3,含字母系数的一元二次方程
- 格式:docx
- 大小:68.58 KB
- 文档页数:4
一元二次方程的根的判别式一元二次方程的根的判别式是指b²-4ac,它可以用来判断方程的根的情况。
当b²-4ac>0时,方程有两个不相等的实数根;当b²-4ac=0时,方程有两个相等的实数根;当b²-4ac<0时,方程没有实数根。
判别式的应用包括不解方程判断根的情况、确定方程待定系数的取值范围、证明方程根的性质以及解决综合题。
正确理解判别式的性质并熟练灵活地运用它是本节的重点和难点。
举例来说,对于方程2x²-5x+10=0,其判别式为b²-4ac=(-5)²-4×2×10=-550,因此该方程有两个不相等的实数根。
对于方程x²-2kx+4(k-1)=0,其判别式为b²-4ac=(-2k)²-4×1×4(k-1)=4(k-2)²≥0,因此该方程有实数根。
对于方程2x²-(4m-1)x+(m-1)=0,其判别式为b²-4ac=(-(4m-1))²-4×2×(m-1)=4(2m-1)²+5>0,因此该方程有两个不相等实根。
对于方程4x²+2nx+(n²-2n+5)=0,其判别式为b²-4ac=(2n)²-4×4(n²-2n+5)=-12(n-4/3)²-176/33<0,因此该方程没有实数根。
解这类题目时,一般先求出判别式Δ=b^2-4ac,然后对XXX进行化简或变形,使其符号明朗化,进而说明Δ的符号情况,得出结论。
对判别式进行变形的基本方法有因式分解、配方法等。
在解题前,首先应将关于x的方程整理成一般形式,再求Δ=b^2-4ac。
当Δ≥0时,方程有实数根,反之也成立。
例2已知关于x的方程x-(m-2)x+m^2=0,求解以下问题:1)有两个不相等实根,求m的范围。
21.1一元二次方程1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次方程的感性认识.一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0C.(x-1)(x-2)=3 D.ax2+bx+c=0解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是 2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x的方程(k+1)x|k-1|+kx+1=0是一元二次方程,则k的值为________.解析:由题意得⎩⎪⎨⎪⎧|k-1|=2,k+1≠0,∴⎩⎪⎨⎪⎧k=3或k=-1,k≠-1.∴k=3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x2-2=5x;(2)9x2=16;(3)2x(3x+1)=17;(4)(3x-5)(x+1)=7x-2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m 2.已知床单的长是2m ,宽是1.4m ,求花边的宽度.请根据题意列出方程.解析:设花边的宽度为x m ,则由图可知剩下部分的长为(2-2x )m ,剩下部分的宽为(1.4-2x )m.∵剩下部分面积为1.6m 2,∴可列方程(2-2x )(1.4-2x )=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解 【类型一】判断一元二次方程的解方程x -2x =0的解为( ) A .x 1=1,x 2=2 B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=12,x 2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2都能使方程x 2-2x =0的左右两边相等,所以选C.方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m -1)+1+1=0,解得m =-1,此时m -1=-2≠0,∴m =-1.故选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.21.2.1 配方法 第1课时 直接开平方法1.学会根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.运用开平方法解形如(x +m )2=n 的方程. 3.体验类比、转化、降次的数学思想方法,增强学习数学的兴趣.一、情境导入一个正方形花坛的面积为10,若设其边长为x ,根据正方形的面积可列出怎样的方程?用怎样的方法可以求出所列方程的解呢?二、合作探究探究点:直接开平方法 【类型一】用直接开平方法解一元二次方程运用开平方法解下列方程: (1)4x 2=9;(2)(x +3)2-2=0.解析:(1)先把方程化为x 2=a (a ≥0)的形式;(2)原方程可变形为(x +3)2=2,则x +3是2的平方根,从而可以运用开平方法求解.解:(1)由4x 2=9,得x 2=94,两边直接开平方,得x =±32,∴原方程的解是x 1=32,x 2=-32.(2)移项,得(x +3)2=2.两边直接开平方,得x +3=± 2.∴x +3=2或x +3=- 2.∴原方程的解是x 1=2-3,x 2=-2-3. 方法总结:由上面的解法可以看出,一元二次方程是通过降次,把一元二次方程转化为一元一次方程求解的,这是解一元二次方程的基本思想;一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可解得x 1=a ,x 2=-a .【类型二】直接开平方法的应用 次方程ax 2=b (ab >0)的两个根分别是m +1与2m -4,则ba=________.解析:∵ax 2=b ,∴x =±ba,∴方程的两个根互为相反数,∴m +1+2m -4=0,解得m =1,∴一元二次方程ax 2=b (ab>0)的两个根分别是2与-2,∴ba=2,∴b a=4,故答案为4.【类型三】直接开平方法与方程的解的综合应用若一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,则a =________.解析:∵一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,∴a +2≠0且a 2-4=0,∴a =2.故答案为2.【类型四】直接开平方法的实际应用有一个边长为11cm 的正方形和一个长为13cm ,宽为8cm 的矩形,要作一个面积为这两个图形的面积之和的正方形,边长应为多少厘米?分析:要求新正方形的边长,可先求出原正方形和矩形的面积之和,然后再用开平方计算.解:设新正方形的边长为x cm ,根据题意得x 2=112+13×8,即x 2=225,解得x =±15.因为边长为正,所以x =-15不合题意,舍去,所以只取x =15.答:新正方形的边长应为15cm.方法总结:在解决与平方根有关的实际问题时,除了根据题意解题外,有时还要结合实际,把平方根中不符合实际情况的负值舍去.三、板书设计教学过程中,强调利用开平方法解一元二次方程的本质是求一个数的平方根的过程.同时体会到解一元二次方程过程就是一个“降次”的过程.第2课时 配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x 2-6x -5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究 探究点:配方法 【类型一】配方用配方法解一元二次方程x 2-4x=5时,此方程可变形为( )A .(x +2)2=1B .(x -2)2=1C .(x +2)2=9D .(x -2)2=9 解析:由于方程左边关于x 的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x =5,所以x 2-4x +4=5+4,所以(x -2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x2-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x+4x+y-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式=-2-613=-813.【类型四】用配方解决证明问题(1)用配方法证明2x-4x+7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零.(2)x2-2x+3;2x2-2x+5;3x2+6x+8等.【类型五】配方法与不等式知识的综合应用证明关于x的方程(m2-8m+17)x2+2mx+1=0不论m为何值时,都是一元二次方程.解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m+17的值不等于0.证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m-4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程.三、板书设计教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式.21.2.2 公式法1.知道一元二次方程根的判别式的概念. 2.会用判别式判断一元二次方程的根的情况及根据一元二次方程的根的情况确定字母的取值范围. 3.经历求根公式的推导过程并会用公式法解简单的一元二次方程. 一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗? 二、合作探究 探究点一:一元二次方程的根的情况 【类型一】判断一元二次方程根的情况 不解方程,判断下列方程的根的情况. (1)2x 2+3x -4=0; (2)x 2-x +14=0; (3)x 2-x +1=0. 解析:根据根的判别式我们可以知道当b 2-4ac ≥0时,方程才有实数根,而b 2-4ac <0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况. 解:(1)2x 2+3x -4=0,a =2,b =3,c =-4,∴b 2-4ac =32-4×2×(-4)=41>0.∴方程有两个不相等的实数根. (2)x 2-x +14=0,a =1,b =-1,c =14.∴b 2-4ac =(-1)2-4×1×14=0.∴方程有两个相等的实数根.(3)x 2-x +1=0,a =1,b =-1,c =1.∴b 2-4ac =(-1)2-4×1×1=-3<0.∴方程没有实数根. 方法总结:给出一个一元二次方程,不解方程,可由b 2-4ac 的值的符号来判断方程根的情况.当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b 2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a >2B .a <2C .a <2且a ≠1D .a <-2 解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a -1不为0.即4-4(a -1)>0且a -1≠0,解得a <2且a ≠1.选C.方法总结:若方程有实数根,则b 2-4ac ≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】说明含有字母系数的一元二次方程根的情况已知:关于x 的方程2x 2+kx -1=0,求证:方程有两个不相等的实数根.证明:Δ=k 2-4×2×(-1)=k 2+8,无论k 取何值,k 2≥0,所以k 2+8>0,即Δ>0,∴方程2x 2+kx -1=0有两个不相等的实数根. 方法总结:要说明一个含字母系数的一元二次方程的根的情况,只需求出该方程根的判别式,分析其正、负情况,即可得出结论.【类型四】一元二次方程的根的情况的实际应用小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.小峰对小林说:“这两个正方形的面积之和不可能等于48cm2”,他的说法对吗?请说明理由.解:假设能围成.设其中一个正方形的边长为x,则另一个正方形的边长是(10-x),由题可得,x2+(10-x)2=48.化简得x2-10x+26=0.因为b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.探究点二:公式法解一元二次方程【类型一】用公式法解一元二次方程用公式法解下列方程:(1)2x2+x-6=0;(2)x2+4x=2;(3)5x2-4x+12=0;(4)4x2+4x+10=1-8x.解析:方程(1)(3)是一元二次方程的一般形式,可以直接确定a,b,c的值,并计算b2-4ac的值,然后代入求根公式,即可求出方程的根;方程(2)(4)则需要先化成一般形式,再求解.解:(1)这里a=2,b=1,c=-6,b2-4ac=12-4×2×(-6)=1+48=49.∴x=-b±b2-4ac2a=-1±492×2=-1±74,即原方程的解是x1=-2,x2=32.(2)将方程化为一般形式,得x2+4x-2=0.∵b2-4ac=24,∴x=-4±242=-2± 6.∴原方程的解是x1=-2+6,x2=-2- 6.(3)∵b2-4ac=-224<0,∴原方程没有实数根.(4)整理,得4x2+12x+9=0.∵b2-4ac=0,∴x1=x2=-32.方法总结:用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a,b,c的值.【类型二】一元二次方程解法的综合运用三角形的两边分别为2和6,第三边是方程x2-10x+21=0的解,则第三边的长为( )A.7 B.3C.7或3 D.无法确定解析:解一元二次方程x2-10x+21=0,得x1=3,x2=7.根据三角形三边的关系,第三边还应满足4<x<8.所以第三边的长x=7.故选A.方法总结:解题的关键是正确求解一元二次方程,并会运用三角形三边的关系进行取舍.三、板书设计教学过程中,强调用判别式去判断方程根的情况,首先需把方程化为一般形式.同时公式法的得出是通过配方法来的,用公式法解方程∴前提是Δ≥0.21.2.3 因式分解法1.认识用因式分解法解方程的依据. 2.会用因式分解法解一些特殊的一元二次方程.