五年级上册数学青岛版《简单的排列组合》专项练习
- 格式:doc
- 大小:139.50 KB
- 文档页数:1
小学数学《排列组合》练习题(含答案)1、计算①4356C A -;②2265C A ÷。
解答:①4356C A -=5432⨯⨯⨯-654321⨯⨯⨯⨯=120-20=100。
②2265C A ÷5465321⨯=⨯÷=⨯ 2、某班要从30名同学中选出3名同学参加数学竞赛,有多少种选法?如果从30名同学中选出3名同学站成一排,又有多少种站法?解答: 参加竞赛的选法:330302928321C ⨯⨯⨯⨯==4060种 站成一排的站法:330A =30×29×28=24360种参加竞赛的选法有4060种,站成一排的站法有24360种3、7个不同的小球放入4个不同的盒子中,每个盒子只能放一个,一共有多少种情况? 解答:47A =7654⨯⨯⨯=840(种)一共有840种不同的情况。
4、7个相同的小球放入4个不同的盒子中,每个盒子至少放一个,一共有多少种情况? 解答:1+1+1+0=3,1+2+0+0=3,3+0+0+0=3,分三种情况①选出一个盒子,不再放入球,其他三个盒子再各放入一个:14C ;②选出两个盒子,分别再放入一个球,两个球:24A③选出一个盒子,再放入三个球:14C总的放法:14C +24A +14C =20(种)5、从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?解答:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法; 第二步,从2、4、6、8中任取两个数字,也是一个组合问题,有24C 种方法;第三步,用取出的5个数字组成没有重复数字的五位数,有55A 种方法。
再由分步计数原理求总的个数。
325545A 7200C C ⨯⨯=(个) 一共能组成7200个没有重复数字的五位数。
6、在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法? 解答:437657A C C ⨯⨯=765000(种)有765000种排法。
章节测试题1.【答题】小朋友们跳皮筋,每两根柱子之间可以绕一根皮筋,四根柱子之间可以绕()根皮筋.A. 3B. 4C. 6【答案】C【分析】此题考查的是简单的组合问题.本题采用画图法,通过画连线图的方式进行分析解答.【解答】通过画连线图(如下图)可知,四根柱子之间可以绕6根皮筋.选C.2.【答题】小刚有红、黄、绿三件不同颜色的上衣,黑、蓝、灰三条不同颜色的裤子,他有()种不同的穿法.A. 3B. 6C. 9【答案】C【分析】此题考查的是简单的组合问题.本题采用画图法,通过画连线图的方式进行分析解答.【解答】通过画连线图(如下图)可知,他有9种不同的穿法,选C.3.【答题】4名女生和2名男生进行比赛,如果任意一名女生和每名男生都比一局,一共要比()局.A. 4B. 6C. 8【答案】C【分析】此题考查的是简单的组合问题.本题采用画图法,通过画连线图的方式进行分析解答.【解答】通过画连线图(如下图)可知,一共要比8局,选C.4.【答题】从下面的数字卡片中,任意选取其中2个求和,得数有()种可能.A. 4B. 5C. 6【答案】B【分析】此题考查的是简单的组合问题.本题采用列表法,通过列表格的方式进行分析解答.【解答】通过列表格(如下图)可知,任选2个数字卡片求和,得数有5种.选B.5.【答题】用下面的三个数字任选2个求积,有______种可能.【答案】3【分析】此题考查的是简单的组合问题.本题采用列表法,通过列表格的方式进行分析解答.【解答】通过列表格(如下图)可知,任选2个数字卡片求积,得数有3种.故此题的答案是3.6.【答题】用下面的三个数字任选2个求差,有()种可能.A. 3B. 5C. 6D. 8【答案】A【分析】此题考查的是简单的组合问题.本题采用列表法,通过列表格的方式进行分析解答.【解答】通过列表格(如下图)可知,任选2个数字卡片求差,得数有3种.选A.7.【答题】学校食堂本周菜谱如下图,每份选一荤一素两道菜,有______种不同的选法.【答案】6【分析】此题考查的是简单的组合问题.本题采用画图法,通过画连线图的方式进行分析解答.【解答】通过画连线图(如下图)可知,有6种不同的选法.故此题的答案是6.8.【答题】要贴1元的邮票,如果只有5角、2角和1角三种面值的邮票,一共有______种贴法.【答案】10【分析】此题考查的是简单的组合问题.本题采用列表法,通过列表格的方式进行分析解答.【解答】通过列表格(如下图)可知,一共有10种贴法.故此题的答案是10.9.【答题】把4颗珠子放入下面的计数器中,可以摆出()个不同的两位数.A. 3B. 4C. 5D. 6【答案】B【分析】此题考查的是简单的组合问题.本题采用画图法,通过画图的方式进行分析解答.需要注意的是,因为要求摆两位数,所以十位上最少有1颗珠子.【解答】通过画图(如下图)可知,可以摆出4个不同的两位数.选B.10.【答题】如图,Tom猫要抓到老鼠Jerry,可以有()条不同的路线.(只能向下或向左走)A. 3B. 6C. 9D. 27【答案】B【分析】此题考查的是简单的组合问题.本题采用画图法,通过画图的方式进行分析解答.【解答】通过画图(如下图)可知,可以有6条不同的路线.选B.11.【答题】下面的一组平行直线上分别有两个点和四个点,且同一条直线上的相邻两个点之间的距离相等,以这些点为顶点,一共可以组成______个不同的四边形,______个不同的平行四边形.【答案】6,3【分析】此题考查的是简单的组合问题.本题采用画图法,通过画图的方式进行分析解答.【解答】通过画图(如下图)可知,四边形有ACDB、ACEB、ACFB、ADEB、ADFB、AEFB,共6个;平行四边形有ACDB、ADEB、AEFB,共3个.故此题的答案是6、3.12.【答题】A、B、C、D、E五个好朋友握手,A握了4次,B握了3次,C握了2次,D握了1次,那么E握了______次.【答案】2【分析】此题考查的是简单的组合问题.本题采用画图法,通过画图的方式进行分析解答.【解答】通过画图(如下图)可知,A握了4次,即A与其他人各握了1次;D握了1次,所以D只与A握手了;B握了3次,所以B与ACE各握了1次;C握了2次,即C与A、B各握了1次,从图上可知,E握了2次手.故此题的答案是2.13.【答题】有5个不同的玩具放在两个箱子里,任意从箱子中取一个,有______种不同的取法;从每个箱子里取一个,有______种不同的取法.【答案】5,6【分析】此题考查的是简单的组合问题. 本题采用分析法,通过理解题意分析解答.【解答】任意从箱子中取一个,如果从蓝箱子里取,可以有3种取法,如果从红箱子里取,有两种取法,共有5种取法;从每个箱子里取一个,先从蓝箱子里取1个有,3种取法,每种取法都能与红箱子里的2种取法做搭配,所以共有3×2=6(种)取法.故此题的答案是5、6.14.【答题】下面有3本书,送给小方、小丽、小军各一本,一共有______种送法.【答案】6【分析】此题考查的是简单的组合问题.本题采用分析法,通过理解题意分析解答.【解答】先从三本书中任意选一本送给小方,则有3种送法,再从剩下的2本书中选一本送给小丽,有2种送法,最后剩下的一本一定是小军的;送给小方的3种方法,每种方法都可以与搭配送给小丽的2种方法做搭配,因此,一共有3×2=6(种)送法.故此题的答案是6.15.【答题】用下面的人民币可以表示出______种不同的币值.【答案】4【分析】此题考查的是简单的组合问题. 本题采用分析法,通过理解题意分析解答.【解答】如果只用1张人民币,可以表示出10元和20元2种币值;如果用其中2张人民币,可以用10元和10元表示出20元,也可以用10元和20元表示出30元,2种币值;如果用3张人民币,可以表示出40元,1种币值;综上所述,用这些人民币可以表示出10元、20元、30元、40元,共4种币值.故此题的答案是4.16.【答题】用2张10元和3张50元一共可以组成______种不同的币值.【答案】11【分析】此题考查的是简单的组合问题.本题采用列表法,通过列表格的方式进行分析解答.【解答】通过列表格(如下图)可知,一共可以组成11种不同的币值.故此题的答案是11.。
《排列组合》练习题(含答案)内容概述加乘原理,排列组合是四年级一个重要的学习内容,在之前的学习中,我们已经对它们有所了解,对于加乘原理我们只需要记住:加法分类,类类独立;乘法分步,步步相关!排列组合的应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.可利用图示法,可使问题简化便于正确理解与把握.本讲主要巩固加强此部分知识,注重排列组合的综合应用. 排 列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n 个不同的元素中任取出m 个(m ≤n )元素,按照一定的顺序排成一列.叫做从n 个不同元素中取出m 个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n 个不同元素中取出m 个(m ≤n )元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,我们把它记做(m ≤n ),.其中.【例1】 4名男生和2名女生去照相,要求两各女生必须紧挨着站在正中间,有几种排法?分析:分两步进行,先安排两个女生有22P 种方法,4个男生站的位置有44P 种方法,共有2424P P ⨯=2×1×4×3×2×1=48(种),故有48种排法.【巩固】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案?m np m (1)(2) (1)m n p n n n n m =---+14444244443共个数!(1) (1)n n P n n n ==⨯-⨯⨯分析:把4个空车位看成一个整体,(4个空车位看成一样的)与8辆车一块儿进行排列..【前铺】讲解此部分例题之前,请根据本班情况,将排列公式的计算练习一下!计算:(1)321414P P - ; (2)53633P P - 分析:(1)321414P P -=14×13×12-14×13=2002 ; (2)53633P P -=3×(6×5×4×3×2)-3×2×1=2154 .【例2】 书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果同类书可以分开,一共有多少种排法?(只写出表达式,不用计算)分析:每种书内部任意排序,分别有44P ,55P ,33P 种排法,然后再排三种类型的顺序,有33P 种排法,整个过程分4步完成.44P ×55P ×33P ×33P =103680(种).如果同类书可以分开,就相当于4+5+3=12本书随意排,有1212P 种排法.【例3】 用0,1,2,3,4可以组成多少个没重复数字的三位数?分析:(法1)在本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1,2,3,4这四个数字中选择1个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有24P 种方法.由分步计数原理得,三位数的个数是:4×24P =48(个). (法2):从0,1,2,3,4中任选三个数字进行排列,再减去其中不合要求的,即首位是0.从0,1,2,3,4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:35P -24P =5×4×3-4×3=60-12=48(个).不是简单的全排列,有一些其它的限制,这样要么全排列再剔出不合题意的情况,要么直接在排列的时候考虑这些限制因素.【前铺】(1)用1,2,3,4,5可以组成多少个没有重复数字的三位数? (2)用1,2,3,4,5可以组成多少个三位数? 分析:(1)要组成三位数,自然与三个数字的排列顺序有关,所以这是一个从五个元素中取出三个进行排列的问题,可以组成=5×4×3=60种没有重复数字的三位数.(2)没有要求数字不能重复,所以不能直接用来计算,分步考虑,用乘法原理可得:599362880P =35P 35P×5×5=125(个).注意“重复”和“没有重复”的区别!【巩固】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数? 分析:小于1000的自然数包括一位数、两位数、三位数,可以分类计算.注意“0”是自然数,且不能作两位数、三位数的首项.11124444569P P P P +⨯+⨯=(个).很自然的知道需要根据位数分类考虑,而且首位非零的限制也需要考虑.【例4】 由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?分析:先排独唱节目,四个节目随意排,有=24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应=6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.【例5】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排.分析:(1)775040P =(种).