其合作者解决了将有限元应用于所有场的问题,使有限元法的应用范围更加广泛。
有限元法的优点很多,其中最突出的优点是应用范围广。
发展至今,不仅能解决静态的、平面的、最简单的杆系结构,而且还可以解决空间问题、板壳问题、结构的稳定性问题、动力学问题、弹塑性问题和粘弹性问题、疲劳和脆性断裂问题以及结构的优化设计问题。
而且不论物体的结构形式和边界条件如何复杂,也不论材料的性质和外载荷的情况如何,原则上都能应用。
§1-2 有限元的基础理论有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点处连接而组成整体。
把连续体分成有限个单元和节点,称为离散化。
先对单元进行特性分析,然后根据各节点处的平衡和协调条件建立方程,综合后作整体分析。
这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化为简单单元的分析与综合的问题。
对有限元的认识有限元方法是一种工程计算方法,用于求解复杂的物理问题。
它通过将连续的物理域离散成有限数量的小元素,然后利用数值方法来近似求解这些元素上的物理方程。
这种方法在工程设计和分析中得到了广泛的应用。
有限元方法的核心思想是将连续的物理域划分为有限数量的小元素,每个元素由节点和单元组成。
节点是元素的顶点,而单元则是连接节点的边。
通过在节点上定义适当的函数来近似描述物理量的变化,有限元方法可以将连续的物理问题转化为离散的数值问题。
有限元方法的求解过程分为两个主要步骤:离散化和求解。
在离散化过程中,根据问题的特点和要求,选择合适的单元类型和节点布局。
然后,在每个单元上建立适当的数学模型,例如线性模型或非线性模型。
在求解过程中,将物理方程转化为代数方程组,并利用数值方法求解这个方程组。
最后,通过插值方法将数值解转化为物理解。
有限元方法具有很多优点。
首先,它可以用于求解各种不规则形状和复杂边界条件下的物理问题。
其次,通过选择合适的单元类型和节点布局,可以在不同精度和计算成本之间进行权衡。
此外,有限元方法还可以很好地处理多物理场耦合和非线性问题。
然而,有限元方法也存在一些局限性。
首先,离散化过程中需要选择合适的单元类型和节点布局,这对于复杂的物理问题可能比较困难。
其次,求解过程中需要建立适当的数学模型,并选择合适的数值方法。
这需要对问题的特点和要求有较深的理解。
最后,有限元方法对计算资源的要求较高,特别是在处理大规模问题时。
总的来说,有限元方法是一种强大的工程计算方法,可以用于求解各种复杂的物理问题。
它的应用范围广泛,并且已经在工程设计和分析中得到了广泛的应用。
虽然有限元方法存在一些局限性,但通过合理的离散化和求解策略,可以有效地克服这些问题。
因此,有限元方法在工程领域的应用前景非常广阔。
有限元方法历史简介有限元方法历史简介取自Wikipedia的免费百科全书数学有限元方法(FEM)是用来求偏微分方程式(PDE)的近似解,也求积分方程式,例如热传输方程式。
求解方法是基于完全取消微分方程式(稳态问题),或把偏微分方程式(PDE)译成等效的常微分方程式,然后采用像有限差等标准的技术求解。
在解偏微分方程式时,主要的挑战是创建近似研究的方程式,但数字稳定,这意味着在输入数据和中间计算都不会聚集错误,并造成无意义的输出结果。
有许多这么做的方法,它们都有各自的优缺点。
对于求解复杂域(像汽车和油管道)偏微分方程式,或当希望在全部范围精确变化时,有限元方法是好的选择。
例如,在模拟地球气候模式时,在土地和完全开放的海域之上有着准确的预测是非常重要的,采用有限元方法,这个要求是可以做得到的。
1 历史有限元方法起源于需要解决市政工程和航空工程方面复杂的弹性结构分析问题。
它的开发可以追溯到A.Hrennikoff(1941)和R.Courant(1942)的工作。
虽然这些先驱者使用这些方法,并且引人注目的不同,但他们都共享一个基本的特性:把连续域的网格离散化进入一组离散的子域里。
Hrennikoff的工作是采用格子使域离散,而与之类似,为了求解起源于汽缸扭转的问题的二阶椭圆的偏微分方程式(PDEs),Richard Courant的方法是把域划分成有限的三角形子域。
对于由Rayleigh,Ritz和Galerkin开发的偏微分方程式(PDEs),Richard Courant的贡献是改进,绘制了大量的早期结果。
针对机身和结构分析的有限元方法的开发最早开始于1950年代中期,并且用于市政工程的有限元方法许多是1960年代在伯克利开始启动(见伯克利早期有限元研究)。
在1973年Strang和Fix出版的《有限元方法的分析》里,提供的方法采用了严格的数学基础,并且已经在广泛变化的工程学科,即电磁和流体力学里,针对物理系统的数字建模,归纳成为应用数学的分枝。
有限元方法基本原理有限元方法(Finite Element Method, FEM)是一种数值计算方法,主要用于求解偏微分方程的数值解。
它最早由Courant、Bubnov和Galerkin等人在20世纪50年代提出,并在以后的几十年中得到了广泛的发展和应用。
有限元方法的基本原理是将要求解的区域分割成若干个小的子区域,通常称为有限元,每个有限元内部的物理量可以用一个简单的数学表达式来表示。
