乘法公式易错题、典题集
- 格式:doc
- 大小:191.50 KB
- 文档页数:4
专题复习:乘法公式知识点归纳及典例+练习题一、知识概述 1、平方差公式 由多项式乘法得到 (a+b)(a-b) =a -b . 即两个数的和与这两个数的差的积,等于它们的平方差. 2、平方差公式的特征 ①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数; ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方); ③公式中的 a 和 b 可以是具体数,也可以是单项式或多项式; ④对于形如两数和与这两数差相乘的形式,就可以运用上述公式来计算. 3、完全平方公式 由多项式乘法得到(a±b) =a ±2ab+b2 2 2 2 2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍. 推广形式:(a+b+c) =a +b +c +2ab+2bc+2ca 4、完全平方公式的特征 (a+b) =a +2ab+b 与(a-b) =a -2ab+b 都叫做完全平方公式,为了区别,我们把前者叫做两数 和的完全平方公式,后者叫做两数差的完全平方公式. ①两公式的左边:都是一个二项式的完全平方,二者仅有一个符号不同;右边:都是二次三项式,其 中有两项是公式左边两项中每一项的平方,中间是左边二项式中两项乘积的 2 倍,两者也仅有一个符号不 同. ②公式中的 a、b 可以是数,也可以是单项式或多项式. ③对于形如两数和(或差)的平方的乘法,都可以运用上述公式计算. 5、乘法公式的主要变式 (1)a -b =(a+b)(a-b); (2)(a+b) -(a-b) =4ab; (3)(a+b) +(a-b) =2(a +b ); (4)a +b =(a+b) -2ab=(a-b) +2ab (5)a +b =(a+b) -3ab(a+b). 熟悉这些变形公式,明确它们间联系,综合运用,常可简化解题过程. 注意:(1)公式中的 a,b 既可以表示单项式,也可以表示多项式. (2)乘法公式既可以单独使用,也可以同时使用. (3)这些公式既可以正用,也可以逆用,因此在解题时应灵活地运用公式,以计算简捷为宜.3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2二、典型例题讲解 例 1、计算: (1)(3a+2b)(2b-3a); (2)(x-2y)(-x-2y);(3) (4)(a+b+c)(a-b-c). 解:;(1)原式=(2b+3a)(2b-3a) =(2b) -(3a) =4b -9a2 2 2 2(2)原式=(-2y+x)(-2y-x) =(-2y) -x =4y -x2 2 2 2(3)原式=== (4)原式=[a+(b+c)][a-(b+c)] =a -(b+c)2 2 2 2=a -(b +2bc+c ) =a -b -2bc-c 例 2、计算: (1)2004 -19962 2 2 2 2 22(2)(x-y+z) -(x+y-z)2(3)(2x+y-3)(2x-y-3). 解:(1)2004 -1996 =(2004+1996)(2004-1996) =4000×8=32000 (2)(x-y+z) -(x+y-z)2 2 2 2=[(x-y+z)+(x+y-z)][ (x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz (3)(2x+y-3)(2x-y-3)=[(2x-3)+y][(2x-3)-y] =(2x-3) -y =4x -12x+9-y =4x -y -12x+9; 例 3、计算: (1)(3x+4y) ; (3)(2a-b) ;2 2 2 2 2 2 2 2 2(2)(-3+2a) ; (4)(-3a-2b)22解:(1)原式=(3x) +2·3x·4y+(4y) =9x +24xy+16y2 2 22(2)原式=(-3) +2·(-3)·2a+4a =4a -12a+922(3)原式=(2a) +2·2a·(-b)+(-b) =4a -4ab+b2 222(4)原式=[-(3a+2b)] =(3a+2b)2 22=(3a) +2·(3a)·2b+(2b) =9a +12ab+4b2 22例 4、已知 m+n=4, mn=-12,求(1);(2);(3).解:(1);(2);(3)2.例 5、多项式 9x +1 加上一个单项式后,使它能够成为一个整式的完全平方,那么加上的单项式可以是 ________(填上一个你认为正确的即可). 分析: 解答时,很多学生只习惯于课本上的完全平方的顺序,认为只有添加中间(两项的乘积的 2 倍)项,即 9x +1+6x=(3x+1) 或 9x -6x+1=(3x-1) ;但只要从多方面考虑,还会得出2 2 2 2,9x +1-1=9x =(3x) , 9x +1-9x =12, 所以添加的单项式可以是 6x,22222-6x,,-1,-9x .2答案:±6x 或 例 6、计算:或-1 或-9x2,并说明结果与 y 的取值是否有关. 解:从上述结果可以看出,结果中不含 y 的项,因此结果与 y 的取值无关. 点评: (1)利用平方差公式计算的关键是弄清具体题目中,哪一项是公式中的 a,哪一项是公式中的 b; (2)通常在各因式中, 相同项在前, 相反项在后, 但有时位置会发生变化, 因此要归纳总结公式的变化, 使之更准确的灵活运用公式. ①位置变化:(b+a)(-b+a)=(a+b)(a-b)=a -b ; ②符号变化:(-a-b)(a-b)=(-b-a)(-b+a)=(-b) -a =b -a ; ③系数变化:(3a+2b)(3a-2b)=(3a) -(2b) =9a -4b ; ④指数变化:(a +b )(a -b )=(a ) -(b ) =a -b ; ⑤连用公式变化:(a-b)(a+b)(a +b )(a +b ) =(a -b )(a +b )(a +b )=(a -b )(a +b ) =a -b ; ⑥逆用公式变化:(a-b+c) -(a-b-c)2 2 8 8 2 2 2 2 4 4 4 4 4 4 2 2 4 4 3 3 3 3 3 2 3 2 6 6 2 2 2 2 2 2 2 2 2 2=[(a-b+c)+(a-b-c)][(a-b+c)-(a-b-c)] =4c(a-b). 例 7、已知 .求 分析:的值.若直接代入求解则十分繁杂。
八年级数学上册《乘法公式》专项训练带解析,给孩子期末复习!专题一乘法公式1.下列各式中运算错误的是(D)A.a²+b²=(a+b)²-2abB.(a-b)²=(a+b)²-4abC.(a+b)(-a+b)=-a²+b²D.(a+b)(-a-b)=-a²-b²解析:A中,由完全平方公式可得(a+b)²-2ab=a+2ab+b²-2ab=a²+b²,故A正确;B中,由完全平方公式可得(a-b)²=a²-2ab+b²,(a+b)²-4ab=a²+2ab+b²-4ab=a²-2ab+b²,故B正确;C中,由平方差公式可得(a+b)(-a+b)=(a+b)(b-a)=b²-a²=-a²+b²,故C正确;D中,(a+b)(-a-b)=-(a+b)²=-a²-2ab-b²,故D错误.2.代数式(x+1)(x-1)(x²+1)的计算结果正确的是(A)A.x4-1 B.x4+1 C.(x-1)4 D.(x+1)4解析:原式=(x²-1)(x²+1)=(x²)²-1=x4-1.3.计算:(2x+y)(2x-y)+(x+y)²-2(2x²-xy)(其中x=2,y=3).解:原式=4x²-y²+x²+2xy+y²-4x+2xy=x²+4xy,当x=2,y=3时,原式=2²+4×2×3=4+24=28.专题二乘法公式的几何背景4.请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是( B )A.(a+b)(a-b)=a²-b²B.(a+b)²=a²+2ab+b²C.(a-b)²=a-2ab+b²D.(a+b)²=a²+ab+b²解析:这个图形的整体面积为(a+b)²;各部分的面积的和为a²+2ab+b²;所以得到公式(a+b)²=a²+2ab+b².故选B.5.如图,你能根据面积关系得到的数学公式是(C)A.a²-b²=(a+b)(a-b)B.(a+b)²=a²+2ab+b²C.(a-b)²=a²-2ab+b²D.a(a+b)=a²+ab解析:从图中可知:阴影部分的面积是(a-b)²和b²,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)²,∴(a-b)²=a²-2ab+b²,故选C.6.我们在学习完全平方公式(a+b)²=a²+2ab+b²时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)²”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)²吗?解:(a+b+c)²的几何背景如图,整体的面积为:(a+b+c)²,用各部分的面积之和表示为:(a+b+c)²=a²+b²+c²+2ab+2ac+2bc,所以(a+b+c)²=a²+b²+c²+2ab+2ac+2bc.。
北师大版数学三年级下册第3单元《乘法》易错精选练习题姓名:__________ 班级:__________考号:__________题号一二三四五总分评分一、单选题(共10题;共20分)1.如果两个因数的末尾都有1个0,那么积的末尾至少有()个0。
A. 1B. 2C. 32.一个书包28元,买10个这样的书包,300元钱()A. 够用B. 不够用C. 不能确定3.20乘15的积与30乘10积的相比,下面说法正确的是()。
A. 20×15大B. 一样大C. 30×10大4.103的46倍是( )A. 4628B. 315C. 215D. 47385.得数比600大的算式是()A. 19×29B. 31×22C. 25×226.一块长方形绿地面积是480平方米(如图),长不变,宽增加到32米,扩大后绿地面积是()平方米。
A. 1920B. 1440C. 153607.35×10的结果比35×9的结果多()。
A. 一个1B.一个10C. 一个358.大华超市平均每天要用电60度,9月份一共要用电( )度。
A. 180B. 1800C. 18609.两位数乘两位数,积至少是( )位数。
A. 两B. 三C. 四10.66×☆的积的范围是4000~4400。
☆可能是()。
A. 60B. 65C. 70二、判断题(共4题;共8分)11.一个数乘一个小数,积一定比原来的数小。
()12.63个37相加的和是100。
()13.54×80与540×8的计算结果相同。
()14.一个数乘小数,积一定小于这个数。
()三、填空题(共2题;共3分)15.12个30相加的和是________。
16.三位数乘两位数,积最多只能是________位数,最少是________位数。
四、解答题(共5题;共34分)17.学校报告厅有22排座位,每排24个座位。
专题01 整式的乘除【易错题型专项训练】易错点一:同底数幂的乘法1.若2x =3,2y =4,2z =12,求x ,y ,z 之间的关系.【解析】解:∵ 3×4=12,即2x ·2y =2z ,∴ 2x+y =2z ,∴ x+y =z.故答案为:x +y =z2.已知a m =2,a n =3,求下列各式的值:(1) a m+1;(2)a 3+n ;(3)am+n+2. 【解析】解:∵a m =2,a n =3 ,∴(1)a m+1=a m ×a=2a(2)a 3+n =a 3×a n =3a 3(3)a m+n+2=a m ×a n ×a 2=2×3×a 2=6a2故答案为:(1)2a;(2)3a 3; (3)6a 2易错点二:幂的乘方与积的乘方1.计算:[(a -b)3]2-[-(b -a)2]3.【解析】[(a -b)3]2-[-(b -a)2]3=(a -b)6-[-(b -a)6]= (a -b)6+(b -a)6 =(a-b)6+(a-b)6 =2(a-b)62.若m 为正整数,且(a 2)m+1=a 12,则m 的值为______.【答案】5.【解析】解:∵(a 2)m+1=a 12,∴a 2m+2=a 12, ∴2m+2=12,∴m=5.故答案为5.3.若(a m b ⋅ab n )5=a 10b 15,则3m(n 2+1)的值是( ).A.8B.10C.12D.15【答案】D.【解答】解:(a m b ⋅ab n )5=(a m b)5(ab n )5=a 5m b 5a 5b 5n = a 5m a 5 b 5b 5n = a 5m+5 b 5+5n =a 10b 15 ∴5m+5=10,5+5n=15,∴m=1,n=2,∴3m(n 2+1)=3×5=15故选D. 4.计算:[(x-y)n ]m .(y-x)2=_______.【答案】(x-y)mn+2 【解答】解:原式=(x-y)mn .(x-y)2=(x-y)mn+2.故答案为:(x-y)mn+2易错点三:同底数幂的除法1.已知:5a =4,5b =6,5c =9,(1)求52a+c-b 的值;(2)试说明:2b=a+c .【解析】解:(1)52a+b =52a ×5c ÷5b =(5a )2×5c ÷5b =42×9÷6=24; (2)∵5a+c =5a ×5c =4×9=3652b =62=36,∴5a+c =52b ,∴a+c=2b .易错点四:整式的乘法1.若(8×106)(5×102)(2×10)=M ×10a ,则M 、a 的值可为( )A.M =8,a =8B.M =2,a =9C.M =8,a =10D.M =5,a =10【答案】C.【解析】解:(8×106)(5×102)(2×10)= (8×5×2)×(106×102×10)=80×109=8×1010=M ×10a ∴M =8,a =10故选C.2.若(-5a m+1b 2n −1)(2a n b m )=-10a b ,则m -n 等于( )A.-3B.-1C.1D.3【答案】B.【解析】(-5a m+1b 2n −1)(2a n b m )=(-5×2)( a m+1a n )( b 2n −1b m )=-10 a m+n+1 b 2n+m −1∴-10 a m+n+1 b 2n+m −1=-10a 4b 4 ∴∴m=1,n=2∴m -n=-1.故选B.3.已知M 和N 表示单项式,且满足2x (M+3x )=6x 2y 2+N ,则M=_____,N=______.【答案】3xy 2,6x 2.【解析】解:∵2x (M+3x )=6x 2y 2+N ,∴2xM+6x 2=6x 2y 2+N ,则N=6x 2,M=6x 2y 2÷2x=3xy 2,故答案为:3xy 2,6x 2.4.要使−5x 3×(x 2+ax +5)的结果中不含x 4项,则a 等于______. 【答案】0.【解析】解:-5x3×x2+(-5x3)×ax+(-5x3)×5=-5x5-5ax4-25x3,∵展开式中不含x4项,则-5a=0,∴a=0.故答案为:a=0.5.若多项式(x 2+mx+n)(x2-3x+4)的展开式不含x3项和x2项,试求m、n的值.【解析】解:原式=x4-3x3+4x2+mx3-3mx2+4mx+nx2-3nx+4n,=x4+(m-3)x3+(4-3m+n)x2+(4m-3n)x+4n.