有理数乘方练测试卷
- 格式:doc
- 大小:82.50 KB
- 文档页数:3
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.有理数的乘方一.选择题 1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加 2、-32的值是( )A 、-9B 、9C 、-6D 、6 3、下列各对数中,数值相等的是( )A 、 -32与 -23B 、-23与 (-2)3C 、-32与(-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积B 、任何一个有理数的偶次幂是正数C 、-32与 (-3)2互为相反数 D 、一个数的平方是94,这个数一定是32 5、下列各式运算结果为正数的是( )A 、-24×5 B 、(1-2)×5 C 、(1-24)×5D 、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4D 、2或-2 7、一个数的立方是它本身,那么这个数是( ) A 、 0 B 、0或1 C 、-1或1D 、0或1或-1 8、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ; 2、根据幂的意义,(-3)4表示 ,-43表示 ;3、平方等于641的数是 ,立方等于641的数是 ; 4、一个数的15次幂是负数,那么这个数的2003次幂是 ; 5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ; 7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.计算题1、()42-- 2、3211⎪⎭⎫ ⎝⎛3、()20031- 4、()33131-⨯--5、()2332-+- 6、()2233-÷- 7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷ 9、()⎪⎭⎫ ⎝⎛-÷----72132224610、()()()33220132-⨯+-÷---解答题2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园 1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a+++的值。
有理数的乘方(1)一.选择题1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加2、-32的值是( )A 、-9B 、9C 、-6D 、63、下列各对数中,数值相等的是( )A 、 -32 与 -23B 、-23 与 (-2)3C 、-32 与 (-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积B 、任何一个有理数的偶次幂是正数C 、-32 与 (-3)2互为相反数D 、一个数的平方是94,这个数一定是32 5、下列各式运算结果为正数的是( )A 、-24×5B 、(1-2)×5C 、(1-24)×5D 、1-(3×5)6二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫ ⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ;3、平方等于641的数是 ,立方等于641的数是 ; 4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;计算题1、()42--2、3211⎪⎭⎫ ⎝⎛ 3、()20031- 4、()33131-⨯-- 5、()2332-+- 6、()2233-÷-有理数的乘方(2)一.选择题1、如果一个有理数的平方等于(-2)2,那么这个有理数等于( )A 、-2B 、2C 、4D 、2或-22、一个数的立方是它本身,那么这个数是( )A 、 0B 、0或1C 、-1或1D 、0或1或-13、如果一个有理数的正偶次幂是非负数,那么这个数是( )A 、正数B 、负数C 、 非负数D 、任何有理数4、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、2245、两个有理数互为相反数,那么它们的n 次幂的值( )A 、相等B 、不相等C 、绝对值相等D 、没有任何关系6、一个有理数的平方是正数,则这个数的立方是( )A 、正数B 、负数C 、正数或负数D 、奇数7、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2二、填空题1、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫ ⎝⎛-343 ,=-433 ; 2、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ; 3、如果44a a -=,那么a 是 ;4、()()()()=----20022001433221 ;5、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;6、若032>b a -,则b 0计算题1、()()3322222+-+--2、()34255414-÷-⎪⎭⎫ ⎝⎛-÷3、()⎪⎭⎫ ⎝⎛-÷----721322246 4、()()()33220132-⨯+-÷--- 解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a +++的值。