然后,通过在有限元之间建立连续性条件,将整个问题转化为一组代数方程,进而得到数值解。
有限元方法的基本步骤包括:建立有限元模型、离散化、建立代数方程、求解代数方程和后处理。
下面将详细介绍每个步骤的具体内容。
第一步,建立有限元模型。
该步骤主要是对要求解的问题进行数学建模,包括选择适当的坐标系、定义物理量和约束条件等。
通常,物理问题可以通过连续介质假设,将其离散化为一组小的有限元。
第二步,离散化。
将要求解的区域划分为有限个小的子区域,通常称为有限元。
常见的有限元形状包括三角形、四边形和六面体等。
有限元的选择通常是根据问题的几何形状和物理条件来确定的。
第三步,建立代数方程。
有限元方法的核心是建立代数方程,用于描述物理问题在离散点上的数值解。
代数方程通常是通过施加适当的数学形式和边界条件来建立的。
建立代数方程的基本思想是使用一组试验函数来近似描述有限元内部的解。
通常采用Galerkin方法,即在离散点上进行加权残差积分,使得残差的加权平均为零。
第四步,求解代数方程。
一旦代数方程建立完成,就可以使用数值方法求解这组代数方程。
常见的求解方法包括直接法和迭代法等。
直接法适用于方程较小的情况,而迭代法适用于方程较大的情况。
常见的迭代法有Jacobi迭代法、Gauss-Seidel迭代法和共轭梯度法等。
第五步,后处理。
求解代数方程后,需要对结果进行后处理和分析。
后处理包括计算和显示物理量、绘制图形以及进行误差估计等。
通过后处理,可以对模型进行验证,并对结果进行解释和解释。
有限元方法基本原理有限元方法被广泛应用于工程领域中对复杂结构力学问题的求解。
其基本原理是将一个复杂的实体分割成连续的小元素,并在每个小元素内近似描述结构的力学行为。
然后根据各个小元素的相互连接关系,通过求解各个小元素的力学方程,得到整个结构体系的力学响应。
在有限元方法中,划分成小元素的实体被称为有限元。
每个有限元内会选择一个适当的数学函数形式来近似描述该元素内的过程变量(如位移、应力等)。
通常,利用多项式函数或三角函数来近似描述是较为常见的选择。
有限元法的基本思想是利用小元素内的力学方程来建立元素间的联系。
这一联系通过引入节点来实现。
节点是在有限元网格上选取的特殊位置,在节点处的位移和应力是所有相邻元素的位移和应力的加权平均。
在整体结构体系上,所有节点只有两种运动自由度(如平面问题为两个:水平和垂直方向),我们将节点处对应的变量称为自由度。
有限元分析的过程可以分为网格划分、单元插值、力学方程建立和边界条件处理四个主要步骤。
首先,将整个结构体系划分成小的有限元。
然后,在每个有限元内部选择一个插值函数,并利用插值函数得到相应的位移和应力的近似解。
接下来,根据物体在各个小元素上的力学原则,建立每个小元素的力学方程。
最后,在整个结构体系上,应用边界条件将自由度限制在给定的边界条件下。
通过求解各个小元素的力学方程,可以得到整个结构体系的应力、应变和位移分布。
这些分析结果可以用来评估结构的强度、刚度和稳定性等重要参数。
有限元方法的优点在于它能够处理复杂的几何形状和边界条件,并提供了精确的力学响应。
因此,它被广泛用于各个工程领域中的结构设计和分析中。
有限单元法知识点总结1. 有限元法概述有限单元法(Finite Element Method ,简称FEM)是一种数值分析方法,适用于求解工程结构、热传导、流体力学等领域中的强耦合、非线性、三维等问题,是一种求解偏微分方程的数值方法。
有限元法将连续的物理问题抽象为由有限数量的简单几何单元(例如三角形、四边形、四面体、六面体等)组成的离散模型,通过对单元进行适当的数学处理,得到整体问题的近似解。
有限元法广泛应用于工程、材料、地球科学等领域。
2. 有限元法基本原理有限元法的基本原理包括离散化、加权残差法和形函数法。
离散化是将连续问题离散化为由有限数量的简单单元组成的问题,建立有限元模型。
加权残差法是选取适当的残差形式,并通过对残差进行加权平均,得到弱形式。
形函数法是利用一组适当的形函数来表示单元内部的位移场,通过形函数的线性组合来逼近整体位移场。
3. 有限元法的步骤有限元法的求解步骤包括建立有限元模型、建立刚度矩阵和载荷向量、施加边界条件、求解代数方程组和后处理结果。
建立有限元模型是将连续问题离散化为由简单单元组成的问题,并确定单元的连接关系。
建立刚度矩阵和载荷向量是通过单元的应变能量和内力作用,得到整体刚度矩阵和载荷向量。
施加边界条件是通过给定位移或力的边界条件,限制未知自由度的取值范围。
求解代数方程组是将有限元模型的刚度方程和载荷方程组成一个大型代数方程组,通过数值方法求解。
后处理结果是对数值结果进行处理和分析,得到工程应用的有用信息。
4. 有限元法的元素类型有限元法的元素类型包括结构单元、板壳单元、梁单元、壳单元、体单元等。
结构单元包括一维梁单元、二维三角形、四边形单元、三维四面体、六面体单元。
板壳单元包括各种压力单元、弹性单元、混合单元等。
梁单元包括梁单元、横梁单元、大变形梁单元等。
壳单元包括薄壳单元、厚壳单元、折叠单元等。
体单元包括六面体单元、锥体单元、八面体单元等。
5. 有限元法的数学基础有限元法的数学基础包括变分法、能量方法、有限元插值等。