OPA2673_1中文资料
- 格式:pdf
- 大小:1.61 MB
- 文档页数:40
proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes couldFrequency (Hz)11k10k10100100k1s/divSAMPLING FREQUENCY vs TEMPERATUREV =12V504030SMALL−SIGNAL OVERSHOOT o o t (%)IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. T o minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetwork Microcontrollers Security /securityTelephony /telephonyVideo & Imaging /videoWireless /wirelessMailing Address:Texas InstrumentsPost Office Box 655303 Dallas, Texas 75265Copyright 2004, Texas Instruments Incorporated。
BL2673大功率高压兆欧表使用说明书武汉博朗恒业电气有限公司绝缘电阻测试仪(大功率高压兆欧表)BL2673A/BL2673B/BL2673C目录第一章概述 (1)第二章产品介绍 (2)一、产品特性 (2)二、技术指标 (3)三、仪表结构 (4)第三章使用方法 (6)一、准备工作 (6)二、开始测试 (7)三、屏蔽端使用方法 (8)四、电池充电 (9)第一章概述随着我国电力工业的快速发展,电气设备预防性实验是保障电力系统安全运行和维护工作中的一个重要环节。
绝缘诊断是检测电气设备绝缘缺陷或故障的重要手段。
绝缘电阻测试仪(兆欧表)是测量绝缘电阻的专用仪表。
1990年5月批准实施的JJG662-89《绝缘电阻表(兆欧表)》已把它作为强制检定的仪表之一。
目前,电气设备(如变压器、发电机等)朝着大容量化、高电压化、结构多样化及密封化的趋势发展。
这就需要绝缘电阻测试仪本身具有容量大、抗干扰能力强、测量指标多样化、测量结果准确、测量过程简单并迅速、便于携带等特点。
我公司生产的BL2673系列绝缘电阻测试仪采用超薄形张丝表头、多种电压等级输出、容量大、抗干扰强、交直流两用(D型)、操作简单、具有时间提示功能。
是测量变压器、互感器、发电机、高压电动机、电力电容、电力电缆、避雷器等绝缘电阻的理想测试仪器。
第二章产品介绍一、产品特性1、仪表的绝缘测试对于BL2673A在500V最高可测20GΩ, 在1000V最高可测40GΩ, 在2500V最高可测100GΩ;对于BL2673B型在2500V最高可测100GΩ, 在5000V最高可测200GΩ;对于BL2673C 型在5000V最高可测200GΩ, 在10000V最高可测400GΩ;。
2、额定的输出电压保持在对BL2673A型负载电阻可低至4MΩ/8MΩ/20MΩ;对BL2673B型为20MΩ/40MΩ;对BL2673C型为40MΩ/80MΩ,这使得仪表能够精确测量较低的绝缘阻抗。
2SA系列(PNP型)三极管参数表型号厂商特性用途集电极最大直流耗散功率Pcm(W)集电极最大允许直流电流Icm(A)集电极-基极击穿电压BVcbo(V)集电极-发射极击穿电压BVceo(V)特征频率ft(Hz)放大倍数国内外代换型号2SA0683PANASONIC 硅PNP三极管,低频功率放大和驱动,配对管2SC13831 -1.5 -30 -25 200M 50-340 CK77A2SA0684PANASONIC 硅PNP三极管,低频功率放大和驱动,配对管2SC13841 -1.5 -60 -50 200M 50-340 CK77A2SA0794PANASONIC 硅PNP三极管,低频功率放大和驱动,配对管2SC15671.2 -500m -100 -100 120M 50-220 CA77A2SA0794A PANASONIC 硅PNP三极管,低频功率放大和驱动,配对管2SC1567A1.2 -500m -120 -120 120M 50-220 CA77A2SA0885PANASONIC 硅PNP三极管,低频功率放大,配对管2SC18465 -1 -45 -35 200M 50-340 3CK10B2SA0886PANASONIC 硅PNP三极管,低频功率放大,配对管2SC18471.2 -1.5 -50 -40 150M 80-220 3CK10B2SA100锗PNP三极管,高频射频放大60m -10m -40 10M 80-300 3AG95A 2SA1001硅PNP三极管80 130 3CD10E 2SA1002硅PNP三极管120 120 3CD15D 2SA1003硅PNP三极管120 150 3CD15E 2SA1004硅PNP三极管310m -100m -40 3CG121C2SA1006NEC 硅PNP三极管,功率放大,配对管2SC233625 -1.5 -180 -180 80M 30-320 3CA10F2SA1006A NEC 硅PNP三极管,功率放大,配对管2SC2336A25 -1.5 -200 -200 80M 30-320 3CA10F2SA1006B NEC 硅PNP三极管,功率放大,配对管2SC2336B25 -1.5 -250 -250 80M 30-320 3CA10F2SA1007硅PNP三极管100 -150 3CD8E 2SA1007A硅PNP三极管,功率开关100 -10 -150 3CD8E2SA1008NEC 硅PNP三极管,高速开关,DC-DC转换,高频功率放大,配对管2SC233115 -2 -100 -100 40-200 3CA5F2SA1009NEC 硅PNP三极管,高速开关,DC-DC转换,高频功率放大15 -2 -350 -350 102SA1009A NEC 硅PNP三极管,高速开关,DC-DC转换,高频功率放大15 -2 -400 -400 102SA101锗PNP三极管60m -10m -40 15M 3AG95A2SA1010NEC 硅PNP三极管,高压高速开关,DC-DC转换,高频功率放大,配对管2SC233440 -7 -100 -100 20-200 3CA10F2SA1011MOSPEC 硅PNP三极管,功率放大,场输出,配对管2SC234425 -1.5 -180 -160 120M 60-200 3CA10F2SA1011S SANYO 硅PNP三极管,功率放大,场输出,配对管2SC234425 -1.5 -180 -160 120M 60-200 3CA10F2SA1011W WS 硅PNP三极管,功率放大,场输出,配对管2SC234425 -1.5 -180 -160 120M 60-200 3CA10F2SA1012长电硅PNP三极管,TO-92,放大25 -5 -60 -50 60M 70-240 3CA10D 2SA1012M MOSPEC 硅PNP三极管,功率管25 -5 -60 -50 60M 70-240 3CA10D 2SA1012T TOSHIBA 硅PNP三极管,功率管25 -5 -60 -50 60M 70-240 3CA10D 2SA1013长电硅PNP三极管,TO-92,放大900m -1 -160 -160 20M 40-310 3CA3F2SA1013H TOSHIBA 硅PNP三极管,TO-92,音频放大,彩色电视机场输出,配对管2SC2383900m -1 -160 -160 15M 60-200 3CA3F2SA1013T TOSHIBA 硅PNP三极管,TO-92,放大900m -1 -160 -160 15M 40-310 3CA3F 2SA1014TOSHIBA 停产,用2SA1408/1013代替,10 -1 -160 20M 3CA5F2SA1015TOSHIBA 硅PNP三极管,放大,低噪声放大,配对管2SC1815400m -150m -50 -50 80M 25-400 3CG130C2SA1015L TOSHIBA 硅PNP三极管,放大,低噪声放大,配对管2SC1815400m -50m -50 -50 80M 25-400 3CG130C2SA1015M MICRO 硅PNP三极管,放大,低噪声放大,配对管2SC1815400m -50m -50 -50 80M 25-400 3CG130C2SA1016MICRO 硅PNP三极管,电压低噪声放大,配对管2SC2362400m -50m -120 -100 110M 160-960 3CG170D2SA1016K MICRO 硅PNP三极管,电压低噪声放大,配对400m -50m -150 -100 110M 160-960 3CG170D管2SC2362K2SA1017长电硅PNP三极管,TO-92,放大500m -50m -120 -100 110M 100-560 3CG170C 2SA1017E PANASONIC 硅PNP三极管,放大,配对管2SC2363500m -50m -120 -100 110M 100-560 3CG170C2SA1018PANASONIC 硅PNP三极管,一般放大,配对管2SC1473750m -70m -250 -250 50M 60-220 3CG180D2SA1019硅PNP三极管750m -50m -150 110M 3CG180G 2SA102硅PNP三极管,高频射频放大60m -10m -40 25M 12-250 3AG95A2SA1020TOSHIBA 硅PNP三极管,功率放大,功率开关,配对管2SC2655900m -2 -50 -50 100M 40-240 CK77B2SA1020A TRANSYS 硅PNP三极管,功率放大,功率开关,配对管2SC2655900m -2 -50 -50 100M 70-240 CK77B2SA1020P PANASONIC 硅PNP三极管,功率放大,功率开关,配对管2SC2655900m -2 -50 -50 100M 40-240 CK77B2SA1020T UTC 硅PNP三极管,功率放大,功率开关,配对管2SC2655900m -2 -50 -50 100M 40-240 CK77B2SA1021TOSHIBA 停产,用2SA1408代替20 -1.5 -150 20M 3CA10F2SA1022PANASONIC 硅PNP三极管,低频放大,配对管2SC2295200m -30m -30 -20 150M 70-220 3CG111B2SA1023硅PNP三极管250m -100m -70 180M 3CK14H 2SA1024硅PNP三极管400m -100m -400 3CK1E2SA1025HITACHI 硅PNP三极管,低频放大,配对管2SC2396400m -100m -60 -60 90M 250-800 3CG130E2SA1026硅PNP三极管250m -200m -50 3CG120C 2SA1027硅PNP三极管250m -200m -50 3CG120C 2SA1028硅PNP三极管95 -100 3CD8E2SA1029HITACHI 硅PNP三极管,低频放大,配对管2SC458/2SC2308300m -100m -30 -30 200M 100-500 3CG120A2SA1029B HITACHI 硅PNP三极管,低频放大,配对管2SC458/2SC2308300m -100m -30 -30 200M 100-500 3CK14F2SA103锗PNP三极管,高频射频放大60m -10m -40 35M 25-250 3AG95A2SA1030HITACHI 硅PNP三极管,低频放大,配对管2SC458/2SC2308300m -100m -55 -50 200M 100-320 3CG120B2SA1030B HITACHI 硅PNP三极管,低频放大,配对管2SC458/2SC2308300m -100m -55 -50 200M 100-320 3CK14H2SA1030C HITACHI 硅PNP三极管,低频放大,配对管2SC458/2SC2308300m -100m -55 -50 200M 100-320 3CK14H2SA1031HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC458/2SC2310300m -100m -30 -30 200M 100-500 3CG120A2SA1031C HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC458/2SC2310300m -100m -30 -30 200M 100-500 3CK14F2SA1031D HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC458/2SC2310300m -100m -30 -30 200M 100-500 3CK14F2SA1032HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC458/2SC2310300m -100m -55 -50 200M 100-320 3CG120B2SA1032B HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC458/2SC2310300m -100m -55 -50 200M 100-320 3CK14H2SA1032C HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC458/2SC2310300m -100m -55 -50 200M 100-320 3CK14H2SA1033硅PNP三极管-100m -30 280M 3CG120A2SA1034PANASONIC 硅PNP三极管,高频低噪声放大,配对管2SC2405200m -50m -35 -35 200M 180-700 3CG110C2SA1035PANASONIC 硅PNP三极管,高频低噪声放大,配对管2SC2406200m -50m -55 -55 200M 180-700 3CG170A2SA1036K ROHM 硅PNP三极管,功率管,配对管2SC2411K/2SC1741S/2SC4097200m -500m -40 -32 200M 82-3902SA1037AK ROHM 硅PNP三极管,一般小信号放大,配对管2SC2412K200m -150m -60 -50 140M 120-5602SA1037B LRC 硅PNP三极管,一般小信号放大,配对管2SC2412K/2SC4081200m -150m -60 -50 140M 120-5602SA1037K ROHM 硅PNP三极管,一般小信号放大,配对管2SC2412K/2SC4081200m -100m -50 -40 140M 120-5602SA1038S ROHM2SA10392SA1042SA10402SA10412SA10422SA10442SA10452SA10462SA10472SA1048TOSHIBA 2SA1048L TOSHIBA 2SA1049TOSHIBA 2SA1052SA1050TOSHIBA 2SA1050A TOSHIBA 2SA1051TOSHIBA 2SA1051A TOSHIBA 2SA1052HITACHI2SA1052B HITACHI2SA1052C HITACHI2SA1052D HITACHI2SA10532SA10542SA10552SA10562SA10592SA1062SA10602SA1061PANASONIC 2SA1062PANASONIC 2SA10632SA1064PANASONIC 2SA1065PANASONIC 2SA10662SA10672SA10682SA1069NEC2SA1069A NEC2SA1072SA1072FUJI2SA1073FUJI2SA10742SA1075FUJI2SA1076FUJI2SA1077FUJI2SA1078FUJI 硅PNP三极管,功率放大,开关调整,DC-DC转换,配对管2SC252825 -2 -120 -120 140M 50-350 3CA10F2SA1079硅PNP三极管25 -160 3CA10F 2SA108锗PNP三极管80m -10m -20 45M 3AG54B 2SA1080FUJI硅PNP三极管,高速功率管,配对管2SC253020 -500m -40 -40 30M 100-350 CA73-2B 2SA1081HITACHI硅PNP三极管,低频放大,配对管2SC2543400m -100m -90 -90 90M 250-800 3CG170B 2SA1081D HITACHI硅PNP三极管,低频放大,配对管2SC2543400m -100m -90 -90 90M 250-800 3CG180E2SA1081E HITACHI硅PNP三极管,低频放大,配对管2SC2543400m -100m -90 -90 90M 250-800 3CG180E 2SA1082HITACHI硅PNP三极管,低频放大,配对管2SC2544400m -100m -120 -120 90M 250-800 3CG170C 2SA1082D HITACHI硅PNP三极管,低频放大,配对管2SC2544400m -100m -120 -120 90M 250-800 3CG180E 2SA1082E HITACHI硅PNP三极管,低频放大,配对管2SC2544400m -100m -120 -120 90M 250-800 3CG180E 2SA1083HITACHI硅PNP三极管,高频低噪声放大,配对管2SC2545400m -100m -60 -60 90M 250-800 3CG120B 2SA1083D HITACHI硅PNP三极管,高频低噪声放大,配对管2SC2545400m -100m -60 -60 90M 250-800 3CG180E 2SA1083E HITACHI硅PNP三极管,高频低噪声放大,配对管2SC2545400m -100m -60 -60 90M 250-800 3CG180E 2SA1084HITACHI硅PNP三极管,高频低噪声放大,配对管2SC2546400m -100m -90 -90 90M 250-800 3CG170B 2SA1084D HITACHI硅PNP三极管,高频低噪声放大,配对管2SC2546400m -100m -90 -90 90M 250-800 3CG180E 2SA1084E HITACHI硅PNP三极管,高频低噪声放大,配对管2SC2546400m -100m -90 -90 90M 250-800 3CG180E 2SA1085HITACHI硅PNP三极管,高频低噪声放大,配对管2SC2547400m -100m -120 -120 90M 250-800 3CG170C 2SA1085D HITACHI硅PNP三极管,高频低噪声放大,配对管2SC2547400m -100m -120 -120 90M 250-800 3CG180F 2SA1085E HITACHI硅PNP三极管,高频低噪声放大,配对管2SC2547400m -100m -120 -120 90M 250-800 3CG180F 2SA109锗PNP三极管80m -10m -20 30M 3AG54A 2SA1090TOSHIBA 停产300m -200m -60 150M 3CG180E 2SA1091TOSHIBA 