由题意得m-3=0,4-3m+n=0,解得m=3,n=5故答案为:m=3,n=56.若(3x3+M)(2x2-1)是一个五次多项式,则下列说法中正确的是()A.M是一个三次单项式B.M是一个三次多项式C.M的次数不高于三D.M不可能是一个常数【答案】C.【解析】解:(3x3+M)(2x2-1)=6x5-3x3+2Mx2-M因为结果是一个五次多项式,所以M的次数不高于三故选C.易错点五:平方差公式1.计算:(a-2b+3c)(a-2b-3c)【解析】解:(a-2b+3c)(a-2b-3c)= [(a-2b)+3c][(a-2b)-3c]=(a-2b)2-(3c)2=a2-4ab+4b2-9c2.故答案为:a2-4ab+4b2-9c2.2.计算:(2a-b)(4a2+b2)(2a+b)=________.【答案】16a4-b4.【解析】解:(2a-b)(4a2+b2)(2a+b)=(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)=16a4-b4故答案为:16a4-b4易错点六:完全平方公式1.下列计算正确的是()A. B.C. D.【答案】C【解析】A.,故本选项错误;B.,故本选项错误;C.,故本选项正确;D.,故本选项错误.故选D.2.计算:(2a+3b−c)2【解析】解:原式=[(2a+3b)−c]2=(2a+3b)2-2c(2a+3b)+c2=4a2+12ab+9b2-4ac-6bc+c23.若多项式x2-(k-1)x+16是完全平方公式,则k=______.【答案】9或-7.【解析】解:∵多项式x2-(k-1)x+16是完全平方公式,∴(k-1)x是x和4的2倍,∴k-1=±8,解得k=9或-7,故答案为:9或-7.4.如果二次三项式x2-2(m-1)x+16是一个完全平方式,那么m的值是()A.3B.-5C.3或-5D.5或-3【答案】D.【解析】解:∵多项式x2-2(m-1)x+16是完全平方公式,∴2(m-1)是x和4的2倍,∴m-1=±4,解得m=-3或5,故选D .5.若x 2+y 2-4x +2y +5=0,求x +y 的值.【解析】解:将x 2+y 2-4x+2y+5=0变形得:x 2-4x+4+y 2+2y+1=0,即(x-2)2+(y+1)2=0, ∴x-2=0且y+1=0,解得:x=2,y=-1,则x+y=2+(-1)=1.6.已知a 、b 满足等式a 2+b 2-4(2b-a )+20=0,求a+b 值.【解析】解:∵a 2+b 2-4(2b-a )+20=0,∴a 2+b 2-8b+4a+20=0a 2+4a+4+b 2-8b+16=0,∴(a+2)2+(b-4)2=0, ∴, ∴, ∴a+b=-2+4=2.易错点七:整式除法1.计算(5m 2+15m 3n-20m 4)÷(-5m 2)结果正确的是( )A1-3mn+4m 2 B-1-3m+4m 2 C4m 2-3mn-1 D4m 2-3mn 【答案】C .【解析】解:原式=5m 2(1+3mn-4m 2)÷(-5m 2)=4m 2-3mn-1.故选:C .2.若一个三角形的面积为6x 2+13x+5,底边长为2x+1,则底边上的高为______.【答案】6x+10.【解析】解:底边上的高是:2(6x 2+13x+5)÷(2x+1)=2(2x+1)(3x+5)÷(2x+1)=2(3x+5)=6x+10.故答案是:6x+10.易错点八:化简求值1.先化简,再求值:22232[()()]2a a b ab b a a b a b ---÷,其中12a =-,13b =. 【解析】22232[()()]2a a b ab b a a b a b ---÷ 3222322()2a b a b a b a b a b =--+÷3222(22)2a b a b a b =-÷1ab =-,当12a =-,13b =时,原式116=-. 2.先化简,再求值:(2a+b )2-(2a-b )(a+b )-2(a-2b )(a+2b ),其中a=12,b=-2. 【解析】(2a+b )2-(2a-b )(a+b )-2(a-2b )(a+2b )=(4a 2+4ab+b 2)–(2a 2+2ab –ab –b 2)–2(a 2–4b 2)=4a 2+4ab+b 2-2a 2-ab+b 2-2a 2+8b 2=3ab+10b 2,当a=,b=-2时,原式=3××(-2)+10×(-2)2=-3+40=37.3.已知a+b=5,ab=6,则a 2+b 2=_____,a-b=____.【答案】13,±1.【解析】解:∵a+b=5,∴(a+b )2=25,即a 2+2ab+b 2=25,∵ab=6,∴a 2+b 2=25-2×6=25-12=13;∵(a-b )2=a 2-2ab+b 2=13-2×6=13-12=1,∴a-b=±1.故答案为:13,±1. 4.通过对代数式进行适当变形,求出代数式的值:若m 2+m -1=0,求m 3+2m 2+200的值.【解析】解:m 2+m-1=0即得到:m 2+m=1m 3+2m 2+2008=m 3+m 2+m 2+2008=m(m 2+m)+m 2+2008=m+m 2+2008=1+2008=2009。
专题02 乘法公式重难点题型专训(11大题型+15道拓展培优)【题型目录】题型一 运用平方差公式进行运算题型二 平方差公式与几何图形题型三 运用完全平方公式进行运算题型四 通过完全平方公式变形求值题型五 求完全平方公式中的字母系数题型六 完全平方式在几何图形中的应用题型七 整式的混合运算题型八 乘法公式中的多结论问题题型九 乘法公式的相关计算题型十 乘法公式中的“知二求三”题型十一 乘法公式与几何图形的综合应用【知识梳理】知识点一、平方差公式平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.特别说明:在这里,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如利用加法交换律可以转化为公式的标准型(2)系数变化:如(3)指数变化:如(4)符号变化:如(5)增项变化:如(6)增因式变化:如知识点二、完全平方公式完全平方公式:两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.特别说明:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:22()()a b a b a b +-=-b a ,()()a b b a +-+(35)(35)x y x y +-3232()()m n m n +-()()a b a b ---()()m n p m n p ++-+2244()()()()a b a b a b a b -+++()2222a b a ab b +=++2222)(b ab a b a +-=-【经典例题一【例1A.【变式训练】1.(2023(+(21)4.(2024上·广东湛江·八年级校考期末)观察下列计算∶()()22a b a b a b -+=-()()2233a b a ab b a b -++=-()()322344a ab ab a b b b a +++=--(1)猜想∶ ()()1211n n a a a a ---++++=L _______________________.(其中n 为正整数,且2n ³);(2)利用(1)猜想的结论计算∶ 109873222222221++++++++L ;【经典例题二 平方差公式与几何图形】【例2】(2023下·甘肃兰州·七年级统考期中)下面给出的三幅图都是将阴影部分通过割,拼,形成新的图形,其中不能验证平方差公式的是( )A .①B .②③C .①③D .③【变式训练】1.(2023上·吉林白城·八年级统考期末)如图,从边长为()3a +的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线剪开后又拼成如图的长方形(不重叠,无缝隙),则拼成的长方形的另一边的长为( )A .26a +B .22a +C .6a +2.(2023上·河南周口·八年级校联考阶段练习)有正方形纸片A 3.(2024上·云南玉溪·八年级统考期末)如图甲所示,边长为乙是由图甲中阴影部分拼成的一个长方形,设图甲中阴影部分面积为(1)请直接用含a 和b 的代数式表示达).(2)试利用这个公式计算:112æ-çè(1)上述操作能验证的等式是_______.(请选择正确的一个)A .()()22=a b a b a b -+-;B .22a ab -+(2)请应用(1)中的等式完成下列各题:①2202320242022-´;【经典例题三【例则2a +【变式训练】1.(2023·A .(1)如图所示图形可验证的等式是:(2)计算:2+´+2.23 4.463.77(3)运用(1)中的等式,若x【经典例题四【例4【变式训练】1.(2024(1)观察图2,请你直接写出下列三个代数式:(a+(2)晓晓同学利用上面的纸片拼出了一个面积为2a _______.(3)根据(1)题中的等量关系,解决如下问题:数学思考:利用图形推导的数学公式解决问题(1)已知7a b +=,12ab =,求22a b +的值;(2)已知()()202420222023x x --=,求()()2220242022x x -+-的值.拓展运用:如图3,点C 是线段AB 上一点,以AC ,BC 为边向两边作正方形【经典例题五【例5( )【变式训练】1.(2024整式B ,使得2A B =,则称A 完全平方式.例如()242a a =,()242a a =,()2244121a a a -+=-,则4a ,2441a a -+均为完全平方式.(1)下列各式中是完全平方式的是 (只填序号).①6a ;②22a ab b ++;③21025x x --;④269m m ++(2)将(1)中所选的完全平方式写成一个整式的平方的形式.(3)若2x x m ++是完全平方式,求m 的值.4.(2023上·山西晋中·九年级统考期中)阅读与思考如果一个多项式()20,0ax bx c a c ++>>是完全平方式,那么它的各项系数a ,b ,c 之间存在着怎样的关系呢?围绕这个问题,小丽同学所在的小组进行了如下探究,请你加入他们的探究并补全探究过程:探究完全平方式各项系数的关系举例探究:将下列各式因式分解:()22211x x x ++=+;2816x x -+= ;24129x x -+= ;观察发现:观察以上三个多项式的系数,我们发现:224110-´´=;()2841160--´´=;()2124490--´´=;归纳猜想:若多项式()200,0ax bx c a c ++=>>是完全平方式,猜想:系数a ,b ,c 之间存在的关系式为 ;验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论:解决问题:若多项式()()()26261n x n x n +++++是一个完全平方式,利用你猜想的结论求出n 的值.【经典例题六【例6已知大正方形的面积是【变式训练】1.(2021划出长方形(1)你认为图②中阴影部分的正方形的边长等于_______.(2)请用两种不同的方法列代数式表示图②中阴影部分的面积方法①___________;方法②__________.(3)观察图②,试写出()2m n +,()2m n -,mn 这三个代数式之间的等量关系(1)代数式241x x -+有最 (填大或小)值,这个值(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为计一个尽可能大的花圃,如图设长方形一边长度为【经典例题七【例7A .2b a =B .3b a =【变式训练】1.(2022上·重庆北碚·九年级西南大学附中校考开学考试)设()()22@x y x y x y =+--,则下列结论:①若@0x y =,则x ,y 均为0;②()@@@x y z x y x z +=+;③存在实数x ,y ,满足22@5x y x y =+;④设x ,y 是矩形的长和宽,若矩形的周长固定,则当x y =时,@x y 最大.其中正确的个数( )A .4个B .3个C .2个D .1个2.(2022·河北保定·校考模拟预测)已知222810x x -=,则()()()212111x x x ---++= 3.(2024上·四川成都·八年级校考期末)(1)先化简,再求值:2()()()()x y x x y x y x y +-++-+,其中2x =-,1y =-.(2)已知260m m --=,求2(2)(2)(4)m n m n n m +-+-的值.4.(2024上·福建莆田·八年级统考期末)庆祝元旦期间,张老师出了一道“年份题”:计算22222023202320242024+´+的算术平方根.张老师提示可将上述问题一般化为:计算2222(1)(1)n n n n ++++的算术平方根(n 为正整数),然后对n 进行特殊化:当1n =时,222221122(121)+´+=´+,当2n =时,222222233(231)+´+=´+,当3n =时,222223344(341)+´+=´+,……(1)根据以上规律,请直接写出22222023202320242024+´+的算术平方根;(按规律写出结果即可,不必计算)(2)根据以上等式规律,请写出第n 个等式,并验证其正确性;(3)某同学将上述问题更一般化为:计算2222n n m m ++的算术平方根,并猜想22222()n n m m nm m n ++=+-,【经典例题八【例82x,第二项是【变式训练】1.(2023①不存在这样的实数【经典例题九【例9(1)(x【变式训练】1.(2023【经典例题十【例10(1)2x【变式训练】1.(20233ab =Q ,2225225619a b ab \+=-=-=.()2222a b a b ab \+=+-.5a b +=Q ,3ab =,2225619a b \+=-=.请你参照上面两种解法中的一种,解答以下问题.(1)已知1a b -=,229a b +=,求ab 的值;(2)已知14a a +=,求21a a æö-ç÷èø的值.3.(2023上·福建厦门·八年级厦门市第十中学校考期中)已知4m n -=-,2mn =,求下列代数式的值.(1)22m n +(2)()()11m n +-4.(2023上·广西南宁·八年级广西大学附属中学校考期中)阅读下列材料并解答下面的问题:利用完全平方公式()2222a b a ab b ±=±+,通过配方可对22a b +进行适当的变形,如:()2222a b a b ab +=+-或()2222a b a b ab +=-+,从而使某些问题得到解决.例:已知5,3+==a b ab ,求22a b +的值.解:()2222252319a b a b ab +=+-=-´=.通过对例题的理解解决下列问题:(1)已知2,3a b ab -==,求22a b +的值;(2)若16a a +=,求221a a+的值;(3)若n 满足()()22202420231n n -+-=,求式子()()20242023n n --的值.【经典例题十一【例11A 种纸片是边长为【发现】(1)根据图2,写出一个我们熟悉的数学公式 ;【应用】(2)根据(1)中的数学公式,解决如下问题:①已知:7a b +=,22a b 29+=,求ab 的值;【变式训练】1.(2023的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由(1)若用不同的方法计算这个边长为(2)若实数a,b,c满足3.(2023上·湖北武汉·七年级统考期中)问题呈现数学运用:如图,分别以a ,b ,m ,n 为边长作正方形,已知m n >且满足①222224a m abmn b n -+=与②2222216b m abmn a n ++=.若图4中阴影部分的面积为3,图5中梯形ABCD 的面积为5,则图5阴影部分的面积是______.(直接写出结果).【拓展培优】1.(2024A .①②B .①③C .①②③D .①②④6.(2023·江苏泰州·统考一模)已知()()2022202448x x --=,则代数式2(2023)x -的值为 7.(2024上·湖北随州·八年级统考期末)如果()2221914a b a b +=+=,,则()2a b -= .9.(2023上·江苏南通·八年级统考期中)请同学们运用公式题:已知,,a b c 满足2226a b c ++=10.(2024上·湖南湘西·八年级统考期末)完全平方公式(2)利用等量关系解决下面的问题:①5a b -=,6ab =-,求()2a b +和22a b +的值;②已知13x x -=,求441x x +的值.根据上面灰太狼的解题思路与方法,请解决下列问题:(1)①若4mn =,22m n +②若6x y +=,22x y +=③若6a b +=,4ab =,则。