有理数的乘方练习题(含参考答案) 有理数的乘方练题(含参考答案)一、选择题1、11表示()A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加答案:C2、-3的值是()A、-9B、9C、-6D、6答案:C3、下列各对数中,数值相等的是()A、-3与-2B、-2与(-2)C、-3与(-3)D、(-3×2)与-3×2答案:B4、下列说法中正确的是()A、2表示2×3的积B、任何一个有理数的偶次幂是正数C、-3与(-3)互为相反数D、一个数的平方是它本身的相反数答案:C5、下列各式运算结果为正数的是()A、-2×5B、(1-2)×5C、(1-2)×(-5)D、1-(3×5)答案:C6、这个数一定是936,如果一个有理数的平方等于(-2),那么这个有理数等于()A、-2B、2C、4D、2或-2答案:D7、一个数的立方是它本身,那么这个数是()A、0B、1或-1C、-1或1D、1或-1答案:B8、如果一个有理数的正偶次幂是非负数,那么这个数是()A、正数B、负数C、非负数D、任何有理数答案:C9、-2×(-2)×(-2)=()A、2B、-2C、-8D、-2答案:C10、两个有理数互为相反数,那么它们的n次幂的值()A、相等B、不相等C、绝对值相等D、没有任何关系答案:B11、一个有理数的平方是正数,则这个数的立方是()A、正数B、负数C、正数或负数D、奇数答案:A12、(-1)2001+(-1)2002÷-1+(-1)2003的值等于()A、0B、1C、-1D、2答案:A二、填空题1、(-2)6中指数为6,底数为-2;4的底数是2,指数是2;答案:2,22、根据幂的意义,(-3)3表示-3的立方,-4表示-4的一次幂;答案:-27,-43、平方等于43的数是6,立方等于11的数是-2;答案:6,-24、一个数的15次幂是负数,那么这个数的2003次幂是负数;答案:负数5、平方等于它本身的数是1和0,立方等于它本身的数是1、0和-1;答案:1和0,1、0和-16、33÷(3/4)=44;-3/4=-0.75,-(-3/4)=0.75;答案:44,-0.75,0.757、(-2×7)<(3×3)<(-5×4/3);答案:-14<-9<-20/38、如果a4=-a4,那么a是0;答案:09、(1-2)(2-3)(3-4)…(2001-2002)=1;答案:11、如果一个数的平方是它的相反数,那么这个数是虚数;如果一个数的平方是它的倒数,那么这个数是分数1或-1.2、已知-ab|b|。
有理数的乘方练习题(含参考答案)一.选择题 1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加2、-32的值是( )A 、-9B 、9C 、-6D 、63、下列各对数中,数值相等的是( )A 、 -32与 -23B 、-23与 (-2)3C 、-32与(-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积 B 、任何一个有理数的偶次幂是正数 C 、-32与 (-3)2互为相反数 D 、一个数的平方是94,这个数一定是325、下列各式运算结果为正数的是( )A 、-24×5 B 、(1-2)×5 C 、(1-24)×5D 、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4D 、2或-27、一个数的立方是它本身,那么这个数是( ) A 、 0 B 、0或1 C 、-1或1D 、0或1或-1 8、如果一个有理数的正偶次幂是非负数,那么这个数是( )A 、正数B 、负数C 、 非负数D 、任何有理数9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数 D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ; 3、平方等于641的数是 ,立方等于641的数是 ; 4、一个数的15次幂是负数,那么这个数的2003次幂是 ; 5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ; 7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a-=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0计算题1、()42-- 2、3211⎪⎭⎫⎝⎛3、()20031- 4、()33131-⨯--5、()2332-+- 6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---三、解答题1、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?2、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?3、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园 1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a +++的值。