(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,44P 23P一般先考虑特殊情况再去全排列.【例6】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜,至少要试多少次?分析:四个数字之和为9的情况有:l+1+1+6=9;1+1+2+5=9;1+1+3+4=9;1+2+2+4=9;1+2+3+3=9;2+2+2+3=9,分别计算这6种情况.对于“l+1+1+6”这种情况,我们只需考虑6,其它1放那都一样;对于“1+1+2+5”这种情况,只需考虑2和5,其它同理,可得答案:12222144444456()P P P P P P +++++=次【巩固】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?分析:可以分三种情况来考虑:(1)3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有=6种不同的排列,此时有6×2=12种订法.(2)3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.(3)3所学校订的报纸数量都相同,只有100,100,100一种订法. 由加法原理,不同的订法一共有12+6+l=19种.组 合一般地,从n 个不同元素中取出m 个(m≤n )元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n 个不同元素中取出m 个元素(m ≤n )的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作(1)...(1)!m mn n n n m C m ⨯-⨯⨯-+=64444744448个数这就是组合数公式.【例7】 以右图中的8个点中的3个为顶点,共可以画出多少个不同的三角形?分析:从8个点中选3个点,一共有56种不同的选法.但是因为在一条直线上的3个点不能组成三角形,所以应去掉两条直线上不合要求的选法.5个点选3个的选法有10种.4个点选3个的选法有4种.所以一共可以画出56-(10+4)=42不同的三角形.【前铺】右图共有11条射线,那么图中有多少个锐角?33P分析:如图,最大的为锐角,它内部的各个角一定也是锐角,图中共有11条射线,任取两条作为角的两边便可确定一个锐角.因为角的两边不存在顺序关系,所以应该用组合.211C =55.几何题中的数个数问题往往可以采用这样的组合方法来解题.【前铺】讲解例题之前请根据本班情况先将组合公式计算练习一下! 计算:(1)241655,,C C C ,(2)352777,,C C C分析:(1)26651521C ⨯==⨯,45543254321C ⨯⨯⨯==⨯⨯⨯,15551C == ; (2)3776535321C ⨯⨯==⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯注意:从上发现规律m n mn n C C -=.【巩固】从3、5、7、11这四个质数中任取两个相乘,可以得到多少个不同的乘积?分析:由于3,5,7,11都是质数,因此所得乘积各不相同,因此只要求出不同的质数对的个数就可以了.24C =6.【巩固】一个口袋中有4个球,另一个口袋中有6个球,这些球颜色各不相同.从两个口袋中各取2个球,共有多少种不同结果?分析:分步考虑,224661590C C ⨯=⨯=(种).【例8】 有13个队参加篮球比赛,比赛分两个组,第一组七个队,第二组六个队,各组先进行单循环赛(即每队都要与其它各队比赛一场),然后由各组的前两名共四个队再进行单循环赛决定冠亚军.问:共需比赛多少场?分析:分三部分考虑,第一组预赛、第二组顶赛和最后的决赛.第一组要赛:=21(场),第二组要赛:=15(场),决赛阶段要赛:=6(场),总场数:21+15+6=42(场).【拓展】一个盒子装有10个编号依次为1,2,3,…,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?分析:10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:(1)5奇1偶,对奇数只有1种选择,对偶数有5种选择.由乘法原理,有1×5=5种选择; (2)3奇3偶,对奇数有35C =10种选择,对偶数也有35C =10种选择.由乘法原理,有10×10=100种选择;(3)1奇5偶,对奇数有5种选择,对偶数只有1种选择.由乘法原理,有5×1=5种选择. 由加法原理,不同的摸法有:5+100+5=110种.27C 26C 24C【例9】某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?分析:分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有15种选法;第二步,从余下的4个班中选取两个班给6种选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有15×6×l=90种不同的分配方法.【拓展】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?分析:先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36C=20种选法.由乘法原理,共有8×7×20=1120种不同的选法.【例10】工厂从100件产中任意抽出三件进行检查,问:(1)一共有多少种不同的抽法?(2)如果100件产品有2件次品,抽出的3件中恰好有一件是次品的抽法有多少种?(3)如果100件产品中有2件次品,抽出的3件中至少有一件是次品的抽法有多少种? 、分析:从100件产品中抽出3件检查,与抽出3件产品的顺序无关,是一个组合问题.(1)不同的抽法数就是从100个元素中取3个元素的组合数.3100C=161700(种).(2)可分两步考虑,第一步:从2件次品中抽出一件次品的抽法有12C种;第二步:从98件合格品中抽出2件合格品的抽法有298C种.再用分步计数原理求出总的抽法数,12 2989506C C⨯=.(3)可以从反面考虑,从抽法总数3100C中减去抽出的三件都是合格品的情况,便得到抽出的三件产品中至少有一件是次品的抽法总数.33100981617001520969604C C-=-=.【例11】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?(1)恰有3名女生入选;(2)至少有两名女生入选;(3)某两名女生,某两名男生必须入选;(4)某两名女生,某两名男生不能同时入选;(5)某两名女生,某两名男生最多入选两人.分析:(1)恰有3名女生入选,说明男生有5人入选,应为:3581014112C C⨯=;(2)要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871 181010842753C C C C--⨯=.(3)4人必须入选,则从剩下的14人中再选出另外4人. 4141001C =.(4)从所有的选法818C 中减去这4个人同时入选的414C 种可能:818C -414C =42757.(5)分三类情况:4人无人入选,4人仅有1人入选,4人中有2人入选,共:8172614414414C C C C C +⨯+⨯=34749.【例12】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?分析:先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有26C =15种选法;再从剩下的4个数位上选2个放2,有24C =6种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有15×6×l=90个. 在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数90—30=60个.【例13】 从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?分析:整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法; 第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法; 第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法. 再由分步计数原理求总的个数:35C ×24C ×55P =7200(个).附加题目【附1】小明的书架上原来有6本书,不重新排列,再放上3本书,可以有多少种不同的放法?分析:放第一本书时,有原来的6本书之间和两端的书的外侧共7个位置可以选择;放第二本书时,有已有的7本书之间和两端的书的外侧共8个位置可以选择.同样道理,放第三本书时,有9个位置可以选择.由乘法原理,一共可以有7×8×9=504种不同的放法.【附2】一栋12层楼房备有电梯,第二层至第六层电梯不停.在一楼有3人进了电梯,其中至少有一个要上12楼,则他们到各层的可能情况共有多少种?分析:每个人都可以在第7层至第12层中任何一层下,有6种情况,那么三个人一共有6×6×6=216种情况,其中,都不到12楼的情况有5×5×5=125种.因此,至少有一人要上12楼的情况有216-125=91种.【附3】某校组织进行的一次知识竞赛共有三道题,每道题满分为7分,给分时只能给出自然数l ,2,3,…,7分.已知参加竞赛者每人三道题的得分的乘积都是36,而且任意二人各题得分不完全相同,那么请问参加竞赛的最多有多少人?分析:将36分解为不大于7的三个数的乘积,有1×6×6;3×3×4;2×3×6三种情况.考虑到因数的先后顺序,第一种情况,考虑1有三个位置可选择,其余位置放6,有3种顺序;第二种情况与第一种情况相似,有3种顺序;最后一种情况,有3×2×l=6种顺序.由加法原理,一共有12种顺序,所以参赛的最多有12人.【附4】某市的电视台有八个节目准备分两天播出,每天播出四个,其中某动画片和某新闻播报必须在第一天播出一场,体育比赛必须在第二天播出,那么一共有多少种不同的播放节目方案?分析:某动画片和某新闻播报在第一天播放,对于动画片而言,可以选择当天四个节目时段的任何一个时段,一共有4种选择,对于新闻播报可以选择动画片之外的三个时段中的任何一个时段,一共有3种选择,体育比赛可以在第二天的四个节目时段中任选一个,一共有4种选择.剩下的5个节目随意安排顺序,有=120种选择.由乘法原理,一共有4×3×4×120=5760种不同的播放节目方案.【附5】某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?分析:此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:(1)只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有36C =20种,由乘法原理,有4×20=80种选择.(2)只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有24C =6种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有35C =10种选择.由乘法原理,有2×6×10=120种选择.(3)只会日语的人不出场,需从多面手中选3人做日语导游,有34C =4种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有34C =4种选择.由乘法原理,有4×4=1655P种选择.根据加法原理,不同的选择方法一共有80+120+16=216种.【附6】五个瓶子都贴了标签,其中恰好贴错了三个,贴错的可能情况共有多少个? 分析:首先考虑哪三个瓶子贴错了,有35C 种可能,3个瓶子贴错后互相贴错标签又分成两种不同情况.所以共有35C ×2=20(种).此题容易出错的是三个出错的瓶子确定后,他们之间错误的可能情况数目,有的同学很容易忽略这一环节,而有的会不假思索的把它当作一个全排列,这都是不正确的.【附7】马路上有编号为1,2,3,…,l0的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?分析:l0只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之问的六个空档中插入三只熄灭的灯,有36C =20种插法.练习十二1.给出1,2,3,4四个数字,试求:(1)可组成多少个数字不重复的四位数? (2)可组成多少个数字不重复的自然数? (3)可组成多少个不超过四位的自然数?分析:(1)44P =4×3×2×1=24个数字不重复的四位数.(2)利用1,2,3,4可组成数字不重复的一位、两位、三位、四位自然数,分类考虑:12344444P P P P +++=64个.(3)此题数位上的数字允许重复,利用1,2,3,4可组成一位、两位、三位、四位自然数.进一步考虑,一位数有4个,两位数有4×4=16个,三位数有4×4×4=64个,四位数有4×4×4×4=256个.故共有4+16+64+256=340个.2.由四个不同的非0数字组成的所有四位数中,数字和等于12的共有多少个?分析:四个数字都不同而数字和为12的数字有1,2,3,6和1,2,4,5两种情况,对于每种情况,可以组成=24个不同的四位数.对于所以,共可以组成24+24=48个不同的四位数.3.桌子上有3张红卡片,2张黄卡片,和1张蓝卡片,如果将它们横着排成一排,同种颜色的卡片不分开,一共有多少种排法?分析:32133213P P P P ⨯⨯⨯=72种.4.在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?44P分析:两个数的和是偶数,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题;从50个偶数中取出2个,有250C =1225种取法;从50个奇数中取出2个,也有250C =l225种取法.根据加法原理,一共有1225+1225=2450种不同的取法. 5.在一个口袋内装有大小相同的7个白球和1个黑球. (1)从口袋内取出3个球,共有多少种取法?(2)从口袋取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?分析:(1)从口袋内的8个球中取出3个球,与顺序无关,是组合问题,其取法种数是56种. (2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,其取法种数是21种.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,其取法种数是35种.6.在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法?分析:男女同学分别考虑,再整体排列.437657C C P ⨯⨯ =756000(种).。