一、情境导入我们知道ab =0,那么a =0或b =0,类似的解方程(x +1)(x -1)=0时,可转化为两个一元一次方程x +1=0或x -1=0来解,你能求出(x +3)(x -5)=0的解吗? 二、合作探究 探究点一:用因式分解法解一元二次方程 【类型一】利用提公因式法分解因式解一元二次方程用因式分解法解下列方程: (1)x 2+5x =0;(2)(x -5)(x -6)=x -5.解析:变形后方程右边是零,左边是能分解的二次三项式,可用因式分解法.解:(1)原方程转化为x (x +5)=0,∴x =0或x +5=0,∴原方程的解为x 1=0,x 2=-5; (2)原方程转化为(x -5)(x -6)-(x -5)=0,∴(x -5)[(x -6)-1]=0,∴(x -5)(x -7)=0,∴x -5=0或x -7=0,∴原方程的解为x 1=5,x 2=7. 【类型二】利用公式法分解因式解一元二次方程 用因式分解法解下列方程: (1)x 2-6x =-9; (2)4(x -3)2-25(x -2)2=0. 解:(1)原方程可变形为:x 2-6x +9=0,则(x -3)2=0,∴x -3=0,因此原方程的解为:x 1=x 2=3.(2)[2(x -3)]2-[5(x -2)]2=0,[2(x -3)+5(x -2)][2(x -3)-5(x -2)]=0,(7x -16)(-3x +4)=0,∴7x -16=0或-3x +4=0,∴原方程的解为x 1=167,x 2=43. 方法总结:因式分解法解一元二次方程的一般步骤是:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积;③令每一个因式分别为零,就得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.探究点二:用因式分解法解决问题若a 、b 、c 为△ABC 的三边,且a 、b 、c 满足a 2-ac -ab +bc =0,试判断△ABC的形状. 解析:先分解因式,确定a ,b ,c 的关系,再判断三角形的形状.解:∵a 2-ac -ab +bc =0,∴(a -b )(a-c )=0,∴a -b =0或a -c =0,∴a =c 或a =b ,∴△ABC 为等腰三角形.三、板书设计利用因式分解法解一元二次方程,能否分解是关键,因此,要熟练掌握因式分解的知识,提高用分解因式法解方程的能力.在使用因式分解法时,先考虑有无公因式,如果没有再考虑公式法.*21.2.4 一元二次方程的根与系数的关系 1.探索一元二次方程的根与系数的关系. 2.会不解方程利用一元二次方程的根与系数解决问题.一、情境导入一般地,对于关于x 的方程x 2+px +q =0(p ,q 为已知常数,p 2-4q ≥0),试用求根公式求出它的两个解x 1、x 2,算一算x 1+x 2、x 1·x 2的值,你能得出什么结果? 二、合作探究 探究点:一元二次方程根与系数的关系 【类型一】利用一元二次方程根与系数的关系求关于方程根的代数式的值 已知m 、n是方程2x -x -2=0的两实数根,则1m +1n的值为( )A .-1 B.12 C .-12 D .1解析:根据根与系数的关系,可以求出m +n 和mn 的值,再将原代数式变形后,整体代入计算即可.因为m 、n 是方程2x 2-x -2=0的两实数根,所以m +n =12,mn =-1,1m +1n =n +m mn =12-1=-12.故选C. 方法总结:解题时先把代数式变形成与两根和、积有关的形式,注意前提:方程有两个实数根时,判别式大于或等于0.【类型二】根据方程的根确定一元二次方程已知一元二次方程的两根分别是4和-5,则这个一元二次方程是( )A .x 2-6x +8=0B .x 2+9x -1=0C .x 2-x -6=0D .x 2+x -20=0解析:∵方程的两根分别是4和-5,设两根为x 1,x 2,则x 1+x 2=-1,x 1·x 2=-20.如果令方程ax 2+bx +c =0中,a =1,则-b =-1,c =-20.∴方程为x 2+x -20=0.故选D. 方法总结:先把所构造的方程的二次项系数定为1,利用一元二次方程根与系数的关系确定一元二次方程一次项系数和常数项. 【类型三】根据根与系数的关系确定方程的解 (2014·云南曲靖)已知x =4是一元二次方程x 2-3x +c =0的一个根,则另一个根为________.解析:设另一根为x 1,则由根与系数的关系得x 1+4=3,∴x 1=-1.故答案为x =-1.方法总结:解决这类问题时,利用一元二次方程的根与系数的关系列出方程即可解决. 【类型四】利用一元二次方程根与系数的关系确定字母系数 )关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a的值是( )A .-1或5B .1C .5D .-1解析:将两根平方和转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决.设方程两根为x 1,x 2,由题意,得x 21+x 22=5.∴(x 1+x 2)2-2x 1x 2=5.∵x 1+x 2=a ,x 1x 2=2a ,∴a 2-2×2a =5.解得a 1=5,a 2=-1.又∵Δ=a 2-8a ,当a =5时,Δ<0,此时方程无实数根,所以舍去a =5.当a =-1时,Δ>0,此时方程有两实数根.所以取a =-1.故选D.方法总结:解答此类题的关键是将与方程两根有关的式子转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决问题.注意不要忽略题目中的隐含条件Δ≥0,导致解答不全面.【类型五】一元二次方程根与系数的关系和根的情况的综合应用已知x 1、x 2是一元二次方程(a -6)x 2+2ax +a =0的两个实数根.(1)是否存在实数a ,使-x 1+x 1x 2=4+x 2成立?若存在,求出a 的值;若不存在,请你说明理由;(2)求使(x 1+1)(x 2+1)为负整数的实数a 的整数值.解:(1)根据题意,得Δ=(2a )2-4×a (a -6)=24a ≥0.解得a ≥0.又∵a -6≠0,∴a ≠6.由根与系数关系得:x 1+x 2=-2aa -6,x 1x 2=aa -6.由-x 1+x 1x 2=4+x 2得x 1+x 2+4=x 1x 2,∴-2a a -6+4=a a -6,解得a =24.经检验a =24是方程-2a a -6+4=aa -6的解.即存在a =24,使-x 1+x 1x 2=4+x 2成立.(2)原式=x 1+x 2+x 1x 2+1=-2a a -6+aa -6+1=66-a 为负整数,则6-a 为-1或-2,-3,-6.解得a =7或8,9,12.三、板书设计教学过程中,强调一元二次方程的根与系数的关系是通过求根公式得到的,在利用此关系确定字母的取值时,一定要记住Δ≥0这个前提条件.21.3实际问题与一元二次方程第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题(2014·辽宁大连)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.(2014·新疆乌鲁木齐)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题(2014·内蒙古兴安)菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.。
一元二次方程全章知识点专题复习【课标要点】1. 理解一元二次方程定义;2. 会解一元二次方程;3. 会根据根的判别式24b ac -判断一元二次方程的根的情况; 4. 会列一元二次方程解决实际问题.⎧⎪⎪⎪⎨⎪⎪⎪⎩解法根的判别式一元二次方程二次三项式的分解因式根与系数的关系实际应用问题第1讲 一元二次方程的概念【知识要点】1、一元二次方程的一般形式:200),,,ax bx c a a b c ++=≠(其中是常数. 2、在一般式中,当b =0时,则有220c 00ax c ax bx +=+=或当=时,则有,这两种情况都是一元二次方程.【典型例题】 例1判断下列关于x 的方程是不是一元二次方程.22222222213;(2)50;(3)235;(5)2(3)21;511(6)33;(7)2;(8)()10;(9)40:1(10)0.(0)x x x xy x x x x x x x x abx a b x x x x px qx m p =-=--==-=+++=-=+++=-+=+++=≠() 分析:一元二次方程,必须满足:(1)整式方程;(2)含有一个未知数,并且最高次数是2.解:方程(1)、(6)、(7)的左边是分式,不属于整式方程,方程(3)含有两个未知数,方程(4)的左边不是整式,方程(5)经整理候,得-6x =1,方程(8)中未确定ab≠0,因此,只有(2)、(9)、(10)是一元二次方程.例2方程25)(3)(3)50.m m m x m x ---+-+=((1) m 为何值时,此方程为一元二次方程? (2) m 为何值时,此方程为一元一次方程?分析:形如0nax bx c ++=的方程,当n =2且a≠0时为一元二次方程;当a =0时且b≠0时为一元二次方程.解:(1)当m -2=2时,m =4,这时5)(3)0.m m --≠(当m =4时,此方程为一元二次方程.(2)5)(3)0,20,2m 30m m m m --=->-≠当(为自然数,且-时,方程为一元一次方程.由5)(3)0m 5m 3m m m --=≠(得=或=,又因为3,∴当m =5时,此方程为一元一次方程.例3 为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用了新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2填,为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还应再增加多少米?(只需列出方程,并整理成一般一元二次方程形式.)分析:根据题意本题有两个关系式:一是计划每天加固的长度比原计划增加了20米,而是实际完成工程任务所需时间比原计划缩短2天,由时间关系列出方程.解:设现在计划每天加固河堤x 米,则原来计划每天加固河堤(x -20)米.根据题意德22402240220x x-=-,整理,得 22022400x x --=【知识运用】 一、选择题1.一元二次方程得一般形式是( )A.20x bx c ++= `B.20ax bx c ++=C. 20()ax bx c a o ++== D.以上都不对 2.下列方程为一元二次方程的有( )A.21102x x-+= B. 252ax bx c +=C.()219x -=D.x+y=03.关于x 的方程232232(m n m x mx m x nx px q +=+-+≠其中),经化简整理,化为200)ax bx c a ++=≠(的形式后,二次项系数、一次项系数及常数项分别是( )A.m -n ,p ,qB. m -n ,-p ,qC.m -n ,-p ,-qD.m -n ,p ,-q4.将一元二次方程21x 2x 302-+=-的二次项系数变为正整数,且使方程的根不变的是( )A. 2x 2x 30+=- B. 2x x 60+=-4C 2x x 60=-4-D 2x x 60-=+4二、填空题5.方程24x 0=是_____元______次方程,二次项系数是______,一次项系数是____,常数项是_______.6.当m__________时,方程2m-1)x 21)x 0m m -+=(-(不是关于x 的一元二次方程;当m___________时,上述方程才是关于x 的一元二次方程;7.若方程22x 3x 1k x +=+是一元二次方程,则k 的取值范围是_________; 三、解答题 8.若方程1(3)x230k k x --+-=是关于x 的一元二次方程,求k 的值.9.若关于x 的一元二次方程22(a-1)x +x+a 10-=的一个根是0,求a 的值.10.某大学改善校园环境,计划在一块长80米,宽60米的矩形场地中央建一矩形网球场,网球场占地面积为3500平方米,四周为宽度相等的步行道,求步行道的宽度,根据题意列出泛称,并将其化为一般形式.第2讲 配方法【知识要点】1、直接开平方法解一元二次方程:将方程化成()2b(0)x a b +=≥的形式,则x=0)a b -±≥.2、配方法解一元二次方程:利用公式222a 2()ab b a b ±+=±,把一元二次方程转化为2()(0)x a b b +=≥,再利用直接开平方法解方程.【典型例题】例1 用配方法解关于x 的一元二次方程: x 0px q ++=2分析:配方法解一元二次方程,关键要搞清配方的目的是什么,即配方要使方程能运用直接开平方法解决,该题是一种字母系数的一元二次方程,故可按上述步骤进行求解,先将其整理成一般形式,二次项系数化为1.因二次项系数为1,所以移项得2x x p q +=-,方程两边配方,然后利用完全平方公式,直接开平方法解出方程.解:22221212x ,x (),244qx ,244q p 400,4x (2)p 40x 23p 40px q p p px q p p p q x pq x q +=-++=-+--->>---<222222移项,得配方,得整理,得(+)=(1)当时,方程两边直接开平方,得当=时,==;()当时,原方程无实数解.例2 用配方法解方程(1)2x 6x 50+-=; (2)24x 7x 20-+=分析:方程经过移项,配方后变为形如2().ax b c +=的方程 解:(1)(2)移项,得24x 7x 2-=-化二次项系数为1,例3 试证:不论x 为何实数,多项式424224124x x x x ----的值总大于的值. 分析:比较两个代数式大小通常用做差的方法. 解:∴多项式424224124x x x x ----的值总大于的值. 【知识运用】 一、选择题1. 已知代数式2224x 228x 5x x +-+-的值为3,则代数式的值为( ) A.5B. -5C. 5或-5D.02.将二次三项式22x 4x 6-+进行配方,正确的结果是( )A.24-2(x-1) B.24+2(x-1)C.22-2(x-2)D. 22+2(x-2) 3.