硅PNP三极管,电压控制,配对管2SC2561400m -100m -300 -300 40M 20-150 3CG180H 2SA1092硅PNP三极管250m -50m -60 3CG160A2SA1093TOSHIBA 停产,用2SA1941代替,硅PNP,电压控制,配对管2SC256380 -8 -120 -120 90M 30-240 3CA4C2SA1094TOSHIBA 停产,用2SA1942代替,硅PNP,放大,配对管2SC2564120 -12 -140 -140 90M 30-2402SA1095TOSHIBA 停产,用2SA1943代替,硅PNP,放大,配对管2SC2565150 -15 -160 -160 60M 40-2402SA1096PANASONIC 硅PNP三极管,低频功率放大,配对管2SC2497 5 -1.5 -70 -50 150M 80-2202SA1096A PANASONIC 硅PNP三极管,低频功率放大,配对管2SC2497A 5 -1.5 -70 -60 150M 80-2202SA110锗PNP三极管80m -10m -20 30M 3AG54A 2SA1100硅PNP三极管300m -200m -50 200M 3CK14F 2SA1100L硅PNP三极管300m -200m -50 200M 3CK14F 2SA1102WS 硅PNP三极管,放大,DC-DC转换,配对管2SC257780 -8 -160 -120 20M 50-1602SA1103WS 硅PNP三极管,放大,DC-DC转换,配对管2SC257870 -7 -100 -100 20M 80-1602SA1104WS 硅PNP三极管,放大80 -8 -120 -120 20M 50-2502SA1105WS 硅PNP三极管,放大,DC-DC转换,配对管2SC257790 -9 -160 -120 20M 50-1602SA1106WS 硅PNP三极管,放大,DC-DC转换,配对管2SC2581100 -10 -200 -140 20M 50-1602SA1109硅NPN三极管2002SA111锗PNP三极管80m -10m -20 20M 3AG54A 2SA1110PANASONIC 硅PNP三极管,低频功率放大,配对管2SC2590 1.2 -500m -120 -120 200M 50-330 3CA3F 2SA1111硅PNP三极管20 -1 -150 200M 3CA10E 2SA1112硅PNP三极管20 -1 -180 200M 3CA10F 2SA1114硅PNP三极管500m -200m -70 -70 150M 1200 3CG130C 2SA1114A硅PNP三极管300m -200m -70 150M 3CK10C 2SA1115MIS 硅PNP三极管,低频功率放大300m -200m -50 -50 200M 50-800 3CK9D 2SA1116MIS 硅PNP三极管,低频功率放大,配对管2SC2607150 -15 -200 -200 20M 30 3CA1C 2SA1116A MIS 硅PNP三极管,低频功率放大,配对管2SC2607750m -1 -80 120M 3CA1C 2SA1117硅PNP三极管200 -200 20M2SA1119长电硅PNP三极管,宽片带放大管500m -1 -25 -25 180M 40-5602SA112锗PNP三极管80m -10m -20 20M 3AG54A 2SA1120TOSHIBA 停产,用2SA1357代替 1 -5 -35 170M 3CK10C 2SA1121HITACHI硅PNP三极管,低频放大,配对管2SC2618150m -500m -35 -35 10-320 3CA1B 2SA1121SB HITACHI硅PNP三极管,低频放大,配对管2SC2618150m -500m -35 -35 10-320 3CK9C 2SA1121SC HITACHI硅PNP三极管,低频放大,配对管2SC2618150m -500m -35 -35 10-320 3CK9C 2SA1121SD HITACHI硅PNP三极管,低频放大,配对管2SC2618150m -500m -35 -35 10-320 3CK9C 2SA1122HITACHI硅PNP三极管,低频放大150m -100m -55 -55 160-800 3CG120B 2SA1122CC HITACHI硅PNP三极管,低频放大150m -100m -55 -55 160-800 3CK9D 2SA1122CD HITACHI硅PNP三极管,低频放大150m -100m -55 -55 160-800 3CK9D 2SA1122CE HITACHI硅PNP三极管,低频放大150m -100m -55 -55 160-800 3CK9D2SA1123PANASONIC 硅PNP三极管,高频高击穿电压放大,配对管2SC2631750m -50m -150 -150 200M 130-450 3CG180G 2SA1124PANASONIC 硅PNP三极管,高频高击穿电压放大,配对管2SC2632 1 -50m -150 -150 200M 130-450 3CG180G 2SA1125硅PNP三极管 1.5 -50m -150 200M 3CG180G 2SA1126硅PNP三极管750m -100m -650 15M 3CG180 2SA1126H硅PNP三极管750m -100m -650 15M 3CG180 2SA1127PANASONIC 硅PNP三极管,高频和低噪声放大,配对管2SC2634400m -100m -60 -55 200M 180-700 3CG120B 2SA1127NC PANASONIC 硅PNP三极管,高频和低噪声放大,配对管2SC2634400m -100m -60 -55 200M 180-700 3CK9D 2SA1128PANASONIC 硅PNP三极管,低频放大600m -0.5 -25 -20 150M 25-220 3CK9B 2SA113锗PNP三极管50m -10m -34 20M 3AG95A 2SA1131硅PNP三极管150m -150m -50 80M 3CG160A 2SA1132长电硅PNP三极管150m -100m -120 100M 3CG160C 2SA1133硅PNP三极管30 -2 -200 3CA10F 2SA1134硅PNP三极管500m -2 -30 140M 3CK10A 2SA1135MSI 硅PNP三极管,放大,配对管2SC266555 -4 -80 -80 10M 40 3CD6C 2SA1138硅PNP三极管600m -10m -80 -80 50M 200 3CG120C 2SA114锗PNP三极管50m -10m -34 20M 3AG95A 2SA1141MSI 硅PNP三极管,功率放大,配对管2SC2681100 -10 -115 -115 180M 40-2002SA1142NEC 硅PNP三极管,功率放大,配对管2SC268210 -100m -180 -180 180M 90-320 3CA5F 2SA1144TOSHIBA 停产,用2SA1360代替10 -50m -150 200M 3CA5F 2SA1145TOSHIBA 硅PNP三极管,放大,配对管2SC2705800m -50m -150 -150 200M 80-2402SA1146TOSHIBA 停产,用2SA1941代替100 -140 70M2SA1148硅PNP三极管95 -15 -602SA115锗PNP三极管50m -10m -34 20M 3AG95A 2SA1150TOSHIBA 硅PNP三极管,低频放大,配对管2SC2710300m -800m -35 -30 120M 35-320 3CK9C 2SA1151NEC 硅PNP,达林顿管250m -100m 180M 3CK9C 2SA1152NEC 硅PNP,达林顿管600m -300m 100M 3CK9C 2SA1153NEC 硅PNP三极管,一般放大和高速开关600m -500m -60 -40 150M 20-300 3CG122C 2SA1154NEC 硅PNP三极管,一般放大和高速开关800m -700m -60 -40 120M 20-300 3CK9D2SA1156NEC 硅PNP三极管,功率高电压开关,DC-DC转换,配对管2SC275210 -1 -400 -400 150M 30-2002SA1158TOSHIBA 停产,用2SA970代替400m -100m -80 100M 3CG180A 2SA116锗PNP三极管50m -10m -30 120M 3AG53D 2SA1160长电硅PNP三极管,TO-92,放大900m -2 -20 140M 3CK10A 2SA1160N TOSHIBA 硅PNP三极管,功率放大900m -2 -20 -10 140M 60-600 3CK10A 2SA1162硅PNP三极管150m -150m -50 80M 3CK14F 2SA1163TOSHIBA 硅PNP三极管,一般音频放大,配对管2SC2713150m -100m -120 -120 100M 200-700 3CG170A 2SA1164TOSHIBA 停产200m -100m -35 400M 3CG122C 2SA1169A硅PNP三极管 1.3 -1 -80 40M 3CA3 2SA117锗PNP三极管50m -10m -30 110M 3AG53D 2SA1170Q ETC 硅PNP三极管,功率放大,配对管2SC2774200 -17 -200 -200 20M 20 3CA3 2SA1170R ETC 硅PNP三极管,功率放大,配对管2SC2774200 -17 -200 -200 20M 20 3CA3 2SA1171HITACHI硅PNP三极管,高频小信号放大150m -50m -90 -90 200m 250-800 3CA3 2SA1171A HITACHI硅PNP三极管,高频小信号放大150m -50m -90 -90 200m 250-800 3CA3 2SA1171AP HITACHI硅PNP三极管,高频小信号放大150m -50m -90 -90 200m 250-800 3CA3 2SA1171PD HITACHI硅PNP三极管,高频小信号放大150m -50m -90 -90 200m 250-800 3CG160B 2SA1171PE HITACHI硅PNP三极管,高频小信号放大150m -50m -90 -90 200m 250-800 3CG160B 2SA1173硅PNP三极管 2 -50 -140 80M 3CA3E2SA1174硅PNP三极管300m -50m -60 100M 3CG170A 2SA1175NEC 硅PNP三极管,放大驱动级,配对管2SC2785250m -100m -60 -50 180M 110-600 3CG170A 2SA1176硅PNP三极管,高压管 1 -500m -4002SA1177SANYO 硅PNP三极管,放大,混频,振荡,转换0.125 -30m -30 -20 150M 60-320 3CA10F 2SA1179长电硅PNP三极管,TO-92,放大200m -150m -55 180M 3CK3B 2SA1179N SANYO 硅PNP三极管,一般放大,配对管2SC2812N200m -150m -55 -50 180M 200-400 3CK3B 2SA118150m -10m -30 100M 3AG53D 2SA1180硅NPN三极管80 150 3CD10E2SA1182TOSHIBA 硅PNP三极管,功率音频放大,驱动级放大,开关,配对管2SC2859150m -50m -35 -30 200M 25-240 3CG111C2SA1184TOSHIBA 停产,用2SA1358代替 1 -1 -120 120M 3CA2F 2SA1185长电硅PNP三极管60 -50 3CA8B2SA1186MOSPEC 硅PNP三极管,一般放大和开关,配对管2SC2837100 -10 -150 -150 10M 302SA1186S SANKEN 硅PNP三极管,一般放大,配对管2SC2837100 -10 -150 -150 60M 502SA1186W WINGS 硅PNP三极管,放大,DC-DC转换,配对管2SC2577100 -10 -150 -150 60-1602SA1188长电硅PNP三极管400m 100m 90 90 130 250 3CG180A 2SA1188D HITACHI硅PNP三极管,低频放大,配对管2SC2853400m -100m -90 -90 130M 250-800 3CG180E 2SA1188E HITACHI硅PNP三极管,低频放大,配对管2SC2853400m -100m -90 -90 130M 250-800 3CG180E 2SA1189HITACHI硅PNP三极管,低频放大,配对管2SC2854400m -100m -120 -120 130M 250-800 3CG180B 2SA1189D HITACHI硅PNP三极管,低频放大,配对管2SC2854400m -100m -120 -120 130M 250-800 3CG180F 2SA1189E HITACHI硅PNP三极管,低频放大,配对管2SC2854400m -100m -120 -120 130M 250-800 3CG180F 2SA119锗PNP三极管650m -300m -40 200M 3CK14F2SA1190HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC2855400m -100m -90 -90 130M 250-800 3CG180A2SA1190D HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC2855400m -100m -90 -90 130M 250-800 3CG180E2SA1190E HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC2855400m -100m -90 -90 130M 250-800 3CG180E2SA1191HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC2856400m -100m -120 -120 130M 250-800 3CG180B2SA1191D HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC2856400m -100m -120 -120 130M 250-800 3CG180F2SA1191E HITACHI 硅PNP三极管,高频低噪声放大,配对管2SC2856400m -100m -120 -120 130M 250-800 3CG180F2SA1193K HITACHI硅PNP三极管,增益放大900m -500m -60 -60 2000 3CK10C 2SA1194HITACHI 硅PNP三极管,增益放大8 1 -60 -60 1000 3CA4C 2SA1194K HITACHI 硅PNP三极管,增益放大8 1 -60 -60 1000 3CA4C2SA1195TOSHIBA 停产,用2SA1408代替,硅PNP,功率放大,配对管2SC248315 1.5 -160 -160 15M 40-2002SA1197K长电硅PNP三极管,SOT-23-3L200m -800m -40 -32 50-200M 82-3902SA1199ROHM 硅PNP三极管,功率放大和开关0.4 0.7 -50 -40 100M 120-5602SA1199S ROHM 硅PNP三极管,功率放大和开关0.3 0.7 -50 -40 100M 120-5602SA119A锗PNP三极管100m -3 -60 200K 3AD50A 2SA12锗PNP三极管80m -15m -16 8M 3AG54A 2SA120硅PNP三极管650m -300m -25 200M 3CK14F 2SA1200TOSHIBA 硅PNP三极管,高压开关,配对管2SC2880800m -50m -150 -150 120M 70-2402SA1201长电硅PNP三极管,SOT-89,放大500m -800m -120 -120 120M 80-2402SA1201T TOSHIBA 硅PNP三极管,功率放大,配对管2SC2881 1 -0.8 -120 -120 120M 80-2402SA1202TOSHIBA 硅PNP三极管,功率放大,电压放大,配对管2SC28821 -0.4 -80 -80 120M 40-2402SA1203长电硅PNP三极管,SOT-89,放大500m -1.5 -30 -30 120M 100-320 2SA1203T TOSHIBA 硅PNP三极管,功率放大,配对管2SC2883 1 1.5 -30 -30 120M 100-320 2SA1204TOSHIBA 硅PNP三极管,放大,配对管2SC2884 1 0.8 -35 -30 120M 35-3202SA1205SANKEN 硅PNP三极管,放大100 -12 -70 -50 20M 402SA1206NEC 硅PNP三极管,一般放大和高速开关0.6 -50m -15 -15 800m 30-1502SA1207SANYO 硅PNP三极管,电压开关,功率放大,配对管2SC2909600m -70m -80 -60 150M 100-400 3CG180E2SA1208SANYO 硅PNP三极管,电压开关,功率放大,配对管2SC2910900m -70m -180 -160 150M 100-400 3CG180E2SA1209SANYO 硅PNP三极管,电压开关,功率放大,配对管2SC29111 -140m -180 -160 150M 100-400 3CG180G2SA120A硅PNP三极管650m -300m -40 200M 3CK14F 2SA121锗PNP三极管15m -2m -15 100M 3AG53C2SA1210SANYO 硅PNP三极管,电压开关,功率放大,配对管2SC29121 -140m -200 -200 150M 100-400 3CG180H2SA1213长电硅PNP三极管,SOT-89,放大500m -2 -50 -50 100M 20-2402SA1213T TOSHIBA 硅PNP三极管,功率放大,功率开关,配对管2SC2873500m -2 -50 -50 120M 20-2402SA1215MOSPEC 硅PNP三极管,一般放大和开关,配对管2SC2921150 -15 -160 -160 10M 502SA1215S SANKEN 硅PNP三极管,一般放大,配对管2SC2921150 -15 -160 -160 50M 502SA1215W WINGS 硅PNP三极管,功率放大,DC-DC转换,配对管2SC2921150 -15 -160 -160 50M 50-1502SA1216MOSPEC 硅PNP三极管,一般放大和开关,配对管2SC2922200 -17 -180 -180 10M 202SA1216S SANKEN 硅PNP三极管,一般放大,配对管2SC2922200 -17 -180 -180 10M 202SA1216W WINGS 硅PNP三极管,功率放大,DC-DC转换,配对管2SC2922200 -17 -180 -180 10M 