排列组合考纲要求1.了解排列的意义,理解排列数公式,并能用它们解决一些简单的实际问题.2.了解组合的意义,理解组合数公式,并能用它们解决一些简单的实际问题.3. 了解组合数性质. 知识点一:排列1.排列的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.若m <n ,这样的排列叫选排列;若m =n ,这样的排列叫全排列.2.排列数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有排列的个数,从n 个不同元素中取出m 元素的排列数,记作mn P .(1) P m n =n (n -1)(n -2) … (n -m +1); (2) ==!P n n n n (n -1)(n -2) … 3×2×1; (3) P m n =()!!n n m -; 规定:0!=1.知识点二:解决排列问题的基本方法.1. 优限法:即先排特殊的元素,或者特殊的位置.2.捆绑法:相邻问题,把相邻的元素看成一个整体,然后再参与其他元素的排列. 3.插空法:对元素互不相邻的排列问题,常常采用插空法,首先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空位中.4. 排除法:即从正面难以考虑时可以考虑它的对立面,用全部结果数减去对立事件的方法数.5.枚举法:即将所有排列按照一定的规律,一一列举出来的方法. 知识点三:组合1.组合的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有组合的个数,从n个不同元素中取出m 元素的组合数,记作mn C .(1)()()()121P C P !mm nnmn n n n n m m ---+==;(2)()!C !!mn n m n m =-(n ,*N ∈m ,且m ≤n ).3. 组合数性质:(1) C =C m n mn n-; (2) 111C +C C m m m n n n +++=.知识点四:解组合问题的方法1.分类讨论:即分析题中的限定条件将所给元素按性质适当分类,并侧重其中一类,相应各类分类讨论,分类时要做到不重不漏.2.等价转化:即把所求问题转化为与之等价的组合问题去解决.3.排除法.4.枚举法.知识点五:计数需注意问题1.排列为有序问题,组合为无序问题,两者都是不重复问题.2.排列包括两个要素,一个是不同的元素,另一个是确定的顺序. 即排列可分成两步,第一步取出元素,第二步排列顺序.3.组合只有一个要素,就是取出元素即可,与元素的排列顺序无关.4.要注意区分分类和分步计数原理,排列和组合,元素允许重复是直接用计数原理,而元素不允许重复的是排列和组合问题. 题型一 排列定义例1 五个同学站一排照相,共多少种排法?分析:把5个元素放在5个位置上,相当于5的全排列,也共有120P 55=种排法. 解答:N =120P 55=种排法题型二 排列数公式例2 设x N *∈,10x <,(20)(21)(30)().x x x --⋅⋅⋅-=A. 1020P x -B. 1120P x -C. 1030P x -D. 1130P x -分析:排列数公式 P m n =n (n -1)(n -2)…(n -m +1)的特点: (1)等号右边最大的数是n ; (2)等号右边最小的数是n -m +1; (3)共有m 个连续自然数相乘. 解答:30n x =-,(30)(20)111m x x =---+=,∴ (20)(21)(30)x x x --⋅⋅⋅-=1130P x -题型三 解决排列应用题 例3 用1、2、3、4、5、6个数. (1)可以组成多少个五位数?(2)可以组成多少个没有重复数字的五位数? (3)可以组成多少个1和2相邻的六位数? (4)可以组成多少个1和2不相邻的六位数?分析:先考虑是用分类分步还是用排列组合,就是要观察一下数字是否允许重复,数字允许重复用分类分步计数原理,数字不允许重复用排列组合,数字相邻用捆绑法,数字不相邻用插空法.解答:(1)数字可以重复,所以用分步计数原理,每个数位上都有6个数字可选,因此共有5666666⨯⨯⨯⨯=个.(2)数字不可以重复,还有顺序,所以用排列,共720P 56==N 个.(3)1和2相邻,用捆绑法,先排1和2共22P 种,与余下的4个元素共有55P 种,则共有240P P 5522=个.(4)1和2不相邻,插空法,先排余下的4个元素44P 种,,再从5个空中挑选2个即25P 种,则共有480P P 2544=个.题型四 组合定义及组合数公式例4 从8名男生2名女生中任选5人, (1)共有多少种不同的选法? (2)恰好有一名女生的不同选法? 分析:选取元素干同一件事就组合问题.解答:(1)所有不同选法数就从10人中任选5人的组合数即252C 510=种.(2)从2名女生中任选1人的选法有12C 种,从8名男生中选出4人的选法有48C 种,由分步计数原理,恰有一名女生的选法有140C C 4812=种.题型五 组合数公式例5 (1)已知321818C C -=x x 则x =____. (2)=+97999899C C _____.分析:灵活运用组合数性质.解答:(1)根据题意得 23x x =-或(23)18x x +-=则3x =或7x =.(2)4950299100C C C C 21009810097999899=⨯===+. 题型六 解组合应用题例6 从8件不同的服装快递,2件不同的食品快递中任选5件. (1)至少有一件食品快递的不同选法总数? (2)最多有一件食品快递的不同选法总数?分析:解决带有限制条件的组合应用题要根据题意正确地分类或分步,巧妙运用直接法或间接法.解答:(1)法一(直接法)分两类情况求解,第一类恰有一件食品快递选法有4812C C 种,第二类恰有两件食品快递选法有3822C C 种,由分类计数原理得至少有一件食品快递的不同选法共有196C C C C 38224812=+种.法二(排除法)从10件快递中任选5件选法总数减去选出的5件全为服装快递的总数即至少有一件为食品快递的不同选法有55108196C C -=种.(2) 最多有一件食品快递可分为以下两类,第一类选出的五件快递中恰有一件食品快递有1428C C 种选法,第二类选出的五件快递中恰有0件食品快递,有0528C C 种选法,由分类计数原理知最多有一件食品快递的选法有14052828196C C C C +=种.一、选择题1.设*x N ∈,10x <,则(10)(11)(17)x x x --⋅⋅⋅-用排列数符号表示为( ).A.x x --1017PB.817P x -C. 717P x -D. 810P x -2.从4人中任选2人担任正副班长,结果共有( )种.A. 4B. 6C. 12D. 243.将5本不同的笔记本分配给4个三好学生(每个学生只能拥有一本笔记本),则所有的分法种数为( ).A. 5!B. 20C. 54D. 454.5名学生报考4所不同的学校(每名学生只能报考一所学校),则所有的报考方法有( )种.A. 5!B. 20C. 54D. 455.将6名优秀教师分配到4个班级,要求每个班有1名教师,则不同的分法种数有( )种.A. 46PB. 46C. 46CD. 646.为抗击郑州水患,某医院派3名医生和6名护士支援郑州,他们被分配到郑州的三所医院,每个医院分配1名医生和2名护士,共有( )种不同的分配方法.A. 24122613P P P P +B. 221124122613P P P P P P ++ C. 121212362412C C C C C C ⋅⋅⋅⋅⋅ D. 121212362412C C C C C C ⋅+⋅+⋅7.从4名男生和5名女生中任取3人,其中男生至多有一人,则不同的取法共有( )种 . A. 30 B. 50 C. 70 D. 808.某小组有男生7人,女生3人,选出3人中有1名男生,2名女生的不同选法有( )种.A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅9.10件产品中有2件次品,任取3件至少有1件次品的不同抽法为( )种.A. 1229C C ⋅ B. 312828C C C +⋅ C. 33108C C - D. 12122928C C C C ⋅-⋅10.式子(1)(2)(15)16!x x x x ++⋅⋅⋅+(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C. 16x CD. 17x C妙记巧学,归纳感悟 二、判断题:1. 34567⨯⨯⨯⨯等于37P .( )2. 从甲、乙、丙、丁中任选两人做正、副班长,共有12种.( )3. 6个座位,3个人去坐,每人坐一个座位,则共36C 种.( ) 4. 6个点最多可确定26C 条直线.( ) 5. 6个点最多可确定26C 条有向线段.( ) 6. 某铁路有十个站点,共需准备210P 种车票.( )7. 某铁路有十个站点,有210P 种不同票价(同样的两个站点的票价相同).( ) 8. 某组学生约定,假期每两人互通一封信,共计12封,这个小组学生有5人.( ) 9. 把语文、数学、英语、美术、历史这五门课排在一天的五节课中,数学必须比美术先上的排法总数为44C 种.( )10.从3、5、7、9中任选两个,可以组成12个不同的分数值.( ) 妙记巧学,归纳感悟 三、填空题1.若57n n C C =,则n =_______..2.若56P 2=n ,则n =_______.3.从数字0、1、2、3、4、5中任选3个数,可组成______个无重复数字的三位偶数.4.将4本同样的书分给5名同学,每名同学至多分一本,而且书必须分完则不同的分法总数有______种.5.2名教师和5名学生中选3人去旅游,教师不能不去,也不能全去,则共有______种选法. 妙记巧学,归纳感悟 四、解答1.将5名学生排成一排照相,其中3名男生,2名女生,则以下情况各有多少种不同的排法?(1)甲乙必须相邻; (2)甲乙互不相邻; (3)甲乙必须站两端; (4)甲乙不在两端; (5)男女相间.2. 将6本不同的书,在下列情况下有多少种分法? (1)分成相等的三份; (2)平均分给甲乙丙三位同学;(3)分成三份,一份一本,一份两本,一份三本; (4)甲分一本,乙分两本,丙分三本;(5)如果一人分一本,一人分两本,一人分三本,分给甲乙丙. 高考链接1.(2018)某年级有四个班,每班组成一个篮球队,每队分别同其他三个队比赛一场,共需要比赛( )场.A. 4B. 6C. 5D. 7 2. 某段铁路共有9个车站,共需准备( )种不同的车票. A. 36 B. 42 C.64 D. 723. 甲袋中装有6个小球,乙袋中装有4个小球,所有小球颜色各不相同,现从甲袋中取两个小球,乙袋中取一个小球,则取出三个小球的不同取法共有( )种. A. 30 B. 60 C.120 D. 3604. 某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场顺序有______种. 积石成山10件产品中有2件次品任取3件,至多有一件次品的不同取法总数为( )种.A. 312828C C C +B. 1229C C C. 33108C C - D. 12122928C C C C -2. 从4名男生和5名女生中任取3人,其中至少有男生,女生各一名,则不同的取法有( )种.A. 140B. 84C. 70D. 353. 某医疗小队有护士7人,医生3人,任选3人的不同选法有( ).A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅4. 