方程2(1)9x +=的解是( ) A.2x =B. 4x =-C. 122,4x x ==-D. 122,4x x =-=221265,6959,314333x x x x x x x +=++=+=∴+=∴=-+=--2移项,得配方,得即(x +)2222127717x ()()48287177x x 864877x x 88x x x -+=-+-∴-∴--∴得即()=,===4242424222224242(241)(24)23(21)2(1)2x (1)20(241)(24)0x x x x x x x x x x x x x x -----=-+=-++=-+-+>----->对于任何实数,总有即4.已知11120,19,21202020a xb xc x =+=+=+,则代数式222a b c ab bc ac ++---的值是( ) A.4 B.3C. 2D. 1二、填空题5.224___9(___3)x -+=-6.将二次三项式2x 2x 2--进行配方,其结果等于__________.7.已知m 是方程2x x 20--=的一个根,则代数式2m m -的值等于______. 三、解答题8.用配方法解下列方程2(1)2360;x x --= 221(2)20;33y y --=2(3)0.40.81;x x -= 2(4)1)0;y y ++=9.用配方法证明21074x x -+-的值恒小于0.10.来自信息产业部的统计数字显示,2019年1月至4月份我国手机产量为4000万台,相当于2018年全年手机产量的80%,预计到2020年年底收机产量将达到9800万台,试求这两年手机产量平均每年的增长率.第3讲公式法【知识要点】1.公式法:一般地,对于一元二次方程221200),b 4ac 0x ax bx c a ++=≠≥,(当-时, 2.2b 4ac 0≥V 当=-,方程可用公式法求解;当2b 4ac 0<V 当=-时,方程无解.【典型例题】例1 用公式法解下列方程21x 100-+=() 2(2)221x x +=(3)(1)(1)x x +-=分析:首先把每个方程化成一般式,确定a 、b 、c 的值,在2b 4ac 0≥-的前提下,代入求根公式求出方程的根.解:2221222212(2)2210,2,2,1,424?2?(1122(3)10,1,2,1,44?1?(2(4)x x a b c b ac x x x a b c b ac x x +-====--=-±∴=⨯-+-∴===--===-=--=-±∴==⨯∴==Q 移项,得-1)=12>0,-2x=22原方程可化为(-1)=12>0,-(x=222221210,1,1,1,414?1?(x x a b c b ac x x +-====--=-∴=∴===Q 将原方程可化为-1)=5>0,x例2 阅读下面一段材料,并解答问题.22(1)1,4,10,4(411080,(212x x a b c b ac x ==-=-=-⨯⨯>--∴===⨯∴=Q 1=2-=22220(0)40,4200(0,,,)ax bx c a x b ac b ac b x aa ax bx c a abc ++=≠=-≥--∆=≠∆≥++=≠ 我们知道由一元二次方程运用配方法得其求根公式由平方根的意义知:当时即负数,没有平方根,故代数式就决定了方程根的情况,称它为一元二次方程根的判别式,用记号“”表示,故公式符合条件且0,方可用于求实数根.此外,若均为整数应当222121242,(1)10,:4,?,,?:,b ac b a k x x k x k x x x x k ∆=-∆--+++==∆≥注意当是完全平方时,方程根为有理根;当是完全平方且(是的整数倍时方程的根为整数根. 根据上面得出的结论,请你解答下列问题: 已知关于的方程试求 ⑴为何值时方程有两个实数根 ⑵若方程的两个实数根满足则为何值 分析根据上面材料分析当0时方程有实数根,从而确定k 的取值,对[]1222121121212121.:(1),1)4(1)043230.2(2)0,,0,2k-3=0,35k=,0,240,010,10,,x x k k k k x x x x x x x x x x x k k x =∆≥+-+≥-≥∴≥=≥=∆===><-=+=∴+==-∆≥Q 1于⑵中需分类讨论 解方程有实数根故0,即-( 化简得时方程有两个实数根由①当时此时即符合要求.②当x 时即与相矛盾故舍去k=-13综上可知:当k=时有22x = 例3 某工厂拟建一座平面图形为矩形且面积为200平方米 的三级污水处理池(平面图如右图),由于地形限制,三级水库处理 池的长、宽都不能超过16米,如果池的外围墙建造单价为每米 400元,中间两条间隔墙单价为每米300元,池底建造单价为每平 方米80元.(池墙的厚度忽略不计)(1) 当三级污水处理池的总造价为47200元时,求池长x;(2) 如果规定总造价越低就越合算那么根据题目提供的信息以47200元为总造价来修建三级污水处理池是否最合算?请说明理由.分析:可根据三级污水处理池的总造价为47200元列方程.ADBC隔墙隔墙x21212400400:(1)400(2)3002008047200,4007008002008047200,393500,14,25,,14,25,2516(,)10014,16.7x x xx xx x x x x x ⨯++⨯+⨯=⨯++⨯=-+=====><∴ 解由题意得即有 化简得 解得经检验都是原方程的根但米米不符合题意舍去 当池长为米时池宽为米米符合题意 当三级污水处理池的总造价为47200(2)1612.5164007008001620080463004720016<⨯⨯++⨯=<∴元时,池长为14米.当以47200元为总造价修建三级污水处理池时,不是最合算. 当池长为米时,池宽为米米,故池长为16米符合题意,这时总造价为当以47200元为总造价修建三级污水处理池时,不是最合算.【知识应用】 一、选择题22222401)53200,0,0,x x k k m x x m m m n x mx n n m n --=-++-+=++=≠+1.方程2有两个相等的实数根,则的值为( )A.-1 B.-2 C.1 D.22.若一元二次方程(的常数项为则为( )A.1 B.2 C.1或2 D.53.若是方程的根则的值为( )1A. B.1 C.222235020,______.6.610_______.7.x x x mx m x x x --=++=--=1- D.-124.不解方程,判断方程2的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定二、填空题5.已知的一个根则方程的另一个根是_____,的值是方程3的两根之和是方程22230530______.x x x --=++=与方程2的公共解是三、解答题,28.已知直角三角形的一条直角边比另一条直角边长2cm,且面积为24cm 求直角三角形的周长.21)(4)240,10,.k x k x k k k +++-+=+≠9.已知方程(有零根其中求的值2210.2)0,a a x ax b x a --++=要使(是关于的一元二次方程求的取值范围.第4讲 分解因式法【知识要点】112212121212a xb a x b b b a a x x a a ++≠=-=- 1. 分解因式法:把一个一元一次方:程整理为:()()=0的(0)的形式,方程的解为:;;. 2.注意(1)方程一边一定化为0;(2)常用的方法:①提公因式法;②运用公式法③十字相乘法.【典型例题】260;x x -=例1 用因式分解法解下列方程. (1):(1),,(2),(5)(5),,.x x --分析方程的右边是零左边可以用提公因式法分解方程不要去掉括号更不要两边同时除以或要先移项使方程右边为零212212:60,(6)0,060,0, 6.(2)3(5)2(5)0,(5)[3(5)2]0,(5)(133)0,501330,135,.3x x x x x x x x x x x x x x x x x x -=-=∴=-=∴==---=---=--=∴-=-=∴==解(1)即或原方程可变形为 即或 2(2)3(5)2(5)x x -=-例2 用公式法因式分解式解下列方程.2222(4)(43)(2)49(3)16(6)x x x x -=--=+ (1)3221222(1)(2)(1)(4)(43)0[(4)(43)][(4)(43)]0(77)(1)0,770101, 1.(2)7(3)][4(6)]0,7(3)4(6)][7(3)4(x x x x x x x x x x x x x x x x x x ---=∴-+----=∴---=∴-=--=∴==---+=-++--分析:方程先移项再利用因式分解法来解,方程移项后也能因式分解.解:移项,得333或 原方程化为[ [126)]0,(113)(345)0,3,15.11x x x x +=+-=∴=-=化简为,1).x x x x +-例3 为解决新疆农牧民出行难的问题今年是新疆投资公路建设力度最大、最多的一年,某公路修筑队接受了改建农村公路96千米的任务,为了尽量减少施工带来的交通不便,实际施工时每天比计划多修1千米,结果提前16天完成任务,问原计划每天修多少千米?分析:如果把修路队原来计划每天修(千米),则实际每天修路是(千米,工作任务可根据工作时间=列方程工作效率解:设原计划每天修路千米,由题意得962129616160(3)(2)03(),2:x x x x x x x =++-=∴+-=∴=-= 化简整理得舍去答原计划每天修2千米.【知识运用】1212121212121200550505244552A. B.4C.,4D.,4225(1)(2)034,A B x x x x x x x x x x x x x x x x x x x x x x x x -======-==--======+-===-一、选择题1.一元二次方(5)=0的两个根为( )A.,B.,C.,D.,2.方程()=5()的根为( )3.方程的根是,则这个方程为( ).-1,2 .12C D 34,A.(3)(4)0B.(3)(4)0C.(3)(4)0D.(3)(4)0x x x x x x x x x x ==--+=+-=++=--=1,-2 .0,-1,2 .0,1,-24.已知一元二次方程的两根分别为,则这个方程为( )22225123,_____.4_____,.5147.235(23)201(21);(2)(5)59.,3,x x x x x x x x x x y x x x +-+=-=+-++++=-=-=2二、填空题:5.若与的值相等则6.当时代数式的值为零用分解因式法解方程:2()的解是_____.三、解答题8.用适当的方法解方程.1(1)2有一个直角三角形它的边长恰是个连续整数这个三角形的三边长是多少?10.有一个两位数,它的十位数字和个位数字的和是5,把这个两位数的十位数字和个位数字互换后得到另一个两位数,两个两位数的积为736,求原来的两位数.第5讲 一元二次方程【知识要点】 1、黄金分割:如,图若点C 把线段分成两条线段AB 和BC ,且满足AC BCAB AC=则称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2、列方程解应用题的基本步骤可归纳为:审(审题);设(设未知数);列(列方程)解(解方程);答(答案).3、列方程解应用题的关键是找出存在的相等关系 【典型例题】例1 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到五月份营业额的平均增长率.分析:本题属于平均增长率问题,由已知可设月平均增长率为x ,那么3月份的营业额为400(1+10%)(1+x ),5月份营业额为400(1+10%)(1+x )2.解:设平均月增长率为x ,由题意得400(1+10%)(1+x )2=633.6 整理得:(1+x )2=633.61 1.2440x ∴+=± 0.2x ∴= 所以平均月增长率为20%.例2 一块矩形耕地大小尺寸如图所示,要在这块地上沿东西和南北方向分别挖2条和4条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600米2,那么水渠应挖多宽?分析:这类问题的 特点是挖蕖所占用土地面积只与挖蕖的条数、渠道的宽度有关,而与渠道的位置无关,为了研究问题方便可分别把沿东西和南北方向挖的渠道移动到一起,那ABC么剩余可耕的长方形土地的长为(162-2x )米,宽为(64-4x )米.解:设水渠应挖x 米宽,以题意,得(162-2x )(64-4x )=9600化简,297960x x -+=解得11x =,296x =(舍去)答:水渠应挖1米宽. 【知识运用】 一、选择题1. 某商店十月份营业额为5000元,十二月份上升到7200元,平均每月增长的百分率是( ) A .20% B ..12% C .22% D.10%2. 从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A. 9cm 2B.68cm 2C. 8cm 2D. 64cm 23.有一个两位数,它的数字和等于14,交换数字位置后,得到新的两位数比原来的两位数大18,则原来的两位数是( )A .68 B.86 C.-68 D.-864.随着通讯市场竞争日益激烈,某通讯公司的收集市话收费标准按原标准每分钟降低了a 院后,再次下降25%,现在的收费标准是每分钟b 元,则原收费标准是每分钟( ) A. 5(1)4b -元 B. 5()4b a +元 C. 3()4b a +元 D 4()3b a +元. 二、填空题5.三个连续偶数,较小的两个数的平方和等于较大的数的平方,则这三个数为________. 6.一个两位数,它的数字之和为9,如果十位数字为a ,那么这个两位数是________;b 把这个两位数的个位数字与十位数字对调组成一个新数,则这个数与原数的差为________. 7.某种手表的成本在两年内以100元降低到81元,那么平均每年降低成本的百分率是_____. 三、解答题8.某工厂计划用两个月把产量提高21%,如果每月比上个月提高的百分数相同,求这个百分数.9.某人将2000元人民币按一年定期存入银行,到期后支出1000元用来购物,剩下的1000元及应得利息又全部按一年定期存入银行.若存款的利率不变,到期后得本金和利息共1320元,求这种存款方式的年利率.10.某商店如果将进货价为8元的商品按每件10元出售,每天可销售200件.现采用提高售价、减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件.问售价定为多少时,才能使所赚利润最大,并求出最大利润.