1、(裂项相消公式): =⨯=-3213121 =⨯=-4314131 =⨯=-5415141 =⨯=-11101111101 根据规律计算:100991......431321211⨯++⨯+⨯+⨯ 55511......19151151111171⨯++⨯+⨯+⨯4212011216121++++2、等差数列求和 公式:和=(首项+末项)×项数÷2 末项=(项数-1)×公差+首项1、求1+2+3+...+50的和是多少?2、求等差数列2+5+8+11+.....前50项数的和是多少?20172917142714112585235221⨯+⨯+⨯+⨯+⨯167721652772212++++Λ1957997637357157++++Λ2、爸爸开车去外婆家,去时每小时行48千米,5小时到达。
原路返回时,时间减少了15,速度每小时加快了多少千米?3、两地相距600千米,甲、乙两车同事从两地相对开出,6个小时后,甲车行了全程的32,乙车行了全程的43,这是两车相距多少千米?4、甲乙两列火车从相距500千米的两地相对开出,甲车每小时行80千米,2小时后两车还相距全程的52,乙车每小时行多少千米?5、一筐梨重45千克,上午卖出53,下午卖出剩下的32,还剩下多少千克没有卖?6、甲乙两船同时从相距240千米的A 、B 两港相对开出,6小时后,甲船行了全程的43,乙船行了全程的32,这时两船相距多少千米?7、六(1)班45名学生参加植树活动,每人至少参加一项活动,全班有35 人参加挖坑,有79的人参加浇水,这两项劳动都参加的有多少人?8、某年级有72人参加学校的两项体育活动,每人至少要参加一项活动,其中有34的同学参加了拔河比赛,参加跳绳比赛的同学是参加拔河比赛人数的23,那么,这两项活动都参加的有多少人?。
乘法公式易错题(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--乘法公式测试班级: 姓名: 成绩:一、选择(共5小题,每题4分)1、下列式子:○1()633a a =;○2()[]125555b b =;○3()n n x x 2054-=-;○4()[]30523m m =-;○5()6233632=⨯;○6()()224x x x -=-÷-;正确的有( )个。
A 、2 B 、3 C 、4 D 、52、若()x xy y x N xy M 634322+-=÷-,则M =( ) A 、2233232y x y x +- B 、223334y x y x +-C 、232234y x y x -D 、232232y x y x +-3、下列各式中,不能用平方差公式计算的有:( )○1()()b a b a 2--;○2()()y x y x +-;○3()()n m m n 33-+; ○4()()y x y x 22+--;○5()()y x y x 22+---;○6()()n m n m 33+--- A 、4个 B 、3个 C 、2个 D 、1个4、若322=-y x ,则()()22y x y x +-的值是( )A 、3B 、9C 、27D 、815、下列关系不成立的是:( )A 、()ab b a b a 2222-+=+B 、()ab b a b a 2222+-=+C 、()()][212222b a b a b a -++=+D 、()()][2122b a b a ab --+=6、下列运算中错误的有:( )○1()22242y x y x +=+ ; ○2()22292b a b a -=- ; ○3()222422y xy x y x +-=--; ○4412122+-=⎪⎭⎫ ⎝⎛-x x x ; A 、1个 B 、2个 C 、3个 D 、4个二、填空题(共5小题,每题4分)7、已知一平行四边形的面积为m n m m 126823+-,其一边为m 4,则这个边上的高为8、富乐中学跑道内有一长方形草坪,已知它的周长为b a 22+,一边长为b a -,它的面积为9、若除式为1+x ,商式为12-x ,余式为12-x ,则被除式为10、已知31=+a a ,则=-aa 111、用公式计算:22)72()53(---x x =12、用公式计算:2)32(--y x =三、解答题(共60分)13、若()13222=+-a a ,你能说出满足条件的所有a 的值吗14、已知:53=+y x ,求:()()()()y y xy y x xy y x y x y x 2628242222÷+-+----+-,。
人教版四年级数学第一单元易错题
一、关于加减法运算顺序的易错题
1. 计算:公式
- 错解:
- 有些学生可能会按照从左到右的顺序计算,先算公式,再算公式,最后算公式。
- 解析:
- 在四则运算中,先算乘除法,后算加减法。
所以这道题应该先算公式,然后再按照从左到右的顺序计算,即公式,先算公式,再算公式。
二、关于乘除法运算顺序的易错题
1. 计算:公式
- 错解:
- 部分学生可能会先算公式,再算公式。
- 解析:
- 有括号的四则运算,要先算括号里面的。
所以这道题先算公式
,再算公式。
三、关于0在四则运算中的易错题
1. 计算:公式
- 错解:
- 有些学生可能会认为0除以任何数都得0,直接写答案为0,而忽略了括号内的运算。
- 解析:
- 虽然0除以任何非零数都得0,但这道题要先算括号里的公式
,然后再算公式。
强调运算顺序的重要性,不能只看到0就直接得出结果。
2. 计算:公式
- 错解:
- 可能会有学生先算公式,再算公式。
- 解析:
- 在四则运算中,先算乘除后算加减,公式,然后再算公式。
2023~2024学年新人教版八年级上《14.2 乘法公式》易错题集二考试总分:94 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )1. 下列计算正确的是( )A.B.C.D.2. 下列计算正确的是( )A.B.C.D.3. 如图,大正方形的边长为,小正方形的边长为,若,表示四个相同长方形的两边,则①;② ;③ ;④;其中正确的是( )A.①②③+=2–√3–√5–√=±3(−3)2−−−−−√a −=1(a ≠0)a −1=−6(−3)a 2b 22a 2b 4a +=a 2a 3b ÷=ba 6a 2a 3(a −b =−)2a 2b 2(−a =b 3)2a 2b 6m n a b (a >b)a −b =n ab =(−)14m 2n 2−=mn a 2b 2+=(−)a 2b 212m 2n 2C.①③④D.①②③④4. 下列运算,结果正确的是( )A.B.C.D.5. 有张边长为的正方形纸片,张边长分别为,的矩形纸片,张边长为的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )6. 已知,,则的值等于________.7. 计算________. 8. 如图为的网格(每个小正方形的边长均为),请画两个格点正方形(顶点在小正方形顶点处)要求:其中一个边长是有理数,另一个边长是大于的无理数,并写出其边长,∴边长为________.∴边长为________.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )3+3=33–√2–√6–√=−6(−2y)x 23x 6y 34−=4a 2a 2−4ab +4=a 2b 2(a −2b)23a 4a b(b >a)5b a +b2a +b3a +ba +2ba −b =b −c =35++=a 2b 2c 21ab +bc +ca −+−+−+⋯+−=12223242526299210024×413我们知道,完全平方式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如:=,就可以用图或图等图形的面积表示.(1)请写出图所表示的代数恒等式:________;(2)试画一个几何图形,使它的面积表示:=;(3)请仿照上述方法另写一个含有,的代数恒等式,并画出与它对应的几何图形.10. (一)探究活动如图,阴影部分的面积为________,(写成两数平方差的形式),如图,若将阴影部分裁剪下来,重新拼成一个矩形,则它的宽为________,长为________,矩形的面积为________(写成多项式乘法的形式).比较图、图中阴影部分的面积,可得到的等式是:________.(二)结论应用运用中的结论解答:计算: .11. 乘法公式的探究与应用:如图甲,边长为的大正方形中有一个边长为的小正方形,请你写出阴影部分面积是________(写成两数平方差的形式);小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是________,宽是________,面积是________(写成多项式乘法的形式);比较甲乙两图阴影部分的面积,可以得到公式________(用式子表达);运用你所得到的公式计算:.(2a +b)(a +b)2+3ab +a 2b 2(1)(2)(3)(a +b)(a +3b)+4ab +3a 2b 2a b (1)12(2)12(2)(3)(1−)(1−)(1−)122132142(1−)(1−)120202120212(1)a b (2)(3)(4)10.3×9.7如图①是一个长为,宽为的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.【发现规律】观察图②,请用两种不同的方法表示阴影部分的面积:________,________;请写出三个代数式 ,之间的一个等量关系:________;【问题解决】根据中得到的等量关系,解决下列问题:已知 ,求 的值 13. 、、为正整数,且=,求的最小值.14. 我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:可用图来解释=.(1)请你写出图所表示的代数恒等式;(2)试在图的方框中画出一个几何图形,使它的面积等于.15. 计算:.2a 2b (1)(2)(a −b ,(a +b )2)2ab (3)(2)x +y =8,xy =7x −y .a b c +a 2b 3c 4c 1(a +b)2+2ab +a 2b 223+4ab +3a 2b 2(x −y −(x −y)(y +x)12)21212参考答案与试题解析2023~2024学年新人教版八年级上《14.2 乘法公式》易错题集二一、选择题(本题共计 5 小题,每题 3 分,共计15分)1.【答案】此题暂无答案【考点】整式的混合运算完全平方公式同底数幂的乘法【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】整式的除法合并同类项幂的乘方与积的乘方完全平方公式【解析】此题暂无解析【解答】3.【答案】此题暂无答案【考点】整式的混合运算平方差公式完全平方公式【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】幂的乘方与积的乘方合并同类项完全平方公式【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】完全平方公式的几何背景此题暂无解析【解答】此题暂无解答二、填空题(本题共计 3 小题,每题 3 分,共计9分)6.【答案】此题暂无答案【考点】完全平方公式【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】平方差公式【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】无理数的识别【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共计 7 小题,每题 10 分,共计70分)9.【答案】此题暂无答案【考点】完全平方公式的几何背景【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】平方差公式的几何背景平方差公式【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案平方差公式的几何背景完全平方公式【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】完全平方公式的几何背景完全平方公式【解析】此题暂无解析【解答】此题暂无解答13.【答案】此题暂无答案【考点】完全平方数【解析】此题暂无解析【解答】此题暂无解答14.【答案】此题暂无答案【考点】完全平方公式的几何背景【解析】此题暂无解析【解答】此题暂无解答15.【答案】此题暂无答案【考点】完全平方公式平方差公式【解析】此题暂无解析【解答】此题暂无解答。
初一数学乘法易错题
1. 除法分配律
- 某商场有144支圆珠笔,打算分5箱装,每箱的支数相同,
最后剩3支圆珠笔,请问每箱应装多少支圆珠笔?
- 一个三位数减去7,再除以11,商为6,余数为3,那么这个
三位数是多少?
- 大徐家的一个长方形花坛,长10米,宽6米,现在要整块用
花坛石铺在上面,石板每块0.6 m×0.6 m,需要用多少块?还剩下
多少?
2. 乘法分配律
- 已知一个正整数的6次方等于6的几次方乘以这个数的7次方,这个数是多少?
- 一堆金币,有的是2元的,有的是5元的,它们的重量相等,一个2元的金币重2g,一个5元的金币重5g,如果这堆金币的总
重是1200g,问:有多少两元金币,有多少五元金币?
- 母鸡4元一只,小鸡每只2元钱,一共买了100只鸡,一共花了180元钱,请问母鸡和小鸡各买了多少只?
3. 混合运算
- (18 + 5)× 45 ÷ 15 - 10 = ?
- 16.8 + 9.6 + 6 + 8.4 - 2.4 = ?
- (16 - 3)+ 4 × 2 ÷ 8 = ?