将4名优秀教师分配到3个班级,每个班至少分到一名教师,则不同的分配方案有( )种.A. 72B. 36C. 18D. 125. 5个人站成一排照相,甲不站排头,乙不站排尾的排法总数有( )种. A. 36 B. 78 C. 60 D. 486. 5个人站成一排照相,甲站中间的排法总数有( )种. A .24 B. 36 C. 60 D. 487. 5个人站成2排照相,第一排2人,第二排3人则不同的排法总数有( )种. A. 48 B. 78 C. 60 D. 1208. 从1、2、3、4中任选2个,再从5、6、7、8、9中任选2个可组成无重复的四位数的个数是( )个.A .720 B. 2880 C. 1440 D .1449. 某工作小组有9名工人,3名优秀工人,各抽5人参加比赛,要求优秀工人都参加不同的选法共有( )种.A. 12B.15C. 30D. 36 10. 式子(1)(2)(15)1!x x x x x ++⋅⋅⋅+-()(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C.16x C D .17x C排列组合答案一、选择题二、判断题三、填空题1.12 解析:根据组合数性质1得5712n =+=2.8 解析:2(1)56n P n n =-= 8n ∴=3. 52 解析:分两类,第一类个位是零则有2520P =个;第二类,个位不是零,则有11124432P P P =个,所以共有20+32=52个.4.5 解析:只需在五人中选四人得到书即可,书相同无需排序,则有455C =种. 5.20 解析:老师不能不去,也不能全去,则只能去一人即122520C C =种.妙记巧学,归纳感悟:答案全,结果简. 四、解答题1.解:(1)把甲乙捆绑在一起有22P 种,与余下的3名学生共有44P 种,则甲乙必须相邻,有242448P P =种排法.(2)先把余下的3名学生排好有33P 种,再从形成的4个空中任选两个甲乙来排有24P 种,则甲乙不相邻有323472P P =种排法.(3)甲乙必须站两端,先排甲乙有22P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙必须站两端有323212P P =种排法.(4)先从3个位置中选2个甲乙来排有23P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙不在两端有233336P P =种. (5)男女相间则有323212P P =种排法.2. 解:(1)平均分堆问题.有2226423315C C C P =种方法. (2)平均分配问题,每人均分得2本.甲先取两本26C 种,乙再取两本24C 种,丙最后取两本22C 种,由分步计数原理得222642C C C =90种方法.(3)不平均分堆问题,第一份16C 种,第二份25C 种,第三份33C 种,则共有123653C C C =60种方法.(4)不平均分配问题,甲先选一本16C 种,乙再选两本25C 种,丙最后选三本33C 种,则共有123653C C C =60种方法.(5)不平均分配问题,且没有指定对象,先分三份123653C C C 种,再把这三份分给甲乙丙三人有33P 种,则共有种12336533360C C C P =方法.妙记巧学,归纳感悟: 排列组合来相遇,先组后排无争议. 高考链接1.B2.D3.B4.2400 解析:相声节目不相邻,则用插空法先排5个小品节目共有55P 种,五个小品节目共形成六个空选三个空插入相声节目有36P 种,则共有53562400P P =种.积石成山。
《排列组合》练习题(含答案)内容概述加乘原理,排列组合是四年级一个重要的学习内容,在之前的学习中,我们已经对它们有所了解,对于加乘原理我们只需要记住:加法分类,类类独立;乘法分步,步步相关!排列组合的应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.可利用图示法,可使问题简化便于正确理解与把握.本讲主要巩固加强此部分知识,注重排列组合的综合应用. 排 列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n 个不同的元素中任取出m 个(m ≤n )元素,按照一定的顺序排成一列.叫做从n 个不同元素中取出m 个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n 个不同元素中取出m 个(m ≤n )元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,我们把它记做(m ≤n ),.其中.【例1】 4名男生和2名女生去照相,要求两各女生必须紧挨着站在正中间,有几种排法?分析:分两步进行,先安排两个女生有22P 种方法,4个男生站的位置有44P 种方法,共有2424P P ⨯=2×1×4×3×2×1=48(种),故有48种排法.【巩固】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案?m np m (1)(2) (1)m n p n n n n m =---+14444244443共个数!(1) (1)n n P n n n ==⨯-⨯⨯分析:把4个空车位看成一个整体,(4个空车位看成一样的)与8辆车一块儿进行排列..【前铺】讲解此部分例题之前,请根据本班情况,将排列公式的计算练习一下!计算:(1)321414P P - ; (2)53633P P - 分析:(1)321414P P -=14×13×12-14×13=2002 ; (2)53633P P -=3×(6×5×4×3×2)-3×2×1=2154 .【例2】 书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果同类书可以分开,一共有多少种排法?(只写出表达式,不用计算)分析:每种书内部任意排序,分别有44P ,55P ,33P 种排法,然后再排三种类型的顺序,有33P 种排法,整个过程分4步完成.44P ×55P ×33P ×33P =103680(种).如果同类书可以分开,就相当于4+5+3=12本书随意排,有1212P 种排法.【例3】 用0,1,2,3,4可以组成多少个没重复数字的三位数?分析:(法1)在本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1,2,3,4这四个数字中选择1个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有24P 种方法.由分步计数原理得,三位数的个数是:4×24P =48(个). (法2):从0,1,2,3,4中任选三个数字进行排列,再减去其中不合要求的,即首位是0.从0,1,2,3,4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:35P -24P =5×4×3-4×3=60-12=48(个).不是简单的全排列,有一些其它的限制,这样要么全排列再剔出不合题意的情况,要么直接在排列的时候考虑这些限制因素.【前铺】(1)用1,2,3,4,5可以组成多少个没有重复数字的三位数? (2)用1,2,3,4,5可以组成多少个三位数? 分析:(1)要组成三位数,自然与三个数字的排列顺序有关,所以这是一个从五个元素中取出三个进行排列的问题,可以组成=5×4×3=60种没有重复数字的三位数.(2)没有要求数字不能重复,所以不能直接用来计算,分步考虑,用乘法原理可得:599362880P =35P 35P×5×5=125(个).注意“重复”和“没有重复”的区别!【巩固】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数? 分析:小于1000的自然数包括一位数、两位数、三位数,可以分类计算.注意“0”是自然数,且不能作两位数、三位数的首项.11124444569P P P P +⨯+⨯=(个).很自然的知道需要根据位数分类考虑,而且首位非零的限制也需要考虑.【例4】 由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?分析:先排独唱节目,四个节目随意排,有=24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应=6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.【例5】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排.分析:(1)775040P =(种).(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,44P 23P一般先考虑特殊情况再去全排列.【例6】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜,至少要试多少次?分析:四个数字之和为9的情况有:l+1+1+6=9;1+1+2+5=9;1+1+3+4=9;1+2+2+4=9;1+2+3+3=9;2+2+2+3=9,分别计算这6种情况.对于“l+1+1+6”这种情况,我们只需考虑6,其它1放那都一样;对于“1+1+2+5”这种情况,只需考虑2和5,其它同理,可得答案:12222144444456()P P P P P P +++++=次【巩固】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?分析:可以分三种情况来考虑:(1)3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有=6种不同的排列,此时有6×2=12种订法.(2)3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.(3)3所学校订的报纸数量都相同,只有100,100,100一种订法. 由加法原理,不同的订法一共有12+6+l=19种.组 合一般地,从n 个不同元素中取出m 个(m≤n )元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n 个不同元素中取出m 个元素(m ≤n )的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作(1)...(1)!m mn n n n m C m ⨯-⨯⨯-+=64444744448个数这就是组合数公式.【例7】 以右图中的8个点中的3个为顶点,共可以画出多少个不同的三角形?分析:从8个点中选3个点,一共有56种不同的选法.但是因为在一条直线上的3个点不能组成三角形,所以应去掉两条直线上不合要求的选法.5个点选3个的选法有10种.4个点选3个的选法有4种.所以一共可以画出56-(10+4)=42不同的三角形.【前铺】右图共有11条射线,那么图中有多少个锐角?33P分析:如图,最大的为锐角,它内部的各个角一定也是锐角,图中共有11条射线,任取两条作为角的两边便可确定一个锐角.因为角的两边不存在顺序关系,所以应该用组合.211C =55.几何题中的数个数问题往往可以采用这样的组合方法来解题.【前铺】讲解例题之前请根据本班情况先将组合公式计算练习一下! 计算:(1)241655,,C C C ,(2)352777,,C C C分析:(1)26651521C ⨯==⨯,45543254321C ⨯⨯⨯==⨯⨯⨯,15551C == ; (2)3776535321C ⨯⨯==⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯注意:从上发现规律m n mn n C C -=.【巩固】从3、5、7、11这四个质数中任取两个相乘,可以得到多少个不同的乘积?分析:由于3,5,7,11都是质数,因此所得乘积各不相同,因此只要求出不同的质数对的个数就可以了.24C =6.【巩固】一个口袋中有4个球,另一个口袋中有6个球,这些球颜色各不相同.从两个口袋中各取2个球,共有多少种不同结果?分析:分步考虑,224661590C C ⨯=⨯=(种).【例8】 有13个队参加篮球比赛,比赛分两个组,第一组七个队,第二组六个队,各组先进行单循环赛(即每队都要与其它各队比赛一场),然后由各组的前两名共四个队再进行单循环赛决定冠亚军.问:共需比赛多少场?分析:分三部分考虑,第一组预赛、第二组顶赛和最后的决赛.第一组要赛:=21(场),第二组要赛:=15(场),决赛阶段要赛:=6(场),总场数:21+15+6=42(场).【拓展】一个盒子装有10个编号依次为1,2,3,…,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?分析:10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:(1)5奇1偶,对奇数只有1种选择,对偶数有5种选择.由乘法原理,有1×5=5种选择; (2)3奇3偶,对奇数有35C =10种选择,对偶数也有35C =10种选择.由乘法原理,有10×10=100种选择;(3)1奇5偶,对奇数有5种选择,对偶数只有1种选择.