第1讲一、1.C 2.C 3.D 4.D 二、5.一、二,4,0,0 6.m=1,m ≠1 7.222a ab b --三、8.根据题意的1230k k ⎧-=⎪⎨-≠⎪⎩①②由①得k -1=-2解得k=3或k=-1,由②得k ≠3,所以k=-19.由于方程的解使方程的左右两边相等,故将方程的解代入原方程后得到关于a 得方程,求出a 得值,但是需要满足原一元二次方程的二次项系数不为零,故只取a=-1. 10.设步行道的宽度为x 米,根据题意得(80-2x ).(60-2x)=3500整理,得方程的一般形式为703250x -+=2x 第2讲一、1.A 2.B 3.C 4.B二、5.12x,2x ;6.2(1)3x --;7.22m m -=三、8.121233(1)(2)2,31342x y y y y ±±==-==-=--2()x=29.2711110)002040x --<原式配方得-( 2210740,10740x x x x +-=+-即-故-的值恒小于 10.设这两年手机产量平均每年的增长率为x ,根据题意得2124000212(1)980040%,8055x x x +====-解得%(舍去) 第3讲一、1.B 2..B 3.D 4.A 二、5.24-- 6.2 7.x=-1三、8.设直角三角形的较短的直角边长为xcm ,则较长的直角边长为(x+2)cm.根据题意得:2001)0(4)02402x x k k k k =∴=+⨯++⨯-+=∴=Q 方程有零根即将代入方程得,(2121(2)24248026,8()2810x x x x x x x +=∴+-===-∴+=∴∴解得不符合题意舍去较长直角边为直角三角形的周长为6+8+10=24(cm )9. 10.要使方程是x 的一元二次方程,则由一元二次方程的定义.有220,2,1a a a a x --≠∴≠≠-且时该方程时关于的一元二次方程第4讲一、1.C 2.A 3.C 4.C 二、5.- 1或4 6.x =-27.260,y y x +-==三、8.(1)y=12±(2)121x x 5==- 9. 3,4,5 10. 32,23第5讲一、1.C 2.A 3.B 4.D 二、5. 7,6,8 6.9a+9,81-18a 7.10%三、8.设每月提高的百分率为x,原产量为a ,以题意得a(1+x)2=a(1+21%)220(1) 1.210.110% 2.1(10a x x ≠∴+====-∴Q 1解得x 舍去)为%9.设此种存款的年利率为x ,由题意得: 【2000(1+x )-1000】(1+x)=1320 所以年利率为10%10.设此种商品的售价为x 元,商品所赚利润s 最大.2210.(20010)2040020(10)20000.5102000.x s x x x s x x s -=-⨯=-+∴=--+∴=当时,取最大值。
知识点基本要求略高要求较高要求一元二次方程了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义 能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值一元二次方程的解法理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题板块一 一元二次方程的整数根问题 ☞有理数根问题方程20ax bx c ++=(0a ≠,a 、b 、c 均为有理数)的根为有理数的条件是:∆为有理数【例1】 已知关于x 的一元二次方程22131(1)0444x mx k m k k +-+--+=有有理根,求k 的值。
例题精讲中考要求一元二次方程整数根问题及应用【巩固】设m 是不为零的整数,关于x 的二次方程2(1)10mx m x --+=有有理根,求m 的值.☞整数根问题【例2】 已知方程21404x x n -+=的根都是整数,求正整数n 的值;【例3】 设m 为整数,且440m <<,方程()2222341480x m x m m --+-+=有两个整数根,求m 的值及方程的根.【巩固】已知1240m <<,且关于x 的二次方程222(1)0x m x m -++=有两个整数根,求整数m .【例4】 已知方程()22238213150ax a a x a a --+-+=(a 是非负整数)至少有一个整数根,那么a = .【例5】 当m 是什么整数时,关于x 的一元二次方程2440mx x -+=与2244450x mx m m -+--=的根都是整数.【巩固】b 为何值时,方程 220x bx --=和22(1)0x x b b ---=有相同的整数根?并且求出它们的整数根?【例6】 若k 为正整数,且关于k 的方程22(1)6(31)720k x k x ---+=有两个相异正整数根,求k 的值.【例7】 已知关于x 的方程2(6)0x a x a +-+=的两根都是整数,求a 的值.【例8】 求方程2237x y x xy y +=-+的所有正整数解.板块二 一元二次方程的应用 ☞增长率问题【例9】 某校去年对实验器材的投资为2万元,预计今明两年的投资总额为12万元,求该校这两年在实验器材投资上的平均增长率是多少?【巩固】某个体户以50000元资金经商,在第一年中获得一定的利润,已知这50000元资金加上第一年的利润在第二年共获利润2612.5元,而且第二年的利润率比第一年多0.5%,则第一年的利润是多少元?【巩固】某公司成立3年以来,积极向国家上交利税,由第一年的200万元增加到800万元,则平均每年增长的百分数是【巩固】某商场2002年的营业额比2001年上升10%,2003年比2002年又上升10%,而2004年和2005年连续两年比上一年降低10%,那么2005年的营业额比2001年的营业额( ) A.降低了2% B. 没有变化 C.上升了2% D.降低了1.99%【巩固】北京市政府为了迎接2008年奥运会,决定改善城市面貌,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均每年绿地面积的增长率是()A.10%B.20%C.30%D.40%☞商品利润问题【例10】某商场销售一批名牌衬衫,平均每天可以销售出20件,每件盈利40元,为扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降低多少元?【巩固】吉安国光商场在销售中发现:某品牌衬衫平均每天可售出60件,每件赢利40元.为了迎接“十•一”黄金周,商场决定采取适当的降价措施,扩大销售量,增加赢利,减少库存.经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出6件.要想平均每天销售这种衬衫赢利3600元,那么每件衬衫应降价多少元?【巩固】某商店以2400元购进某种盒装茶叶,第一个月按进价增加20%作为售价,售出50盒;第二个月每盒以低于进价5元作为售价,售完余下的茶叶,在整个买卖过程中盈利350元,求每盒茶叶的进价【例11】商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)问商场经营该商品原来一天可获利润多少元?(2)若商场经营该商品一天要获利润2160元,则每件商品售价应为多少元?【巩固】西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?【巩固】宏达汽车出租公司共有出租车120辆,每辆汽车的日租金为160元,出租业务天天供不应求,为适应市场需求,经有关部门批准,公司准备适当提高日租金,经市场调查发现,一辆汽车日租金每增加10元,每天出租的汽车相应地减少6辆。
一元二次方程一、本章知识结构框图二、具体内容(一)、一元二次方程的概念1.理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式; 2.正确识别一元二次方程中的各项及各项的系数(1)明确只有当二次项系数0≠a 时,整式方程02=++c bx ax 才是一元二次方程。
(2)各项的确定(包括各项的系数及各项的未知数). {(3)熟练整理方程的过程3.一元二次方程的解的定义与检验一元二次方程的解 4.列出实际问题的一元二次方程 (二)、一元二次方程的解法1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程; 3.体会不同解法的相互的联系; 4.值得注意的几个问题: $(1)开平方法:对于形如n x =2或)0()(2≠=+a n b ax 的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解.形如n x =2的方程的解法: 当0>n 时,n x ±=; 当0=n 时,021==x x ; 当0<n 时,方程无实数根。
(2)配方法:通过配方的方法把一元二次方程转化为n m x =+2)(的方程,再运用开平方法求解。
配方法的一般步骤:①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边; :②“系数化1”:根据等式的性质把二次项的系数化为1;③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为n m x =+2)(的形式; ④求解:若0≥n 时,方程的解为n m x ±-=,若0<n 时,方程无实数解。
(3)公式法:一元二次方程)0(02≠=++a c bx ax 的根aac b b x 242-±-=当042>-ac b 时,方程有两个实数根,且这两个实数根不相等;当042=-ac b 时,方程有两个实数根,且这两个实数根相等,写为ab x x 221-==; 当042<-ac b 时,方程无实数根.公式法的一般步骤:①把一元二次方程化为一般式;②确定c b a ,,的值;③代入ac b 42-中计算其值,判断方程是否有实数根;④若042≥-ac b 代入求根公式求值,否则,原方程无实数根。
2016年中考数学专题复习一 含字母系数的一元二次方程与函数知识考点:⑴ 理解二次函数与一元二次方程之间的关系;⑵ 会结合方程根的性质、一元二次方程根的判别式,判定抛物线与x 轴的交点情况; ⑶ 会利用韦达定理解决有关二次函数的问题。
注意事项:⑴注意题中的“关键字”:① 方程与一元二次方程;② 函数与二次函数;③ 有实根与有两个实根等等;④ 有两个实根与有两个不等实根;⑤ 有交点与有两个交点、与x 轴交点和与坐标轴交点等等。
⑵ 利用“△”时,要注意二次项系数:a ≠0? ⑶ 利用韦达定理时,要注意检验:△≥0;⑷ 几何问题与实际问题中,要注意根是否符合实际意义等等。
温故知新 1. (2015·凉山州)关于x 的一元二次方程......(m ﹣2)x 2+2x +1=0有实数根,则m 的取值范围是( ) A.m ≤3 B.m <3 C.m <3且m ≠2 D.m ≤3且m ≠2 2.(2010·安徽芜湖)关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠53.(2014•莱芜)若关于x 的方程x 2+(k ﹣2)x +k 2=0的两根互为倒数,则k= .4.关于x 的方程2(1)210k x kx k --++=⑴当k 为何值时,方程有两个不相等实数根;⑵当k 为何值时,方程的两个实数根中,一根是另一根的3倍.历年荆州中考题:1.(2013•荆州22题)已知:关于x 的方程..kx 2﹣(3k ﹣1)x +2(k ﹣1)=0 (1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个实数根x 1,x 2,且|x 1﹣x 2|=2,求k 的值.2. (2012·荆州22题)23.(本题满分10)已知:y 关于x 的函数..y =(k -1)x 2-2kx +k +2的图象与x 轴有交点.(1)求k 的取值范围;(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足(k -1)x 12+2kx 2+k +2=4x 1x 2. ①求k 的值;②当k ≤x ≤k +2时,请结合函数图象确定y 的最大值和最大值.3.(2006·荆州16题)已知关于x 的二次方程012)21(2=---x k x k 有实数根,则k 的取值范围是 .4.(2007·荆州12题)若0x =是方程22(2)3280m x x m m -+++-=的解,则m = 。
一元二次方程的解法汇总1.直接开方法解一元二次方程(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:(点击图片可放大阅览)要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程(点击图片可放大阅览)【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:(点击图片可放大阅览)类型二、因式分解法解一元二次方程(点击图片可放大阅览)【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.(点击图片可放大阅览)【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
含字母系数的一元二次方程
1.含字母系数的一元二次方.
一元二次方程问题的基础,是方程概念、方程的四种常见解法,以及由公式法引申出来的根与系数的关系,
代入法是解决一元二次方程问题的基本方法。
代入法的应用,主要反应在以下几个方面:概念问题,限制二次项系数不能为零,这是容易出现失误的地方;
根的合理应用,代入方程,可以保证等式的成立;求根公式的运用,首先是根的判别式的作用,确定方程是否
有实数根,然后,决定是否运用求根公式。
当我们在无法判断判别式的情况下,求出了某些字母的值,就需
要我们反过来代入判别式,以验证字母的值是否符合题意。
运用根与系数的关系的关系,同样面临这样的情况,应当引起我们的关注。
有时,一元二次方程会和实际问题相互结合,需要我们验证字母值的合理性。
我们应该明确:细心解题,是
十分宝贵的学习素质。
以下,我们通过典型例题,体验解决这类问题的方式、方法。
例1.已知关于x的方程()
22
+++-=有实数根,求的取值范围;
x k x k
2130
分析:直接运用判别式就可以。
例2、已知关于x的一元二次方程()22
1230
-+--+=有一根是0 ,求m的值及这个方程的另一个
m x x m m
根.