以上是初一数学中乘法易错的题型,希望同学们认真复习,掌握好基础知识。
如果还有不懂的地方,可以向老师请教哦!。
六年级简便运算易错题
一、乘法分配律相关易错题
1. 题目:公式
错解:有些同学可能会直接计算为公式,这是错误的。
正解:根据乘法分配律公式,这里公式
,公式,公式。
所以原式公式。
2. 题目:公式
错解:直接相乘得到复杂的计算结果。
正解:把公式看作公式,根据乘法分配律,原式公式。
二、除法性质相关易错题
1. 题目:公式
错解:直接列竖式计算。
正解:根据除法性质,将被除数和除数同时乘以4,因为公式。
则原式公式。
2. 题目:公式
错解:有些同学可能先算公式,再除以11得到6,这是错误的顺序。
正解:根据除法性质公式,所以原式公式。
三、分数简便运算易错题
1. 题目:公式
错解:先算乘法再算加法,计算过程复杂且容易出错。
正解:根据乘法分配律的逆运算公式,这里公式,公式,公式。
所以原式公式。
2. 题目:公式
错解:直接用公式除以括号里的和,计算复杂。
正解:先将括号里通分,公式,则原式公式。
“乘法”考试易错题总汇一、填空:1、乘法算式2x7=(),读作:(),表示()或()。
4 x 5表示的意义是(),(),或(),()。
2、求几个相同加数的和,用()法计算比较简便。
3、在 3 x 5=15这个算式中,“3”是(),“5”是(),“15”是()。
在3+5=8这个算式中,“3”是(),“5”是(),“8”是()。
在5-3=2这个算式中,“3”是(),“5”是(),“2”是()。
4、(1)☆☆☆☆☆☆☆☆☆☆☆☆()个()加法算式:__________乘法算式:________或________口诀:___________(2)¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤()个()加法算式:__________乘法算式:________或________口诀:___________(3)△△△△△△()个()乘法算式:()x()口诀:_________读作:()乘()(4)●●●●●●()个()乘法算式:()x()口诀:_________读作:()乘()_5、画图表示下面算式的含义。
4 x 35 x 23 x 56、先按要求画○,再写算式。
(1)每组画2个,画3组。
加法算式:___________乘法算式:________或________(2)每组画4个,画5组。
加法算式:___________乘法算式:________或________7、写出乘法算式,再读出来。
2个4相加算式:________ 读作:______________10个3相加算式:________ 读作:______________2和6相乘算式:________ 读作:______________8、填写口诀:一五()三八()七九()四六()()二十四()三十六三七()八八()九九()一三()()三十二六八()一九()五五()五九()9、四个人吃饭,需要()双筷子。
专题1.3 乘法公式-重难点题型【北师大版】【题型1 乘法公式的基本运算】【例1】(2021•锦江区校级开学)下列运算正确的是( )A.(x+y)(﹣y+x)=x2﹣y2B.(﹣x+y)2=﹣x2+2xy+y2 C.(﹣x﹣y)2=﹣x2﹣2xy﹣y2D.(x+y)(y﹣x)=x2﹣y2【分析】根据完全平方公式和平方差公式逐个判断即可.【解答】解:A、结果是x2﹣y2,原计算正确,故本选项符合题意;B、结果是x2﹣2xy+y2,原计算错误,故本选项不符合题意;C、结果是x2+2xy+y2,原计算错误,故本选项不符合题意;D、结果是y2﹣x2,原计算错误,故本选项不符合题意;故选:A.【变式1-1】(2021春•龙岗区校级期中)下列关系式中,正确的是( )A.(a﹣b)2=a2﹣b2B.(a+b)(﹣a﹣b)=a2﹣b2 C.(a+b)2=a2+b2D.(﹣a﹣b)2=a2+2ab+b2【分析】根据完全平方公式判断即可.【解答】解:A 选项,原式=a 2﹣2ab +b 2,故该选项计算错误;B 选项,原式=﹣(a +b )2=﹣a 2﹣2ab ﹣b 2,故该选项计算错误;C 选项,原式=a 2+2ab +b 2,故该选项计算错误;D 选项,原式=[﹣(a +b )]2=(a +b )2=a 2+2ab +b 2,故该选项计算正确;故选:D .【变式1-2】(2021春•舞钢市期末)下列乘法运算中,不能用平方差公式计算的是( )A .(m +1)(﹣1+m )B .(2a +3b ﹣5c )(2a ﹣3b ﹣5c )C .2021×2019D .(x ﹣3y )(3y ﹣x )【分析】平方差公式,要求有一项完全相同,另一项互为相反项.根据公式的结构特点解答即可.【解答】解:不能用平方差公式计算的是(x ﹣3y )(3y ﹣x )=(x ﹣3y )×[﹣(x ﹣3y )]=﹣(x ﹣3y )2,故选:D .【变式1-3】(2021春•龙岗区校级月考)下列各式,能用平方差公式计算的是( )A .(2a +b )(2b ﹣a )B .(﹣a ﹣2b )(﹣a +2b )C .(2a ﹣3b )(﹣2a +3b )D .(13a +1)(―13a ―1)【分析】只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;【解答】解:A .既没有相同项,也没有相反项,不能用平方差公式进行计算,故本选项不符合题意;B .原式=﹣(2b +a )(2b ﹣a ),符合平方差公式,故本选项符合题意;C .原式=﹣(2a ﹣3b )(2a ﹣3b ),只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;D .原式=﹣(13a +1)(13a +1)只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;故选:B .【题型2 完全平方公式(求系数的值)】【例2】(2021春•仪征市期中)若多项式4x 2﹣mx +9是完全平方式,则m 的值是( )A .6B .12C .±12D .±6【分析】根据完全平方公式得到4x 2﹣mx +9=(2x ﹣3)2或4x 2﹣mx +9=(2x +3)2,即4x 2﹣mx +9=x 2﹣12x +9或4x 2﹣mx +9=x 2+12x +9,从而得到m 的值.【解答】解:∵多项式4x2﹣mx+9是一个完全平方式,∴4x2﹣mx+9=(2x﹣3)2或4x2﹣mx+9=(2x+3)2,即4x2﹣mx+9=x2﹣12x+9或4x2﹣mx+9=x2+12x+9,∴m=12或m=﹣12,故选:C.【变式2-1】(2021春•南山区校级期中)如果x2+8x+m2是一个完全平方式,那么m的值是( )A.4B.16C.±4D.±16【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵x2+8x+m2是一个完全平方式,∴m2=16,解得:m=±4.故选:C.【变式2-2】(2021春•新城区校级期末)已知:(x﹣my)2=x2+kxy+4y2(m、k为常数),则常数k的值为 ±4 .【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵(x﹣my)2=x2+kxy+4y2=x2+kxy+(2y)2(m、k为常数),∴m=±2,∴(x±2y)2=x2±4xy+4y2=x2+kxy+4y2,∴k=±4.故答案为:±4.【变式2-3】(2021春•邗江区期中)若x2﹣2(m﹣1)x+4是一个完全平方式,则m= 3或﹣1 .【分析】根据完全平方公式得出2(m﹣1)x=±2•x•2,求出m即可.【解答】解:∵x2﹣2(m﹣1)x+4是一个完全平方式,∴﹣2(m﹣1)x=±2•x•2,解得:m=3或﹣1.故答案为:3或﹣1.【题型3 完全平方公式的几何背景】【例3】(2021春•兴宾区期末)有A,B两个正方形,按图甲所示将B放在A的内部,按图乙所示将A,B并列放置构造新的正方形.若图甲和图乙中阴影部分的面积分别为3和16,则正方形A,B的面积之和为( )A.13B.19C.11D.21【分析】设A,B两个正方形的边长各为a、b,则由题意得(a﹣b)2=3,(a+b)2﹣(a2+b2)=2ab=16,所以正方形A,B的面积之和为a2+b2=(a﹣b)2+2ab,代入即可计算出结果.【解答】解:设A,B两个正方形的边长各为a、b,则图甲得(a﹣b)2=a2﹣2ab+b2=3,由图乙得(a+b)2﹣(a2+b2)=(a2+2ab+b2)﹣(a2+b2)=2ab=16,∴正方形A,B的面积之和为,a2+b2=(a2﹣2ab+b2)+2ab=(a﹣b)2+2ab=3+16=19,故选:B.【变式3-1】(2021春•芝罘区期末)用4块完全相同的长方形拼成如图所示的正方形,用不同的方法计算图中阴影部分的面积,可得到一个关于a,b的等式为( )A.4a(a+b)=4a2+4ab B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2D.(a+b)2﹣(a﹣b)2=4ab【分析】由观察图形可得阴影部分的面积为4ab,也可以表示为(a+b)2﹣(a﹣b)2,可得结果.【解答】解:∵图形中大正方形的面积为(a+b)2,中间空白正方形的面积为(a﹣b)2,∴图中阴影部分的面积为(a+b)2﹣(a﹣b)2,又∵图中阴影部分的面积还可表示为4ab,∴(a+b)2﹣(a﹣b)2=4ab,故选:D.【变式3-2】(2021春•岚山区期末)现有四个大小相同的长方形,可拼成如图1和图2所示的图形,在拼图2时,中间留下了一个边长为4的小正方形,则每个小长方形的面积是( )A.3B.6C.12D.18【分析】设小长方形的长为a,宽为b,由图1可得a=3b,则(a﹣b)²=4b²=16,解得b=2即可就得最后结果.【解答】解:设小长方形的长为a,宽为b,由图1可得a=3b,则(a﹣b)²=(3b﹣b)²=(2b)²=4b²=4²=16,解得b=2或b=﹣2(不合题意,舍去),∴每个小长方形的面积为,ab=3b•b=3×2²=12,故选:C.【变式3-3】(2021春•深圳期中)有两个正方形A,B.现将B放在A的内部得图甲,将A,B并列放置后,构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B,如图丙摆放,则阴影部分的面积为( )A.28B.29C.30D.31【分析】设正方形A,B的边长各为a、b(a>b),得图甲中阴影部分的面积为(a﹣b)2=a²﹣2ab+b²=1,可解得a﹣b=1,图乙中阴影部分的面积为(a+b)2﹣(a2+b2)=2ab=12,可得(a+b)²=(a﹣b)²+4ab=1+2×12=25,可得a+b=5,所以图丙中阴影部分的面积为(2a+b)²﹣(3a²+2b²)=a²+4ab﹣b²=(a+b)(a﹣b)+4ab,代入就可计算出结果.【解答】解:设正方形A,B的边长各为a、b(a>b),得图甲中阴影部分的面积为(a﹣b)2=a²﹣2ab+b²=1,解得a﹣b=1或a﹣b=﹣1(舍去),图乙中阴影部分的面积为(a+b)2﹣(a2+b2)=2ab=12,可得(a+b)²=a²+2ab+b²=a²﹣2ab+b²+4ab=(a﹣b)²+4ab=1+2×12=25,解得a+b=5或a+b=﹣5(舍去),∴图丙中阴影部分的面积为(2a+b)²﹣(3a²+2b²)=a²+4ab﹣b²=(a+b)(a﹣b)+2×2ab=5×1+2×12=5+24=29,故选:B.【题型4 平方差公式的几何背景】【例4】(2021•庐江县开学)如图1,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图2),利用这两个图形的面积,可以验证的等式是( )A.a2+b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)【分析】分别表示图1、图2中阴影部分的面积,根据两者面积相等,即可得出结论.【解答】解:∵图1中的阴影部分面积为:a2﹣b2,图2中阴影部分面积为:12(2b+2a)(a﹣b),∴a2﹣b2=12(2b+2a)(a﹣b),即a2﹣b2=(a+b)(a﹣b),故选:D.【变式4-1】(2021春•博山区期末)如图1,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图能解释下列哪个等式( )A.(x﹣1)2=x2﹣2x+1B.(x+1)(x﹣1)=x2﹣1C.(x+1)2=x2+2x+1D.x(x﹣1)=x2﹣x【分析】用代数式分别表示出图1和图2中白色部分的面积,由此得出等量关系即可.【解答】解:图1的面积为:(x+1)(x﹣1),图2中白色部分的面积为:x2﹣1,∴(x+1)(x﹣1)=x2﹣1,故选:B.【变式4-2】(2021春•洪江市期末)如图(1),从边长为a的大正方形的四个角中挖去四个边长为b的小正方形后,将剩余的部分剪拼成一个长方形,如图(2),通过计算阴影部分的面积可以得到( )A.(a﹣2b)2=a2﹣4ab+b2B.(a+2b)2=a2+4ab+b2C.(a﹣2b)(a+2b)=a2﹣4b2D.(a+b)2=a2+2ab+b2【分析】利用大正方形面积减去4个小正方形面积即可得出图(1)中阴影部分的面积;根据矩形的面积公式可得图(2)的面积,据此可得结果.【解答】解:图(1)中阴影部分的面积为:a2﹣4b2;图(2)中长方形的长是a+2b,宽是a﹣2b,面积是(a+2b)(a﹣2b)=a2﹣4b2,∴(a﹣2b)(a+2b)=a2﹣4b2.故选:C.【变式4-3】(2020春•阳谷县期末)如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式 a2﹣b2=(a+b)(a﹣b) .【分析】分别表示出两个图形的面积,再根据面积相等得出等式即可.【解答】解:图1面积为a2﹣b2,图2的面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).【题型5 乘法公式(求代数式的值)】【例5(2021春•邗江区校级期末)若xy=﹣1,且x﹣y=3.(1)求(x﹣2)(y+2)的值;(2)求x2﹣xy+y2的值.【分析】(1)原式利用多项式乘以多项式法则计算,将各自的值代入计算即可求出值;(2)原式利用完全平方公式变形,将各自的值代入计算即可求出值.【解答】解:(1)∵xy=﹣1,x﹣y=3,∴(x﹣2)(y+2)=xy+2(x﹣y)﹣4=﹣1+6﹣4=1;(2)∵xy=﹣1,x﹣y=3,∴x2﹣xy+y2=(x﹣y)2+xy=9+(﹣1)=8.