正方体的展开与折叠
- 格式:ppt
- 大小:290.50 KB
- 文档页数:13
七年级数学《展开与折叠》知识点整合
想要更好的学习数学首先要做的就是理解运用课本中的知识,因此为同学们整理了七年级数学展开与折叠知识点,希望大家可以更快更好的提高成绩。
知识点一:正方体的表面展开图
正方体是特殊的棱柱,它的六个面都是大小相同的正方形,将一个正方体的表面展开,可以得到11种不同的展开图,把它归为四类:一四一型,6种;二三一型,3种;三三型,1种;二二二型,一种。
正方体展开图口诀:
1、一线不过四;田凹应弃之。
2、找相对面:相间,“Z”端是对面。
3、找邻面:间二,拐角邻面知。
知识点二:棱柱的表面展开图
棱柱的表面展开图是由两个相同的多边形和一些长方形组成的。
知识点三:圆柱、圆锥的表面展开图
1、圆柱的表面展开图是由两个大小相同的圆(底面)和一个长方形(侧面)组成,其中侧面展开图长方形的一边的长是底面圆的周长,另一边的长是圆柱的高。
2、圆锥的表面展开图是由一个(侧面)和一个圆(底面)组成,其中扇形的半径长是圆锥母线(即圆锥底面圆周上任一点与顶点的连线)
长,而扇形的弧长则是圆锥底面圆的周长
光有七年级数学展开与折叠知识点的整理是不够的,还要结合练习题的运用,总结之后来检测一下吧!。
正方体折叠与展开口诀
正方体折叠与展开口诀:
1、正方体折叠:“头尾置中,侧面向内,顶面贴边,四面折叠。
”
2、正方体展开:“头尾相连,侧面向外,顶面对边,四角伸出。
”
详解:
1、正方体折叠:
(1)头尾置中:取正方体的一边,将它的头尾放在中间;
(2)侧面向内:取另一边,将它的侧面朝向中间;
(3)顶面贴边:将边贴在另一边的边上;
(4)四面折叠:就像将一个带有花纹的手帕折叠一样,将正方体的四个角折叠起来。
2、正方体展开:
(1)头尾相连:取正方体的一边,将它的头和尾连接在一起;
(2)侧面向外:取另一边,将它的侧面朝向外部;
(3)顶面对边:将顶面置于另一边的边上;
(4)四角伸出:将正方体的四个角分别从四个方向伸出去,形成正方体的模样。
正方体的展开和折叠——万能解题法
基本类型:
正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐。
一条线上不过四,田“7”和凹要放弃。
相对面:“I”型图不相连;“Z”型图在两端。
同行或同列隔一个的;“Z”字型两端(“Z”字型两端是指紧挨着中间竖线的两个面)。
解题思路:
1.通过相对面排除,相对面不相邻。
2.三面排除或确定。
在正方体8个顶点,每个顶点均连着三个面。
正方体只能看到图形的三个面。
比较这三个面在立体图形与平面图形中的位置来确定或排除。
在平面图形中,通过旋转、移动,让不相邻的面变成立体图形中相邻的面。
(1)旋转,即侧面“滚动”。
如果两个面的两个边构成90°的夹角,其中一个面旋转90度,让这两条边重合。
他们本身就是一条边,被剪开了,当然还能合上。
在滚动的过程抓住一个公共点,每次滚动只能滚动90度,并且在滚动的时候,滚动的面上面的图案也要跟着滚动变化。
(2)移动,即一字型平移。
当四个面排成一列或一行,其中一端的面直接移到另一端,只要保证相邻的面不变即可。
正方体的折叠与展开规律
正方体的折叠与展开规律是指将一个正方体沿着一些特定的线折叠起来或展开时的形态变化规律。
正方体有6个面,每个面都是正方形,并且相邻的面之间共享一个边。
折叠规律:
1. 将正方体的四个垂直相邻的面(例如前、后、左、右面)沿着垂直于这些面的线折叠,使它们相互靠拢并覆盖在一起。
2. 接着将正方体的顶面和底面沿着垂直于这两个面的线折叠,使它们相互靠拢并覆盖在一起。
3. 最后,将正方体的两个水平相邻的面(例如前、后面)沿着垂直于这两个面的线折叠,使它们相互靠拢并覆盖在一起。
展开规律:
1. 将正方体的垂直折叠后的面展开,使其形成一个正方形的网格。
2. 接着将顶面和底面展开,分别位于正方形网格的上方和下方。
3. 最后将水平折叠后的面展开,分别位于正方形网格的左侧和右侧。
通过这种折叠和展开规律,一个正方体可以变形成一个由6个正方形组成的平面图形。
这种变形也被称为正方体的展开式。
正方体展开式是正方体的一个二维表示形式,可以用于制作模型、计算表面积等。
正方体的展开与折叠总共有四类情况,分别是1,4,1型;1,3,2型;2,2,2型和3、3型。
第一类:(1,4,1型),共6种。
记忆口诀:中间四个面,上下各一面。