202SA1217TOSHIBA 停产,用2SA1359代替,硅PNP,功率放大,低速开关,配对管2SC287710 -3 -40 -40 100M 25 3CA5B2SA1218硅PNP三极管300m6 -600m -60 3CK9D 2SA122锗PNP三极管15m -2m -15 100M 3AG53C 2SA1220SANYO 硅PNP三极管,高频功率放大,配对管2SC269020 -1.2 -120 -120 175M 60-320 3CA10F2SA1220A SANYO 硅PNP三极管,高频功率放大,配对管2SC2690A20 -1.2 -160 -160 175M 60-320 3CA10F2SA1221NEC 硅PNP三极管,低频功率放大,配对管2SC2958 1 -1 -160 -140 30M 100-4002SA1222NEC 硅PNP三极管,低频功率放大,配对管2SC2959 1 -1 -160 -160 30M 100-4002SA1225TOSHIBA 硅PNP三极管,低频功率放大,配对管2SC2983 1 -1 -160 -140 100M 70-2402SA1226NEC 硅PNP三极管,放大200m -30m -40 -40 400M 40-180 3CG122C 2SA1227SANYO 硅PNP三极管,音频功率放大,配对管2SC2987120 -12 -140 -140 60M 40-3202SA1227A SANYO 硅PNP三极管,功率放大,配对管2SC2987A120 -12 -160 -160 60M 40-3202SA123锗PNP三极管15m -2m -15 100M 3AG53C 2SA1232SANYO 硅PNP三极管,音频功率放大,配对管2SC3012100 -10 -130 -130 60M 40-3202SA1233硅PNP三极管10 -100m -400 13M 3CA5 2SA1233L硅PNP三极管10 -100m -400 13M 3CA5 2SA1235长电硅PNP三极管,SOT-89,放大150m -200m -50 150M 3CK9D 2SA1237SANYO 硅PNP三极管,微分放大0.4 -0.15 -55 -50 60M 100-5602SA1238SANYO 硅PNP三极管,微分放大0.4 -0.15 -55 -50 60M 100-5602SA1239SANYO 硅PNP三极管,微分放大0.4 -0.05 -130 -120 110M 160-5602SA124锗PNP三极管15m -2m -15 120M 3AG53D 2SA1240SANYO 硅PNP三极管,微分放大0.4 -0.05 -130 -120 110M 160-5602SA1241TOSHIBA 硅PNP三极管,功率放大和开关,配对管2SC307610 -2 -50 -50 100M 40-2402SA1242TOSHIBA 硅PNP三极管,中功率放大10 -5 -35 -20 170M 70-320 2SA1244TOSHIBA 硅PNP三极管,放大电流开关,配对管2SC307420 -5 -60 -50 60M 30-240 2SA1245TOSHIBA 硅PNP三极管,高频放大和开关150m -30m -15 -8 4G 202SA1246SANYO 硅PNP三极管,音频功率放大,配对管2SC3114400m -150m -60 -50 100M 100-5602SA1248SANYO 硅PNP三极管,彩色电视机音频功率放大,配对管2SC311610 -0.7 -180 -160 120M 90-4002SA1249SANYO 硅PNP三极管,彩色电视机音频功率放大,配对管2SC311710 -1.5 -180 -160 120M 90-4002SA125锗PNP三极管15m -2m -15 120M 3AG53D 2SA1252SANYO 硅PNP三极管,放大,配对管2SC3134200m -150m -60 -50 100M 90-5602SA1253SANYO 硅PNP三极管,增益音频放大,配对管2SC3135250m -200m -60 -50 100M 100-5602SA1254PANASONIC 硅PNP三极管,低频放大,配对管2SC2206400m -30m -30 -20 300M 70-2202SA1255TOSHIBA 硅PNP三极管,高压开关,配对管2SC3138150m -50m -200 -200 100M 70-2402SA1256SANYO 硅PNP三极管,低频放大150m -30m -30 -20 230M 60-2702SA1257SANYO 硅PNP三极管,电压开关,音频功率放大,配对管2SC3143200m -80m -180 -160 150M 60-2702SA1258SANYO 硅PNP,达林顿管,高速驱动,配对管2SC314420 -3 -70 -60 200M 2000-50002SA1259SANYO 硅PNP,达林顿管,高速驱动,配对管2SC314530 -5 -70 -60 200M 2000-50002SA126锗PNP三极管300m -50m -12 300M 3AG87A 2SA1260长电硅PNP三极管,SOT-89500m -1 -80 -80 80M 82-3902SA1261NEC 硅PNP三极管,高速高电压开关,配对管2SC315760 -10 -100 -100 20-2002SA1261-Z长电硅PNP三极管,TO-252 2 -3 -60 -60 120M 60-4002SA1262SANKEN 硅PNP三极管,放大和一般放大,配对管2SC317930 -4 -60 -60 15M 402SA1263TOSHIBA 停产,用2SA1939代替,硅PNP,功率放大,配对管2SC318060 -6 -80 -80 30M 35-160 3CA9D2SA1264TOSHIBA 停产,用2SA1940代替,硅PNP,功率放大,配对管2SC318180 -8 -120 -120 30M 35-160 3CA9D2SA1265TOSHIBA 停产,用2SA1941代替,硅PNP,功率放大,配对管2SC3182100 -10 -140 -140 30M 35-160 3CA9D2SA1266KEC 硅PNP三极管,高频低噪声放大,配对管2SC3198400m -150m -50 -50 80M 25-4002SA1266L KEC 硅PNP三极管,高频低噪声放大,配对管2SC3198L400m -150m -50 -50 80M 25-4002SA127TOSHIBA 停产,用2SA1015代替150m -50m -70 25M 3AG632SA1270KEC 硅PNP三极管,高频小功率放大,驱动级放大,一般开关,配对管2SC3202500m -500m -35 -30 200M 70-2402SA1271KEC 硅PNP三极管,低频功率放大,一般开关,配对管2SC3203600m -800m -35 -30 120M 35-3202SA1273KEC 硅PNP三极管,功率放大,配对管2SC3205 1 -2 -30 -30 120M 100-3202SA1278TOSHIBA 停产25 -2 -160 100M 3CA6F 2SA128TOSHIBA 停产,用2SA1015代替170m -600m -40 15M 3AK34A 2SA1283长电硅PNP三极管,TO-92MOD,放大900m -1 -60 -60 50M 55-3002SA1283E IDC 硅PNP三极管,放大,配对管2SC3243900m -1 -60 -60 85M 55-3002SA1286IDC 硅PNP三极管,电动机、活塞驱动,配对管2SC3246900m -1.5 -30 -20 90M 400-8002SA1287IDC 硅PNP三极管,电动机、活塞驱动,配对管2SC3247900m -1 -50 -50 90M 400-8002SA1289SANYO 硅PNP三极管,高速开关,配对管2SC325330 -5 -80 -60 100M 70-2802SA129TOSHIBA 停产,用2SA1015代替170m -600m -40 15M 3AK34A 2SA1290SANYO 硅PNP三极管,高速开关,配对管2SC325435 -7 -80 -60 100M 70-2802SA1291SANYO 硅PNP三极管,高速开关,配对管2SC325540 -10 -80 -60 100M 70-2802SA1292SANYO 硅PNP三极管,高速开关,配对管2SC325680 -15 -80 -60 100M 70-2802SA1293TOSHIBA 硅PNP三极管,大电流开关,配对管2SC325830 -5 -100 -80 60M 30-2402SA1294SANKEN 硅PNP三极管,放大,配对管2SC3263130 -15 -230 -230 35M 502SA1295MOSPEC 硅PNP三极管,电流功率管,配对管2SC3264200 -17 -230 -230 10M 402SA1295S SANKEN 硅PNP三极管,放大,配对管2SC3264200 -17 -230 -230 35M 502SA1296长电硅PNP三极管,TO-92,放大750m -2 -20 -20 120M 40-4002SA1296T TOSHIBA 硅PNP三极管,功率放大,功率开关,配对管2SC32660.725 -2 -20 -20 120M 40-4002SA1297TOSHIBA 硅PNP三极管,功率放大,功率开关,配对管2SC32670.4 -2 -20 -20 120M 40-4002SA1298TOSHIBA 硅PNP三极管,功率放大,功率开关,配对管2SC32650.2 -0.8 -30 -25 120M 40-3202SA12H锗PNP三极管80m -15m -16 8M 3AG54A2SA13锗PNP三极管80m -15m -12 7M 3AG54A 2SA130锗PNP三极管80m -10m -9 75M 3AG54C 2SA1300长电硅PNP三极管,TO-92,放大750m -2 -20 -10 140M 140-6002SA1300T TOSHIBA 硅PNP三极管,中功率放大0.75 -2 -20 -20 140M 60-6002SA1301WINGS 停产,用2SA1942代替,硅PNP,功率放大,DC-DC转换,配对管2SC3280120 -12 -160 -160 50-1602SA1302MOSPEC 停产,用2SA1942代替,硅PNP,功率管,一般放大和开关,配对管2SC3281150 -15 -200 -200 10M 35-1602SA1302W WINGS 停产,用2SA1942代替,硅PNP,功率放大,DC-DC转换,配对管2SC3281150 -15 -200 -200 10M 50-1602SA1303SANKEN 硅PNP三极管,放大,配对管2SC3284125 -14 -150 -150 50M 502SA1304TOSHIBA 停产,用2SA940A代替,硅PNP,功率放大,配对管2SC329620 -1.5 -150 -150 4M 40-1402SA1305TOSHIBA 停产,用2SA1869代替15 -3 -30 100M 3CA5A2SA1306MOTOROLA 停产,用2SA1837代替,硅PNP,放大,配对管2SC3298B20 -1.5 -200 -200 100M 70-240 3CA10F2SA1306A MOTOROLA 停产,用2SA1837代替,硅PNP,放大,配对管2SC3298B20 -1.5 -200 -200 100M 70-240 3CA10G2SA1306B MOTOROLA 停产,用2SA1837代替,硅PNP,放大,配对管2SC3298B20 -1.5 -200 -200 100M 70-240 3CA10G2SA1307WINGS 停产,用2SA1931代替,硅PNP,功率放大,场偏转输出,配对管2SC329920 -5 -60 -50 60M 70-240 3CA10D2SA1308长电硅PNP三极管,SOT-89,放大500m -3 -30 -20 50M 82-3902SA1309PANASONIC 硅PNP三极管,低频放大,配对管2SC3311A300m -100m -60 -50 80M 160-460 3CG120B 2SA1309A PANASONIC 硅PNP三极管,低频放大,配对管2SC3311A300m -100m -60 -50 80M 160-460 3CG120C 2SA131锗PNP三极管80m -10m -9 50M 3AG54C2SA1310PANASONIC 硅PNP三极管,高频低噪声放大,配对管2SC3312300m -100m -60 -55 200M 180-7002SA1312TOSHIBA 硅PNP三极管,低噪声放大,配对管2SC3324150m -100m -120 -120 100M 200-700 2SA1313TOSHIBA 硅PNP三极管,低噪声放大,配对管2SC3325200m -500m -50 -50 200M 25-240 2SA1314TOSHIBA 硅PNP三极管,放大500m -2 -20 -10 140M 40-6002SA1315TOSHIBA 硅PNP三极管,功率放大和开关,配对管2SC3328900m -2 -80 -80 80M 40-2402SA13150TOSHIBA 硅PNP三极管,功率放大和开关,配对管2SC3328900m -2 -80 -80 80M 40-240 3CK10C2SA1315Y TOSHIBA 硅PNP三极管,功率放大和开关,配对管2SC3328900m -2 -80 -80 80M 40-240 3CK10C2SA1316TOSHIBA 硅PNP三极管,低噪声音频放大,配对管2SC3329400m -100m -80 -80 50M 200-700 3CG180A2SA1316BL TOSHIBA 硅PNP三极管,低噪声音频放大,配对管2SC3329400m -100m -80 -80 50M 200-700 3CG180A2SA1316GR TOSHIBA 硅PNP三极管,低噪声音频放大,配对管2SC3329400m -100m -80 -80 50M 200-700 3CG180A2SA1317SANYO 硅PNP三极管,高频高频放大,配对管2SC3330300m -200m -60 -50 200M 702SA1318长电硅PNP三极管,TO-92,放大500m -200m -60 -10 200M 70-5602SA1318A SANYO 硅PNP三极管,放大,配对管2SC3331500m -200m -60 -50 200M 702SA1319SANYO 硅PNP三极管,电压开关,配对管2SC3332700m -700m -180 -160 120M 80-400 3CA2F 2SA1319T SANYO 硅PNP三极管,电压开关,配对管2SC3332700m -700m -180 -160 120M 80-400 3CA2F 2SA132锗PNP三极管80m -10m -9 60M 3AG54C2SA1320TOSHIBA 硅PNP三极管,电压开关,彩色电视机色度输出,配对管2SC3333600m -50m -250 -250 80M 50 3CG180H2SA1321TOSHIBA 硅PNP三极管,电压开关,彩色电视机色度输出,配对管2SC3334900m -50m -250 -250 80M 50 3CG180H2SA1322TOSHIBA 停产,用2SA1321代替 1.2 -50m -250 80M 3CG180H 2SA1323TOSHIBA 硅PNP三极管,低频放大,配对管2SC3314300m -30m -30 -20 300M 70-220 3CG110B 2SA1324TOSHIBA 停产150m -150m -50 80M 3CG110C 2SA1325TOSHIBA 停产150m -100m -120 100M 3CG160B 2SA1326TOSHIBA 停产200m -500m -50 150M 3CK9D 2SA1327TOSHIBA 停产,用2SA1327A代替,硅PNP,放大20 -10 -50 -20 45M 70-320 3CA3B2SA1327Y TOSHIBA 停产,用2SA1327A代替,硅PNP,放大20 -10 -50 -20 45M 70-320 3CA3B2SA1328TOSHIBA 停产,用2SA1451代替,硅PNP,放大,配对管2SC334540 -12 -60 -50 70M 70-240 3CA8C2SA13280TOSHIBA 停产,用2SA1451代替,硅PNP,放大,配对管2SC334540 -12 -60 -50 70M 70-240 3CA8C2SA1328Y TOSHIBA 停产,用2SA1451代替,硅PNP,放大,配对管2SC334540 -12 -60 -50 70M 70-240 3CA8C2SA1329TOSHIBA 停产,用2SA1452代替,硅PNP,大电流开关,配对管2SC334640 -12 -80 -80 50M 40-240 3CA8C2SA1329O TOSHIBA 停产,用2SA1452代替,硅PNP,大电流开关,配对管2SC334640 -12 -80 -80 50M 40-240 3CA8C2SA1329Y TOSHIBA 停产,用2SA1452代替,硅PNP,大电流开关,配对管2SC334640 -12 -80 -80 50M 40-240 3CA8C2SA133锗PNP三极管80m -10m -9 45M 3AG54B2SA1330NEC 硅PNP三极管,电压放大和开关,配对管2SC3360200m -100m -200 -200 120M 50-450 3CG170E2SA1330A NEC 硅PNP三极管,电压放大和开关,配对管2SC3360200m -100m -200 -200 120M 50-450 3CG170E2SA1330B NEC 硅PNP三极管,电压放大和开关,配对管2SC3360200m -100m -200 -200 120M 50-450 3CG170E2SA1330C NEC 硅PNP三极管,电压放大和开关,配对管2SC3360200m -100m -200 -200 120M 50-450 3CG170E2SA1331A SANYO 硅PNP三极管,高速开关,配对管2SC3361150m -150m -60 -50 100M 90-400 3CK3B 2SA1331B SANYO 硅PNP三极管,高速开关,配对管2SC3361150m -150m -60 -50 100M 90-400 3CK3B 2SA1331C SANYO 硅PNP三极管,高速开关,配对管2SC3361150m -150m -60 -50 100M 90-400 3CK3B 2SA1335BL硅PNP三极管200m -100m -120 100M 3CG170B 2SA1335GR硅PNP三极管200m -100m -120 100M 3CG170B 2SA1337HITACHI 硅PNP三极管,高频低噪声放大300m -100m -55 -50 200M 100-320 3CG130C 2SA1337B HITACHI 硅PNP三极管,高频低噪声放大300m -100m -55 -50 200M 100-320 3CG130C 2SA1337C HITACHI 硅PNP三极管,高频低噪声放大300m -100m -55 -50 