【变式5-1】(2021•宁波模拟)已知(2x+y)2=58,(2x﹣y)2=18,则xy= 5 .【分析】由(2x+y)2﹣(2x﹣y)2=4×2xy进行解答.【解答】解:∵(2x+y)2=58,(2x﹣y)2=18,∴(2x+y)2﹣(2x﹣y)2=4×2xy,∴58﹣18=8xy,∴xy=5.故答案是:5.【变式5-2】(2021春•驿城区期末)已知a﹣b=9,ab=﹣14,则a2+b2的值为 53 .【分析】运用完全平方公式(a﹣b)2=a2+b2﹣2ab可解决此题.【解答】解:∵a﹣b=9,ab=﹣14,∴(a﹣b)2=a2+b2﹣2ab=a2+b2﹣2×(﹣14)=81.∴a2+b2=81+(﹣28)=53.故答案为53.【变式5-3】(2021春•聊城期末)已知:a﹣b=6,a2+b2=20,求下列代数式的值:(1)ab;(2)﹣a3b﹣2a2b2﹣ab3.【分析】(1)把a﹣b=6两边平方,展开,即可求出ab的值;(2)先分解因式,再整体代入求出即可.【解答】解:(1)∵a﹣b=6,a2+b2=20,∴(a﹣b)2=36,∴a2﹣2ab+b2=36,∴﹣2ab=36﹣20=16,∴ab=﹣8;(2)∵a2+b2=20,ab=﹣8,∴﹣a3b﹣2a2b2﹣ab3=﹣ab(a2+2ab+b2)=﹣(﹣8)×(20﹣16)=32.【题型6 乘法公式的综合运算】【例6】(2020秋•东湖区期末)实践与探索如图1,边长为a的大正方形有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)上述操作能验证的等式是 A ;(请选择正确的一个)A.a2﹣b2=(a+b)(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)(2)请应用这个公式完成下列各题:①已知4a2﹣b2=24,2a+b=6,则2a﹣b= 4 .②计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.【分析】(1)分别表示图1和图2中阴影部分的面积即可得出答案;(2)①利用平方差公式将4a2﹣b2=(2a+b)(2a﹣b),再代入计算即可;②利用平方差公式将原式转化为1+2+3+…+99+100即可.【解答】解:(1)图1中阴影部分的面积为两个正方形的面积差,即a2﹣b2,图2中的阴影部分是长为(a+b),宽为(a﹣b)的长方形,因此面积为(a+b)(a﹣b),所以有a2﹣b2=(a+b)(a﹣b),故答案为:A;(2)①∵4a2﹣b2=24,∴(2a+b)(2a﹣b)=24,又∵2a+b=6,∴6(2a﹣b)=24,即2a﹣b=4,故答案为:4;②∵1002﹣992=(100+99)(100﹣99)=100+99,982﹣972=(98+97)(98﹣97)=98+97,…22﹣12=(2+1)(2﹣1)=2+1,∴原式=100+99+98+97+…+4+3+2+1=5050.【变式6-1】(2021•滦南县二模)【阅读理解】我们知道:(a+b)2=a2+2ab+b2①,(a﹣b)2=a2﹣2ab+b2②,①﹣②得:(a+b)2﹣(a﹣b)2=4ab,所以ab=(a b)24―(a b)24=(a b2)2―(a b2)2.利用上面乘法公式的变形有时能进行简化计算.例:51×49=(51492)2―(51492)2=502―12=2500﹣1=2499.【发现运用】根据阅读解答问题(1)填空:102×98= (102982) 2﹣ (102982) 2;(2)请运用你发现的规律计算:19.2×20.8.【分析】(1)根据规律解答即可;(2)根据规律计算19.2×20.8即可.【解答】解:(1)102×98=(102982)2―(102982)2;故答案为:(102982),(102982);(2)19.2×20.8=(19.220.82)2―(19.220.82)2=202﹣0.82=400﹣0.64=399.36.【变式6-2】(2021春•平顶山期末)我们将(a+b)2=a2+2ab+b2进行变形,如:a2+b2=(a+b)2﹣2ab,ab=(a b)2(a2b2)2等.根据以上变形解决下列问题:(1)已知a2+b2=8,(a+b)2=48,则ab= 20 .(2)已知,若x满足(25﹣x)(x﹣10)=﹣15,求(25﹣x)2+(x﹣10)2的值.(3)如图,四边形ABED是梯形,DA⊥AB,EB⊥AB,AD=AC,BE=BC,连接CD,CE,若AC•BC=10,则图中阴影部分的面积为 10 .【分析】(1)将a2+b2=8,(a+b)2=48代入题干中的推导公式就可求得结果;(2)设25﹣x=a,x﹣10=b,则(25﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab,再代入计算即可;(3)设AD=AC=a,BE=BC=b,则图中阴影部分的面积为12(a+b)(a+b)―12a²―12b²=12[(a+b)²﹣(a²+b²)]=12×2ab=ab=10.【解答】(1)∵a2+b2=8,(a+b)2=48,∴ab=(a b)2(a2b2)2=4882=20,(2)设25﹣x=a,x﹣10=b,由(a+b)2=a2+2ab+b2进行变形得,a2+b2=(a+b)2﹣2ab,∴(25﹣x)2+(x﹣10)2=[(25﹣x)+(x﹣10)]²﹣2(25﹣x)(x﹣10)=15²﹣2×(﹣15)=225+30=255,(3)设AD=AC=a,BE=BC=b,则图中阴影部分的面积为12(a+b)(a+b)―12(a²+b²)=12[(a+b)²﹣(a²+b²)]=12×2ab=ab=10【变式6-3】(2021春•滨江区校级期末)数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1: (a+b)2 ;方法2: a2+b2+2ab ;(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 (a+b)2=a2+b2+2ab ;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,(a﹣b)2=13,求ab的值;②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.【分析】(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;(2)由(1)直接可得关系式;(3)①由(a﹣b)2=a2+b2﹣2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021﹣a=x,a﹣2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=﹣2,再求(2021﹣a)(a﹣2020)=﹣2即可.【解答】解:(1)方法一:∵大正方形的边长为(a+b),∴S=(a+b)2;方法二:大正方形是由2个长方形,2个小正方形拼成,∴S=b2+ab+ab+a2=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由(1)可得(a+b)2=a2+b2+2ab;故答案为:(a+b)2=a2+b2+2ab;(3)①∵(a﹣b)2=a2+b2﹣2ab=13①,(a+b)2=a2+b2+2ab=25②,由①﹣②得,﹣4ab=﹣12,解得:ab=3;②设2021﹣a=x,a﹣2020=y,∴x+y=1,∵(2021﹣a)2+(a﹣2020)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2=1,∴2xy=1﹣(x2+y2)=1﹣5=﹣4,解得:xy=﹣2,∴(2021﹣a)(a﹣2020)=﹣2.。
专题1.3 乘法公式【十大题型】【北师大版】【题型1 判断运用乘法公式计算的正误】 (1)【题型2 利用完全平方式确定系数】 (3)【题型3 乘法公式的计算】 (5)【题型4 利用乘法公式求值】 (8)【题型5 利用面积法验证乘法公式】 (10)【题型6 乘法公式的应用】 (13)【题型7 平方差公式的几何背景】 (17)【题型8 完全平方公式的几何背景】 (22)【题型9 乘法公式中的新定义问题】 (28)【题型10 乘法公式的规律探究】 (31)【知识点乘法公式】平方差公式:(a+b)(a-b)=a2-b2。
两个数的和与这两个数的差的积,等于这两个数的平方差。
这个公式叫做平方差公式。
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。
这两个公式叫做完全平方公式。
【题型1判断运用乘法公式计算的正误】【例1】(2023春·贵州毕节·七年级统考期末)计算(x−y+3)(x+y−3)时,下列变形正确的是()A.[(x−y)+3][(x+y)−3]B.[(x+3)−y][(x−3)+y]C.[x−(y+3)][x+(y−3)]D.[x−(y−3)][x+(y−3)]【答案】D【分析】将(y−3)看做一个整体,则x是相同项,互为相反项的是(y−3),对照平方差公式变形即可求解.【详解】解:(x−y+3)(x+y−3)=[x−(y−3)][x+(y−3)],故选:D.【点睛】本题考查了平方差公式,解题的关键是找出相同项和相反项.【变式1-1】(2023春·浙江杭州·七年级校考期中)下列运算正确的是()A .(x +y )(−y +x )=x 2−y 2B .(−x +y )2=−x 2+2xy +y 2C .(−x−y )2=−x 2−2xy−y 2D .(x +y )(y−x )=x 2−y 2【答案】A【分析】根据平方差公式和完全平方公式,逐个进行判断即可.【详解】解:A 、(x +y )(−y +x )=x 2−y 2,故A 正确,符合题意;B 、(−x +y )2=x 2−2xy +y 2,故B 不正确,不符合题意;C 、(−x−y )2=x 2+2xy +y 2,故C 不正确,不符合题意;D 、(x +y )(y−x )=y 2−x 2,故D 不正确,不符合题意;故选:A .【点睛】本题主要考查根据平方差公式和完全平方公式,解题的关键是掌握平方差公式(a +b )(a−b )=a 2−b 2和完全平方公式(a ±b )2=a 2±2ab +b 2.【变式1-2】(2023春·天津滨海新·七年级统考期末)在下列多项式的乘法中,不可以用平方差公式计算的是( )A .(x +y)(x−y)B .(−x +y)(x +y)C .(−x−y)(−x +y)D .(x−y)(−x +y)【答案】D【分析】根据平方差公式是两个数的和与这两个数的差相乘等于这两个数的平方差,由此进行判断即可.【详解】A 、B 、C 选项都是两个数的和与这两个数的差相乘,可以使用平方差公式,D 选项变形后为−(x−y)2,不能使用平方差公式;故选:D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.【变式1-3】(2023春·广东茂名·七年级统考期中)下列多项式不是完全平方式的是( ).A .x 2−4x−4B .14+m 2+mC .a 2+2ab +b 2D .t 2+4t +4【答案】A【分析】根据a 2±2ab +b 2的形式判断即可;【详解】x 2−4x−4不是完全平方公式,故A 符合题意;14+m 2+m =+m 2,故B 不符合题意;a 2+2ab +b 2=(a +b )2,故C 不符合题意;t2+4t+4=(t+2)2,故D不符合题意;故选:A.【点睛】本题主要考查了完全平方公式的判断,准确分析是解题的关键.【题型2利用完全平方式确定系数】【例2】(2023春·江苏扬州·七年级统考期末)若将多项式4a2−2a+1加上一个单项式成为一个完全平方式,则这个单项式可以是.(只要写出符合条件的一个)【答案】−2a,6a,−34,−3a2.【分析】根据完全平方公式的特点分情况讨论:若把4a2和1看成两个平方项,则该完全平方式可以;是(2a−1)2或(2a+1)2;②若把4a2看成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(2a−12)2;③若把1看成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(a−1)2.分别算出所需添加的单项式即可.【详解】①若把4a2和1看成两个平方项,则该完全平方式可以是(2a−1)2或(2a+1)2,∵(2a−1)2=4a2−4a+1=4a2−2a+1+(−2a),∴这个单项式可以是−2a;∵(2a+1)2=4a2+4a+1=4a2−2a+1+6a,∴这个单项式可以是6a;②若把4a2成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(2a−12)2,∵(2a−12)2=4a2−2a+14=4a2−2a+1+(−34),∴这个单项式可以是−34;③若把1成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(a−1)2,∵(a−1)2=a2−2a+1=4a2−2a+1+(−3a2),∴这个单项式可以是−3a2.综上,添加的这个单项式可以是−2a,6a,−34,−3a2.故答案为:−2a,6a,−34,−3a2.【点睛】本题主要考查了完全平方公式,熟练掌握完全平方公式的特点,进行分类讨论是解题的关键.【变式2-1】(2023春·四川达州·七年级校考期中)若x2+2(m−3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则n m的值为.【答案】4或16【分析】利用完全平方公式,以及多项式乘以多项式法则确定出m 与n 的值,代入原式计算即可求出值.【详解】解:∵x 2+2(m−3)x +1是完全平方式,∴m−3=±1,∴m =4或m =2,∵x +n 与x +2的乘积中不含x 的一次项,(x +n )(x +2)=x 2+(n +2)x +2n ,∴n +2=0,∴n =−2,当m =4,n =−2时,n m =(−2)4=16;当m =2,n =−2时,n m =(−2)2=4,则n m =4或16,故答案为:4或16.【点睛】本题考查了完全平方式,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.【变式2-2】(2023春·七年级课时练习)若9x 2−(k−1)xy +25y 2是关于x 的完全平方式,则k =.