由乘法原理,有5×1=5种选择. 由加法原理,不同的摸法有:5+100+5=110种.27C 26C 24C【例9】某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?分析:分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有15种选法;第二步,从余下的4个班中选取两个班给6种选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有15×6×l=90种不同的分配方法.【拓展】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?分析:先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36C=20种选法.由乘法原理,共有8×7×20=1120种不同的选法.【例10】工厂从100件产中任意抽出三件进行检查,问:(1)一共有多少种不同的抽法?(2)如果100件产品有2件次品,抽出的3件中恰好有一件是次品的抽法有多少种?(3)如果100件产品中有2件次品,抽出的3件中至少有一件是次品的抽法有多少种? 、分析:从100件产品中抽出3件检查,与抽出3件产品的顺序无关,是一个组合问题.(1)不同的抽法数就是从100个元素中取3个元素的组合数.3100C=161700(种).(2)可分两步考虑,第一步:从2件次品中抽出一件次品的抽法有12C种;第二步:从98件合格品中抽出2件合格品的抽法有298C种.再用分步计数原理求出总的抽法数,12 2989506C C⨯=.(3)可以从反面考虑,从抽法总数3100C中减去抽出的三件都是合格品的情况,便得到抽出的三件产品中至少有一件是次品的抽法总数.33100981617001520969604C C-=-=.【例11】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?(1)恰有3名女生入选;(2)至少有两名女生入选;(3)某两名女生,某两名男生必须入选;(4)某两名女生,某两名男生不能同时入选;(5)某两名女生,某两名男生最多入选两人.分析:(1)恰有3名女生入选,说明男生有5人入选,应为:3581014112C C⨯=;(2)要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871 181010842753C C C C--⨯=.(3)4人必须入选,则从剩下的14人中再选出另外4人. 4141001C =.(4)从所有的选法818C 中减去这4个人同时入选的414C 种可能:818C -414C =42757.(5)分三类情况:4人无人入选,4人仅有1人入选,4人中有2人入选,共:8172614414414C C C C C +⨯+⨯=34749.【例12】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?分析:先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有26C =15种选法;再从剩下的4个数位上选2个放2,有24C =6种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有15×6×l=90个. 在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数90—30=60个.【例13】 从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?分析:整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法; 第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法; 第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法. 再由分步计数原理求总的个数:35C ×24C ×55P =7200(个).附加题目【附1】小明的书架上原来有6本书,不重新排列,再放上3本书,可以有多少种不同的放法?分析:放第一本书时,有原来的6本书之间和两端的书的外侧共7个位置可以选择;放第二本书时,有已有的7本书之间和两端的书的外侧共8个位置可以选择.同样道理,放第三本书时,有9个位置可以选择.由乘法原理,一共可以有7×8×9=504种不同的放法.【附2】一栋12层楼房备有电梯,第二层至第六层电梯不停.在一楼有3人进了电梯,其中至少有一个要上12楼,则他们到各层的可能情况共有多少种?分析:每个人都可以在第7层至第12层中任何一层下,有6种情况,那么三个人一共有6×6×6=216种情况,其中,都不到12楼的情况有5×5×5=125种.因此,至少有一人要上12楼的情况有216-125=91种.【附3】某校组织进行的一次知识竞赛共有三道题,每道题满分为7分,给分时只能给出自然数l ,2,3,…,7分.已知参加竞赛者每人三道题的得分的乘积都是36,而且任意二人各题得分不完全相同,那么请问参加竞赛的最多有多少人?分析:将36分解为不大于7的三个数的乘积,有1×6×6;3×3×4;2×3×6三种情况.考虑到因数的先后顺序,第一种情况,考虑1有三个位置可选择,其余位置放6,有3种顺序;第二种情况与第一种情况相似,有3种顺序;最后一种情况,有3×2×l=6种顺序.由加法原理,一共有12种顺序,所以参赛的最多有12人.【附4】某市的电视台有八个节目准备分两天播出,每天播出四个,其中某动画片和某新闻播报必须在第一天播出一场,体育比赛必须在第二天播出,那么一共有多少种不同的播放节目方案?分析:某动画片和某新闻播报在第一天播放,对于动画片而言,可以选择当天四个节目时段的任何一个时段,一共有4种选择,对于新闻播报可以选择动画片之外的三个时段中的任何一个时段,一共有3种选择,体育比赛可以在第二天的四个节目时段中任选一个,一共有4种选择.剩下的5个节目随意安排顺序,有=120种选择.由乘法原理,一共有4×3×4×120=5760种不同的播放节目方案.【附5】某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?分析:此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:(1)只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有36C =20种,由乘法原理,有4×20=80种选择.(2)只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有24C =6种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有35C =10种选择.由乘法原理,有2×6×10=120种选择.(3)只会日语的人不出场,需从多面手中选3人做日语导游,有34C =4种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有34C =4种选择.由乘法原理,有4×4=1655P种选择.根据加法原理,不同的选择方法一共有80+120+16=216种.【附6】五个瓶子都贴了标签,其中恰好贴错了三个,贴错的可能情况共有多少个? 分析:首先考虑哪三个瓶子贴错了,有35C 种可能,3个瓶子贴错后互相贴错标签又分成两种不同情况.所以共有35C ×2=20(种).此题容易出错的是三个出错的瓶子确定后,他们之间错误的可能情况数目,有的同学很容易忽略这一环节,而有的会不假思索的把它当作一个全排列,这都是不正确的.【附7】马路上有编号为1,2,3,…,l0的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?分析:l0只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之问的六个空档中插入三只熄灭的灯,有36C =20种插法.练习十二1.给出1,2,3,4四个数字,试求:(1)可组成多少个数字不重复的四位数? (2)可组成多少个数字不重复的自然数? (3)可组成多少个不超过四位的自然数?分析:(1)44P =4×3×2×1=24个数字不重复的四位数.(2)利用1,2,3,4可组成数字不重复的一位、两位、三位、四位自然数,分类考虑:12344444P P P P +++=64个.(3)此题数位上的数字允许重复,利用1,2,3,4可组成一位、两位、三位、四位自然数.进一步考虑,一位数有4个,两位数有4×4=16个,三位数有4×4×4=64个,四位数有4×4×4×4=256个.故共有4+16+64+256=340个.2.由四个不同的非0数字组成的所有四位数中,数字和等于12的共有多少个?分析:四个数字都不同而数字和为12的数字有1,2,3,6和1,2,4,5两种情况,对于每种情况,可以组成=24个不同的四位数.对于所以,共可以组成24+24=48个不同的四位数.3.桌子上有3张红卡片,2张黄卡片,和1张蓝卡片,如果将它们横着排成一排,同种颜色的卡片不分开,一共有多少种排法?分析:32133213P P P P ⨯⨯⨯=72种.4.在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?44P分析:两个数的和是偶数,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题;从50个偶数中取出2个,有250C =1225种取法;从50个奇数中取出2个,也有250C =l225种取法.根据加法原理,一共有1225+1225=2450种不同的取法. 5.在一个口袋内装有大小相同的7个白球和1个黑球. (1)从口袋内取出3个球,共有多少种取法?(2)从口袋取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?分析:(1)从口袋内的8个球中取出3个球,与顺序无关,是组合问题,其取法种数是56种. (2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,其取法种数是21种.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,其取法种数是35种.6.在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法?分析:男女同学分别考虑,再整体排列.437657C C P ⨯⨯ =756000(种).。
小学数学《排列组合》练习题(含答案)加乘原理,排列组合是四年级一个重要的学习内容,在之前的学习中,我们已经对它们有所了解,对于加乘原理我们只需要记住:加法分类,类类独立;乘法分步,步步相关!排列组合的应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.可利用图示法,可使问题简化便于正确理解与把握.本讲主要巩固加强此部分知识,注重排列组合的综合应用.排列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中任取出m个(m≤n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n个不同元素中取出m个(m≤n)元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,我们把它记做mnp(m≤n),m(1)(2) (1)mnp n n n n m=---+共个数.其中!(1) (1)nnP n n n==⨯-⨯⨯.【例1】 4名男生和2名女生去照相,要求两各女生必须紧挨着站在正中间,有几种排法?分析:分两步进行,先安排两个女生有22P 种方法,4个男生站的位置有44P 种方法,共有2424P P ⨯=2×1×4×3×2×1=48(种),故有48种排法.【巩固】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案? 分析:把4个空车位看成一个整体,(4个空车位看成一样的)与8辆车一块儿进行排列.99362880P =.【前铺】讲解此部分例题之前,请根据本班情况,将排列公式的计算练习一下!计算:(1)321414P P - ; (2)53633P P - 分析:(1)321414P P -=14×13×12-14×13=2002 ; (2)53633P P -=3×(6×5×4×3×2)-3×2×1=2154 .【例2】 书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果同类书可以分开,一共有多少种排法?(只写出表达式,不用计算)分析:每种书内部任意排序,分别有44P ,55P ,33P 种排法,然后再排三种类型的顺序,有33P 种排法,整个过程分4步完成.44P ×55P ×33P ×33P =103680(种).如果同类书可以分开,就相当于4+5+3=12本书随意排,有1212P 种排法.【例3】 用0,1,2,3,4可以组成多少个没重复数字的三位数?