第二类:(1,3,2型),共3种。
记忆口诀:中间三个面,一二隔河见。
第三类:(2,2,2型),共1种。
记忆口诀:中间两个面,楼梯天天见。
第四类:(3,3型),共1种。
记忆口诀:中间没有面,三三连一线。
解题技巧背一背
1、寻找正方体相对面
解题技巧:“I”型图不相连;“Z”型图在两端。
2、判断是否可以围成正方体
一线不过四(一条直线上的小正方形的个数不会超过四个);“7”、“田”、“凹”应弃之(在正方体展开图中,不会有“7”字型、“田”字型、“凹”字型)。
正方体的性质
1、正方体有有6个面,12条棱,8个顶点。
2、正方体一般指正六面体,用六个完全相同的正方形围成的立体图形叫正六面体,也称立方体、正方体。
3、且正方体的每个面都相等,展开之后的表面积也相等。
正方体的展开和折叠问题的解题规律正方体的展开和折叠问题在中考题中经常出现,多见于填空题和选择题。
这种题有利于培养学生的空间观念和实践、探索能力.本文对几种常见类型的解题规律作初步的探讨.一、判断给定的图形是否是正方体的展开图例1:将一个正方体纸盒沿棱剪开并展开,共有_______种不同形式的展开图。
解:具体有以下11种图形,1.“一·四·一”型,中间一行4个作侧面,两边各1个分别作上下底面,•共有6种.2.“二·三·一”(或一·三·二)型,中间3个作侧面,上(或下)边2•个那行,相连的正方形作底面,不相连的再下折作另一个侧面,共3种.3.“二·二·二”型,成阶梯状.4.“三·三”型,两行只能有1个正方形相连.二、找正方体相邻或相对的面1.从展开图找.例2水平放置的正方体六个面分别用“前面、后面、上面、下面、左面、右面”表示。
如图是一个正方体的平面展开图,若图中的“进”表示正方体的前面,“步”表示右面,“习”表示下面,则“祝”、“你”、“学”分别表示正方体的________。
解析:“祝”与“进”,“你”与“习”中间都隔一个正方形,是相对的面,所以“学”与“步”也是相对的面。
答案:后面、上面、左面例3右图是一个正方体的展开图,如果正方体相对的面上标注的值,那么____,_______。
解析:“2x”与“8”中间都隔一个正方形,是相对的面,“y”与“10”是相对的面。
所以,x=4,y=10。
2.从立体图找.例4:如图是3个完全相同的正方体的三种不同放置方式,下底面依次是______。
解析先找相邻的面,余下就是相对的面.上图出现最多的是3,和3相连的有2、4、5、6,余下的1就和3相对.再看6,•和6相邻的有2、3、4,和3相对的是1,必和6相邻,故6和5相对,余下是4和2相对,•下底面依次是2、5、1.三、由带标志的正方体图去判断是否属于它的展开图例5小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()解析基本方法是先看上下,后定左右,故选(A).例6 下面各图都是正方体的表面展开图,若将它们折成正方体,•则其中两个正方体各面图案完全一样,它们是_______。
v1.0 可编辑可修改
展开与折叠
知识点一:正方体的表面展开图
正方体是特殊的棱柱,它的六个面都是大小相同的正方形,将一个正方体的表面展开,可以得到11种不同的展开图,把它归为四类:一四一型,6种;二三一型,3种;三三型,1种;二二二型,一种。
正方体展开图口诀:
1、一线不过四;田凹应弃之。
2、找相对面:相间,“Z”端是对面。
3、找邻面:间二,拐角邻面知。
知识点二:棱柱的表面展开图
棱柱的表面展开图是由两个相同的多边形和一些长方形组成的。
知识点三:圆柱、圆锥的表面展开图
1、圆柱的表面展开图是由两个大小相同的圆(底面)和
一个长方形(侧面)组成,其中侧面展开图长方形的
一边的长是底面圆的周长,另一边的长是圆柱的高。
2、圆锥的表面展开图是由一个(侧面)和一个圆(底面)
组成,其中扇形的半径长是圆锥母线(即圆锥底面圆
周上任一点与顶点的连线)长,而扇形的弧长则是圆
锥底面圆的周长。