200M 100-320 3CG130C 2SA1338SANYO 硅PNP三极管,高速开关,配对管2SC3392200m -500m -60 -50 300M 100-560 3CK7C 2SA1338AL4SANYO 硅PNP三极管,高速开关,配对管2SC3392200m -500m -60 -50 300M 100-560 3CK7C 2SA1338AL5SANYO 硅PNP三极管,高速开关,配对管2SC3392200m -500m -60 -50 300M 100-560 3CK7C 2SA1338AL6SANYO 硅PNP三极管,高速开关,配对管2SC3392200m -500m -60 -50 300M 100-560 3CK7C 2SA1338AL7SANYO 硅PNP三极管,高速开关,配对管2SC3392200m -500m -60 -50 300M 100-560 3CK7C 2SA1338AY4SANYO 硅PNP三极管,高速开关,配对管2SC3392200m -500m -60 -50 300M 100-560 3CK7C 2SA1338AY5SANYO 硅PNP三极管,高速开关,配对管2SC3392200m -500m -60 -50 300M 100-560 3CK7C 2SA1338AY6SANYO 硅PNP三极管,高速开关,配对管2SC3392200m -500m -60 -50 300M 100-560 3CK7C 2SA1338AY7SANYO 硅PNP三极管,高速开关,配对管2SC3392200m -500m -60 -50 300M 100-560 3CK7C 2SA1339SANYO 硅PNP三极管,高速开关,配对管2SC3393300m -500m -60 -50 300M 100-560 3CK7C 2SA1339S SANYO 硅PNP三极管,高速开关,配对管2SC3393300m -500m -60 -50 300M 100-560 3CK7C 2SA1339T SANYO 硅PNP三极管,高速开关,配对管2SC3393300m -500m -60 -50 300M 100-560 3CK7C 2SA1339U SANYO 硅PNP三极管,高速开关,配对管2SC3393300m -500m -60 -50 300M 100-560 3CK7C 2SA134锗PNP三极管80m -10m -20 140M 3AG54D 2SA1340B硅PNP三极管400m -100m -55 200M 3CG130C 2SA1340C硅PNP三极管400m -100m -55 200M 3CG130C 2SA1341SANYO 硅PNP三极管,开关,配对管2SC3395200m -100m -50 -50 250M 50 3CG130C2SA1342SANYO 硅PNP三极管,开关电路,反相,接口电路,驱动,配对管2SC3396200m -100m -50 -50 250M 50 3CG130C2SA1343SANYO 硅PNP三极管,开关电路,反相,接口电路,驱动,配对管2SC3397200m -100m -50 -50 250M 50 3CG130C2SA1344SANYO 硅PNP三极管,开关电路,反相,接口电路,驱动,配对管2SC3398200m -100m -50 -50 250M 50 3CG130C2SA1345SANYO 硅PNP三极管,开关电路,反相,接口电路,驱动,配对管2SC3399300m -100m -50 -50 250M 50 3CG130C2SA1346SANYO 硅PNP三极管,开关电路,反相,接口电路,驱动,配对管2SC3400300m -100m -50 -50 250M 50 3CG130C2SA1347SANYO 硅PNP三极管,开关电路,反相,接口电路,驱动,配对管2SC3401300m -100m -50 -50 250M 50 3CG130C2SA1348SANYO 硅PNP三极管,开关电路,反相,接口电路,驱动,配对管2SC3402300m -100m -50 -50 250M 50 3CG130C2SA1349TOSHIBA 硅PNP三极管,低噪声音频放大,配对管2SC3381200m×2-100m -80 -80 200-700 3CG130C2SA1349A FUJI 硅PNP三极管,低噪声音频放大,配对管2SC3381200m×2-100m -80 -80 200-700 3CG130C2SA135锗PNP三极管80m -10m -20 150M 3AG54D 2SA1350TOSHIBA 硅PNP三极管,低噪声音频放大300m -100m -40 -30 200M 100-500 3CG130B 2SA1350C TOSHIBA 硅PNP三极管,低噪声音频放大300m -100m -40 -30 200M 100-500 3CG130B 2SA1350D TOSHIBA 硅PNP三极管,低噪声音频放大300m -100m -40 -30 200M 100-500 3CG130B 2SA1351B硅PNP三极管400m -100m -40 200M 3CG130B。
2n2677参数
我们要找出2N2677的参数。
首先,我们需要了解2N2677是什么。
2N2677是一个晶体管,具体来说是一个NPN型硅晶体管。
对于一个NPN硅晶体管,其主要的参数有以下几个:
集电极-基极电压(Vcbo):这是晶体管在截止状态下,集电极与基极之间的最大电压。
集电极-发射极电压(Vce):这是晶体管在特定的工作状态下,集电极与发射极之间的电压。
基极-发射极电压(Vbe):这是晶体管在特定的工作状态下,基极与发射极之间的电压。
直流电流增益(Hfe):这是指在特定的Vbe和Vce下,晶体管的直流电流增益。
最大集电极电流(Ic):这是指在特定的Vce和Vbe下,晶体管可以安全通过的最大集电极电流。
但是,由于我无法找到具体的2N2677参数,所以无法给出具体的数值。
如果您需要这些参数的具体数值,建议您查阅相关的技术手册或数据表。
– 1 –E99947A33Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.ICX267AK20 pin DIP (Plastic)DescriptionThe ICX267AK is a diagonal 8mm (T ype 1/2) interline CCD solid-state image sensor with a square pixel array and 1.45M effective pixels. Progressive scan allows all pixels' signals to be output independently. Also, the adoption of high frame rate readout mode supports 30 frames per second. This chip features an electronic shutter with variable charge-storage time which makes it possible to realize full-frame still image without a mechanical shutter. High resolution and high color reproductivity are achieved through the use of R, G, B primary color mosaic filters. Further, high sensitivity and low dark current are achieved through the adoption of HAD (Hole-Accumulation Diode)sensors.This chip is suitable for applications such as electronic still cameras, PC input cameras, etc.Features•Progressive scan allows individual readout of the image signals from all pixels.•High horizontal and vertical resolution (both approx.800TV-lines) still image without a mechanical shutter.•Supports high frame rate readout mode (effective 512 lines output, 30 frames/s)•Square pixel•Horizontal drive frequency: 28.636MHz •No voltage adjustments(reset gate and substrate bias are not adjusted.)•R, G, B primary color mosaic filters on chip •High resolution, high color reproductivity,high sensitivity, low dark current•Low smear, excellent antiblooming characteristics •Continuous variable-speed shutterDevice Structure•Interline CCD image sensor •Image size:Diagonal 8mm (Type 1/2)•Total number of pixels:1434 (H) × 1050 (V) approx. 1.50M pixels •Number of effective pixels:1392 (H) × 1040 (V) approx. 1.45M pixels•Number of active pixels:1360 (H) × 1024 (V) approx. 1.40M pixels (7.959mm diagonal)•Chip size:7.60mm (H) × 6.20mm (V)•Unit cell size: 4.65µm (H) × 4.65µm (V)•Optical black:Horizontal (H) direction:Front 2 pixels, rear 40 pixelsVertical (V) direction:Front 8 pixels, rear 2 pixels•Number of dummy bits:Horizontal 20Vertical 3•Substrate material:SiliconDiagonal 8mm (Type 1/2) Progressive Scan CCD Image Sensor with Square Pixel for Color CamerasPin 11Optical black position(Top view)Wfine CCD is a registered trademark of Sony Corporation.Represents a CCD adopting progressive scan, primary color filter and square pixel.– 2 –Block Diagram and Pin Configuration (Top View)Pin No.Pin No.1234567891011121314151617181920Pin Description : Photo sensorV O U TG N DN CG N DN CN CV φ3V φ2BV φ2A V φ1V D DG N DφS U BN CC S U BN CV LφR GH φ1H φ2∗1DC bias is generated within the CCD, so that this pin should be grounded externally through a capacitance of 0.1µF .Symbol V DD GND φSUB NC C SUB NC V L φRG H φ1H φ2Symbol V φ1V φ2A V φ2B V φ3NC NC GND NC GND V OUTDescriptionSupply voltageGNDSubstrate clockSubstrate bias ∗1Protective transistor bias Reset gate clockHorizontal register transfer clock Horizontal register transfer clock DescriptionVertical register transfer clock Vertical register transfer clock Vertical register transfer clock Vertical register transfer clockGNDGND Signal output– 3 –Absolute Maximum Ratings∗1+24V (Max.) when clock width < 10µs, clock duty factor < 0.1%.+16V (Max.) is guaranteed for turning on or off power supply.ItemV DD , V OUT , φRG – φSUB V φ2A , V φ2B – φSUBV φ1, V φ3, V L – φSUB H φ1, H φ2, GND – φSUB C SUB – φSUBV DD , V OUT , φRG, C SUB – GNDV φ1, V φ2A , V φ2B , V φ3 – GND H φ1, H φ2 – GNDV φ2A , V φ2B – V LV φ1, V φ3, H φ1, H φ2, GND – V LVoltage difference between vertical clock input pinsH φ1 – H φ2H φ1, H φ2 – V φ3Against φSUBAgainst GNDAgainst V LBetween inputclock pinsStorage temperature Operating temperature–40 to +10–50 to +15–50 to +0.3–40 to +0.3–25 to –0.3 to +18–10 to +18–10 to +15–0.3 to +28–0.3 to +15to +15–16 to +16–16 to +16–30 to +80–10 to +60V V V V V V V V V V V V V °C °C∗1Ratings Unit Remarks– 4 –Clock Voltage ConditionsReadout clock voltageVertical transfer clock voltageHorizontal transfer clock voltage Reset gate clock voltageSubstrate clock voltage V VT V VH02A V VH1, V VH2A ,V VH2B , V VH3V VL1, V VL2A ,V VL2B , V VL3V φ1, V φ2A ,V φ2B , V φ3| V VL1 – V VL3 |V VHH V VHL V VLH V VLLV φH V HL V φRGV RGLH – V RGLL V RGL – V RGLmV φSUB14.55–0.05–0.2–8.47.64.75–0.053.022.1515.000–8.08.05.003.323.015.450.050.05–7.68.40.10.91.31.00.95.250.055.50.40.523.851222222222334445V VH = V VH02AV VL = (V VL1 + V VL3)/2High-level coupling High-level coupling Low-level coupling Low-level coupling Low-level coupling Low-level coupling V V V V V V V V V V V V V V V VBias ConditionsPower Supply voltage Protective transistor bias Substrate clock Reset gate clockItemV DD V L φSUB φRGSymbol 15.0∗1∗2∗2Min.VUnit RemarksTyp.Max.∗1V L setting is the V VL voltage of the vertical transfer clock waveform, or the same power supply as the V Lpower supply for the V driver should be used.∗2Do not apply a DC bias to the substrate clock and reset gate clock pins, because a DC bias is generated within the CCD.DC Characteristics14.5515.45Power supply currentItemI DDSymbol 7.7Min.Unit RemarksTyp.Max.mAItemSymbolMin.Typ.Max.Unit Waveform diagramRemarks– 5 –Clock Equivalent Circuit ConstantC φV1C φV2A C φV2BC φV3C φV12A , C φV2B1C φV2A3, C φV32B C φV13C φH1, C φH2C φHH C φRGC φSUB R 1R 2A , R 3R 2B R GND R φH R φRGSymbol Capacitance between vertical transfer clock and GND Capacitance between vertical transfer clocks Capacitance between horizontal transfer clock and GNDCapacitance between horizontal transfer clocks Capacitance between reset gate clock and GND Capacitance between substrate clock and GND Vertical transfer clock series resistor Vertical transfer clock ground resistor Horizontal transfer clock series resistor Reset gate clock series resistorItemMin.2200330033003300120012002200471008680365656301520Typ.Max.pF pF pF pF pF pF pF pF pF pF pF ΩΩΩΩΩΩUnit Remarks Horizontal transfer clock equivalent circuitVertical transfer clock equivalent circuit 2AV 2B V φ3H φH φ2Reset gate clock equivalent circuitRG φφRG– 6 –Drive Clock Waveform Conditions (1) Readout clock waveform(2) Vertical transfer clock waveformV VH = V VH02AV VL = (V VL01 + V VL03)/2V VL3 = V VL03V φ1V φ3V φ2A , V φ2B100%90%10%0%0VV V V VH02A , V V φV1 = V VH1 – V VL01V φV2A = V VH02A – V VL2A V φV2B = V VH02B – V VL2B V φV3 = V VH3 – V VL03V TNote) Readout clock is used by composing vertical transfer clocks V φ2A and V φ2B .