1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加 2、-32的值是( )A 、-9B 、9C 、-6D 、6 3、下列各对数中,数值相等的是( ) A 、 -32与 -23B 、-23与 (-2)3C 、-32与(-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积 B 、任何一个有理数的偶次幂是正数 C 、-32与 (-3)2互为相反数 D 、一个数的平方是94,这个数一定是32 5、下列各式运算结果为正数的是( )A 、-24×5 B 、(1-2)×5 C 、(1-24)×5D 、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4D 、2或-2 7、一个数的立方是它本身,那么这个数是( ) A 、 0 B 、0或1 C 、-1或1D 、0或1或-1 8、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系 11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数 D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ;3、平方等于641的数是 ,立方等于641的数是 ; 4、一个数的15次幂是负数,那么这个数的2003次幂是 ; 5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ; 7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0 三、计算题1、()42-- 2、3211⎪⎭⎫⎝⎛3、()20031- 4、()33131-⨯--5、()2332-+- 6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷探究创新乐园1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a +++的值。
有理数的乘方一.选择题 1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加 2、-32的值是( )A 、-9B 、9C 、-6D 、6 3、下列各对数中,数值相等的是( ) A 、 -32与 -23B 、-23与 (-2)3C 、-32与(-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积 B 、任何一个有理数的偶次幂是正数 C 、-32与 (-3)2互为相反数 D 、一个数的平方是94,这个数一定是32 5、下列各式运算结果为正数的是( )A 、-24×5 B 、(1-2)×5 C 、(1-24)×5D 、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4D 、2或-2 7、一个数的立方是它本身,那么这个数是( ) A 、 0 B 、0或1 C 、-1或1D 、0或1或-1 8、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系 11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数 D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ; 3、平方等于641的数是 ,立方等于641的数是 ;4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ; 7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0 计算题1、()42-- 2、3211⎪⎭⎫⎝⎛3、()20031- 4、()33131-⨯--5、()2332-+- 6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园 1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a +++的值。
七年级数学有理数的乘方练习题(含答案)一.选择题1、118表示()A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加2、-32的值是()A、-9B、9C、-6D、63、下列各对数中,数值相等的是()A、-32与-23B、-23与 (-2)3C、-32与(-3)2D、(-3×2)2与-3×224、下列说法中正确的是()A、23表示2×3的积B、任何一个有理数的偶次幂是正数4,这个数C、-32 与 (-3)2互为相反数D、一个数的平方是92一定是35、下列各式运算结果为正数的是()A、-24×5B、(1-2)×5C、(1-24)×5D、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于()A、-2B、2C、4D、2或-27、一个数的立方是它本身,那么这个数是()A、 0B、0或1C、-1或1D、0或1或-18、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ;3、平方等于641的数是 ,立方等于641的数是 ;4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ;7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0 计算题1、()42--2、3211⎪⎭⎫⎝⎛3、()20031-4、()33131-⨯--5、()2332-+-6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园1、你能求出1021018.0⨯的结果吗?1252、若a是最大的负整数,求200320012000a2002+的值。