第二讲展开与折叠一、正方体的展开与折叠下面图形中,都能围成一个正方体?a b c有些立体图形————→平面图形有些平面图形————→立体图形1.展开是将某些立体图形展成一个平面图形,同时这个平面图形可以折叠成相应的立体图形.展开和折叠是过程.2.正方体是一个特殊的四棱柱,它的所有棱长都相等,所有面都是正方形且大小相等,将正方体的表面沿某些棱剪开,展成一个平面图形,其展开图共有11种形式.一四一型二三一型二二二型三三型要点精析:(1)图形的展开与折叠是立体图形与平面图形之间的转化过程;(2)判断一个平面图形能否折叠成立体图形的方法:一看面数够不够;二看各面的位置是否合适,尤其是底面的位置;三看对边的长度是否相等.(3)为了更好地记忆展开图和展开图中相对的面,请同学们熟记口诀“一线不过四,凹、田应弃之,相间、‘Z’的两端是对面”.例1图中能折叠成正方体的是()练1.将一个无底无盖的正方体沿一条棱剪开得到的平面图形为()A.长方形B.正方形C.三角形D.五边形练2.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一个边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7 B.6 C.5 D.4练 3.如图,它需再添一个小正方形,折叠后才能围成一个正方体,图中的灰色小正方形分别由四位同学补画,其中正确的是( )二、正方体与其表面展开图间的对应关系图中的图形可以折成一个正方体形的盒子.折好以后,与1相邻的数是什么?相对的数是什么?先想一想,再具体折一折,看看你的想法是否正确.例2把正方体的表面沿某些棱剪开展成一个平面图形(如图(1)),请根据各面上的图案判断这个正方体是图(2)中的()图1图2例3如图,一个立体图形的展开图中,用每个面内的大写字母表示该面,用小正方形边上所标注的小写字母表示该边.(1)说出这个立体图形的名称;(2)写出所有相对的面;练1.如图,有一个正方体纸巾盒,它的平面展开图是()练2.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其他空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()练3.图①是一个小正方体的表面展开图,小正方体从图②所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美三、柱体的展开与折叠想一想(1)如图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.(2)将图中不能围成棱柱的图形作适当修改使所得图形能围成一个棱柱.1. 棱柱的表面展开图是由两个相同的和一些组成的.2. 棱柱的表面展开图不止一种,沿其不同的棱剪开,可得到不同的表面展开图.3. 圆柱的表面展开图是由两个大小相同的和组成的,其中侧面展开图的一边长是圆柱的,另一边长是底面圆的.例4如图所示的平面图形经过折叠可以围成棱柱的有()A.(1)(2)(4)B.(1)(2)(4)(5)C.(4)(5)D.(2)(4)例5 如图,圆柱的表面展开后得到的平面图形是图中的()练1如图是一个长方体包装盒,则它的平面展开图是( )四、锥体的展开与折叠圆锥的表面展开图是由一个和一个组成的,其中扇形的半径长是圆锥母线(即圆锥底面圆周上任一点与顶点的连线)长,而扇形的弧长则是圆锥底面圆的周长.例3如图所示的平面图形不可能围成圆锥的是()练1将图①的正四棱锥ABCDE沿着其中的四个边剪开后,形成的展开图为图②,判断下列哪一个选项中的四个边可为此四个边?()A.AC,AD,BC,DE B.AB,BE,DE,CDC.AC,BC,AE,DE D.AC,AD,AE,BC小结:正方体、棱锥、棱柱展开图的基本条件:一般地,如果某立体图形的表面展开图由6个正方形组合而成,那么立体图形是正方体;如果是由3个及3个以上的三角形与1个多边形组成的,那么立体图形为棱锥;如果是由3个及3个以上的长方形与两个形状、大小都相同的多边形组合而成的,那么立体图形为棱柱.五、当堂检测1.下列图形中,可以是正方体表面展开图的是()2.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()3.如图,可以折叠成一个无盖正方体盒子的是()A.①B.①②C.②③D.①③4.图(1)和图(2)中所有的正方形大小都一样,将图(1)的正方形放在图(2)中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③ D.④5.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是() A.中B.考C.顺D.利6。