– 7 –(3) Horizontal transfer clock waveformCross-point voltage for the H φ1 rising side of the horizontal transfer clocks H φ1 and H φ2 waveforms is V CR .The overlap period for twh and twl of horizontal transfer clocks H φ1 and H φ2 is two.V RGLH is the maximum value and V RGLL is the minimum value of the coupling waveform during the period from Point A in the above diagram until the rising edge of RG.In addition, V RGL is the average value of V RGLH and V RGLL .V RGL = (V RGLH + V RGLL )/2Assuming V RGH is the minimum value during the interval twh, then:V φRG = V RGH – V RGL .Negative overshoot level during the falling edge of RG is V RGLm .(5) Substrate clock waveformH φ1H φ2V RGLH V RGLL V RGLm100%90%10%0%V SUB– 8 –Clock Switching CharacteristicsMin.twh Typ.Max.Min.Typ.Max.Min.Typ.Max.Min.Typ.Max.twl tr tf3.2101043.412.512.583.9101012.512.5240.5550.010.0127.57.50.51520.5550.010.014507.57.50.5Unit µsns nsµs ns µsRemarks During readout ∗1∗2During drainchargeItem Readout clock Vertical transfer clockDuring imagingDuring parallel-serialconversionReset gate clock Substrate clockH o r i z o n t a l t r a n s f e r c l o c k∗1When vertical transfer clock driver CXD1267AN × 2 is used.∗2tf ≥ tr – 2ns, and the cross-point voltage (V CR ) for the H φ1 rising side of the H φ1 and H φ2 waveforms must be at least V φH /2 [V].Spectral Sensitivity Characteristics (excludes lens characteristics and light source characteristics)1.00.80.60.40.20400500600700Wave Length [nm]R e l a t i v e R e s p o n s e8009001000Symbol V TV φ1, V φ2A ,V φ2B , V φ3H φ1H φ2H φ1H φ2φRG φSUBMin.twoTyp.Max.810Unit nsRemarks ItemHorizontal transfer clockSymbol H φ1, H φ2Image Sensor Characteristics(Ta = 25°C)G sensitivity Sensitivity comparisonSaturation signal SmearVideo signal shading Uniformity between video signal channels Dark signalDark signal shading Line crawl GLine crawl RLine crawl BLag SgRrRbVsatVsat2Vsat4SmSHg∆Srg∆SbgYdt∆YdtLcgLcrLcbLag3200.40.34503803804000.550.450.0010.0020.70.60.00250.005202588823.83.83.80.5mVmVmVmV%%%%%%mVmV%%%%1112223344556788891/30s accumulationProgressive scan readout,high frame rate readout twopixels additionHigh frame rate readout modeZone 0 and IZone 0 to I'Ta = 60°C, 15 frames/sTa = 60°C, 15 frames/s∗2Item Symbol Min.Typ.Max.Unit MeasurementmethodRemarksRBProgressive scanreadout modeHigh frame ratereadout modeHigh frame ratereadout two pixelsaddition∗1∗1Vsat4 is the saturation signal amount at two pixels addition, and it is 190mV per one pixel. V SUB internal generation value ensures 190mV per one pixel of the saturation signal amount in high frame rate two pixels addition mode.∗2Eliminates the dark signal shading in the vertical direction by the high-speed transfer of the vertical register.Ta = 60°C– 9 –– 10 –Zone Definition of Video Signal ShadingMeasurement SystemNote) Adjust the amplifier gain so that the gain between [∗A] and [∗B], and between [∗A] and [∗C] equals 1.CCD signal output [∗A]Gr/Gb channel signal output [∗B]R/B channel signal output [∗C]Image Sensor Characteristics Measurement Method Color coding and readout of this image sensorThe primary color filters of this image sensor are arranged in the layout shown in the figure on the left (Bayer arrangement).Gr and Gb denote the G signals on the same line as the R signal and the B signal, respectively.Horizontal registerColor Coding DiagramAll pixel signals are output successively in a 1/15s period.The R signal and Gr signal lines and the Gb signal and B signal lines are output successively.Readout modesThe diagram below shows the output methods for the following three readout modes.1.Progressive scan modeIn this mode, all pixels signals are output in non-interlace format in 1/15s.The vertical resolution is approximately 800 TV-lines and all pixels signals within the same exposure period are read out simultaneously, making this mode suitable for high resolution image capturing.2.High frame rate readout modeAll effective areas are scanned in approximately 1/30s by reading out two out of four lines (3rd and 4th lines, 7th and 8th lines). The vertical resolution is approximately 400 TV-lines.This readout mode emphasizes processing speed over vertical resolution.3.High frame rate readout two pixels addition modeAll effective areas are scanned in approximately 1/30s by reading out two out of four lines (3rd and 4th lines, 7th and 8th lines), and by reading out two out of the remaining four lines (1st and 2nd lines, 5th and 6th lines) after shifting the vertical register by 2 bits, and adding them in the vertical register.– 11 –– 12 –Measurement conditions1)In the following measurements, the device drive conditions are at the typical values of the progressive scan mode, bias and clock voltage conditions.2)In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical black level (OB) is used as the reference for the signal output, which is taken as the value of the Gr/Gb signal output or the R/B signal output of the measurement system. Definition of standard imaging conditions1)Standard imaging condition I :Use a pattern box (luminance: 706cd/m 2, color temperature of 3200K halogen source) as a subject.(Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity.2) Standard imaging condition I :Image a light source (color temperature of 3200K) with a uniformity of brightness within 2% at all e a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.1.G sensitivity, sensitivity comparison Set to standard imaging condition I . After selecting the electronic shutter mode with a shutter speed of 1/100s,measure the signal outputs (V Gr , V Gb , V R and V B ) at the center of each Gr, Gb, R and B channel screen, and substitute the values into the following formulas.V G = (V Gr + V Gb )/2Sg = VG ×[mV]Rr = V R /V G Rb = V B /V G2.Saturation signalSet to standard imaging condition I . After adjusting the luminous intensity to 20 times the intensity with the average value of the Gr signal output, 150mV , measure the minimum values of the Gr, Gb, R and B signal outputs.3.SmearSet to standard imaging condition I . With the lens diaphragm at F5.6 to F8, first adjust the average value of the Gr signal output to 150mV. Measure the average values of the Gr signal output, Gb signal output, R signal output and B signal output (Gra, Gba, Ra, Ba), and then adjust the luminous intensity to 500 times the intensity with the average value of the Gr signal output, 150mV. After the readout clock is stopped and the charge drain is executed by the electronic shutter at the respective H blankings, measure the maximum value (Vsm [mV]) independent of the Gr, Gb, R and B signal outputs, and substitute the values into the following formula.Sm = Vsm ÷××× 100 [%] (1/10V method conversion value)10030Gra + Gba + Ra + Ba 41500110– 13 –4.Video signal shadingSet to standard imaging condition I . With the lens diaphragm at F5.6 to F8, adjust the luminous intensity so that the average value of the Gr signal output is 150mV. Then measure the maximum (Grmax [mV]) and minimum (Grmin [mV]) values of the Gr signal output and substitute the values into the following formula.SHg = (Grmax – Grmin)/150 × 100 [%]5.Uniformity between video signal channelsAfter measuring 4, measure the maximum (Rmax [mV]) and minimum (Rmin [mV]) values of the R signal and the maximum (Bmax [mV]) and minimum (Bmin [mV]) values of the B signal, and substitute the values into the following formulas.∆Srg = (Rmax – Rmin)/150 × 100 [%]∆Sbg = (Bmax – Bmin)/150 × 100 [%]6.Dark signalMeasure the average value of the signal output (Vdt [mV]) with the device ambient temperature 60°C and the device in the light-obstructed state, using the horizontal idle transfer level as a reference.7.Dark signal shadingAfter measuring 6, measure the maximum (Vdmax [mV]) and minimum (Vdmin [mV]) values of the dark signal output and substitute the values into the following formula.