【答案】31或−29/−29或31【分析】由9x 2−(k−1)xy +25y 2是关于x 的完全平方式,得出9x 2−(k−1)xy +25y 2=(3x ±5y )2,进而得出−(k−1)=±30,即可求出k 的值.【详解】解:∵9x 2−(k−1)xy +25y 2是关于x 的完全平方式,∴9x 2−(k−1)xy +25y 2=(3x ±5y )2,∴−(k−1)=±30,解得:k =31或−29,故答案为:31或−29【点睛】本题考查了完全平方式,掌握完全平方式的特点,考虑两种情况是解决问题的关键.【变式2-3】(2023春·福建泉州·七年级晋江市季延中学校考期中)已知B 是含字母x 的单项式,要使x 2+B +14是完全平方式,那么B = .【答案】±x 或x 4.【分析】分类讨论:①当x 2+B +14是完全平方式时和当B +x 2+14是完全平方式时,再根据完全平方式的特点即可得出答案.【详解】解:分类讨论:①当x 2+B +14是完全平方式时.∵x 2+B +14=x 2+B +,∴B =±2×x ×12=±x ;②当B +x 2+14是完全平方式时.∵B +x 2+14=B +2×x 2×12+,∴B =x 4.综上可知,B =±x 或x 4.故答案为:±x 或x 4.【点睛】本题考查完全平方式.掌握完全平方式的结构特征和利用分类讨论的思想是解题关键.【题型3 乘法公式的计算】【例3】(2023春·云南昭通·七年级校考期末)计算:(1)(2m−n +3p)(2m +3p +n);(2)化简求值:(x−3)(x +3)−(x 2−2x +1),其中x =12.【答案】(1)4m 2+12mp +9p 2−n 2(2)2x−10,−9【分析】(1)先把原式化为[(2m +3p)−n ][(2m +3p)+n ],再利用平方差公式和完全平方公式计算即可;(2)先利用平方差公式和去括号法则展开,再合并同类项,最后求值即可.【详解】(1)解:原式=[(2m +3p)−n ][(2m +3p)+n ]=(2m +3p)2−n 2=4m 2+12mp +9p 2−n 2;(2)原式=x 2−9−x 2+2x−1=2x−10,当x =12时,原式=1−10=−9.【点睛】本题考查了整式的混合运算以及平方差公式,熟练掌握整式的混合运算法则是解本题的关键.【变式3-1】(2023春·山东东营·六年级统考期末)利用整式乘法公式计算.(1)1002−98×102;(2)(a+b+3)(a+b−3);(3)(−2m+3)(−2m−3);x−2y 2.【答案】(1)4(2)a2+2ab+b2−9(3)4m2−9(4)14x2−2xy+4y2【分析】(1)首先把98×102转化为(100−2)×(100+2),然后再根据平方差公式计算即可;(2)利用平方差公式变形,然后再根据完全平方公式计算即可;(3)根据平方差公式计算即可;(4)根据完全平方公式计算即可.【详解】(1)解:1002−98×102=1002−(100−2)×(100+2)=1002−(1002−22)=1002−1002+22=4;(2)解:(a+b+3)(a+b−3)=[(a+b)+3][(a+b)−3]=(a+b)2−32=a2+2ab+b2−9;(3)解:(−2m+3)(−2m−3)=(−2m)2−32=4m2−9;(4x−2y2=14x2−2xy+4y2.【点睛】本题考查了平方差公式和完全平方公式,解本题的关键在熟练掌握整式的乘法公式进行计算.【变式3-2】(2023春·湖南永州·七年级校联考期中)1−1−=.【答案】1528【分析】根据平方差公式得,1−=1−+...1−+=12×32×23×43×34×54...×1314×1514,然后计算求解即可.【详解】解:1−==12×32×23×43×34×54...×1314×1514=12×1514=1528,故答案为:1528.【点睛】本题考查了平方差公式的应用.解题的关键在于对知识的熟练掌握与灵活运用.【变式3-3】(2023春·江西抚州·七年级校联考期中)运用乘法公式计算:(1)(2m−3n)(−2m−3n)−(2m−3n)2(2)1002−992+982−972+…+22−12.【答案】(1)−8m2+12mn(2)5050【分析】(1)原式第一项利用平方差是化简,第二项利用完全平方公式展开,去括号合并即可得到结果;(2)原式结合后,利用平方差公式化简,计算即可得到结果.【详解】(1)原式=9n2−4m2−4m2+12mn−9n2=−8m2+12mn;(2)原式=(100+99)×(100−99)+(98+97)×(98−97)+…+(2+1)×(2−1)=100+99+98+97+96+……+1=5050.【点睛】本题考查了平方差公式和完全平方公式的应用,熟练掌握运算法则是解题的关键.【题型4利用乘法公式求值】【例4】(2023春·山东济南·七年级统考期末)设a=x−2022,b=x−2024,c=x−2023.若a2+b2=16,则c2的值是( )A.5B.6C.7D.8【答案】C【分析】根据完全平方公式得出ab=6,a−b=2,进而根据已知条件得出c2=(a−1)(b+1),进而即可求解.【详解】∵a=x−2022,b=x−2024,c=x−2023,∴a−1=x−2023=c=b+1,a−b=2,∵a2+b2=16,∴(a−b)2+2ab=16,∴ab=6,∴c2=(a−1)(b+1)=ab+a−b−1=6+2−1=7,故选:C.【点睛】本题考查了完全平方公式变形求值,根据题意得出c2=(a−1)(b+1)是解题的关键.【变式4-1】(2023春·广西贵港·七年级校考期末)若x−y−7=0,则代数式x2−y2−14y的值为.【答案】49【分析】先计算x−y的值,再将所求代数式利用平方差公式分解前两项后,将x−y的值代入化简计算,然后再代入计算即可求解.【详解】解:∵x−y−7=0,∴x−y=7,∴x2−y2−14y=(x+y)(x−y)−14y=7(x+y)−14y=7x +7y−14y =7(x−y )=49.故答案为:49.【点睛】本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.【变式4-2】(2023春·湖南永州·七年级校考期中)(1)已知a +1a =3,求a 2+1a 2的值;(2)已知(a−b )2=9,ab =18,求a 2+b 2的值.【答案】(1)7;(2)45【分析】(1)根据完全平方和公式恒等变形后,代值求解即可得到答案;(2)根据完全平方差公式,代值求解即可得到答案.【详解】解:(1)∵ a 2+1a 2=a−2,a +1a =3,∴原式=32−2=9−2=7;(2)∵(a−b )2=a 2−2ab +b 2,(a−b )2=9,ab =18,∴ 9=a 2−2×18+b 2,解得a 2+b 2=9+2×18=45.【点睛】本题考查代数式求值,涉及完全平方公式,熟记完全平方和与完全平方差公式是解决问题的关键.【变式4-3】(2023春·陕西西安·七年级校考期中)已知m 满足(3m−2015)2+(2014−3m )2=5.(1)求(2015−3m )(2014−3m )的值.(2)求6m−4029的值.【答案】(1)−2(2)±3【分析】(1)原式利用完全平方公式化简,计算即可确定出原式的值;(2)原式利用完全平方公式变形,计算即可得到结果.【详解】(1)解:设a =3m−2015,b =2014−3m ,可得a +b =−1,a 2+b 2=5,∵(a+b)2=a2+b2+2ab,∴1=5+2ab,即ab=−2,则(2015−3m)(2014−3m)=(3m−2015)(2014−3m)=−ab=2;(2)解:设a=3m−2015,b=2014−3m,可得6m−4029=(3m−2015)−(2014−3m)=a−b,∵(a−b)2=a2+b2−2ab,∴(6m−4029)2=(a−b)2=a2+b2−2ab=5+4=9,则6m−4029=±3.【点睛】此题考查了完全平方公式,熟练掌握公式及运算法则是解本题的关键.【题型5利用面积法验证乘法公式】【例5】(2023春·七年级课时练习)如图,阴影部分是在边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形.给出下列2种割拼方法,其中能够验证平方差公式的是()A.①B.②C.①②D.①②都不能【答案】C【分析】分别在两个图形中表示出阴影部分的面积,继而可得出验证公式,即可得到答案.【详解】解:在图①中,左边的图形中阴影部分的面积为:a2−b2,右边图形中的阴影部分的面积为:(a+b)(a−b),故可得:a2−b2=(a+b)(a−b),可验证平方差公式,符合题意;在图②中,左边的图形中阴影部分的面积为:a2−b2,右边图形中的阴影部分的面积为:(a+b)(a−b),故可得:a2−b2=(a+b)(a−b),可验证平方差公式,符合题意;故能够验证平方差公式的是:①②,故选:C.【点睛】本题主要考查了平方差公式,运用不同方法表示阴影部分的面积是解题的关键.【变式5-1】(2023春·山东烟台·六年级统考期末)在下面的正方形分割方案中,可以验证(a+b)2=(a−b)2 +4ab的图形是()A.B.C.D.【答案】C【分析】用面积公式和作差法求小正方形、长方形的面积,令其与大正方形相等.【详解】A、不能验证公式,该选项不符合题意;B、可以验证(a+b)2=a2+2ab+b2,该选项不符合题意;C、可以验证(a+b)2=(a−b)2+4ab,该选项符合题意;D、可以验证a2=(a−b)2+2ab−b2,即(a−b)2=a2−2ab+b2,该选项不符合题意.故选:C.【点睛】本题考查了完全平方公式的几何验证,解题的关键在于对知识的熟练掌握与灵活运用.【变式5-2】(2023春·福建宁德·七年级校联考期中)下列等式不能用如图所示的方形网格验证的是()A.(a+b)2=a2+2ab+b2B.(a+b)(b+c)=ab+ac+b2+bcC.(a+b+c)2=a2+b2+c2+2ab+2ac+2bcD.(a+b)(a−b)=a2−b2【答案】D【分析】利用图形面积直接得出等式,从而可选择.【详解】解:等式(a+b)2=a2+2ab+b2是由边长为(a+b)的正方形推导而出,故A可验证,不符合题意;等式(a+b)(b+c)=ab+ac+b2+bc是由长为(b+c),宽为(a+b)的长方形推导而出,故B可验证,不符合题意;等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc是由边长为(a+b+c)的正方形推导而出,故C可验证,不符合题意;等式(a+b)(a−b)=a2−b2,图中找不到有关于a−b的面积,故D不可验证,符合题意.故选D.【点睛】本题考查多项式的乘法与图形面积.利用数形结合的思想是解题关键.【变式5-3】(2023春·江西抚州·七年级统考期末)(1)课本再现:如图1,2是“数形结合”的典型实例,应用“等积法”验证乘法公式.图1验证的是______,图2验证的是______;(2)应用公式计算:①已知x+y=5,xy=−1,求x2+y2的值;②求20222−2021×2023的值.【答案】(1)(a+b)2=a2+b2+2ab,a2−b2=(a+b)(a−b);(2)①27;②1【分析】(1)根据图1中大正方形的面积为两个小正方形的面积与两个长方形的面积之和得到完全平方公式,根据图2中左右两边阴影部分的面积相等得到平方差公式;(2)①利用x2+y2=(x+y)2−2xy进行计算即可;②利用平方差公式将2021×2023=(2022−1) (2022+1)=20222−1化简即可.【详解】解:(1)图1中,边长为a的正方形的面积为a2,边长为b的正方形的面积为b2,长为a宽为b的长方形的面积为ab,大正方形的边长为(a+b),面积为(a+b)2,∵大正方形的面积为两个小正方形的面积与两个长方形的面积之和,∴(a+b)2=a2+b2+2ab图2中,左边阴影部分的面积为:a2−b2,右边阴影部分的面积为:(a+b)(a−b),∵左右两边的阴影部分面积相等,∴a2−b2=(a+b)(a−b),故答案为:(a+b)2=a2+b2+2ab,a2−b2=(a+b)(a−b);(2)①∵x+y=5,xy=−1,∴x2+y2=(x+y)2−2xy=52−2×(−1)=27;②20222−2021×2023=20222−(2022−1)(2022+1)=20222−(20222−1)=1.【点睛】本题主要考查了完全平方公式和平方差公式,熟练掌握(a+b)2=a2+b2+2ab,a2−b2=(a+b) (a−b)是解题的关键.【题型6乘法公式的应用】【例6】(2023春·浙江宁波·七年级校考期中)如图,为了美化校园,某校要在面积为30平方米长方形空地ABCD中划出长方形EBKR和长方形QFSD,若两者的重合部分GFHR恰好是一个边长为3米的正方形,现将图中阴影部分区域作为花圃,若长方形空地ABCD的长和宽分别为m和n,m>n,花圃区域AEGQ和HKCS 总周长为14米,则m-n的值为()A.4米B.7米C.5米D.3.5米【答案】B【分析】根据长方形的周长及面积计算公式,可找出关于m,n的方程组,变形后可得出(m−n)2=49,解之取其正值即可得出结论.【详解】解:依题意得:2(m−3)+2(n−3)=14①mn=30②,由①可得:m+n=13,∵(m−n)2=(m+n)2−4mn,∴(m−n)2=49,∴m−n=7或m−n=−7(不合题意,舍去).故选:B.【点睛】本题考查了完全平方公式的几何背景,牢记(a±b)2=a2±2ab+b2是解题的关键.【变式6-1】(2023春·陕西西安·七年级校考期中)我们知道,将完全平方公式(a±b)2=a2±2ab+b2适当的变形,可以解决很多数学问题.请你观察、思考,并解决以下问题:(1)若m+n=9,mn=10,求m2+n2的值;(2)如图,一农家乐准备在原有长方形用地(即长方形ABCD)上进行装修和扩建,先用长为120m的装饰性篱笆围起该长方形院子,再以AD、CD为边分别向外扩建正方形ADGH、正方形DCEF的空地,并在两块正方形空地上建造功能性花园,该功能性花园面积和为2000m2,求原有长方形用地ABCD的面积.【答案】(1)61(2)800m2【分析】(1)利用完全平方公式代入计算即可;(2)设CD=x m,AD=y m,由周长可得x+y=60, 由两块正方形的面积和为2000平方米,x²+y²=2000,求xy即可.【详解】(1)∵(m+n)²=m²+n²+2mn,m+n=9,mn=10,∴m²+n²=(m+n)²−2mn=92−2×10=61,(2)设CD=x m,AD=y m,∵长方形ABCD的周长是120米,∴2(x+y)=120,即x+y=60,又∵两块正方形的面积和为2000平方米,∴x²+y²=2000,=800,∴xy=602−20002答: 长方形ABCD的面积为800平方米.