分析:(法1)在本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1,2,3,4这四个数字中选择1个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有24P 种方法.由分步计数原理得,三位数的个数是:4×24P =48(个). (法2):从0,1,2,3,4中任选三个数字进行排列,再减去其中不合要求的,即首位是0.从0,1,2,3,4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:35P -24P =5×4×3-4×3=60-12=48(个).不是简单的全排列,有一些其它的限制,这样要么全排列再剔出不合题意的情况,要么直接在排列的时候考虑这些限制因素.【前铺】(1)用1,2,3,4,5可以组成多少个没有重复数字的三位数? (2)用1,2,3,4,5可以组成多少个三位数? 分析:(1)要组成三位数,自然与三个数字的排列顺序有关,所以这是一个从五个元素中取出三个进行排列的问题,可以组成35P =5×4×3=60种没有重复数字的三位数.(2)没有要求数字不能重复,所以不能直接用35P 来计算,分步考虑,用乘法原理可得:5×5×5=125(个).注意“重复”和“没有重复”的区别!【巩固】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数? 分析:小于1000的自然数包括一位数、两位数、三位数,可以分类计算.注意“0”是自然数,且不能作两位数、三位数的首项.11124444569P P P P +⨯+⨯=(个).很自然的知道需要根据位数分类考虑,而且首位非零的限制也需要考虑.【例4】 由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?分析:先排独唱节目,四个节目随意排,有44P =24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应23P =6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.【例5】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排.分析:(1)775040P =(种).(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列.【例6】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜,至少要试多少次?分析:四个数字之和为9的情况有:l+1+1+6=9;1+1+2+5=9;1+1+3+4=9;1+2+2+4=9;1+2+3+3=9;2+2+2+3=9,分别计算这6种情况.对于“l+1+1+6”这种情况,我们只需考虑6,其它1放那都一样;对于“1+1+2+5”这种情况,只需考虑2和5,其它同理,可得答案:12222144444456()P P P P P P +++++=次【巩固】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?分析:可以分三种情况来考虑:(1)3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有33P =6种不同的排列,此时有6×2=12种订法.(2)3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.(3)3所学校订的报纸数量都相同,只有100,100,100一种订法. 由加法原理,不同的订法一共有12+6+l=19种.组 合一般地,从n 个不同元素中取出m 个(m≤n )元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n 个不同元素中取出m 个元素(m ≤n )的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作(1) (1)!m mn n n n m C m ⨯-⨯⨯-+=个数这就是组合数公式.【例7】 以右图中的8个点中的3个为顶点,共可以画出多少个不同的三角形?分析:从8个点中选3个点,一共有56种不同的选法.但是因为在一条直线上的3个点不能组成三角形,所以应去掉两条直线上不合要求的选法.5个点选3个的选法有10种.4个点选3个的选法有4种.所以一共可以画出56-(10+4)=42不同的三角形.【前铺】右图共有11条射线,那么图中有多少个锐角?分析:如图,最大的为锐角,它内部的各个角一定也是锐角,图中共有11条射线,任取两条作为角的两边便可确定一个锐角.因为角的两边不存在顺序关系,所以应该用组合.211C =55.几何题中的数个数问题往往可以采用这样的组合方法来解题.【前铺】讲解例题之前请根据本班情况先将组合公式计算练习一下! 计算:(1)241655,,C C C ,(2)352777,,C C C分析:(1)26651521C ⨯==⨯,45543254321C ⨯⨯⨯==⨯⨯⨯,15551C == ; (2)3776535321C ⨯⨯==⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯注意:从上发现规律m n mn n C C -=.【巩固】从3、5、7、11这四个质数中任取两个相乘,可以得到多少个不同的乘积?分析:由于3,5,7,11都是质数,因此所得乘积各不相同,因此只要求出不同的质数对的个数就可以了.24C =6.【巩固】一个口袋中有4个球,另一个口袋中有6个球,这些球颜色各不相同.从两个口袋中各取2个球,共有多少种不同结果?分析:分步考虑,224661590C C ⨯=⨯=(种).【例8】 有13个队参加篮球比赛,比赛分两个组,第一组七个队,第二组六个队,各组先进行单循环赛(即每队都要与其它各队比赛一场),然后由各组的前两名共四个队再进行单循环赛决定冠亚军.问:共需比赛多少场?分析:分三部分考虑,第一组预赛、第二组顶赛和最后的决赛.第一组要赛:27C =21(场),第二组要赛:26C =15(场),决赛阶段要赛:24C =6(场),总场数:21+15+6=42(场).【拓展】一个盒子装有10个编号依次为1,2,3,…,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?分析:10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:(1)5奇1偶,对奇数只有1种选择,对偶数有5种选择.由乘法原理,有1×5=5种选择; (2)3奇3偶,对奇数有35C =10种选择,对偶数也有35C =10种选择.由乘法原理,有10×10=100种选择;(3)1奇5偶,对奇数有5种选择,对偶数只有1种选择.由乘法原理,有5×1=5种选择. 由加法原理,不同的摸法有:5+100+5=110种.【例9】 某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?分析:分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有15种选法;第二步,从余下的4个班中选取两个班给6种选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有15×6×l=90种不同的分配方法.【拓展】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?分析:先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36C =20种选法.由乘法原理,共有8×7×20=1120种不同的选法.【例10】 工厂从100件产中任意抽出三件进行检查,问: (1)一共有多少种不同的抽法?(2)如果100件产品有2件次品,抽出的3件中恰好有一件是次品的抽法有多少种?(3)如果100件产品中有2件次品,抽出的3件中至少有一件是次品的抽法有多少种? 、分析:从100件产品中抽出3件检查,与抽出3件产品的顺序无关,是一个组合问题. (1)不同的抽法数就是从100个元素中取3个元素的组合数.3100C =161700(种). (2)可分两步考虑,第一步:从2件次品中抽出一件次品的抽法有12C 种;第二步:从98件合格品中抽出2件合格品的抽法有298C 种.再用分步计数原理求出总的抽法数,122989506C C ⨯=.(3)可以从反面考虑,从抽法总数3100C 中减去抽出的三件都是合格品的情况,便得到抽出的三件产品中至少有一件是次品的抽法总数.33100981617001520969604C C -=-=.【例11】 从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?(1) 恰有3名女生入选; (2) 至少有两名女生入选;(3) 某两名女生,某两名男生必须入选;(4) 某两名女生,某两名男生不能同时入选; (5) 某两名女生,某两名男生最多入选两人.分析:(1)恰有3名女生入选,说明男生有5人入选,应为:3581014112C C ⨯=;(2)要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871181010842753C C C C --⨯=.(3)4人必须入选,则从剩下的14人中再选出另外4人. 4141001C =.(4)从所有的选法818C 中减去这4个人同时入选的414C 种可能:818C -414C =42757.(5)分三类情况:4人无人入选,4人仅有1人入选,4人中有2人入选,共:8172614414414C C C C C +⨯+⨯=34749.【例12】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?分析:先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有26C =15种选法;再从剩下的4个数位上选2个放2,有24C =6种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有15×6×l=90个. 在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数90—30=60个.【例13】 从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?分析:整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法; 第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法; 第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法. 再由分步计数原理求总的个数:35C ×24C ×55P =7200(个).附加题目【附1】小明的书架上原来有6本书,不重新排列,再放上3本书,可以有多少种不同的放法?分析:放第一本书时,有原来的6本书之间和两端的书的外侧共7个位置可以选择;放第二本书时,有已有的7本书之间和两端的书的外侧共8个位置可以选择.同样道理,放第三本书时,有9个位置可以选择.由乘法原理,一共可以有7×8×9=504种不同的放法.【附2】一栋12层楼房备有电梯,第二层至第六层电梯不停.在一楼有3人进了电梯,其中至少有一个要上12楼,则他们到各层的可能情况共有多少种?分析:每个人都可以在第7层至第12层中任何一层下,有6种情况,那么三个人一共有6×6×6=216种情况,其中,都不到12楼的情况有5×5×5=125种.因此,至少有一人要上12楼的情况有216-125=91种.【附3】某校组织进行的一次知识竞赛共有三道题,每道题满分为7分,给分时只能给出自然数l,2,3,…,7分.已知参加竞赛者每人三道题的得分的乘积都是36,而且任意二人各题得分不完全相同,那么请问参加竞赛的最多有多少人?分析:将36分解为不大于7的三个数的乘积,有1×6×6;3×3×4;2×3×6三种情况.考虑到因数的先后顺序,第一种情况,考虑1有三个位置可选择,其余位置放6,有3种顺序;第二种情况与第一种情况相似,有3种顺序;最后一种情况,有3×2×l=6种顺序.由加法原理,一共有12种顺序,所以参赛的最多有12人.【附4】某市的电视台有八个节目准备分两天播出,每天播出四个,其中某动画片和某新闻播报必须在第一天播出一场,体育比赛必须在第二天播出,那么一共有多少种不同的播放节目方案?分析:某动画片和某新闻播报在第一天播放,对于动画片而言,可以选择当天四个节目时段的任何一个时段,一共有4种选择,对于新闻播报可以选择动画片之外的三个时段中的任何一个时段,一共有3种选择,体育比赛可以在第二天的四个节目时段中任选一个,一共有4种选择.剩下的5个节目随意安排顺序,有55P=120种选择.由乘法原理,一共有4×3×4×120=5760种不同的播放节目方案.【附5】某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?