∆Vdt = Vdmax – Vdmin [mV]8.Line crawlSet to standard imaging condition I . Adjusting the luminous intensity so that the average value of the Gr signal output is 150mV, and then insert R, G and B filters and measure the difference between G signal lines (∆Glr, ∆Glg, ∆Glb [mV]) as well as the average value of the G signal output (Gar, Gag, Gab).Substitute the values into the following formula.Lci =× 100 [%] (i = r, g, b)gAdjust the Gr signal output value generated by strobe light to 150mV. After setting the strobe light so that it strobes with the following timing, measure the residual signal (Vlag). Substitute the value into the following g = (Vlag/150) ×100 [%]VDV2AStrobe light timingOutput∆Gli Gai– 14 –ICX267AKDrive Circuit15V XV1XV2A XSG1XSUB H2H1RG–8.0VXV3XV2B XSG2CONT.Note) Substrate bias control 1. Connect the ground resistor (VR1) shown below to the C SUB pin by each readout mode in order to secure the saturation signal described on the image sensor characteristics. Progressive scan readout mode : 2.0k Ω High frame rate readout mode : 3.8k ΩHigh frame rate 2 pixels addition mode: Ground resistor should not be connected. 2. If the substrate bias control signal is set to high level, and the ground resistor (VR1) connected to C SUB pin is not grounded at 55ms before the exposure time starts because tf is late, the internal generation voltage (V SUB ) may not fall enough.Substrate bias adjustment control signal V SUB Cont.tf ≈ 45mstr ≈ 1ms← GND← Internal generation value V SUB (V SUB in high frame rate readout two pixels addition mode)Substrate biasadjustment control signal V SUB Cont.Substrate bias φSUB pin voltage– 15 –ICX267AKSensor Readout Clock Timing ChartProgressive Scan ModeProgressive Scan Mode (With high-speed sweep)XV1XV2A/XV2BXV3XSG1HDV1V2A V2B V3XSG2– 16 –ICX267AKSensor Readout Clock Timing Chart High Frame Rate Readout ModeXV1XV2A/XV2BXV3XSG1HDV1V2A V2B V3XSG2– 17 –ICX267AKSensor Readout Clock Timing Chart High Frame Rate Readout Two Pixels Addition ModeXV1XV2A/XV2BXV3XSG1HDV1V2A V2B V3XSG2– 18 –ICX267AKDrive Timing Chart (Vertical Sync)Progressive Scan ModeVDHDV1V2AV3V2BCCD OUT– 19 –ICX267AKDrive Timing Chart (Vertical Sync)High Frame Rate Readout ModeV φ1V φ2A V φ2B V φ3CCD OUT HD VD– 20 –ICX267AKDrive Timing Chart (Vertical Sync)High Frame Rate Readout Two Pixels Addition ModeV φ1V φ2AV φ2BV φ3CCD OUT HD VD– 21 –ICX267AKDrive Timing Chart (Vertical Sync)Progressive Scan Mode (With high-speed sweep)RG φV φ1V φ2A V φ2BV φ3SUBCLK H φ1H φ2HD– 22 –ICX267AKDrive Timing Chart (Horizontal Sync)Progressive Scan ModeRG φV φ1V φ2AV φ2BV φ3SUBCLK H φ1H φ2HD– 23 –ICX267AKDrive Timing Chart (Horizontal Sync)High Frame Rate Readout ModeRG φV φ1V φ2AV φ2BV φ3SUBCLK H φ1H φ2HD– 24 –ICX267AKDrive Timing Chart (Horizontal Sync)High Frame Rate Readout Two Pixels Addition ModeRG φV φ1V φ2AV φ2BV φ3SUBCLK H φ1H φ2HD– 25 –ICX267AKRG φV φ1V φ2A V φ2BV φ3SUBCLK H φ1H φ2HD– 26 –ICX267AKRG φV φ1V φ2AV φ2BV φ3CLKH φ1H φ2HDCCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.a)Either handle bare handed or use non-chargeable gloves, clothes or material.Also use conductive shoes.b)When handling directly use an earth band.c)Install a conductive mat on the floor or working table to prevent the generation of static electricity.d)Ionized air is recommended for discharge when handling CCD image sensor.e)For the shipment of mounted substrates, use boxes treated for the prevention of static charges.2)Solderinga)Make sure the package temperature does not exceed 80°C.b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a ground 30Wsoldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.c)T o dismount an image sensor, do not use a solder suction equipment. When using an electric desolderingtool, use a thermal controller of the zero cross On/Off type and connect it to ground.3)Dust and dirt protectionImage sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and dirt. Clean glass plates with the following operation as required, and use them.a)Perform all assembly operations in a clean room (class 1000 or less).b)Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Shoulddirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized air is recommended.)c)Clean with a cotton bud and ethyl alcohol if the grease stained. Be careful not to scratch the glass.d)Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool whenmoving to a room with great temperature differences.e)When a protective tape is applied before shipping, just before use remove the tape applied forelectrostatic protection. Do not reuse the tape.4)Installing (attaching)a)Remain within the following limits when applying a static load to the package. Do not apply any loadmore than 0.7mm inside the outer perimeter of the glass portion, and do not apply any load or impact to limited portions. (This may cause cracks in the package.)Compressive strength Torsional strengthb)If a load is applied to the entire surface by a hard component, bending stress may be generated andthe package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive.– 27 –– 28 –c)The adhesive may cause the marking on the rear surface to disappear, especially in case the regulated voltage value is indicated on the rear surface. Therefore, the adhesive should not be applied to this area,and indicated values should be transferred to the other locations as a precaution.d)The notch of the package is used for directional index, and that can not be used for reference of fixing.In addition, the cover glass and seal resin may overlap with the notch of the package.e)If the lead bend repeatedly and the metal, etc., clash or rub against the package, the dust may be generated by the fragments of resin.f)Acrylate anaerobic adhesives are generally used to attach CCD image sensors. In addition, cyano-acrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives. (reference)5)Othersa)Do not expose to strong light (sun rays) for long periods, color filters will be discolored. When high luminance objects are imaged with the exposure level control by electronic-iris, the luminance of the image-plane may become excessive and discolor of the color filter will possibly be accelerated. In such a case, it is advisable that taking-lens with the automatic-iris and closing of the shutter during the power-off mode should be properly arranged. For continuous using under cruel condition exceeding the normal using condition, consult our company.b)Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions.c)The brown stain may be seen on the bottom or side of the package. But this does not affect the CCD characteristics.d)This package has 2 kinds of internal structure. However, their package outline, optical size, and strength are the same.The cross section of lead frame can be seen on the side of the package for structure A.Structure AStructure Blead frame– 29 –ICX267AKPackage Outline Unit: mmSony Corporation20 pin DIPP ACKAGE STRUCTUREP ACKAGE MA TERIAL LEAD TREA TMENT LEAD MA TERIAL P ACKAGE MASS DRAWING NUMBERPlasticGOLD PLA TING 42 ALLOY AS-B6-04(E)0.95g“D”“B'”6.The height from the bottom “C” to the effective image area is 1.41 ± 0.10mm.The height from the top of the cover glass “D” to the effective image area is 1.49 ± 0.15mm.7.The tilt of the effective image area relative to the bottom “C” is less than 50µm.The tilt of the effective image area relative to the top “D” of the cover glass is less than 50µm.8.The thickness of the cover glass is 0.5mm, and the refractive index is 1.5.9.The notches on the bottom of the package are used only for directional index, they mustnot be used for reference of fixing.。
l22671集成块管脚参数1.引言1.1 概述在文章的1.1概述部分,我们将对L22671集成块管脚参数进行概述。
L22671集成块是一种常用的电子元器件,其管脚参数对于电路设计和操作都具有重要意义。
在电子系统的设计和开发过程中,了解和理解集成块的管脚参数是至关重要的。
管脚参数通常包括引脚数量、引脚名称、功能描述、电气特性等。
这些参数旨在帮助工程师正确地连接和使用该集成块,从而实现预期的功能。
对于L22671集成块来说,它的管脚参数包括若干个引脚,每个引脚都有独特的功能和特性。
这些引脚的命名通常是按照标准规范进行的,以确保在不同的应用环境中能够正确地使用该集成块。
此外,在了解集成块管脚参数时,我们还需要关注其电气特性。
这些特性包括电压范围、电流要求、时钟频率等重要参数,这些参数对于设计和操作的电路都具有重要的影响,需要合理考虑。
综上所述,在本文中,我们将详细介绍L22671集成块的管脚参数。
通过深入了解集成块的管脚功能、命名以及电气特性,读者将能够更好地理解和使用该集成块,从而在电子系统的设计和实施中达到更好的效果。
1.2文章结构文章结构部分的内容可以如下编写:1.2 文章结构本文将从以下几个方面来探讨L22671集成块管脚参数。
首先,在第二个要点中,我们将详细介绍L22671集成块的管脚参数及其作用。
我们将从各个管脚的功能、电气特性以及使用注意事项等方面进行分析,以帮助读者更好地理解并使用L22671集成块。
接着,在结论部分,我们将对本文进行总结,并展望未来在L22671集成块管脚参数方面可能的发展趋势。
我们将提出一些可以改进或完善的方向,并探讨可能的应用领域。
通过本文对L22671集成块管脚参数的介绍和分析,读者将能够全面了解这一领域的相关知识,并在实际应用中能够正确地选择和使用L22671集成块,从而提高工作效率并降低成本。
注:本文所提及的L22671集成块管脚参数仅供参考,读者在使用时应遵循相关规范和安全要求,谨慎操作。
上海集驰电子有限公司50mA,高输入电压LDO 线性稳压器低压差CMOS 电压稳压器Low Dropout CMOS Voltage Regulator 71XX-1 系列71XX-1 Series71XX-1 系列是使用CMOS 技术开发的低压差型正电压稳压电路。