分析:利用根的定义,代入原方程;注意,保证二次项系数不为零。
1 / 1。
专题01一元二次方程(3个知识点5大题型2个易错点中考2种考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1一元二次方程的定义(重点)知识点2一元二次方程的一般形式(重点)知识点3一元二次方程的解(重点)【方法二】实例探索法题型一:根据一元二次方程的定义求字母的值题型二:根据一元二次方程的根求字母或代数式的值题型三:一元二次方程新定义问题题型四:对含字母的一元二次方程的系数的讨论题型五:一元二次方程与完全平方公式综合【方法三】差异对比法易错点1忽略一元二次方程的二次项系数不等于0这个隐含条件易错点2在求一元二次方程的相关项及系数时,没有先将其化为一般形式【方法四】仿真实战法考法1根据方程的根求字母(或代数式)的值考法2根据实际问题列一元二次方程【方法五】成果评定法【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1一元二次方程的定义(重点)(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.例1.(2022秋•镇江期末)下列方程中,一定是一元二次方程的是()A.B.x2+2x+3=x(x+1)C.2x+3y=6D.x2﹣2x+3=0知识点2一元二次方程的一般形式(重点)(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.例2.(2022秋•建邺区期中)将方程(x﹣1)2=6化成一元二次方程的一般形式,正确的是()A.x2﹣2x+5=0B.x2﹣2x﹣5=0C.x2+2x﹣5=0D.x2+2x+5=0例3.(2022秋•镇江期中)将一元二次方程x(x+1)﹣2x=2化为一般形式,正确的是()A.x2﹣x=2B.x2+x+2=0C.x2﹣x+2=0D.x2﹣x﹣2=0例4.(2022秋•新北区校级月考)将方程3x(x﹣1)=2(x+2)+8化为一般形式为.例5.(2022秋•海州区校级月考)一元二次方程x2﹣2x﹣3=0的一次项系数是.例6.(2022秋•常州期中)若关于x一元二次方程(m+2)x2+5x+m2+3m+2=0的常数项为0,则m的值等于.例7.(2021秋•淮安区期中)若关于x的一元二次方程(m+1)x2+5x+m2﹣3m﹣4=0的常数项为0.求m的值.知识点3一元二次方程的解(重点)(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).例8.(2021春•射阳县校级期末)已知关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0.(1)求m的值;(2)求此时一元二次方程的解.【方法二】实例探索法题型一:根据一元二次方程的定义求字母的值1.(2022秋•大丰区期末)如果(m﹣3)x2+5x﹣2=0是一元二次方程,则()A.m≠0B.m≠3C.m=0D.m=32.(2023•睢宁县校级开学)关于x的方程ax2﹣3x+3=0是一元二次方程,则a的取值范围是()A.a>0B.a≠0C.a=1D.a≥0题型二:根据一元二次方程的根求字母或代数式的值3.(2023•邗江区校级一模)已知m是方程x2﹣x﹣2=0的一个根,则2023﹣m2+m的值为()A.2023B.2022C.2021D.20204.(2022秋•邳州市期末)已知关于x的方程x2+bx+2=0的一个根为x=1,则实数b的值为()A.2B.﹣2C.3D.﹣35.(2023•邗江区一模)若关于x的方程x2﹣mx﹣2=0的一个根为3,则m的值为.6.(2023春•玄武区期中)若m是方程x2+x﹣1=0的一个根,则代数式2023﹣m2﹣m的值为.7.(2022秋•江阴市校级月考)已知2是关于x的方程x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长.(1)求m的值;(2)求△ABC的周长.8.(2022•广陵区校级开学)已知x是一元二次方程x2﹣8x﹣1=0的实数根,求代数式÷(x+3﹣)的值.题型三:一元二次方程新定义问题9.(2021秋•高港区期中)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0,那么我们称这个方程为“凤凰方程”.(1)判断一元二次方程3x2﹣4x﹣7=0是否为凤凰方程,说明理由.(2)已知2x2﹣mx﹣n=0是关于x的凤凰方程,若m是此凤凰方程的一个根,求m的值.10.(2022秋•江阴市校级月考)定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x的一元二次方程x2﹣2x=0与x2+3x+m﹣1=0为“友好方程”,求m的值.11.(2017秋•句容市月考)阅读下列材料:问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=,把x=,代入已知方程,得()2+﹣1=0.化简,得y2+2y﹣4=0,故所求方程为y2+2y﹣4=0这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程x2+2x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为;(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.题型四:对含字母的一元二次方程的系数的讨论12.(2022春•建邺区期末)已知关于x的一元二次方程(x﹣1)(x﹣2)=m+1(m为常数).(1)若它的一个实数根是关于x的方程2(x﹣m)﹣4=0的根,求m的值;(2)若它的一个实数根是关于x的方程2(x﹣n)﹣4=0的根,求证:m+n≥﹣2.13.(2020秋•鼓楼区期中)方程是含有未知数的等式,使等式成立的未知数的值称为方程的“解”.方程的解的个数会有哪些可能呢?(1)根据“任何数的偶数次幂都是非负数”可知:关于x的方程x2+1=0的解的个数为0;(2)根据“几个数相乘,若有因数为0,则乘积为0”可知方程(x+1)(x﹣2)(x﹣3)=0的解不止一个,直接写出这个方程的所有解;(3)结合数轴,探索方程|x+1|+|x﹣3|=4的解的个数;(写出结论,并说明理由)(4)进一步可以发现,关于x的方程|x﹣m|+|x﹣3|=2m+1(m为常数)的解的个数随着m的变化而变化…请你继续探索,直接写出方程的解的个数与对应的m的取值情况.题型五:一元二次方程与完全平方公式综合14.(2020秋•句容市月考)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=,=,=;(2)2x2﹣7x+2=0(x≠0),求的值.【方法三】差异对比法易错点1忽略一元二次方程的二次项系数不等于0这个隐含条件15.(2021秋•襄城县期中)若关于x的一元二次方程(m﹣2)x2﹣6x+m2﹣3m+2=0的常数项为0,则m的值为.易错点2 在求一元二次方程的相关项及系数时,没有先将其化为一般形式16.(2022秋•沭阳县校级期末)一元二次方程2x2﹣1=4x化成一般形式后,常数项是﹣1,一次项系数是()A.2B.﹣2C.4D.﹣4【方法四】仿真实战法考法1根据方程的根求字母(或代数式)的值17.(2022•连云港)若关于x的一元二次方程mx2+nx﹣1=0(m≠0)的一个根是x=1,则m+n的值是.18.(2021•宿迁)若关于x的一元二次方程x2+ax﹣6=0的一个根是3,则a=.19.(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.20.(2022•遂宁)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为()A.﹣2022B.0C.2022D.404421.(2022•资阳)若a是一元二次方程x2+2x﹣3=0的一个根,则2a2+4a的值是.考法2根据实际问题列一元二次方程22.(2022•衢州)将一个容积为360cm3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x(cm)满足的一元二次方程:(不必化简).【方法五】成果评定法一、单选题1.(2022秋·江苏连云港·九年级校考阶段练习)一元二次方程2323x x -=的二次项系数、一次项系数、常2100px q +=,可列表如下:则方程A . 1.073-B . 1.089-C . 1.117-D . 1.123-二、填空题7.(2022秋·江苏连云港·九年级校考阶段练习)若关于x 的一元二次方程()2100ax bx a +-=≠有一根为三、解答题。
一元二次方程知识题型总结一、知识与技能的总结(一)概念一元二次方程--“整式方程”;“只含一个未知数,且未知数的最高次数是2".一元二次方程的一般形式-—,按未知数x降幂排列方程的根(解)—-是使方程成立的未知数的取值,了解一元二次方程的根的个数.(二)一元二次方程的解法-—把一元二次方程降次为一元一次方程求解1.直接开平方法-—适用于的方程.2.配方法——适用于所有的一元二次方程;(1)“移项”-—使得(2)“系数化1”——使得(3)“配方”——使得(4)“求解”—-利用解方程3.公式法—-适用于的方程.反映了一元二次方程的根与系数的关系,(1)一元二次方程首先必须要把方程化为一般形式,准确找出各项系数a、b、c;(2)先求出的值,若,则代入公式.若,则;4.因式分解法--适用于的方程.用因式分解法解一元二次方程的依据是:.通过将二次三项式化为两个一次式的乘积,从而达到降次的目的,将一元二次方程转化为求两个方程的解.(三)其它知识方法1.根的判别式: ,(1)若,则方程有解;(2)若,则方程有解;(3)若,则方程有解;2.换元法(1);(2)(3).3.可化为一元二次方程的分式方程解方程二、典型题型的总结(一)一元二次方程的概念1.(一元二次方程的项与各项系数)把下列方程化为一元二次方程的一般形式:(1);(2);(3);(4) ;(5);2.(应用一元二次方程的定义求待定系数或其它字母的值)(1)= 时,关于的方程是一元二次方程。
(2)若分式,则3.(由方程的根的定义求字母或代数式值)(1)关于的一元二次方程有一个根为0,则(2)已知关于的一元二次方程有一个根为1,一个根为,则,(3)已知2是关于的方程的一个根,则的值是(4)已知c为实数,并且关于的一元二次方程的一个根的相反数是方程的一个根,则方程的根为,c=(二)一元二次方程的解法4.开平方法解下列方程:(1)(2)(3) (4)(5);(6);(7).(8)5.用配方法解下列各方程:(1); (2);(3) (4)(5);(6).6.用公式法解下列各方程:(1); (2);(3);(4).(5)(6)(7)(8)(9)7.用因式分解法解下列各方程:(1);(2)(3)(4)(5) (6)(7);(8).(9)(10)(11)8.用适当方法解下列方程(解法的灵活运用):(1)(2)(3)(4)(5)9.解关于x的方程(含有字母系数的方程):(1)(2)(3)()(4)(三)一元二次方程的根的判别式10.不解方程,判别方程根的情况:(1)4 —-(2)-—(3)—-11.为何值时,关于x的二次方程(1)满足时,方程有两个不等的实数根(2)满足时,方程有两个相等的实数根(3)满足时,方程无实数根12.已知关于的方程,如果,那么此方程的根的情况是().A.有两个不相等的实根B.有两个相等的实根C.没有实根D.不能确定13.关于的方程的根的情况是().A.有两个不相等的实根B.有两个相等的实根C.没有实根D.不能确定14.已知关于的方程有实根,则的取值范围是().A.B.且C.D.15.已知,且方程有两个相等实根,那么的值等于().A.B.C.3或D.316.若关于的方程有实根,则的非负整数值是().A.0,1 B.0,1,2 C.1 D.1,2,317.已知关于x的方程有两个相等的实数根.求m的值和这个方程的根.18.方程有实数根,求正整数a.19.对任意实数m,求证:关于x的方程无实数根。
一元二次方程的基本概念与常见求解方法知识点睛一元二次方程的定义只含有一个未知数,并且未知数的最高次数是 2,最高次数的项系数不为 0 的整式方程叫做一元二次方程.一元二次方程的一般形式2(0)0ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项.(1)要判断一个方程是否是一元二次方程,必须符合以下四个标准:一元二次方程是整式方程,即方程的两边都是关于未知数的整式.一元二次方程是一元方程,即方程中只含有一个未知数.一元二次方程是二次方程,也就是方程中未知数的最高次数是2.一元二次方程最高次数的项系数不为0.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式2(0)0ax bx c a ++=≠. 要特别注意对于关于 x 的方程2(0)0ax bx c a ++=≠.当0a ≠时,方程是一元二次方程;当00a b =≠且时,方程是一元一次方程. (3)关于x 的一元二次方程2(0)0ax bx c a ++=≠的项与各项的系数.ax 2 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.一元二次方程的解法(1)直接开平方法:适用于解形如 (ax +b )2 = ()00a c ≠, 的一元二次方程. (2)配方法:解形如2 )00(ax bx c a ++=≠的一元二次方程,运用配方法解一元二次方程的一般步骤是:① 二次项系数化为1.② 常数项右移.③ 配方 (两边同时加上一次项系数一半的平方).④ 化成 (x +m )2 = n 的形式.⑤ 若0n ≥,直接开平方得出方程的解。