有理数的乘方一.选择题1、118表示()A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加2、-32的值是()A、-9B、9C、-6D、63、下列各对数中,数值相等的是()A、-32与-23B、-23与 (-2)3C、-32与(-3)2D、(-3×2)2与-3×224、下列说法中正确的是()A、23表示2×3的积B、任何一个有理数的偶次幂是正数4,这个C、-32 与 (-3)2互为相反数D、一个数的平方是92数一定是35、下列各式运算结果为正数的是()A、-24×5B、(1-2)×5C、(1-24)×5D、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于()A、-2B、2C、4D、2或-27、一个数的立方是它本身,那么这个数是()A、 0B、0或1C、-1或1D、0或1或-18、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ;3、平方等于641的数是 ,立方等于641的数是 ;4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ;7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0 计算题1、()42-- 2、3211⎪⎭⎫⎝⎛3、()20031-4、()33131-⨯--5、()2332-+-6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园1、你能求出1021018.0⨯的结果吗?1252、若a是最大的负整数,求200320012000a2002+的值。
人教七年级数学上同步练习《有理数的乘方》(含答案)1. (-5)6表示( )A .6与-5相乘的积B .5与6相乘的积C .6个-5相乘的积D .6个-5相加的和2. (-2)3等于( )A .-6B .6C .-8D .83.下列各组数互为相反数的是( )A .32与-23B .32与(-3)2C .32与-32D .-23与(-2)34.下列说法中,正确的有( )①任何小于1的有理数的平方都比1小;②任何有理数的平方都是正数;③互为相反数的两数的平方相等;④平方得225的数只有15.A .0个B .1个C .2个D .3个5.已知n 表示正整数,则()=-+2121nn ( ) A .0 B .1 C .0或1 D .无法确定,随n 的值的不同而不同6.某种细菌在培养过程中,细菌每半小时分裂一次(由一个分裂两个),经过两个小时,这种细菌由1个可分裂为( )A .4个B .8个C .16个D .32个7.下列各式:①-(-4);②-|-4|;③(-4)2;④-42;⑤-(-4)4;⑥-(-4)3,其中结果为负数的序号为________.8.一个数的平方等于这个数的本身,此数为______;一个数的立方等于这个数的本身,此数为________;一个数的平方等于这个数的立方,此数为______.9.计算:(1)=⎪⎭⎫ ⎝⎛-432 ,=⎪⎭⎫ ⎝⎛254 ; (2)=⎪⎭⎫ ⎝⎛-371 ,()=-41.0 ; (3)=⎪⎭⎫ ⎝⎛-2211 ,=-243 ; 10.平方等于49的数是___;_____的平方等于0.0001;立方等于-64的数是___.11.给出依次排列的一列数:2,-4,8,-16,32,…(1)依次写出32后面的三个数: ;(2)按照规律,第n 个数为 。
12.有一列数,,174,103,52,21 --那么第7个数是 。
13.一根1 m 长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次剪去剩下的一半后剩下的长度是多少?第n 次剪去剩下的一半后剩下的长度呢?14.已知|a +4|+(b -2)2=0,求(a ×b)2的值.15.计算:(1)()274212125.0-⨯⎪⎭⎫ ⎝⎛-÷-;(2)()()2015351212-⨯⎪⎭⎫ ⎝⎛⨯-;(3)()223232⨯--⨯- 16.探索规律:观察由※组成的图案和算式,请猜想:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)1+3+5+7+9+…+19=____;(2)请猜想:1+3+5+7+9+…+(2n -1)等于多少?(用含n 的式子表示)17.观察下列数:1,2,3,4,5,6,7,8,9,…,将这列数排列成下列形式;那么第10行从左边数第9个数是多少?人教七年级数学上同步练习《有理数的乘方》参考答案1. C2. C3. C4. B5. C6. C7. ② ④ ⑤8. 1和0;1,-1和0;1和09. (1)8116-, 2516 (2)3431-,0.0001 (3),49,49- 10.±7,±0.01,-4 11.(1)-64,128,-256 (2)()n n 211+- 12. 507- 13.14. 解:6415. (1)解:原式=1(2)解:原式=4(3)解:原式=-5416. (1)100(2)n 217. 解:第10行有19个数,前9行共有1+3+5+7+…+17=81个数,第9行最后一个数就是81,所以第10行第9个数是90.。