具有高输出电压精度,低静态功耗电流,且最高工作电压可达24V 的特点。
The 71XX-1 series is a family of Low Dropout Positive regulators developed using CMOS technology. These ICS perform with high output voltage accuracy, low quiescent current ,The allow operation voltage as high as 24V.产品特点:·高输出电压精度·低输入输出电压差·低功耗电流·高输入耐压精度±2%典型值40mV 典型值2uA 最大24V产品·high output voltageaccuracy ·low dropoutvoltage ·low quiescentcurrent·Max input voltage±2%40mV2uA24V选录:Selection table7144-1#/SOT-89 4.4V ±2%7150-1#/SOT-89 5.0V ±2%上海集驰电子有限公司型号(Part NO.) 输出电压(Output voltage)误差(Tolerance)7130-1#/SOT-23 3.0V ±2%7133-1#/SOT-23 3.3V ±2%7136-1#/SOT-23 3.6V ±2%7144-1#/SOT-23 4.4V ±2%7150-1#/SOT-23 5.0V ±2%注:可提供客户半定制产品,选择范围1.5~12V 每0.1V 步进细分。
第一章耐压系列测试仪器使用说明第一节MS2670 MS2670A MS2670D指针式耐压测试仪使用说明一、概述主要用途:MS2670/MS2670A /MS2670D型指针式耐压测试仪是用于耐压试验的安全性能测试仪器。
该系列仪器可输出0~3/5(kV)、50Hz正弦测试电压,能反映出被测物的绝缘强度等技术指标,被广泛用于计量测试部门,电工测量,绝缘材料和元器件、电线电缆、家用电器、医用电器等产品的测试;并为家用电器、电子仪器等国家安全标准的实施提供了测试手段,因而更显示出其重要性,使得该系列仪器成为科研机关、计量测试部门和电子行业检测电子仪器和家用电器、医用电器等方面必不可少的仪器设备,符合《GB 4706.1-2005》标准。
该系列仪器为通用型耐压测试仪,具有良好的测试性能,指针式测试速度快,操作及维修简便,经济实用。
二、主要技术指标及参数三、工作原理1.工作原理方框图:图(1):指针式耐压仪工作原理方框图2.框图各部分说明:(1)继电器:该继电器控制220V电源是否接到调压器上,从而控制输出高压接通或切断。
(2)电压调节器:主要由调压器构成,电压的改变是由该调压器的调节而实现的。
(3)高压变压器:按照大约1∶25比率升高调压器的输出电压,从而得到0~5(kV)的输出高压。
(4)电流检测器:此部分电路将流过被测件的电流转化成电压,与参考电压相比较,然后输出一检测信号给控制器。
(5)控制器:根据来自电流检测器及启动、复位钮的信号,控制继电器是否接通及报警电路是否报警。
(6)报警:由驱动块推动蜂鸣器及超漏灯发出声光报警。
四、仪器面板结构及说明1、MS2670/MS2670A/MS2670D系列耐压测仪面板结构见图(2)和图(3)所示:图(2):指针式耐压仪前面板示意图2南京民盛电子仪器有限公司产品使用说明图(3):指针式耐压仪后面板示意图2、面板各部分说明(1)“电源”开关:在打开此开关前,一定要看“使用注意事项”一节。
SPECIFICATIONSELECTRICALAt V CC = ±15VDC and T A = +25°C unless otherwise noted. Pin 8 connected to ground.OPA121KM OPA121KP, KUPARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS INPUTNOISEVoltage, f O = 10Hz(1)4050nV/√Hz f O = 100Hz(1)1518nV/√Hz f O = 1kHz(1)810nV/√Hz f O = 10kHz(1)67nV/√Hz f B = 10Hz to 10kHz(1)0.70.8µVrms f B = 0.1Hz to 10 Hz(1) 1.62µVp-p Current, f B = 0.1Hz to 10Hz(1)1521fA, p-p f O = 0.1Hz thru 20kHz(1)0.8 1.1fA/√Hz OFFSET VOLTAGE(2)Input Offset Voltage V CM = 0VDC±0.5±2±0.5±3mV Average Drift T A = T MIN to T MAX±3±10±3±10µV/°C Supply Rejection8610486104dB±6±50±6±50µV/V BIAS CURRENT(2)Input Bias Current V CM = 0VDC±1±5±1±10pA Device OperatingOFFSET CURRENT(2)Input Offset Current V CM = 0VDC±0.7±4±0.7±8pA Device OperatingIMPEDANCEDifferential1013 || 11013 || 1Ω || pF Common-Mode1014 || 31014 || 3Ω || pF VOLTAGE RANGECommon-Mode Input Range±10±11±10±11V Common-Mode Rejection V IN = ±10VDC8610482100dB OPEN-LOOP GAIN, DCOpen-Loop Voltage Gain R L≥ 2kΩ110120106114dB FREQUENCY RESPONSEUnity Gain, Small Signal22MHz Full Power Response20Vp-p, R L = 2kΩ3232kHz Slew Rate V O = ±10V, R L = 2kΩ22V/µs Settling Time, 0.1%Gain = –1, R L = 2kΩ66µs0.01%10V Step1010µs Overload Recovery,50% Overdrive(3)Gain = –155µs RATED OUTPUTVoltage Output R L = 2kΩ±11±12±11±12V Current Output V O = ±10VDC±5.5±10±5.5±10mA Output Resistance DC, Open Loop100100ΩLoad Capacitance Stability Gain = +110001000pF Short Circuit Current10401040mA POWER SUPPLYRated Voltage±15±15VDC Voltage Range,Derated Performance±5±18±5±18VDC Current, Quiescent I O = 0mADC 2.54 2.5 4.5mA TEMPERATURE RANGESpecification Ambient Temperature0+700+70°C Operating Ambient Temperature–40+85–25+85°C Storage Ambient Temperature–65+150–55+125°Cθ Junction-Ambient200150(4)°C/W NOTES: (1) Sample tested. (2) Offset voltage, offset current, and bias current are specified with the units fully warmed up. (3) Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive. (4) 100°C/W for KU grade.The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)At V CC = ±15VDC and T A = T MIN to T MAX unless otherwise noted.OPA121KMOPA121KP, KUPARAMETERCONDITIONS MIN TYPMAX MIN TYPMAX UNITS TEMPERATURE RANGE Specification Range Ambient Temperature+70+70°CINPUTOFFSET VOLTAGE (1)Input Offset Voltage V CM = 0VDC±1±3±1±5mV Average Drift ±3±10±3±10µV/°C Supply Rejection 82948294dB ±20±80±20±80µV/V BIAS CURRENT (1)Input Bias Current V CM = 0VDC ±23±115±23±250pADevice Operating OFFSET CURRENT (1)Input Offset Current V CM = 0VDC ±16±100±16±200pADevice OperatingVOLTAGE RANGECommon-Mode Input Range ±10±11±10±11V Common-Mode Rejection V IN = ±10VDC 82988096dB OPEN-LOOP GAIN, DC Open-Loop Voltage Gain R L ≥ 2k Ω106116100110dB RATED OUTPUT Voltage Output R L = 2k Ω±10.5±11±10.5±11V Current OutputV O = ±10VDC ±5.25±10±5.25±10mA Short Circuit Current V O = 0VDC 10401040mA POWER SUPPLY Current, QuiescentI O = 0mADC2.54.52.55mANOTE: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up.PACKAGE INFORMATIONPACKAGE DRAWINGMODEL PACKAGE NUMBER (1)OPA121KM TO-99001OPA121KP 8-Pin Plastic DIP 006OPA121KU8-Pin SOIC182NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.CONNECTION DIAGRAMSTop ViewP-Package Plastic Mini-DIP U-Package Plastic SOICOPA12112345678Offset Trim+V CC –In +In –V CCOutput Offset TrimSubstrate ABSOLUTE MAXIMUM RATINGSSupply ...........................................................................................±18VDC Internal Power Dissipation (1).........................................................500mW Differential Input Voltage...............................................................±36VDC Input Voltage Range .....................................................................±18VDC Storage Temperature RangeM package ....................................................................–65°C to +150°C P, U packages...............................................................–55°C to +125°C Operating Temperature RangeM package ......................................................................–40°C to +85°C P, U packages.................................................................–25°C to +85°C Lead TemperatureM, P packages (soldering, 10s)...................................................+300°C U package (soldering, 3s)...........................................................+260°C Output Short-Circuit Duration (2)...............................................Continuous Junction Temperature ....................................................................+175°C NOTES: (1) Packages must be derated based on θJA = 150°C/W (P package); θJA = 200°C/W (M package); θJA = 100°C/W (U package).(2) Short circuit may be to power supply common only. Rating applies to +25°C ambient. Observe dissipation limit and T J .®OPA121411k1010010k100k1M10MFrequency (Hz)020406080100120140V o l t a g e G a i n (d B )OPEN-LOOP FREQUENCY RESPONSE–180–135–90–45P h a s e S h i f t (D e g r e e s )11k1010010k100k1M10MFrequency (Hz)020406080100120140C o m m o n -M o d e R e j e c t i o n (d B )COMMON-MODE REJECTIONvs FREQUENCY11k 1010010k100k 1M 10MFrequency (Hz)20406080100120140P o w e r S u p p l y R e j e c t i o n (d B )POWER SUPPLY REJECTIONvs FREQUENCY–15–10–5+5+10+15Common-Mode Voltage (V)0.011010.1B i a s C u r r en t (p A )BIAS AND OFFSET CURRENT vs INPUT COMMON-MODE VOLTAGE0.011010.1O f f s e t C u r r e n t (p A )–50–25+25+50+75+125Ambient Temperature (°C)0.011k1000.1B i a s C u r r e n t (p A )BIAS AND OFFSET CURRENTvs TEMPERATURE+1001100.011k1000.1O f f s e t C u r r e n t (p A )1101101001k 10k 100k1MFrequency (Hz)11k10010V o l t a g e N o i s e (n V /√H z )INPUT VOLTAGE NOISE SPECTRAL DENSITYTYPICAL PERFORMANCE CURVEST A = +25°C, V CC = ±15VDC unless otherwise noted.