(3)公式法:设一元二次方程为2 )00(ax bx c a ++=≠,其根的判别式为:2124b ac x x ∆=-,, 是方程的两根,则:1. ∆ > 0 ⇔ 方程 2)00(ax bx c a ++=≠有两个不相等的实数根 x = 2. ∆ = 0 ⇔ 方程 2 )00(ax bx c a ++=≠有两个相等的实数根 122b x x a==-; 3. ∆ < 0 ⇔ 方程2 )00(ax bx c a ++=≠ 没有实数根.运用公式法解一元二次方程的一般步骤是:① 把方程化为一般形式.② 确定 a 、b 、c 的值.③ 计算24b ac -的值.④ 若 240b ac -≥,则代入公式求方程的根.⑤ 若240b ac -<,则方程无实数根.(4)因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:① 将方程化为一元二次方程的一般形式;② 把方程的左边分解为两个一次因式的积;③ 令每一个因式分别为零,得到两个一元一次方程;④ 解出这两个一元一次方程得到原方程的解. 一元二次方程解法的灵活运用直接开平方法,公式法,配方法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.(1)直接开平方法:用于缺少一次项以及形如 ax 2 = b 或 (x +a )2 = b (0)b ≥ 或 (ax +b )2 =(cx +d )2 的方程,能利用平方根的意义得到方程的解.(2)配方法:配方法是解一元二次方程的基本方法,而公式是由配方法演绎得到的.把一元二次方程的一般形式 ax 2 +bx +c = 0(a 、b 、c 为常数,0a ≠) 转化为它的简单形式 Ax 2 = B ,这种转化方法就是配方,之后再用直接开平方法就可得到方程的解.(3)公式法:适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算 24b ac -的值.(4)因式分解法:适用于右边为 0(或可化为 0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法.【例 1】(1) 若 x 2a +b -3x a-b +1 = 0 是关于 x 的一元二次方程,求 a 、b 的值.(2) 若 n (n ≠0) 是关于 x 的方程 x 2 +mx +2n = 0 的根,则 m +n 的值为 ( )A. 1B. 2C. -1D. -2(3) 已知 43x =,则2421x x x ++的值是 .(4) 当 111552n n x -⎛⎫=- ⎪⎝⎭时,(.n x = ( n 为自然数)【例 2】(1) 用直接开平方法解方程:2269(5) 2x x x -+=-. (2) 用配方法解方程:22310x x ++=.(3) 用分解因式法解方程:2()2136x x -=-. (4) 用公式法解方程:161432)2(2x x x x ⎛⎫++-=+ ⎪⎝⎭例 3】(1) 解关于 x 的方程: 21 213()()0m x m x m -+-+-=. (2) 解关于 x 的方程22656223200x xy y x y --++-=. 【例 4】(1)如果方程 22()2020x px q x qx p p q -+=-+=≠和 有公共根,则该公共根为 .(2)若方程2222100ax ax x ax a +-=--=和有公共根,求a 的值例 5】(1) 解方程:22132(10)|2|x x ---+=.(2) 解方程:221|4|x x +-=.练习2 高次方程和无理方程知识点睛1.特殊高次方程的解法:一般的高次方程没有统一的求解方法. 对于一些特殊的高次方程, 可通过降次, 转化为一元二次方程或一元一次方程求解,转化的方法有因式分解法(因式定理)、换元法、变换主元法等.2. 特殊分式方程的解法:求解分式方程总的原则是通过去分母或换元, 使其转化为整式方程, 然后再求解. 在这个过程中离不开分式的恒等变形, 如通分、约分及降低分子的次数等等, 这就有可能使方程产生增根(或遗根).3. 特殊无理方程的解法:解无理方程的基本思路是把根式转化为有理方程求解. 转化过程中常用的方法有: 乘方、配方、因式分解、等价变换、换元、增元、对偶、利用比例性质等. 如果变形过程是非等价变形(如方程两边平方), 可能产生增根, 因此应注意验根.精讲精练【例 6】(1) 解方程:43225122560x x x x --++=.(2)解关于 x 的方程 ()()322212 0x t x tx t t +--+-=.(3)解方程 321010x x ++++=【例 7】(1)解方程:(8x + 7)2 (4x + 3)(x + 1)= 29 ;(2)解方程: x x x x x x +-=------2221120102910451069. (3)解方程:222234112283912x x x x x x x x ++-+=+-+.【例 8】(1)解方程:()()222323322x x x x x =+-++--. (2)解方程:22252x x x ⎛⎫+= ⎪+⎝⎭. (3)方程()()3232232?47615180x x x x x x x x -+---++-+=全部实根是 .【例 9】(12=.(2)解方程 266 0x x --+=.【例 10】(1)已知 2x =,求.(2)无理方程 221518x x -=-的解是 。
20含有字母系数的一元一次方程和一元二次方程、无理方程、二元二次方程1. (20XX 年汕尾中考)已知关于x 的方程2220x x a ++-=. (1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【考查内容】一元二次方程的根.【解】(1)依题意有:224(2)0a =-->Δ,解得a <3 .(2)依题意得:1 + 2 + a – 2 = 0 ,解得 a =-1.∴原方程为2230x x +-= 解得11x =,23x =- ∴a =-1,方程的另一根为23x =-.2.(20XX 年六盘水中考)已知1x =3是关于x 的一元二次方程042=+-c x x 的一个根,则方程的另一个根2x 是 . 【考查内容】一元二次方程.【解析】将1x =3代入得c =3,所以原方程为2430x x -+=,解得1x =3,2x =1,故答案为1.3. (20XX 年成都中考)关于x 的一元二次方程0122=-+x kx 有两个不相等实数根,则k 的取值范围是( )A.1->kB.1k -≥C.0k ≠D.1->k 且0k ≠ 【考查内容】根的判别式 【答案】D【解析】首先要是一元二次方程,则0k ≠,然后有两个不相等的实数根,则0∆>,则有224(1)01k k ∆=-⨯->⇒>-,所以1k >-且0k ≠,因此选择D.4.(20XX 年成都中考)如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是 .(写出所有正确说法的序号)①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;③若点()p q ,在反比例函数2y x=的图像上,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,且相异两点(1)M t s +,,(4)N t s -,都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为54. 【考查内容】一元二次函数综合运用 【答案】②③【解析】研究一元二次方程20ax bx c ++=是倍根方程的一般性结论,设其中一根为t ,则另一个根为2t ,因此222()(2)32ax bx c a x t x t ax atx t a ++=--=-+,所以有2902b ac -=;我们记292K b ac =-,即0K =时,方程20ax bx c ++=为倍根方程;下面我们根据此结论来解决问题: 对于①, 29102K b ac =-=,因此本选项错误;对于②,2(2)20mx n m x n +--=,而29(2)(2)02K n m m n =---=⇒22450m mn n ++=,因此本选项正确;对于③,显然2pq =,而29302K pq =-=,因此本选项正确;对于④,由(1)M t s +,,(4)N t s -,知,1455222b t t b a a ++--==⇒=- ,由倍根方程的结论知2902b ac -=,从而有509c a =,所以方程变为22150105094550093ax ax a x x x -+=⇒-+=⇒=,253x =,因此本选项错误.综上可知,正确的选项有:②③.5. (20XX 年成都中考)如图,在平面直角坐标系xOy 中,抛物线y =a 2x -2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.备用图YLX158 第5题图YLX157【考查内容】函数的综合应用 【解】(1)A (-1,0),∵直线l 经过点A ,∴0=-k +b ,b =k ,∴y =kx +k ,令a 2x -2ax -3a =kx +k ,即a 2x -( 2a +k )x -3a -k =0.∵CD =4AC ,∴点D 的横坐标为4.∴-3-ka=-1×4,∴k =a .∴直线l 的函数表达式为y =ax +a .(2)过点E 作EF ∥y 轴,交直线l 于点F .设E (x ,a 2x -2ax -3a ),则F (x ,ax +a ),EF =a 2x -2ax -3a -( ax +a )=a 2x -3ax -4a .ACE S △=AFE S △- CFE S △=12( a 2x -3ax -4a )( x +1 )-12( a 2x -3ax -4a )x =12( a 2x -3ax -4a )=12a 232x ⎛⎫- ⎪⎝⎭-258a .∴△ACE 的面积的最大值为-258a .∵△ACE 的面积的最大值为 54,∴-258a =54 ,解得a =-25.第5题图YLX159(3)令a 2x -2ax -3a =ax +a ,即a 2x -3ax -4a =0,解得1x =-1,2x =4.∴D (4,5a ).∵y =a 2x -2ax -3a ,∴抛物线的对称轴为x =1,设P (1,m ).①若AD 是矩形的一条边,则Q (-4,21a )m =21a +5a =26a ,则P (1,26a )∵四边形ADPQ 为矩形,∴∠ADP =90°. ∴2AD +2PD =2AP ,∴25+2(5)a +2(14)-+2(265)a a -=2(11)--+2(26)a ,即2a=17,∵a <0,∴a =77-.∴1P (1,2677-).第5题图YLX160②若AD 是矩形的一条对角线,则线段AD 的中点坐标为(32,52a),Q (2,-3a ), m =5a -(-3a )=8a ,则P (1,8a ),∵四边形APDQ 为矩形,∴∠APD =90°,∴2AP +2PD=2AD .∴2(11)--+2(8)a +2(14)-+2(85)a a -=25+2(5)a .即2a=14,∵a <0,∴a =12-.∴2P (1,-4). 综上所述,以点A 、D 、P 、Q 为顶点的四边形能成为矩形.点P 的坐标为(1,2677-)或(1,-4).第5题图YLX16111上海山阳中学模拟6.下列方程中是二项方程的是( )A.04=+x xB.05=xC.13=+x xD.08213=+x 【考查内容】二项方程 【答案】D【解析】二项方程的左边只有两项,其中一项含未知数x ,这项的次数就是方程的次数;另一项是常数项,方程右边是0,故选D.7.解方程组:22252()x y x y x y +=⎧⎪⎨-=+⎪⎩①②. 【考查内容】解方程组【解】①式方程为25x y +=,②式方程为222()x y x y -=+.解法一:由②得:()()()2x y x y x y +-=+, 则0=+y x 或02=--y x .组成新方程组为:⎩⎨⎧=+=+052y x y x 或⎩⎨⎧=--=+0252y x y x .解得原方程组的解⎩⎨⎧=-=5511y x 或⎩⎨⎧==1322y x .解法二:由①得:52x y =-③, 把③代入②得:)25(2)2522y y y y +-=--(,整理得:2318150y y -+=.解得:11=y ,52=y .当11=y 时31=x ;当52=y 时52-=x .所以原方程组的解是: ⎩⎨⎧==1311y x ,⎩⎨⎧=-=5522y x . 8.解方程:2322+=-x mx (1≠m ). 【考查内容】解方程.【解】移项得:2223mx x -=+.化简得:2(1)5m x -=.∵1m ≠,∴251x m =-.当10m -<时, 2501x m =<-∴原方程无实数解.当10m ->时, 2501x m =>-. ∴ 15(1)51m x m -==-, 25(1)51m x m -==-所以1>m 时原方程的解是5(1)51m x m -==-1<m 时原方程无实数解. 14上海松江模拟9.在下列所给出的方程中,无理方程是( ) A.022=-x B.231=+x C.013=+x D.231=+x 【考查内容】无理方程【答案】D【解析】根号内含有未知数的方程才是无理方程,故只有D 正确. 14上海松江模拟10.解方程组:22240.40x y x xy ⎧-=⎪⎨-+=⎪⎩①②【考查内容】解方程组【解】由方程①,得02=+y x 或02=-y x .将它们与方程②分别组成方程组,得(Ⅰ)22040x y x xy +=⎧⎨-+=⎩或(Ⅱ)22040x y x xy -=⎧⎨-+=⎩ .