初一数学《展开与折叠》知识点整合想要更好的学习数学第一要做的确实是明白得运用课本中的知识,因此为同学们整理了七年级数学展开与折叠知识点,期望大伙儿能够更快更好的提高成绩。
知识点一:正方体的表面展开图正方体是专门的棱柱,它的六个面差不多上大小相同的正方形,将一个正方体的表面展开,能够得到11种不同的展开图,把它归为四类:一四一型,6种;二三一型,3种;三三型,1种;二二二型,一种。
正方体展开图口诀:1、一线只是四;田凹应弃之。
2、找相对面:相间,“Z”端是对面。
3、找邻面:间二,拐角邻面知。
知识点二:棱柱的表面展开图棱柱的表面展开图是由两个相同的多边形和一些长方形组成的。
知识点三:圆柱、圆锥的表面展开图单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新奇事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积存的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
如此,即巩固了所学的材料,又锤炼了学生的写作能力,同时还培养了学生的观看能力、思维能力等等,达到“一石多鸟”的成效。
1、圆柱的表面展开图是由两个大小相同的圆(底面)和一个长方形(侧面)组成,其中侧面展开图长方形的一边的长是底面圆的周长,另一边的长是圆柱的高。
语文课本中的文章差不多上精选的比较优秀的文章,还有许多名家名篇。
假如有选择循序渐进地让学生背诵一些优秀篇目、杰出段落,对提高学生的水平会大有裨益。
现在,许多语文教师在分析课文时,把文章解体的支离破裂,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的干洁净净。
造成这种事倍功半的尴尬局面的关键确实是对文章读的不熟。
常言道“书读百遍,其义自见”,假如有目的、有打算地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便能够在读中自然领会文章的思想内容和写作技巧,能够在读中自然加强语感,增强语言的感受力。
正方体的展开和折叠问题的解题规律正方体的展开和折叠问题在中考题中经常出现,多见于填空题和选择题。
这种题有利于培养学生的空间观念和实践、探索能力.本文对几种常见类型的解题规律作初步的探讨.一、判断给定的图形是否是正方体的展开图例1:将一个正方体纸盒沿棱剪开并展开,共有_______种不同形式的展开图。
解:具体有以下11种图形,1.“一·四·一”型,中间一行4个作侧面,两边各1个分别作上下底面,•共有6种.2.“二·三·一"(或一·三·二)型,中间3个作侧面,上(或下)边2•个那行,相连的正方形作底面,不相连的再下折作另一个侧面,共3种.3.“二·二·二"型,成阶梯状.4.“三·三”型,两行只能有1个正方形相连.二、找正方体相邻或相对的面1.从展开图找.例2水平放置的正方体六个面分别用“前面、后面、上面、下面、左面、右面”表示。
如图是一个正方体的平面展开图,若图中的“进"表示正方体的前面,“步"表示右面,“习”表示下面,则“祝"、“你"、“学”分别表示正方体的________.解析:“祝"与“进",“你"与“习”中间都隔一个正方形,是相对的面,所以“学”与“步”也是相对的面。
答案:后面、上面、左面例3右图是一个正方体的展开图,如果正方体相对的面上标注的值,那么____,_______。
解析:“2x”与“8”中间都隔一个正方形,是相对的面,“y"与“10”是相对的面.所以,x=4,y=10。
2.从立体图找.例4:如图是3个完全相同的正方体的三种不同放置方式,下底面依次是______。
解析先找相邻的面,余下就是相对的面.上图出现最多的是3,和3相连的有2、4、5、6,余下的1就和3相对.再看6,•和6相邻的有2、3、4,和3相对的是1,必和6相邻,故6和5相对,余下是4和2相对,•下底面依次是2、5、1.三、由带标志的正方体图去判断是否属于它的展开图例5小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()解析基本方法是先看上下,后定左右,故选(A).例6 下面各图都是正方体的表面展开图,若将它们折成正方体,•则其中两个正方体各面图案完全一样,它们是_______.解析首先找出上下两底,(1)是+和*,(2)是+和*,(3)(4)都是□和×,排除(1)(2),再检查侧面,(3)(4)顺序相同,所以选(3)(4).。