®OPA1215–15–10–5+5+10+15Input Voltage (V)–2+2+1–1I n p u t C u r r e n t (m A )INPUT CURRENTS vs INPUT VOLTAGEWITH ±V PINS GROUNDED 0CCAPPLICATIONS INFORMATIONOFFSET VOLTAGE ADJUSTMENTThe OPA121 offset voltage is laser-trimmed and will requireno further trim for most applications. As with most ampli-fiers, externally trimming the remaining offset can change drift performance by about 0.3µV/°C for each 100µV of adjusted offset. Note that the trim (Figure 1) is similar to operational amplifiers such as 741 and AD547. The OPA121can replace most BIFET amplifiers by leaving the external null circuit unconnected.FIGURE 1. Offset Voltage Trim.INPUT PROTECTIONConventional monolithic FET operational amplifiers require external current-limiting resistors to protect their inputs against destructive currents that can flow when input FET gate-to-substrate isolation diodes are forward-biased. Most BIFET amplifiers can be destroyed by the loss of –V CC .Unlike BIFET amplifiers, the Difet OPA121 requires input current limiting resistors only if its input voltage is greaterthan 6V more negative than –V CC . A 10k Ω series resistorwill limit input current to a safe level with up to ±15V input levels even if both supply voltages are lost.Static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers (both bipolar and FET types),TYPICAL PERFORMANCE CURVES (CONT)T A = +25°C, V CC = ±15VDC unless otherwise noted.SMALL SIGNAL TRANSIENT RESPONSETime(µs)12345O u t p u t V o l t a g e (m V )+80+80+40+40LARGE SIGNAL TRANSIENT RESPONSETime(µs)02550+150-15O u t p u t V o l t a g e (V )this may cause a noticeable degradation of offset voltage and drift.Static protection is recommended when handling any precision IC operational amplifier.GUARDING AND SHIELDINGAs in any situation where high impedances are involved,careful shielding is required to reduce “hum” pickup in input leads. If large feedback resistors are used, they should also be shielded along with the external input circuitry.Leakage currents across printed circuit boards can easily exceed the bias current of the OPA121. To avoid leakage problems, it is recommended that the signal input lead of the OPA121 be wired to a Teflon™ standoff. If the OPA121 is to be soldered directly into a printed circuit board, utmost care must be used in planning the board layout. A “guard”pattern should completely surround the high-impedance in-put leads and should be connected to a low-impedance point which is at the signal input potential.The amplifier case should be connected to any input shield or guard via pin 8. This insures that the amplifier itself is fully surrounded by guard potential, minimizing both leak-age and noise pickup (see Figure #2).If guarding is not required, pin 8 (case) should be connected to ground.BIAS CURRENT CHANGEVERSUS COMMON-MODE VOLTAGEThe input bias currents of most popular BIFET operational amplifiers are affected by common-mode voltage (Figure 3).Higher input FET gate-to-drain voltage causes leakage and ionization (bias) currents to increase. Due to its cascode input stage, the extremely-low bias current of the OPA121is not compromised by common-mode voltage.FIGURE 2. Connection of Input Guard.FIGURE 3. Input Bias Current vs Common-Mode Voltage.Teflon™ E.I. du Pont de Nemours & Co.PACKAGING INFORMATIONOrderable Device Status (1)Package Type Package Drawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)OPA121KM OBSOLETE TO-99LMC 8TBD Call TI Call TI OPA121KM3OBSOLETE TO-99LMC 8TBD Call TI Call TI OPA121KP OBSOLETE PDIP P 8TBD Call TI Call TI OPA121KP4OBSOLETE PDIP P 8TBD Call TI Call TIOPA121KU ACTIVE SOIC D 875Green (RoHS &no Sb/Br)CU NIPDAU Level-3-260C-168HR OPA121KU/2K5ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-3-260C-168HR OPA121KU/2K5G4ACTIVE SOIC D 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-3-260C-168HR OPA121KUE4ACTIVESOICD875Green (RoHS &no Sb/Br)CU NIPDAULevel-3-260C-168HR(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan -The planned eco-friendly classification:Pb-Free (RoHS),Pb-Free (RoHS Exempt),or Green (RoHS &no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt):This component has a RoHS exemption for either 1)lead-based flip-chip solder bumps used between the die and package,or 2)lead-based die adhesive used between the die and leadframe.The component is otherwise considered Pb-Free (RoHS compatible)as defined above.Green (RoHS &no Sb/Br):TI defines "Green"to mean Pb-Free (RoHS compatible),and free of Bromine (Br)and Antimony (Sb)based flame retardants (Br or Sb do not exceed 0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.PACKAGE OPTION ADDENDUM12-Feb-2009TAPE AND REEL INFORMATION*All dimensions are nominalDevicePackage Type Package Drawing Pins SPQReel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant OPA121KU/2K5SOICD82500330.012.46.4 5.2 2.18.012.0Q1*All dimensions are nominalDevice Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm)OPA121KU/2K5SOIC D8*******.0346.029.0IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers AudioData Converters AutomotiveDLP®Products BroadbandDSP Digital ControlClocks and Timers MedicalInterface MilitaryLogic Optical NetworkingPower Mgmt SecurityMicrocontrollers TelephonyRFID Video&ImagingRF/IF and ZigBee®Solutions WirelessMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2009,Texas Instruments Incorporated。
Transistors Rev.C 1/2Low frequency amplifier2SD2673z ApplicationLow frequency amplifier Driverz Features1) A collector current is large. (3A) 2) V CE(sat) : max. 250mV At I C = 1.5A / I B = 30mA z External dimensions (Unit : mm)z Absolute maximum ratings (T a=25°C)ParameterSymbol V CBO V CEO V EBO I C I CPP C Tj TstgLimits 303063500150−55 to +1506∗1∗2Unit V V V A A mW 1W °C °CCollector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Power dissipationJunction temperatureRange of storage temperature∗1 Single pulse, P W =1ms∗2 Mounted on a 25×25×0.8mm Ceramic substrate tz Packaging specificationsz Electrical characteristics (T a=25°C)ParameterSymbol Min.Typ.Max.Unit ConditionsV CB =10V, I E =0A, f =1MHzf T −200−MHz V CE =2V, I E =−200mA, f =100MHz BV CBO 30−−V I C =10µA BV CEO 30−−V I C =1mA BV EBO 6−−V I E =10µA I CBO −−100nA V CB =30V I EBO −−100nA V EB =6VV CE(sat)−120250mV I C =1.5A, I B =30mA h FE 270−680−V CE =2V, I C =200mA Cob −40−pF∗∗Collector-base breakdown voltage Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff currentCollector-emitter saturation voltage DC current gainTransition frequencyCollector output capacitance∗ PulsedTransistors Rev.C 2/2z Electrical characteristic curvesCOLLECTOR CURRENT : I C (A)D C C U R R E N T G A I N : h F EFig.1 DC current gainvs. collector current101000100B A S E S A T U R A T I O N V O L T A G E : V B E (s a t ) (V )C O L L E C T O R S A T U R A T I O N V O L T A G E : V C E (s a t ) (V )Fig.2 Collector-emitter saturation voltagebase-emitter saturation voltage vs. collector currentCOLLECTOR CURRENT : I C (A)COLLECTOR CURRENT : I C (A)C O L L E C T O R S A T U R A T I O N V O L T A G E : V C E (s a t ) (V )Fig.3 Collector-emitter saturation voltagevs. collector currentBASE TO EMITTER CURRENT : V BE (V)C O L L E C T O RC U R R E N T : I C (A )Fig.4 Grounded emitter propagationcharacteristicsC O L L E C T O R O U T P U T C A P A C I T A N C E : C o b (p FEMITTER CURRENT : I E (A)T R A N S I T I O N F R E Q U E N C Y: f T (M H z )Fig.6 Gain bandwidth productvs. emitter current)E M I T T E R I N P U T C A P A C IT A N C E : C i b (p F )Fig.5 Collector output capacitancevs. collector-base voltage Emitter input capacitance vs. emitter-base voltage101000100EMITTER TO BASE VOLTAGE : V EB (V)COLLECTOR TO BASE VOLTAGE : V CB (V)COLLECTOR CURRENT : I C (A)Fig.7 Switching timeS W I T C H I N G T I M E : (n s )AppendixAbout Export Control Order in JapanProducts described herein are the objects of controlled goods in Annex 1 (Item 16) of Export T rade ControlOrder in Japan.In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.Appendix1-Rev1.1。
目录1概述 (2)2技术指示 (2)3操作前的准备 (2)3-1拆封检查 (2)3-2工作前的警告 (3)3-3对仪器的保养 (4)4操作说明 (4)4-1前面板介绍 (4)4-2后面板介绍 (5)4-3操作步骤 (6)5工作原理 (7)5-1框图 (7)5-2电路简介 (7)6维护 (8)7校准 (8)7-1校准用设备 (8)7-2校正参数 (8)8 远控插座示意图 (9)1概述YD2665、YD2672、YD2673系列耐压测试仪产品为电子产品安全参数的耐压测试仪器。
可用于家用电器、电子仪器、电子原器件、电线电缆等电器产品的耐压检测。
该系列产品的变压器输出功率不低于750V A。
本系列产品满足电子产品的要求,也满足IEC、JIS、CSA等其它标准。
本系列产品具有合格不合格判别功能、声光报警功能、测试时间自动控制功能,测试电流采用了3位半数字表显示,操作简单、外形美观、过流切断速度快等优点。
是理想的耐压检测仪器。
本用户手册适用于YD2665、YD2672、YD2673系列耐压测试仪产品,在阅读时请注意各自产品型号及相应参数。
外形尺寸(WHB):400×190×3503操作前的准备3-1拆封检查⑴本仪器在制造单位认真检定后方装箱发运,用户收到仪器后,请检查仪器外观,如有明显损坏,则要与运输部门联系交涉。
⑵检查仪器型号是否与所订货物相符,如有疑义,立即与售货单位交涉。
⑶检查仪器所具有的附件,如有短缺及损坏,请立即与售货单位交涉。
仪器附件见下:a. 电源线1根b. 高压测量线1根c. 低压测量线1根d. 说明书1份e. 包修卡1份3-2 工作前的警告由于本仪器产生高压输出,所以必须绝对注意安全。
请注意下列各事项和严格按操作规程进行操作。
⑴必须可靠地将仪器接地端(后面板黑色接线柱)接地,接地线线径不应小于0.75的多股线,严禁将地线通过自来水管等接地性能不良的导电物接地。
在确定你的三线电源线中接地线性能良好(如在你的电网中无大电流三相设备的情况下,并且你单位已对之进行良好处理过后)可不用附加接地线。
11五.注意事项1、存放保管本表时,应注意环境温度和湿度,放在干燥通风的地方为宜,要防尘、防潮、防震、防酸碱及腐蚀气体。
2、测物体为正常带电体时,必须先断开电源,然后测量,否则会危及人身设备安全!本表E 、L 端子之间开启高压后有较高的直流电压,在进行测量操作时人体各部分不可触及。
3、本仪表为交直流两用,不接交流电时,仪表使用电池供电,接入交流电时,优先使用交流电。
4、当表头左上角显示“←”时表示电池电压不足,应更换新电池。
仪表长期不用时,应将电池全部取出,以免锈蚀仪表。
六.产品附件1.仪器主机1台 2.测试线 3根 3.电源线 1根 4.说明书 1本 5.合格证1张七.售后服务凡购买数字兆欧表的用户均享受以下的售后服务: 1、仪表自售出之日起三个月内,如有质量问题,我公司免费更换新表,但用户不能自行拆机。
属用户使用不当的情况不在此范围。
2、仪表一年内凡质量问题由我公司免费维修。
3、仪表自售出之日起超过一年时,我公司负责长期维修,适当收取材料费。
尊敬的顾客感谢您使用本公司ET2671数字兆欧表。
在您初次使用该仪器前,请您详细地阅读本使用说明书,将可帮助您熟练地使用本仪器。
我们的宗旨是不断地改进和完善公司的产品,因此您所使用的仪器可能与使用说明书有少许的差别。
如果有改动的话,我们会用附页方式告知,敬请谅解!您有不清楚之处,请与公司售后服务部联络,我们定会满足您的要求。
由于输入输出端子、测试柱等均有可能带电压,您在插拔测试线、电源插座时,会产生电火花,小心电击,避免触电危险,注意人身安全!公司地址: 武汉市洪山区关山SBI 创业街2栋14楼 销售热线: (027) (直拨) 传 真: (027) E-mail : 网 址:8 --1 -2233◆ 慎重保证本公司生产的产品,在发货之日起三个月内,如产品出现缺陷,实行包换。
一年(包括一年)内如产品出现缺陷,实行免费维修。
一年以上如产品出现缺陷,实行有偿终身维修。