方程组(Ⅰ),无实数解;解方程组(Ⅱ),得 24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩,所以原方程组的解是1124x y =⎧⎨=⎩或2224x y =-⎧⎨=-⎩.14上海松江月考11.如果关于x 的方程x k x =-25有实数根2=x ,那么k = .【考查内容】解无理方程.【答案】3【解析】把2=x 2=,两边平方得1024k -=,解得3k =,检验:当3k =时,原方程的左边=右边,所以3k =. 14上海松江月考12.下列关于x 的方程中,一定有实数根的是( )A.011=++xB.x x -=-23C.01=+xD.122-=-++x x 【考查内容】方程的根. 【答案】C【解析】0Q,∴10=不成立,故A 选项错误;x x -=-23,∴30x -…,即3x …,但是此时20x -<,方程不成立,故B 0=的解为1x =-,所以方程有实数根,故C 是非负数,故D 选项错误.故选C. 14上海松江月考13.解方程:42-=+x x . 【考查内容】解无理方程【解】两边平方得:22816x x x +=-+, 即:29140x x -+=,()()270x x --=,计算得出:2x =或7.经检验:2x =是增根,7x =是方程的根.故7x =. 14上海松江月考 14.解方程:2725=--+x x .【考查内容】解无理方程【解】方程两边平方得:5274x x ++--=,即:324x --=,则:36x -=,两边平方得:2293636812140x x x x -+=+-,即:2481760x x -+=.计算得出:44x =或4,经检验:44x =是增根,4x =是方程的根,所以原方程的根是4x =. 14上海杨浦测验15.解方程组:22223205x xy y x y ⎧-+=⎪⎨+=⎪⎩. 【考查内容】二元二次方程组.【解】由22320x xy y -+=得020.x y x y --==,原方程组化为 2205x y x y -=⎧⎨+=⎩,22205x y x y -=⎧⎨+=⎩,分别解这两个方程组,得原方程组的解是:x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩21x y =⎧⎨=⎩,21x y =-⎧⎨=-⎩.14浙江温州116.若一元二次方程2210kx x -+=有两个实数根,则k 的取值范围是 . 【答案】1k ≤且0k ≠【解析】k ≠0,且2(2)40k ∆=--≥,解得1k ≤且0k ≠. 15广东东莞模拟17.如果4,(1) 6.x y x m y +=⎧⎨--=⎩中的解,x y 相同,则m = .【考查内容】解方程组 【答案】1-【解析】因为解,x y 相同,即x y =,所以24x =,即2x y ==,代入得2(1)26m --⋅=,解得1m =-.15广东预测卷(四)18.由于受H7N9的影响,今年4月份鸡的价格两次大幅度下降,由原来每斤12元连续两次降价a %后售价下调到每斤5元,根据题意,可得方程为( )A.212(1%)5a += B.212(1%)5a -= C.12(1%)5a -= D.212(1%)5a -= 【考查内容】含有字母系数的一元二次方程【答案】B【解析】根据题意有,当价格一次降价a %时,可列方程12(1-a %),所以当价格两次降价a %时,方程为212(1%)a -,由于两次降价后售价下调到5元,故可列方程:212(1%)5a -=,故选B.15广东中考预测(三)19.已知关于x 的方程 ()2120a x x a -++-=. (1)若该方程的一个根为2,求a 的值及另一根; (2)求证:不论a 取何实数,该方程都有实数根. 【考查内容】实数和方程【解】(1)将x =2代入方程2(1)20a x x a -++-=,得4(1-a )+2+a -2=0,解得a =34. ∴方程为032312=-+-x x ,解得1212x x ==,.所以方程的另一根为1. (2)证明:①当1=a 时,方程为1201x x +-==,解得.②当1≠a 时,方程是一元二次方程,∵2214(1)(2)(23)0a a a ∆=---=-≥,∴方程有实数根.综上所述,不论a 取何实数,该方程都有实数根.15广东中考预测(三)20.关于x 的一元二次方程210x x p -+-=有两个实数根12x x 、,则p 的取值范围是______________.【考查内容】解一元二次方程.【答案】54p ≤ 【解析】210x x p -+-=有两个实数根,所以0∆≥,即2(1)41(1)540p p --⋅⋅-=-≥,所以54p ≤.15广东珠海九洲中学21.已知关于x 的方程230x x m -+=的一个根是1,则m = . 【考查内容】一元二次方程【答案】2【解析】将1x =代入方程可得130m -+=,2m =. 15江苏连云港灌云中学二模22.若关于x 的一元二次方程2210nx x --=无实数根,则一次函数(1)y n x n =+-的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限 【考查内容】函数图像 【答案】C 【解析】因为一元二次方程无实根故∆<0,即4+4n <0,得n <-1,则一次函数斜率为负与y 轴的截距为正,故图像不经过第三象限.15山东淄博临淄期中23.已知关于x 的一元二次方程(a +c )2x +2bx +(a -c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由; (3)如果△ABC 是等边三角形,试求这个一元二次方程的根. 【解】(1)ABC △是等腰三角形;理由:∵1x =-是方程的根,∴2()(1)2()0a c b a c +⨯--+-=,∴20a c b a c +-+-=,∴0a b -=, ∴a b =,∴ABC △是等腰三角形;(2)ABC △是直角三角形; 理由:∵方程有两个相等的实数根,∴224)()0b a c a c -+-=()(,∴2224440b a c +=-,∴222a b c =+,∴ABC △是直角三角形;(3)∵当ABC △是等边三角形,∴2)2()0a c x bx a c +++-=(,可整理为: 2220ax ax +=,∴20x x +=,解得:1201x x ==-,.15上海杨浦模拟 24.如果x =2是方程112x a +=-的一个根,那么a 的值是( ) A.0 B.2 C.-2D.-6【考查内容】求解方程中的变量. 【答案】C【解析】∵x =2是方程112x a +=-的一个根,∴x =2满足112x a +=-,将x =2代入112x a +=-有1212a ⨯+=-,解得2a =-,故选C. 15浙江杭州模拟 (4)25.已知二次函数22(3)(3)y kx k x k =+-+-的图像开口向上,且k 为整数,且该抛物线与x 轴有两个交点(a ,0)和(b ,0).一次函数1(2)y k x m =-+与反比例函数2ny x=的图象都经过(,)a b . (1)求k 的值;(2)求一次函数和反比例函数的解析式,并直接写出12y y >时,x 的取值范围. 【考查内容】函数综合应用. 【解】(1)由题意得,抛物线与x 轴有两个交点,故 令y =0,即22(3)(3)0kx k x k +-+-=, 则()()243430k k k ∆=--->, 解得k <3 ,∵二次函数的图像开口向上,故k >0, 又∵k 为整数且20k -≠, ∴k =1 .(2)由(1)得,242y x x =--,令2420x x --=得x 或x =2, ∴a +b =4,ab =2-,把(a ,b )代入1y x m =-+,2ny x=得:m =a +b =4, n =ab =2-, ∴一次函数的表达式为14y x =-+ ,∴反比例函数的表达式为22y x=- ,当12y y >时,2x <-02x <<.15浙江杭州模拟(2)26.若方程组2125ax y ax y -=⎧⎨+=⎩的解满足条件x y =,则a = .【考查内容】据方程组求变量值. 【答案】3【解析】()224154ax y ax y y --+=-=-=-,所以1y =,()222156ax y ax y ax -++==+=,又x y =,所以3a =.15上海模拟 27.3.=【考查内容】解方程的基本方法【解】3=得到291x x +=--;整理得到6=;最后得出答案2x =. 15上海模拟 28.方程x =的根 .【考查内容】方程的求解. 【答案】4.【解析】对方程两边同时平方的,234x x =+且340x +…,可以得出1x =-或4x =,但43x -…,因此答案为4.15上海模拟 29.解方程组 22212320x y x xy y +=⎧⎨-+=⎩.【考查内容】解二元一次方程、二元二次方程组【解】212x y +=中122x y =-,代入22320x xy y -+=,得到123,4y y ==;将y 的值代入122x y =-,得到1163x y =⎧⎨=⎩,2244x y =⎧⎨=⎩.。
是一元二次方程的重要组成部分。
方程,只有当时,才叫做一元二次方程。
如果且,它就是一元二次方程了。
解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
ax2+bx+c=0 (a≠0)1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2一、关于一元二次方程概念的题目(一)选择题1.下列方程中有()是一元二次方程(1)(2)(3)(4)(5)(6)(A)(1)(5)(6)(B)(1)(4)(5)(C)(1)(3)(4)(D)(2)(4)(5)2.若方程是关于的一元二次方程,则的取值范围是()(A)(B)(C)或(D)且(二)填空题已知关于的方程当时,方程为一元二次方程,当时,方程为一元一次方程。
含字母参数的一元二次不等式的解法(、解:方程=0的根为x=或x=、1)当a<0或a>1时,有,此时不等式的解集为2)当0<a<1时,有a>,此时不等式的解集为{x| <x<a};3)当a=0或a=1时,有=a,此时不等式的解集为、综上,当a<0或a>1时,原不等式的解集为当0<a<1时,原不等式的解集为{x| <x<a};当a=0或a=1时,原不等式的解集为、评注:一元二次不等式的解集与它对应的方程的两根的大小有关,若两根中含有参数并其大小不确定时,要分类讨论,分界数就是使两根相等的参数的取值。
二﹑判别式中有参数例2解关于x的不等式,解:1)当<0, 即a>1时,对所有实数x,都有,此时不等式的解集为R;2)当=0,即a=1时,不等式的解集为{x|x≠1};3)当>0,即0<a<1时,方程的根为此时不等式的解集为{x|综上,当a>1时,原不等式的解集为R;当a=1时,原不等式的解集为{x|x≠1};当0<a<1时,原不等式的解集为{x|。
评注:一元二次不等式,当二次项的系数符号确定时,他的解集与其判别式的符号有关,要求出其解集,一般分为:>0,=0与<0三种情况。
三﹑二次项系数中有参数例3 已知a>0,解关于x的不等式:解:原不等式等价于(1)当>0,即a>1时,<0 ②等价于x≥0,或x≤, x≥0、(2)当=0, 即a=1时,②等价于x≥0, x≥0、(3)当<0, 即0<a<1时,②等价于0≤x≤, ∴0≤x≤、综上,当0<a<1时 ,原不等式的解集为{x∣0≤x≤}; 当a≥1时, 原不等式的解集为{x∣x≥0}、例4 已知m,解关于的不等式:(m+3)>0解:(1)当m+3>0,即m>-3时,、若>0,即-3<m<6时,方程(m+3)=0的两根为或, 不等式的解集为{x∣x>,或x<};若=0,即m=6时,原不等式变为,解集为若<0,即m>6时, 不等式的解集为R、(2)当m+3=0,即m=-3时, 原不等式变为-6x-5>0, 解集为{x|x<}、(3)当m+3<0,即m<-3时, =4(6-m)>0,< ,不等式的解集为{x∣<x<}、综上所述, 当m<-3时, 原不等式解集为{x∣<x<},当m=-3时, 原不等式解集为{x|x<},当-3<m<6时,原不等式的解集为{x∣x>,或x<},当m=6时, 原不等式的解集为当m>6时, 原不等式的解集为R、评注:由以上两例可知,解不等式应按以下步骤进行分类讨论:1、若a的符号不确定应先分a>0,a=0,a<0三种情况讨论、2、若a≠0,就确定方程是否有解,有几解,即分 >0, =0, <0 三种情况讨论、3、若方程有两不同解,则需比较这两根的大小、四﹑与含参数的一元二次不等式的解有关的问题例5 已知不等式对任意实数x恒成立,求实数的取值范围、解:满足题意当且仅当m=0或,即m=0或,所以实数m的取值范围是-1<m≤0、例6 设均是非零实数,不等式和的解集分别为集合M和N,那么“”是“M=N”的( )、A充分非必要条件 B必要非充分条件C充要条件D既非充分又非必要条件解:如果>0,则“M=N”,如果<0,则“M≠N”、∴“”不是“M=N”的充分条件;反之,若M=N=,即说明二次不等式的解集为空集,与它们的系数比无任何关系,只需要判别式小于零。