分析:此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:(1)只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有36C=20种,由乘法原理,有4×20=80种选择.(2)只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有24C=6种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有35C=10种选择.由乘法原理,有2×6×10=120种选择.(3)只会日语的人不出场,需从多面手中选3人做日语导游,有34C=4种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有34C=4种选择.由乘法原理,有4×4=16种选择.根据加法原理,不同的选择方法一共有80+120+16=216种.【附6】五个瓶子都贴了标签,其中恰好贴错了三个,贴错的可能情况共有多少个?分析:首先考虑哪三个瓶子贴错了,有35C 种可能,3个瓶子贴错后互相贴错标签又分成两种不同情况.所以共有35C ×2=20(种).此题容易出错的是三个出错的瓶子确定后,他们之间错误的可能情况数目,有的同学很容易忽略这一环节,而有的会不假思索的把它当作一个全排列,这都是不正确的.【附7】马路上有编号为1,2,3,…,l0的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?分析:l0只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之问的六个空档中插入三只熄灭的灯,有36C =20种插法.练习十二1.给出1,2,3,4四个数字,试求:(1)可组成多少个数字不重复的四位数? (2)可组成多少个数字不重复的自然数? (3)可组成多少个不超过四位的自然数?分析:(1)44P =4×3×2×1=24个数字不重复的四位数.(2)利用1,2,3,4可组成数字不重复的一位、两位、三位、四位自然数,分类考虑:12344444P P P P +++=64个.(3)此题数位上的数字允许重复,利用1,2,3,4可组成一位、两位、三位、四位自然数.进一步考虑,一位数有4个,两位数有4×4=16个,三位数有4×4×4=64个,四位数有4×4×4×4=256个.故共有4+16+64+256=340个.2.由四个不同的非0数字组成的所有四位数中,数字和等于12的共有多少个?分析:四个数字都不同而数字和为12的数字有1,2,3,6和1,2,4,5两种情况,对于每种情况,可以组成44P =24个不同的四位数.对于所以,共可以组成24+24=48个不同的四位数.3.桌子上有3张红卡片,2张黄卡片,和1张蓝卡片,如果将它们横着排成一排,同种颜色的卡片不分开,一共有多少种排法?分析:32133213P P P P ⨯⨯⨯=72种.4.在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?分析:两个数的和是偶数,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题;从50个偶数中取出2个,有250C =1225种取法;从50个奇数中取出2个,也有250C =l225种取法.根据加法原理,一共有1225+1225=2450种不同的取法.5.在一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?分析:(1)从口袋内的8个球中取出3个球,与顺序无关,是组合问题,其取法种数是56种.(2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,其取法种数是21种.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,其取法种数是35种.6.在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法?分析:男女同学分别考虑,再整体排列.437657C C P ⨯⨯ =756000(种).。
数字的拼排列与组合练习题1. 数字的拼排列与组合练习题2. 问题一:数字拼排列数字的拼排列是指将多个数字按照一定的规则组合起来,形成新的数字。
请按照以下拼排列规则完成练习题。
3. 一、给出数字1、2、3,请问可以组合成多少个不重复的两位数?4. 二、给出数字1、2、3、4,请问可以组合成多少个不重复的三位数?5. 三、给出数字1、2、3、4、5,请问可以组合成多少个不重复的四位数?6. 四、给出数字1、2、3、4、5、6,请问可以组合成多少个不重复的五位数?7. 答案及解析如下是每个练习题的答案与解析,以便核对和理解。
8. 问题一答案与解析:一、给出数字1、2、3,请问可以组合成多少个不重复的两位数?答案:共有6个不重复的两位数:12、13、21、23、31、32。
解析:在这个练习题中,我们需要考虑两位数的组合情况。
由于只给出了三个数字,所以每个两位数的十位数和个位数都需要从给定的数字中选择。
我们可以通过穷举法,将数字1、2、3分别放在十位和个位上,得到的所有结果即为答案。
考虑到没有重复的情况,最终得到了6个不重复的两位数。
9. 二、给出数字1、2、3、4,请问可以组合成多少个不重复的三位数?答案:共有24个不重复的三位数。
解析:在这个练习题中,我们需要考虑三位数的组合情况。
给出了四个数字,所以每个三位数的百位、十位和个位都需要从给定的数字中选择。
同样地,可以通过穷举法得到所有结果。
由于没有重复的要求,最终得到了24个不重复的三位数。
10. 三、给出数字1、2、3、4、5,请问可以组合成多少个不重复的四位数?答案:共有120个不重复的四位数。
解析:在这个练习题中,我们需要考虑四位数的组合情况。
给出了五个数字,每个四位数的千位、百位、十位和个位都需要从给定的数字中选择。
同样地,可以通过穷举法得到所有结果。
最终得到了120个不重复的四位数。
11. 四、给出数字1、2、3、4、5、6,请问可以组合成多少个不重复的五位数?答案:共有720个不重复的五位数。
五年级数学上册综合算式专项练习数字排列与组合数字排列与组合是五年级数学上册中涉及的一个重要的题型,它不仅能帮助学生加深对数学概念的理解,还能培养学生的逻辑思维和解题能力。
本文将通过一些典型的综合算式专项练习,帮助五年级的同学们更好地掌握数字排列与组合的基本概念和解题方法。
一、数字排列数字排列是指由一定的数字按照一定的规则排列而成的数。
在解答数字排列的题目时,我们需要明确以下几个概念:1. 位数:数字排列中数字的个数叫做位数,比如一个三位数就有三个数字。
2. 限定条件:有时候题目会规定数字排列中某个或某几个数字的取值范围和顺序等条件。
3. 重复数字:数字排列中是否允许出现重复数字。
下面我们通过几个具体的例子来理解数字排列的概念和解题方法。
例题1:用数字0、1、2、3、4、5组成一个四位数,其中每个数字只能使用一次,要求这个四位数是偶数。
解析:题目中规定了位数是四位数,每个数字只能使用一次,并且要求数字排列成的数是偶数。
根据题意,我们可以得出以下思路:1. 根据排列的位数,我们知道个位上只能是0、2、4,十位和百位上可以是0~5任意数字,千位上可以是1~5任意数字。
2. 个位上只有0、2、4三个数字,只有0是偶数,所以个位只能是0。
3. 十位和百位上可以是0~5任意数字,千位上可以是1~5任意数字,所以十位和百位上可以分别是0~5中的任意两个数字,千位上可以是1~5中的任意一个数字。
综上所述,我们可以得出所有符合条件的数字排列是:2040、2042、2044、2050、2052、2054、2140、2142、2144、2150、2152、2154、2340、2342、2344、2350、2352、2354。
例题2:用数字1、2、3、4、5、6组成一个五位数,其中要求个位上是偶数,百位上是奇数。
解析:题目中规定了位数是五位数,每个数字只能使用一次,并且要求个位上是偶数,百位上是奇数。
根据题意,我们可以得出以下思路:1. 根据排列的位数,我们知道个位上只能是2、4、6,百位上只能是1、3、5。
五年级数的组合练习题题目1:组合的基本性质小朋友们,组合是数学中的一个重要概念,它是指从一组元素中选取若干个元素进行排列的方式。
组合有以下基本性质,请选择正确的答案填空,并给出简要的解释。
1. 组合中元素的顺序是否重要?()A. 重要B. 不重要解释:在组合中,元素的顺序是不重要的,即不同顺序的元素排列被视为同一种组合。
2. 从5个不同的水果中选取3个水果进行组合,有多少种不同的组合方式?A. 5B. 10C. 20D. 60解释:这里应用了组合的计算公式C(n, k) = n! / (k! * (n-k)!),其中n 表示元素总数,k表示选取的元素数。
所以C(5, 3) = 5! / (3! * (5-3)!) = 10。
3. 从6个不同的颜色中选取4个颜色进行组合,有多少种不同的组合方式?A. 6B. 15C. 20D. 30解释:同样利用组合的计算公式,C(6, 4) = 6! / (4! * (6-4)!) = 15。
题目2:应用组合的问题小朋友们,组合不仅有基本性质,还可以应用于实际问题中。
下面是一些应用组合的问题,请选择正确的答案填空,并给出简要的解释。
1. 有7本不同的书和3个友好的小伙伴。
他们想要每个人分到一本书,请问有多少种不同的分配方式?A. 10B. 15C. 20D. 35解释:这道问题可以看作是将7本书和3个小伙伴进行组合,每个小伙伴分到一本书。
所以这里应用的是组合的计算公式C(7, 3) = 7! / (3! * (7-3)!) = 35。
2. 同学们,你们的班级有10个男生和12个女生。
班级要选取一个男生和一个女生代表参加学校的比赛,请问有多少种不同的代表组合方式?A. 10B. 12C. 20D. 22解释:这道问题相当于从10个男生中选取一个男生,从12个女生中选取一个女生,所以应用的是组合的计算公式C(10, 1) * C(12, 1) =10 * 12 = 120。
数学上册排列与组合的计算练习题排列与组合是数学中非常重要的概念和方法,它们在解决问题和计算概率中扮演着重要角色。
本文将给出一些排列与组合的计算练习题,通过解答这些题目,读者将更好地理解和掌握排列与组合的计算方法。
题目一:从5个数中选取3个数组成一个排列,求所有可能的排列个数。
解析:这是一个从5个数中选取3个数的排列问题,根据排列的计算公式,可得到排列个数为:5 × 4 × 3 = 60。
题目二:从7本书中选取4本书,求选取的书的排列数。
解析:这是一个从7本书中选取4本书的排列问题,根据排列的计算公式,可得到排列个数为:7 × 6 × 5 × 4 = 840。
题目三:某班有10个学生,其中5个是男生,5个是女生。
从中选取3位学生组成一个小组,求小组中至少有1位男生的排列数。
解析:这是一个从10个学生中选取3个学生的排列问题,根据排列的计算公式,可得到总的排列个数为:10 × 9 × 8 = 720。
而不包含男生的排列数为:5 × 4 × 3 = 60。
因此,小组中至少有1位男生的排列数为:720 - 60 = 660。
题目四:有6个人排队参加比赛,其中2个人不能相邻。
求这些人排队的排列数。
解析:这是一个带有限制条件的排列问题。
首先计算没有任何限制条件的排列数,即6的阶乘,得到720。
然后计算两个人相邻的排列数,即将两个人看作一组,可以得到(6 - 2 + 1) × 2 = 10。
最后,通过排列总数减去有限制条件的排列数,可得到答案为720 - 10 = 710。
通过以上的练习题,读者可以对排列与组合的计算有进一步的理解。
在实际问题中,排列与组合的应用非常广泛,例如抽奖、选课、队伍排列等等。
希望读者通过不断练习与实践,能够熟练掌握排列与组合的计算方法,为解决实际问题提供帮助。
总结:本文给出了数学上册排列与组合的计算练习题,通过解答这些题目,读者可以更好地理解和掌握排列与组合的计算方法。