【点睛】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征是正确应用的前提,适当的等式变形是解决问题的的关键.【变式6-2】(2023春·湖南邵阳·七年级统考期中)如图,某校一块边长为2a m的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a−2b)m的正方形.(0<2b<a)(1)分别求出七年级(2)班、七年级(3)班的清洁区的面积.(2)七年级(4)班的清洁区的面积比七年级(1)班的清洁区的面积多多少?【答案】(1)七年级(2)班、七年级(3)班的清洁区的面积均为(a+2b)(a−2b)=(a2−4b2)(m2)(2)多8ab m2【分析】(1)根据图形可知:七年级(2)班、七年级(3)班的清洁区为长方形,通过2a−(a−2b)=(a+2b) (m),可求出对应的长,(a+2b)(a−2b)=(a2−4b2)(m2),即可解答此题.(2)由正方形的面积公式可得到:(a+2b)2−(a−2b)2=a2+4ab+4b2−(a2−4ab+4b2)=8ab(m2),从而解答此题.【详解】(1)解:(1)因为2a−(a−2b)=(a+2b)(m),所以七年级(2)班、七年级(3)班的清洁区的面积均为(a+2b)(a−2b)=(a2−4b2)(m2).(2)因为(a+2b)2−(a−2b)2=a2+4ab+4b2−(a2−4ab+4b2)=8ab(m2),所以七年级(4)班的清洁区的面积比七年级(1)班的清洁区的面积多8ab m2.【点睛】本题考查了整式的乘法,熟练掌握完全平方公式、平方差公式是解本题的关键.【变式6-3】(2023春·浙江温州·七年级期中)学校为迎接艺术节,准备在一个正方形空地ABCD上搭建一个表演舞台,如图所示,正中间是“红五月”三个正方形平台.其中“五”字正方形和“月”字正方形边长均为a 米,“红”字正方形边长为b米.Ⅰ号区域布置造型背景,Ⅱ号区域设置为乐队演奏席.(1)用含a,b的代数式表示阴影部分的面积(即Ⅰ和Ⅱ面积之和)并化简;(2)若阴影部分的面积(即Ⅰ和Ⅱ面积之和)为288平方米,且a+b=20米,求“红”字正方形边长b的值.【答案】(1)2a2+4ab(2)16【分析】(1)根据题意,分别表示出正方形空地ABCD的面积和“红五月”三个正方形平台的面积,相减即为阴影部分的面积;(2)根据阴影部分的面积求出a2+2ab=144,再根据a+b=20,得到a2+2ab+b2=400,进而求得b2 =256,即可求出正方形边长b的值.【详解】(1)解:由题意可知,正方形空地ABCD的边长为2a+b,∴正方形空地ABCD的面积为(2a+b)2,∵“红五月”三个正方形平台的面积为a2+b2+a2=2a2+b2,∴阴影部分的面积为(2a+b)2−(2a2+b2)=4a2+4ab+b2−2a2−b2=2a2+4ab;(2)解:阴影部分的面积为288平方米,∴2a2+4ab=288,∴a2+2ab=144,∵a+b=20,∴(a+b)2=a2+2ab+b2=400,∴b2=400−144=256,∵b>0,∴b=16.【点睛】本题考查了正方形的面积公式,列代数式,完全平方公式,平方根知识,根据题意正确得出阴影部分的面积是解题关键.【题型7平方差公式的几何背景】【例7】(2023春·安徽安庆·七年级统考期中)将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=______ ,S2=______ ;(不必化简)(2)由(1)中的结果可以验证的乘法公式是______ ;(3)利用(2)中得到的公式,计算:20232−2022×2024.【答案】(1)a2−b2,(a+b)(a−b)(2)(a+b)(a−b)=a2−b2(3)1【分析】(1)根据图形的和差关系表示出S1,根据长方形的面积公式表示出S2;(2)由(1)中的结果可验证的乘法公式是(a+b)(a−b)=a2−b2;(3)由(2)中所得公式,可得2022×2024=(2023+1)(2023−1)=20232−1,从而简便计算出该题结果.【详解】(1)解:由题意得,S1=a2−b2,S2=(a+b)(a−b).故答案为:a2−b2,(a+b)(a−b);(2)解:由(1)中的结果可验证的乘法公式为(a+b)(a−b)=a2−b2.故答案为:(a+b)(a−b)=a2−b2;(3)解:由(2)中所得乘法公式(a+b)(a−b)=a2−b2可得,20232−2021×2023=20232−(2023+1)×(2023−1)=20232−(20232−1)=20232−20232+1=1.【点睛】本题考查了平方差公式几何背景的应用能力,掌握图形准确列式验证平方差公式,并能利用所验证公式解决相关问题是关键.【变式7-1】(2023春·全国·七年级期末)如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.(1)在图2中的阴影部分的面积S1可表示为;(写成多项式乘法的形式);在图3中的阴影部分的面积S2可表示为;(写成两数平方差的形式);(2)比较图2与图3的阴影部分面积,可以得到的等式是;A.(a+b)2=a2+2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2(3)请利用所得等式解决下面的问题:①已知4m2﹣n2=12,2m+n=4,则2m﹣n=;②计算(2+1)(22+1)(24+1)(28+1)×…×(232+1)+1的值,并直接写出该值的个位数字是多少.【答案】(1)(a+b)(a﹣b),a2﹣b2;(2)B(3)①3,②264,6【分析】(1)根据长方形和正方形的面积公式即可求解即可;(2)根据两个阴影部分的面积相等由(1)的结果即可解答.(3)①利用(2)得到的等式求解即可;②可以先把原式乘上一个(2﹣1),这样可以和(2+1)凑成平方差公式,以此逐步解答即可.【详解】(1)解:图2中长方形的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),图3中阴影部分的面积为两个正方形的面积差,即a2﹣b2.故答案为:(a+b)(a﹣b),a2﹣b2.(2)解:由(1)得(a+b)(a﹣b)=a2﹣b2;故选B.(3)解:①因为4m2﹣n2=12,所以(2m+n)(2m﹣n)=12,又因为2m+n=4,所以2m﹣n=12÷4=3.故答案为:3;②(2+1)(22+1)(24+1)(28+1)×…×(232+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)+…+(232+1)+1=(24﹣1)(24+1)(28+1)+…+(232+1)+1=……=264﹣1+1=264,而21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256……,其个位数字2,4,8,6,重复出现,而64÷4=16,于是“2、4、8、6”经过16次循环,因此264的个位数字为6.答:其结果的个位数字为6.【点睛】本题主要考查了平方差公式的应用和数字类规律,灵活应用平方差公式成为解答本题的关键.【变式7-2】(2023春·陕西咸阳·七年级咸阳市秦都中学校考阶段练习)【知识生成】(1)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如:从边长为a的正方形中剪掉一个边长为b的正方形如图1,然后将剩余部分拼成一个长方形如图2.图1中剩余部分的面积为______,图2的面积为______,请写出这个代数恒等式;【知识应用】(2)应用(1)中的公式,完成下面任务:若m是不为0的有理数,已知P=(a+2m)(a−2m),Q=(a+m) (a−m),比较P、Q大小;【知识迁移】(3)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图3表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图3中图形的变化关系,通过计算写出一个代数恒等式.【答案】(1)−3m2;(2)P<Q;(3)x(x+1)(x−1)=x3−x.【分析】(1)分别用代数式表示图1,图2的面积即可;(2)利用(1)中得到的等式计算P−Q的值即可;(3)分别用代数式表示图3中左图和右图的体积即可.【详解】解:(1)图1中剩余部分的面积为a2−b2,图2的面积为(a+b)(a−b),所以代数恒等式为(a+b)(a−b)=a2−b2;(2)∵P=(a+2m)(a−2m),Q=(a+m)(a−m),∴P−Q=(a+2m)(a−2m)−(a+m)(a−m)=a2−4m2−(a2−m2)=−3m2因为m是不为0的有理数,所以−3m2<0,即P−Q<0,所以P<Q;(3)图3中左图的体积为x⋅x⋅x−1×1×x=x3−x,图3中右图是长为x+1,宽为x,高为x−1的长方体,因此体积为(x+1)⋅x⋅(x−1),所以有x(x+1)(x−1)=x3−x.【点睛】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确应用的前提,利用代数式表示图形的面积和体积是正确解答的关键.【变式7-3】(2023春·山西大同·七年级统考期中)【实践操作】(1)如图①,在边长为a的大正方形中剪去一个边长为b的小正方形(a>b),把图①中L形的纸片按图②剪拼,改造成了一个大长方形如图③,请求出图③中大长方形的面积;(2)请写出图①、图②、图③验证的乘法公式为:.【应用探究】(3)利用(2)中验证的公式简便计算:499×501+1;(4)计算:1−×1−×1−×…×1−×1−【知识迁移】(5)类似地,我们还可以通过对立体图形进行变换得到代数恒等式如图④,将一个棱长为a的正方体中去掉一个棱长为b的正方体,再把剩余立体图形切割分成三部分如图⑤,利用立体图形的体积,可得恒等式为:a3−b3=.(结果不需要化简);(5)(a−b)a2+(a−b)b2+(a−b)ab或【答案】(1)a2−b2;(2)(a−b)(a+b)=a2−b2;(3)250000;(4)20234044(a−b)(a2+b2+ab)【分析】(1)利用长方形的面积等于长乘以宽即可.(2)图③中大长方形的面积等于图①的阴影部分面积,分别计算即可得出:(a−b)(a+b)=a2−b2(3)观察(2)的的乘法公式的特点是两数之和乘以两数之差,故将499拆成500−1,将501拆成500+1即可.(4)利用a2−b2=(a+b)(a−b)将各个因其进行因式分解后,再将各因式通分相加,发现每相邻两个的乘积为0,故答案为第一个因式乘以最后一个因式.(5)将立体图形分割成三部分,分别为:a2(a−b)、b2(a−b)、ab(a−b),其和为a2(a−b)+b2(a−b)+ab (a−b),恰等于a3−b3.【详解】解:(1)长方形的面积为:2(a−b)(a−b2+b)=(a−b)(a−b+2b)=(a−b)(a+b)=a2−b2;(2)图③整个大长方形的面积等于图①阴影部分的面积:∴(a−b)(a+b)=a2−b2;(3)原式=(500−1)×(500+1)+1=5002-12+1=250000;(4)原式=1−1−=12×32×23×43×34×45×⋯×20202021×20222021×20212022×20232022=12×20232022=20234044;(5)将立体图形分割成三部分,分别为:a2(a−b)、b2(a−b)、ab(a−b),其和为a2(a−b)+b2(a−b)+ab(a−b)=a3−b3.故答案为:a2(a−b)+b2(a−b)+ab(a−b).【点睛】本题考查了“数形结合”中的乘法公式及其灵活运用,解题的关键是善于发现规律并总结规律.【题型8完全平方公式的几何背景】【例8】(2023春·浙江温州·七年级校联考期中)图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m−n)2,mn之间的等量关系是;(3)若x+y=−6,xy=11,则x−y=;(直接写出答案)4【答案】(1)(m−n)2(2)(m+n)2−4mn=(m−n)2(3)±5【分析】(1)根据阴影部分的面积等于右边大正方形的面积减去左边矩形的面积进而得出答案;(2)由(1)中计算过程可得答案;(3)根据(2)中的等式可得答案.【详解】(1)解:图2中的阴影部分为正方形,边长为(m−n),则面积为(m−n)2.故答案为:(m−n)2;(2)解:左边图形的面积=2m×2n=4mn,右边的大正方形面积=(m+n)2,则阴影部分的面积=(m+n)2−4mn,因此三个代数式(m+n)2,(m−n)2,mn之间的等量关系为:(m+n)2−4mn=(m−n)2;故答案为:(m+n)2−4mn=(m−n)2;(3)解:由(2)得(x+y)2−4xy=(x−y)2,=25,∴(x−y)2=(−6)2−4×114∴x−y=±=±5,故答案为:±5.【点睛】本题考查了完全平方公式的背景知识以及完全平方公式的变形,解题的关键是认真观察图形,用不同的形式表示图形的面积.【变式8-1】(2023春·七年级课时练习)完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因ab=1,所以a2+b2=7根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,则xy的值为______;(2)拓展:若(4−x)x=3,则(4−x)2+x2=______.(3)应用:如图,在长方形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和正方形CEMN,若长方形CEPF的面积为160,求图中阴影部分的面积和.【答案】(1)12(2)10(3)384【分析】(1)利用完全平方公式进行计算,即可解答;(2)设4−x=a,x=b,则a+b=4,ab=3,然后完全平方公式进行计算,即可解答;(3)根据题意可得FC=20−x,CE=12−x,然后设FC=20−x=a,CE=12−x=b,则a−b=8,ab=160,最后利用完全平方公式进行计算,即可解答.【详解】(1)解:∵x+y=8,x2+y2=40,∴2xy=(x+y)2−(x2+y2)=82−40=64−40=24,∴xy=12.(2)解:设4−x=a,x=b,∴a+b=4−x+x=4,∵(4−x)x=3,∴ab=3,∴(4−x)2+x2=a2+b2=(a+b)2−2ab=42−2×3=16−6=10.