,j'_'中中中中考要求内容基本要求略高要求 :1,1代例题精讲公共根问题:二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 整数根问题:对于一元二次方程ax 2+bx +c =0(a 丰0)的实根情况,可以用判别式A=b 2-4ac 来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.方程有整数根的条件:如果一元二次方程ax 2+bx +c =0(a 丰0)有整数根,那么必然同时满足以下条件:⑴A=b 2-4ac 为完全平方数;(2)-b+b 2-4ac=2ak 或一b-b 2-4ac=2ak ,其中k 为整数.以上两个条件必须同时满足,缺一不可.另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数)方程的根的取值范围问题:先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围.【例1】求k 的值,使得一元二次方程x 2+kx -1=0,x 2+x+(k-2)=0有相同的根,并求两个方程的根.【例2】1.设a ,b ,c 为AABC 的三边,且二次三项式12+2ax +b 2与x 2+2cx -b 2有一次公因式,证明:元二次方程的公共根与整数根一元二次 方程 一元二次 了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义理解配方法,会用直接开平方法、配方法、公式法、 能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方 方程的解因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据 程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题 较高要求AABC一定是直角三角形.(北京数学竞赛试题)2.三个二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0有公共根.⑴求证:a+b+c-0;⑵求03+b3+c3的值.abc【例3】试求满足方程x2-kx-7-0与x2-6x-(k+1)-0有公共根的所有的k值及所有公共根和所有相异根.【例4】三个二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0有公共根.(1)求证:a+b+c-0;(2)求a3+加+c3的值.abc【例5】二次项系数不相等的两个二次方程(a-1)x2-(a2+2)x+(a2+2a)-0和(b-1)x2-(b2+2)x+(b2+2b)=0(其中a,b为正整数)有一个公共根,求ab +ba的值.a-b+b-a【例6】k为什么实数时,关于x的方程(6-k)(9-k)x2-(117-15k)x+54-0的解都是整数?【巩固】若关于x的方程(6-k)(9-k)x2-(117-15k)x+54-0的解都是整数,则符合条件的整数k的值有个.【例7】(2007年全国初中数学联合竞赛)1.已知a是正整数,如果关于%的方程%3+(a+17)%2+(38-a)%-56=0的根都是整数,求a的值及方程的整数根.2.若k为正整数,且关于k的方程(k2-1)%2-6(3k-1)%+72=0有两个相异正整数根,求k的值.(2000年全国联赛试题)3.关于%的二次方程(k2-6k+8)%2+(2k2-6k-4)%+k2=4的两根都是整数.求满足条件的所有实数k的值.4.当m为何整数时,方程2%2-5m+2m2=5有整数解.5.已知关于%的方程4%2-8n%-3n=2和%2-(n+3)%-2n2+2=0,是否存在这样的n值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n值;若不存在,请说明理由.【例8】求所有有理数r,使得方程r%2+(r+1)%+(r-1)=0的所有根是整数.【例9】1已知关于%的方程%2+(a-6)%+a=0的两根都是整数,求a的值.6.已知k为常数,关于%的一元二次方程(k2-2k)%2+(4-6k)%+8=0的解都是整数,求k的值.【例11】已知p为质数,二次方程%2-2p%+p2-5p-1=0的两根都是整数,请求出p的所有可能的值.【例12】(2007—2008清华附中初三第一次月考试题)1已知12<m<40,且关于%的二次方程%2-2(m+1)%+m2=0有两个整数根,求整数m.2.若一直角三角形两直角边的长,a、b(a丰b)均为整数,且满足[a+b=m+2[ab=4m试求这个直角三角形的三边长.【例13】关于%的方程ax2+2(a-3)x+(a—2)=0至少有一个整数解,且a是整数,求a的值.【巩固】已知方程ax2-(3a2-8a)x+2a2-13a+15=0(a是非负整数)至少有一个整数根,那么【例14】(2008年西城区初三抽样试题)当m是什么整数时,关于x的一元二次方程mx2-4x+4=0与x2-4mx+4m2-4m-5=0的根都是整数.【例15】(2007—2008清华附中初三第一次月考试题)已知12<m<40,且关于x的二次方程x2-2(m+1)x+m2=0有两个整数根,求整数m.【巩固】设m为整数,且4<m<40,方程x2-2(2m-3)x+4m2-14m+8=0有两个整数根,求m的值及方程的根.【例16]当m为何整数时,方程2x2-5mx+2m2=5有整数解.【例17】已知方程ax2-Q a2-8a )x+2a2-13a+15=0(a是非负整数)至少有一个整数根,那么【例18]若关于x的方程(6-k)(9-k)x2-(117-15k)x+54=0的解都是整数,则符合条件的整数k的值有个.【例19】设方程mx2-(m-2)x+(m-3)=0有整数解,试确定整数m的值,并求出这时方程所有的整数解.【例20】设m为整数,且4<m<40,方程x2-2(2m-3)x+4m2-14m+8=0有两个整数根,求m的值及方程的根.【例21】①已知a是正整数,且使得关于x的一元二次方程ax2+2(2a-1)x+4(a-3)=0至少有一个整数根,求a 的值.②已知关于x的方程a2x2-(3a2-8a)x+2a2-13a+15=0(其中a是非负整数)至少有一个整数根,求a的值. 【例22】(1999年全国联赛试题)已知b,c为整数,方程5x2+bx+c=0的两根都大于-1且小于0,求b和c的值.【例23】(2007年“数学周报”杯全国数学竞赛试题)1.已知a,b都是正整数,试问关于x的方程x2-abx+2(a+b)=0是否有两个整数解?如果有,请求出来;如果没有,请给出证明.(1993年全国数学联赛试题)2.已知方程x2+bx+c=0及x2+cx+b=0分别各有两个整数根x,x12及x',x',且xx>0,x'x'>0.121212⑴求证:x<0,x<0,x'<0,x'<0;1212⑵求证:b-1W c W b+1;⑶求b,c所有可能的值.3.设p、q是两个奇整数,试证方程x2+2px+2q=0不可能有有理根.(北京市数学竞赛)4.试证不论n是什么整数,方程x2-16nx+7s=0没有整数解,方程中的s是任何正的奇数.【例24】求方程a3b-ab3+2a2+2b2+4=0的所有整数解.【例25】1.已知a为整数,关于%,j的方程组「+>=(a+2*的所有解均为整数解,求a的值.[xy=(a2+1)x一2a3+24.求方程x +y=3的所有正整数解.x2一xy+y275.求所有的整数对(x,y),使x3一x2y+xy2一y3=4x2一4xy+4y2+47.【例26】设m是不为零的整数,关于x的二次方程mx2-(m-1)x+1=0有有理根,求m的值.【例27】(2008年西城区初三抽样试题)当m是什么整数时,关于x的一元二次方程mx2-4x+4=0与x2一4mx+4m2一4m一5=0的根都是整数.【例28】(2007年全国联赛试题)a是正整数,关于x的方程x3+(a+17)x2+(38-a)x-56=0的根都是整数,求a的值及方程的整数根.【例29】(2004年“信利杯”全国初中数学竞赛)已知a,b是实数,关于%,y的方程组卜=x3-ax2-b x有整数解(%,丁),求0,b满足的关系式.I y=ax+b【例30】(2002年上海市初中数学竞赛)已知p为质数,使二次方程x2-2px+p2-5p-1=0的两根都是整数,求出所有可能的p的值.【例31】(2000年全国联赛)设关于x的二次方程(k2-6k+8)x2+(2k2-6k-4)x+k2=4的两根都是整数,求满足条件的所有实数k的值.【例32】b为何值时,方程x2-bx-2=0和x2-2x-b(b-1)=0有相同的整数根?并且求出它们的整数根?【例33】(2000年全国竞赛题)已知关于x的方程(a-1)x2+2x-a-1=0的根都是整数,那么符合条件的整数a有个.【例34】(1998年全国竞赛题)求所有正实数a,使得方程x2-ax+4a=0仅有整数根.【例35】(1996年全国联赛)方程(%—a)(x-8)—1=0有两个整数根,求a的值.【例36】(2000年全国联赛C卷)求所有的正整数a,b,c使得关于x的方程x2-3ax+2b=0,x2-3bx+2c=0,x2-3cx+2a=0的所有的根都是正整数.【例37】(1993年安徽竞赛题)n为正整数,方程x—拒+1)x+/n-6=0有一个整数根,则n=【例38】(第三届《祖冲之杯》竞赛题)求出所有正整数a,使方程ax2+2(2a-1)x+4(a-3)=0至少有一个整数根.【例39】(第三届《祖冲之杯》竞赛题)已知方程(a2-1)x2-2(5a+1)x+24=0有两个不等的负整数根,则整数a的值是.【例40】不解方程,证明方程x2-1997x+1997=0无整数根【例41】(1999年江苏第14届竞赛题)已知方程x2-1999x+a=0有两个质数根,则常数a=【例42】(1996年四川竞赛题)已知方程%2+mx-m+1=0有两个不相等的正整数根,求m的值.【例43】(1994年福州竞赛题)当m是什么整数时,关于x的方程x2-(m-1)x+m+1=0的两根都是整数? 【例44】设方程mx2-(m-2)x+(m-3)=0有整数解,试确定整数m的值,并求出这时方程所有的整数解. 【例45】(2007年全国初中数学联合竞赛)已知a是正整数,如果关于x的方程x3+Q+17)x2+(38-a)x-56=0的根都是整数,求a的值及方程的整数根.【例46]若k为正整数,且关于k的方程(k2-1)x2-6(3k-1)x+72=0有两个相异正整数根,求k的值.【例47】(2008年全国初中数学联赛)设a为质数,b,c为正整数,且满足9(2a+2b-c)2=509(4a+1022b-511c)求a(b+c)的值.b-c=2。
含字母系数的一元二次方程一、填空题:1、关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是()A .1B .-1C .1或-1D . 22、若方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值X 围是_____________.3、已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)=﹣6,则a 的值为。
4、已知关于x 的一元二次方程(m -2)x 2+3x +m 2-4=0有一个解是0,则 m 的值为.5、已知m 方程220x x --=的一个实数根,则代数式22()(1)m m m m--+的值为. 二、解答题1.若k 为正整数,且关于x 的方程(k 2-1)x 2-6(3k-1)x+72=0有两个不相等的正整数根,求k 的值.解:原方程变形为 (k+1)(k-1)x 2-6(3k-1)x+72=0,[(k+1)x-12][(k-1)x-6]=0,4,7.所以k=2,3使得x 1,x 2同时为正整数,但当k=3时,x 1=x 2=3,与题目不符,所以,只有k=2为所求.2、求k 的值,使得两个一元二次方程x 2+kx-1=0,x 2+x+(k-2)=0有相同的根,并求两个方程的根.解:设a 是这两个方程相同的根,由方程根的定义有a 2+ka-1=0,①a 2+a+(k-2)=0.②①-②有 ka-1-a-(k-2)=0,即 (k-1)(a-1)=0, 所以k=1,或a=1.(1)当k=1时,两个方程都变为x2+x-1=0,所以两个方程有两个相同的根没有相异的根;(2)当a=1时,代入①或②都有k=0,此时两个方程变为x2-1=0,x2+x-2=0.解这两个方程,x2-1=0的根为x1=1,x2=-1;x2+x-2=0的根为x1=1,x2=-2.x=1为两个方程的相同的根.3、已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.解:∵方程有两个实数根,∴△解这个不等式,得≤0设方程两根为则,∵∴∴整理得:解得:又∵,∴6、已知关于的一元二次方程(1)求证:无论取什么实数值,这个方程总有两个不相等的实数根。
解关于x 的方程:
1. mx n nx m +=+
2.
7(2)3(4)5(32)0x a x a x a a ----++=
3.
23ax a x -=+
4. 已知方程||1x ax =+有一个负根而且没有正根,求a 的取值范围。
5.
222224()b x b x b b +=+ 2219(0)mx mx m +=-≠
6. 2
22
224x n x n +=- 2
21()0(0)2kx p k -=≠
7. 2212hx hx +=
8. 方程21997||1997x x -=的根的和。
9. 关于x 的方程22||2x x m -+=恰好有三个实数根,则m 的值是多少?
10. 解方程:2|45|62x x x +-=-
11. 已知方程2191500x x --=的一个正根为
a ,求
...
12. 已知n 是正整数,且241715n n +-表示两个相邻的正整数之积,则n 的值有 个。
13. 设等腰三角形的一腰与底边的长分别是方程260x x a -+=的两根,当这样的三角形只
有一个时,a 的取值范围是 。
14. 已知a 是方程2
310x x -+=的根,求5432
225281a a a a a -+-+的值。
15. 若正整数系数二次方程240x mx n ++=有两个不相等的有理根,p q ,且p q <;又方
程220x px q -+=与方程220x qx p -+=有一个公共根,试求2
20x px q -+=的另一个根。
16. 已知实数,,a b c 满足0,8a b c abc ++==,则c 的取值范围是 。
17. 已知,x y 是实数,满足22(3)(3)6x y -+-=,则
y x
的最大值是 。