章节测试题1.【答题】用数字3、5、8可以组成的两位数有______个(每个两位数的十位数和个位数不能一样),其中最大的是______,最小的是______.【答案】6,85,35【分析】此题考查的是简单的排列.解答时,从给出的数字中,任意选择一个,先定好最高位,再用剩下的数字和它进行组合.【解答】当最高位是3时,可以与5、8分别组成35和38;当最高位是5时,可以与3、8分别组成53和58;当最高位是8时,可以与3、5分别组成83和85.因此共可以组成6个不同的两位数,其中最大是85,最小的是35.故此题的答案是6、85、35.2.【答题】用0、2和8组成两位数,每个两位数的十位数和个位数不能一样,能组成______个两位数.【答案】4【分析】此题考查的是简单的排列.解答时,从给出的数字中,任意选择一个,先定好最高位,再用剩下的数字和它进行组合.【解答】因为两位数的最高位不能是0,所以这个两位数的最高位上只能是2或8.当最高位是2时,可以与0和8分别组成20和28;当最高位是8时,可以与0和2分别组成80和82.因此能组成4个两位数.故此题的答案是4.3.【答题】用5、7和9组成两位数,每个两位数的十位数和个位数不能一样,能组成______个两位数.【答案】6【分析】此题考查的是简单的排列.解答时,从给出的数字中,任意选择一个,先定好最高位,再用剩下的数字和它进行组合.【解答】当最高位是5时,可以与7、9分别组成57和59;当最高位是7时,可以与5、9分别组成75和79;当最高位是9时,可以与5、7分别组成95和97.因此共可以组成6个不同的两位数.故此题的答案是6.4.【答题】3人站成一排照相,有______种站法.【答案】6【分析】此题考查的是简单的排列.解答时,从最左边的位置开始,任意选择一个人,先定好最左边的一个人,再用剩下的人和它进行组合.【解答】将3个人依次标上①、②、③,当①排在最左边时,可以与②和③排成一排,排成①②③或①③②;当②排在最左边时,可以与①和③排成一排,排成②①③或②③①;当③排在最左边时,可以与①和②排成一排,排成③①②或③②①.因此共有6种站法.5.【答题】用5、6、2三个数字组成的十位和个位不一样的两位数中,最大的两位数是______,最小的两位数是______.【答案】65,25【分析】此题考查的是简单的排列.可以先把可能组成的两位数全写出来,从中找出最大的和最小的两位数,也可以从三个数字中找出较大的两个数字,按从大到小的顺序排列就能组成最大的两位数,从三个数字中找出较小的两个数字,按从小到大的顺序排列就能组成最小的两位数.【解答】最大的两位数是65,最小的两位数是25.故此题的答案是65、25.6.【答题】用1、5、9三张数字卡片可以摆成()个不同的两位数.A. 3B. 4C. 6【答案】C【分析】此题考查的是简单的排列.解答时,从给出的数字中,任意选择一个,先定好最高位,再用剩下的数字和它进行组合.【解答】当最高位是1时,可以与5、9分别组成15和19;当最高位是5时,可以与1、9分别组成51和59;当最高位是9时,可以与1、5分别组成91和95.因此共可以组成6个不同的两位数.选C.7.【答题】用2、0、6三张数字卡片摆成两位数,最大的数比最小的数多().A. 40B. 42C. 36【答案】B【分析】此题考查的是简单的排列.先从三个数字中找出较大的两个数字,按从大到小的顺序排列就能组成最大的两位数,从三个数字中找出较小的两个数字,按从小到大的顺序排列就能组成最小的两位数,再相减即可解答.【解答】用2、0、6三张数字卡片摆成两位数,最大的是62,最小的是20,所以最大的数比最小的数多62-20=42,选B.8.【答题】小明、小军、小力三人报名参加独唱比赛,他们三人有()种不同的比赛顺序.A. 3B. 4C. 6【答案】C【分析】此题考查的是简单的排列.解答时,先任意选择一个人,定好第一个表演,再用剩下的人和他进行组合.【解答】表演顺序如下表,选C.9.【答题】妞妞画了两条漂亮的小鱼,想用红、黄或蓝色给小鱼涂上不同的颜色(每条鱼只涂一种颜色),一共有()种不同的涂色方法.A. 6B. 8C. 3D. 4【答案】A【分析】此题考查的是简单的排列.解答时,先任意选择一种颜色,定好第一条鱼的颜色,再从剩下的颜色中选择一种涂第二条鱼.【解答】如下图,一共有6种不同的涂色方法,选A.10.【答题】有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,可以组成()种不同的信号.A. 3B. 4C. 5D. 6【答案】D【分析】此题考查的是简单的排列.解答时,先任意选择一面旗子,放在旗杆的上放,再从剩下的旗子中选择一面放在第一面的下方.【解答】方法如下表,共有6种,选D.11.【答题】每两人通一次电话,一共要通______次电话.【答案】3【分析】此题考查的是简单的组合问题.本题采用画图法,通过画连线图的方式进行分析解答.【解答】通过画连线图(如下图)可知,3人每两人通话一次,一共要通3次电话.故此题的答案是3.12.【答题】明明选一套衣服,共有______种选法.【答案】6【分析】此题考查的是简单的组合问题.本题采用画图法,通过画连线图的方式进行分析解答.【解答】通过画连线图(如下图)可知,明明选一套衣服,共有6种选法.故此题的答案是6.13.【答题】明明从家到学校有两条路可走,从学校到电影院有三条路可走,明明从家出发经过学校去电影院,一共有______种不同的走法.【答案】6【分析】此题考查的是简单的组合问题.如下图,明明从家到学校走A路线,再到电影院有①②③条路线可走,所以一共有2×3=6(种)不同的走法.【解答】明明从家出发经过学校去电影院,一共有6种不同的走法.故此题的答案是6.14.【答题】小朋友们跳皮筋,每两根柱子之间可以绕一根皮筋,三根柱子之间可以绕()根皮筋.A. 2B. 3C. 6【答案】B【分析】此题考查的是简单的组合问题.本题采用画图法,通过画连线图的方式进行分析解答.【解答】通过画连线图(如下图)可知,三根柱子之间可以绕3根皮筋.选B.15.【答题】有如下三种水果,任意选两种送给客人,有()种送法.A. 2B. 3C. 4【答案】B【分析】此题考查的是简单的组合问题.本题采用画图法,通过画连线图的方式进行分析解答.【解答】通过画连线图(如下图)可知,任意选两种送给客人,有3种送法.选B.16.【答题】从下面的数字卡片中任选2个求和,得数有()种.A. 2B. 3C. 4【答案】B【分析】此题考查的是简单的组合问题.本题采用列表法,通过列表格的方式进行分析解答.【解答】通过列表格(如下图)可知,任选2个数字卡片求和,得数有3种.选B.17.【答题】某小学准备举行足球联谊赛,有四个队伍报名参加,每两个球队都要比一场,一共需要()场比赛.A. 3B. 4C. 5D. 6【答案】D【分析】此题考查的是简单的组合问题.本题采用画图法,通过画连线图的方式进行分析解答.【解答】假设四个球队分别为A、B、C、D,则所以一共需要6场比赛,选D.18.【答题】下面四种花中,任选其中两种花插一瓶,共有()种不同的插法.A. 6B. 5C. 4D. 8【答案】A【分析】此题考查的是简单的组合问题.本题采用画图法,通过画连线图的方式进行分析解答.【解答】通过画连线图(如下图)可知,共有6中不同的插法,选A.19.【答题】1元、5元、10元的人民币各一张,如果从中任取2张,那么可以得到______元、______元或______元.(按从小到大的顺序填写)【答案】6,11,15【分析】此题考查的是简单的组合问题.【解答】从1元、5元、10元的人民币中任取2张,可以得到1元和5元、1元和10元、5元和10元,三种情况,其和分别为6元、11元、15元.故此题的答案是6、11、15.20.【答题】一支钢笔15元,现有1元、5元、10元人民币若干张,买一支钢笔,可以有______种不同的付钱方式.【答案】6【分析】此题考查的是简单的组合问题.本题采用列表法,通过列表格的方式进行分析解答.【解答】通过列表格(如下图)可知,有6种不同的付钱方式.故此题的答案是6.。
简单的排列组合练习题及答案一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站,则客运车票增加了58种,那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,可以组成多少个数字不重复的三位数?可以组成多少个数字允许重复的三位数?可以组成多少个数字不允许重复的三位数的奇数?可以组成多少个数字不重复的小于1000的自然数?可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列甲乙必须站两端,有多少种不同排法?甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1,2,?,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有A.240种B.180种C.120种D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是。
教案:排列练习年级:五年级学科:数学教材版本:青岛版教学目标:1. 让学生掌握排列的基本概念和性质。
2. 培养学生运用排列解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作精神。
教学重点:1. 排列的概念和性质。
2. 排列在实际问题中的应用。
教学难点:1. 排列的表示方法。
2. 排列在实际问题中的灵活运用。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入1. 引导学生回顾之前学过的组合知识,复习组合的概念和性质。
2. 提问:同学们,我们已经学习了组合,那么什么是排列呢?排列和组合有什么区别呢?二、新课讲解1. 讲解排列的概念:排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,其排列数为P(n,m)。
2. 讲解排列的表示方法:排列可以用P(n,m)表示,其中n表示总的元素个数,m表示取出的元素个数。
3. 讲解排列的性质:a. 交换律:P(n,m) = P(n,n-m)b. 重复律:P(n m-1,m) = P(n m,m)c. 分步律:P(n,m) = P(n-1,m) m P(n-1,m-1)三、例题讲解1. 讲解例题1:从数字1、2、3、4中任取两个数字,组成两位数,共有多少种不同的组合方式?a. 分析题目,确定n和m的值。
b. 根据排列的公式,计算排列数。
c. 计算结果,并与组合的结果进行比较。
2. 讲解例题2:有5本不同的书,要分成3组,每组至少1本,最多3本,共有多少种分法?a. 分析题目,确定n和m的值。
b. 根据排列的公式,计算排列数。
c. 计算结果,并与组合的结果进行比较。
四、课堂练习1. 发放练习题,让学生独立完成。
2. 讲解答案,解答学生的疑问。
五、课堂小结1. 回顾本节课所学的内容,总结排列的概念、表示方法和性质。
2. 强调排列在实际问题中的应用。
六、作业布置1. 布置课后作业,让学生巩固所学知识。
2. 要求学生在课后自主练习,提高排列的应用能力。
五年级数学排列组合练习题一、选择题1. 在1, 2, 3, 4, 5这五个数字中,任意选择两个数字进行排列组合,一共有多少种情况?A. 10B. 15C. 20D. 252. 由字母A, B, C, D, E组成的三位数中,各位上的数字可以重复使用,一共有多少种情况?A. 60B. 80C. 100D. 1203. 从1, 2, 3, ..., 10中任取三个数,一共有多少种取法?A. 90B. 120C. 150D. 1804. 一共有5个小朋友排队参加比赛,其中小明必须排在小红的前面,一共有多少种排法?A. 4B. 6C. 8D. 105. 从1, 2, 3, ..., 10中任取四个数,数字之间不得重复,一共有多少种取法?A. 210B. 252C. 360D. 420二、填空题1. 一共有10个人参加篮球队选秀,其中只能选取5人,不区分前后顺序,一共有________种取法。
2. 用数字0, 2, 4, 6, 8组成一个五位数,其中个位上的数字必须是偶数,一共有________种可能。
3. 从字母A, B, C, D, E中任选三个字母组成一个三位数,其中各位上的字母可以重复使用,一共有________种情况。
4. 甲、乙、丙、丁、戊五个人排成一排,其中甲必须排在乙的前面,有________种不同的排法。
5. 从1, 2, 3, ..., 12中任取三个不同的数,一共有________种取法。
三、解答题1. 用数字2, 4, 6, 8这四个数字,可以组成多少个各位数字不重复的两位数?2. 从字母A, B, C, D, E中任取四个字母组成一个四位数,其中各位数字可以重复使用,一共有多少种情况?并写出这些四位数的所有可能。
3. 一个排球队有12名队员,其中6个人可以上场比赛,球队教练想知道一共有多少种可能的上场人员组合方式。
4. 从1, 2, 3, ..., 8中任选四个数进行排列,数字之间不得重复,一共有多少种排法?5. 用数字1, 1, 2, 2, 3, 4, 5这七个数字,可以组成多少个数字不重复的六位数?注意:以上为参考题目,具体可根据需要进行调整。
小学五年级数的组合练习题
一、填空题
1. 请计算:5个班级里一共有多少个学生?
答:(填上自己认为正确的数字)
2. 有3个红球和4个蓝球,请问一共有多少种选择一颗球的方式?
答:(填上自己认为正确的数字)
3. 请计算:如果一个华人家庭有3个孩子,每个孩子都可以选择穿红色、黄色或白色的衣服,一共有多少种不同的穿衣风格?
答:(填上自己认为正确的数字)
二、选择题
1. 请问在1-10中,选取3个数字的组合有多少种?
A. 6种
B. 10种
C. 15种
D. 20种
2. 请问在1-5中,选取2个数字的组合有多少种?
A. 2种
B. 4种
C. 6种
D. 8种
3. 请计算:如果有4个小朋友,每个小朋友都可以选择一样的颜色
的铅笔盒(有红、黄、蓝三种颜色可选),一共有多少种不同的组合?
A. 2种
B. 6种
C. 8种
D. 12种
三、应用题
1. 小明有5种不同的颜色的糖果,他想从这5种糖果中选取3种,
每种选取总数不限。
请问一共有多少种不同的选择方式?
答:(填上自己认为正确的数字)
2. 小芳家有3种口味的冰淇淋,她想选择两种口味来做一个双层冰
淇淋,请问一共有多少种不同的双层冰淇淋选择方式?
答:(填上自己认为正确的数字)
3. 小燕有4个不同的魔方,她想从中选取2个魔方来组成一个新的
魔方,请问一共有多少种不同的新魔方组合方式?
答:(填上自己认为正确的数字)
以上是一份关于小学数学的练习题,希望对您有所帮助!。