(3)解:∵四边形ABCD是长方形,∴AB=CD=20,AD=BC=12,∵BE=DF=x,∴FC=DC−DF=20−x,CE=BC−BE=12−x,设FC=20−x=a,CE=12−x=b,∴a−b=20−x−(12−x)=8,∵长方形CEPF的面积为160,∴FC⋅CE=(20−x)(12−x)=ab=160,∴正方形CFGH的面积+正方形CEMN的面积=CF2+CE2=(20−x)2+(12−x)2=a2+b2=(a−b)2+2ab=82+2×160=64+320=384,∴图中阴影部分的面积和为384.【点睛】本题考查了整式的混合运算−化简求值,完全平方公式的几何背景,熟练掌握完全平方公式变形的计算是解题的关键.【变式8-2】(2023春·江苏·七年级期中)【知识生成】通常情况下,通过用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1,在边长为a的正方形中剪掉一个边长为b的小正方形(a>b).把余下的部分沿虚线剪开拼成一个长方形(如图2).图1中阴影部分面积可表示为:a2-b2,图2中阴影部分面积可表示为(a+b)(a-b),因为两个图中的阴影部分面积是相同的,所以可得到等式:a2-b2=(a+b)(a-b);【拓展探究】图3是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图4的形状拼成一个正方形.(1)用两种不同方法表示图4中阴影部分面积:方法1:,方法2:;(2)由(1)可得到一个关于(a+b)2、(a-b)2、ab的的等量关系式是;(3)若a+b=10,ab=5,则(a-b)2=;【知识迁移】(4)如图5,将左边的几何体上下两部分剖开后正好可拼成如右图的一个长方体.根据不同方法表示它的体积也可写出一个代数恒等式:.【答案】(1)(a-b)2,(a+b)2-4ab;(2)(a+b)2-4ab=(a-b)2;(3)80;(4)x3-x=x(x+1)(x-1)【分析】(1)利用直接和间接的方法表示出阴影部分面积;(2)由阴影部分面积相等可得结果;(3)直接根据(2)的结论代入求值即可;(4)分别求得图中几何体的体积,然后根据原图形与新图形体积相等列出恒等式即可.【详解】解:(1)方法1:直接根据正方形的面积公式得,(a-b)2,方法2:大正方形面积减去四种四个长方形的面积,即(a+b)2-4ab;(2)由阴影部分面积相等可得(a+b)2-4ab=(a-b)2;(3)由(a+b)2-4ab=(a-b)2,可得:102-4×5=(a-b)2,∴(a-b)2=80;(4)∵原几何体的体积=x3-1×1•x=x3-x,新几何体的体积=x(x+1)(x-1),∴恒等式为x3-x=x(x+1)(x-1).【点睛】本题考查完全平方公式的几何意义;能够由面积相等,过渡到利用体积相等推导公式是解题的关键.【变式8-3】(2023春·江苏·七年级期中)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个相同的长方形拼成的一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a−b)2、(a+b)2、ab三者之间的等量关系式:________﹔【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a3+b3+3ab(a+b).利用上面所得的结论解答下列问题:(1)已知x+y=6,xy=11,求(x−y)2的值;4(2)已知a+b=6,ab=7,求a3+b3的值.【答案】[知识生成](a+b)2-4ab=(a-b)2;[知识迁移](1)25;(2)90。
(完整版)面积乘除法易错题
一、计算乘法
1. 题目:计算矩形的面积
- 长方形的长为5米,宽为8米,请计算其面积。
答案:5米 × 8米 = 40平方米
2. 题目:计算正方形的面积
- 正方形的边长为6米,请计算其面积。
答案:6米 × 6米 = 36平方米
3. 题目:计算圆形的面积
- 圆的半径为3米,请计算其面积(结果保留两位小数)。
答案:面积= Π × 半径^2 = 3.14 × 3米 × 3米 = 28.26平方米二、计算除法
1. 题目:计算长方形的宽度
- 长方形的面积为32平方米,长度为8米,请计算宽度。
答案:宽度 = 面积 ÷长度 = 32平方米 ÷ 8米 = 4米
2. 题目:计算正方形的边长
- 正方形的面积为49平方米,请计算边长。
答案:边长= √面积= √49平方米 = 7米
3. 题目:计算圆形的半径
- 圆的面积为78.5平方米,请计算半径(结果保留两位小数)。
答案:半径= √(面积÷ Π) = √(78.5平方米÷ 3.14) ≈ 5米
以上是面积乘除法易错题的完整版。
希望能帮助你巩固对面积
乘除法的理解。
“乘法公式” 易错点点击江苏 庄亿农乘法公式是数学中常用公式之一,是整式乘法的基本工具。
初学时,由于对公式的意义及结构特点理解不透,往往会产生各种形式的错误,为了帮助同学们掌握好乘法公式,现将易错点进行归纳剖析,供同学们参考。
易错点1:运用完全平方公式时,丢掉系数的平方例1:计算2)4(b a -错解:2)4(b a -=222248442b ab a b b a a +-=+⋅⋅-。
剖析:错误原因是丢掉了最后一项系数的平方,应加上2)4(b ,即216b 。
正解:2)4(b a -=2222168)4(42b ab a b b a a +-=+⋅⋅-。
易错点2:运用完全平方公式时,丢掉中间乘积项或漏了系数“2倍”例2:计算2)3(y x +错解1:2)3(y x +=229y x +。
错解2:2)3(y x +=222293)3(3y xy x y y x x ++=+⋅+。
剖析:错解1中丢掉中间乘积项,要注意222)(b a b a +≠+;错解2中漏了系数“2倍”,这些都是同学们常会出现的错误。
正解:2)3(y x +=222296)3(32y xy x y y x x ++=+⋅⋅+。
易错点3:运用完全平方公式时,不能正确区分符号特征例3:利用乘法公式计算298.9错解:298.9=222)02.0()02.0(10210)02.010(-+-⨯⨯-=-=100+0.4+0.0004=100.4004。
剖析:错误原因是混淆了性质符号和运算符号,要知道乘法公式中的“+”与“-”号都是运算符号,运用公式2222)(b ab a b a +-=-计算298.9时,其中a=10,b=0.02,而不是-0.02。
正解:298.9=22202.002.010210)02.010(+⨯⨯-=-=100-0.4+0.0004=99.6004。
易错点4:运用平方差公式时,没有找准“a ”与“b ”例4:计算)32)(32(c b a c b a ---+错解1:)32)(32(c b a c b a ---+=)32)](32([c b a c b a ---+=22)32(c b a --=2229124c bc b a -+-。
乘法公式易错点例析平方差公式与完全平方公式是初中代数中的两个重要的计算公式,而许多学生由于对两个公式结构特点理解不清楚,计算时往往出现这样那样的错误,现将这些常出现的错误总结出来,供同学们共勉。
一、平方差与完全平方公式混淆1、( x – 3y)2 = x 2 - 9y 22、( 2x + 3y)2 = 4x 2 + 9y 2错因:这两个式子都是完全平方公式,应等于它们的平方和,加上(或减去)它们的积的2倍。
正确解法:1、22222(x-3y)23(3)69x x y y x xy y =-+=-+2、22222(23)(2)223(3)4129x y x x y y x xy y +=++=-+二、平方差公式结构特点模糊( m + 3n ) ( -m - 3n ) = m 2 - 9n 2错因:平方差公式左边必须是两式中一项相同,一项互为相反数。
m+ 3n 与-m - 3n 两项都互为相反数,此题不能用平方差公式。
应用完全平方公式。
正确解法:22222( m + 3n ) ( -m - 3n ) =(m+3n)[-(m+3n)]=-(m+3n)[23(3)]69m m n n m mn n =-++=---三、公式计算中项的概念不够明确,漏掉系数( 2x + y ) ( 2x – y ) = 2x 2 - y 2错因:式子在计算中都没有明确“项”的概念,包括字母前面的系数,因此在平方时漏掉了系数。
应是2x 与y 这两项的平方差。
正确解法:2222( 2x + y ) ( 2x - y ) =(2)4x y x y -=-四、公式中的符号错误1、( -a + b )2 = a 2 + 2ab + b 22、( -a – b )2 = a 2 - 2ab - b 2错因:公式中各项的符号特点及公式右边各项与公式左边两项的的关系理解模糊,出现了符号错误。
正确解法:1、22222( -a + b ) = (-a) + 2(-a)b + b 2b a ab =-+2、22222( -a - b ) = (-a) - 2(-a)b + b 2b a ab =++或22222( -a - b ) = (-a) + 2(-a)(b) +(- b)2b a ab -=++。
淮阳第一高级中学八年级C 段 整式的乘法易错题、典题集(珍藏版) 班级 姓名 成绩
一、选择题(每题2分,共20分) 1.下列等式恒成立的是( ).
A .(m+n )2=m 2+n 2
B .(2a -b )2=4a 2-2ab+b 2 C.(4x+1)2=16x 2+8x+1 D .(x -3)2=x 2-9 2.下列多项式乘法算式中,可以用平方差公式计算的是( ).
A .(m -n )(n -m )
B .(a+b )(-a -b )
C .(-a -b )(a -b )
D .(a+b )(a+b ) 3.2)2(n m +-的运算结果是 ( )
A 、2244n mn m ++
B 、2244n mn m +--
C 、2244n mn m +-
D 、2242n mn m +- 4. x 2+ax+121是一个完全平方式,则a 为( ) A .22 B .±22 C . -22 D .0 5.(a -b+c )(-a+b -c )等于( ).
A .-(a -b+c )2
B .c 2-(a -b )
C .(a -b )2-c 2
D .c 2-a+b 2 6.已知,3,5=-=+xy y x 则=+22y x ( )
A. 25. B 25- C 19 D 、19- 7.如果2212x x m -+恰好是另一个整式的平方,那么m 的值为( )
A .6
B .-6
C .±6
D .0 8.计算(a6b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )
A .a 8+2a 4b 4+b 8
B .a 8-2a 4b 4+b 8
C .a 8+b 8
D .a 8-b 8 9. 已知.(a+b)2=9,ab=-11
2
,则a2+b 2的值等于( )
A 、84
B 、78
C 、12
D 、6
10.在边长为a 的正方形中挖去一个边长为b 的小正方形()a b >(如图①),把余下的部分拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证( )
A.222()2a b a ab b +=++
B.222()2a b a ab b -=-+
C.22
()()a b a b a b -=+- D.22(2)()2a b a b a ab b +-=+-
二、填空题(每题3分,共30分)
+b 2+________=(a+b )2 ; a 2+b 2+_______=(a -b )2 ; (a -b )2+______=(a+b )2 12.已知xy 2
y x ,y x x x -+-=---2
22
2)()1(则
=
13.设(5a +3b )2=(5a -3b )2+A ,则A=
14.已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。
15.已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求)
)((2222d c b a ++
16.已知3,5==+ab b a ,则:①b a -= ②a
b
b a + = ③22b a -=
17.已知0132=--x x ,求①221x x += ②221
x
x -=
18.若a 2+2a=1则(a+1)2
=________. 19. 2
6a
a ++______= 2
__
a ⎛⎫
⎪⎝
⎭
+;241x ++_____=( 2)
20.已知()()122++=++ax x n x m x (n m ,是整数)则a 的取值有_______种
三、解答题
21.计算、化简(每题4分,共16分)
①(ab+1)2-(ab -1)2 ②2
2007
200720082006
-⨯ ③2(3x 1)(x 2)(x 2)4x(x 2)-+-+--其中x=-1.
④.化简求值:()()()23
13
32
222x y x y y x ⎡⎤⎡⎤-÷-÷-⎣⎦⎣⎦
,其中2,1x y ==-
22.若6,4a b a b +=-=求ab 与22a b +;(5分)23.若
x y =-22x xy y -+的值。
(5
分)
24、若012=-+a a ,求2007223++a a (5分) 25、222222122009201020112012-++-+-Λ(5分)
26.一个多项式除以223x x -+,得商式为1x +,余式为25x -,求这个多项式。
(4分)
27.已知:x2+y2+z2-2x+4y-6z+14=0,求:x+y+z 的值。
(6分)
28.已知一个三角形的面积是()32234612a b a b ab -+,一边长为2ab ,求该边上的高。
(4分)
29.说理:试说明不论x,y 取什么有理数,多项式x 2+y 2-2x+2y+3的值总是正数. (6分)
30. 探究拓展与应用(6分)
根据右侧算式的计算方法,请计算:
(2+1)(22+1)(24+1)
(3+1)(32
+1)(34
+1)…(332
+1)-2
364
的值.
=(2-1)(2+1)(22+1)(24+1) =(22-1)(22+1)(24+1) =(24-1)(24+1) =(28-1).
31.已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?(8分)。