有理数的乘方练习题,百度文库一.选择题 1、11表示A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加、-3的值是A、-B、9C、-D、6、下列各对数中,数值相等的是 A、-与- B、-与 C、-与 D、与-3×2、下列说法中正确的是A、2表示2×3的积B、任何一个有理数的偶次幂是正数C、-3与互为相反数D、一个数的平方是5、下列各式运算结果为正数的是A、-2×B、×5C、×D、1-、如果一个有理数的平方等于,那么这个有理数等于 A、-B、2C、 D、2或-2、一个数的立方是它本身,那么这个数是 A、 0 B、0或1C、-1或1 D、0或1或-1、如果一个有理数的正偶次幂是非负数,那么这个数是 A、正数 B、负数C、非负数 D、任何有理数、-2××=A、 B、-C、-2D、210、两个有理数互为相反数,那么它们的n次幂的值A、相等B、不相等C、绝对值相等D、没有任何关系 11、一个有理数的平方是正数,则这个数的立方是 A、正数 B、负数C、正数或负数 D、奇数 12、20019 24 24 423 24 4 6 223 2 2 2 223 3 3842,这个数一定是3+2002÷?+2003的值等于A、0B、 1C、-1D、二、填空题?3?1、中指数为,底数为;4的底数是,指数是;的底数?2?65是,指数是,结果是;2、根据幂的意义,表示,-4表示;、平方等于 4311的数是,立方等于的数是;4641 页共页将来的你,一定会感谢现在努力拼搏的你。
4、一个数的15次幂是负数,那么这个数的2003次幂是;、平方等于它本身的数是,立方等于它本身的数是; 33?3??3?? ;、,,?4?4??4?7、??2?7?,??2?7?,??2?7?的大小关系用“<”号连接可表示为345448、如果a??a,那么a是;339、?1?2??2?3??3?42001?2002?? ;10、如果一个数的平方是它的相反数,那么这个数是;如果一个数的平方是它的倒数,那么这个数是;11、若?ab>0,则b 0 计算题23?1?41、2?、?1??2?3、??1?5、?233?6、?323?22200334、?13?31?37、??2??22??238、4232?1?43??55??4?9、?22??31? 10、2??31??02?642??2?7?233页共页将来的你,一定会感谢现在努力拼搏的你。
有理数的乘方练习题有理数是数学中的一个重要概念,它包括整数、分数等。
而有理数的乘方则是指一个有理数的自乘运算,即将一个有理数连续乘以自身的操作。
在本文中,我们将通过一系列练习题来帮助你更好地理解有理数的乘方。
练习一:简化表达式1. 计算:(-2)²答案:(-2)² = (-2) × (-2) = 42. 计算:(-3)³答案:(-3)³ = (-3) × (-3) × (-3) = -273. 计算:(-5)⁴答案:(-5)⁴ = (-5) × (-5) × (-5) × (-5) = 6254. 计算:(1/2)²答案:(1/2)² = (1/2) × (1/2) = 1/4练习二:计算表达式的值1. 计算:3²答案:3² = 3 × 3 = 92. 计算:(2/3)⁵答案:(2/3)⁵ = (2/3) × (2/3) × (2/3) × (2/3) × (2/3) = 32/243 3. 计算:(-4/5)³答案:(-4/5)³ = (-4/5) × (-4/5) × (-4/5) = -64/1254. 计算:(-2)⁶答案:(-2)⁶ = (-2) × (-2) × (-2) × (-2) × (-2) × (-2) = 64练习三:应用乘方性质1. 将 (-2)³表示为 (-2) 的乘方答案:(-2)³ = (-2) × (-2) × (-2) = (-2)²× (-2) = 4 × (-2) = -82. 将 (1/3)²表示为 (1/3) 的乘方答案:(1/3)² = (1/3) × (1/3) = (1/3) × (1/3) × (1/3) = (1/3)³3. 将 (-3/4)³表示为 (-3/4) 的乘方答案:(-3/4)³ = (-3/4) × (-3/4) × (-3/4) = (-3/4) × (-3/4) × (-3/4) × (-3/4) = (-3/4)⁴4. 将 (-5)⁵表示为 (-5) 的乘方答案:(-5)⁵ = (-5) × (-5) × (-5) × (-5) × (-5) = (-5)⁴× (-5) = 625 × (-5) = -3125练习四:解决实际问题问题:家庭的月收入为10000元,每个月由于各种原因都会消耗掉10%的收入,那么经过5个月后,家庭剩下的收入是多少?解答:每个月剩下的收入都是原收入的90%,即0.9倍。
一.选择题 1.118暗示( )A.11个8连乘B.11乘以8C.8个11连乘D.8个体1相加 2.-32的值是( )A.-9B.9C.-6D.6 3.下列各对数中,数值相等的是( ) A. -32与 -23B.-23与 (-2)3C.-32与(-3)2D.(-3×2)2与-3×224.下列说法中准确的是( )A.23暗示2×3的积 B.任何一个有理数的偶次幂是正数C.-32 与 (-3)2互为相反数 D.一个数的平方是94,这个数必定是325.下列各式运算成果为正数的是( )A.-24×5 B.(1-2)×5 C.(1-24)×5 D.1-(3×5)66.假如一个有理数的平方等于(-2)2,那么这个有理数等于( ) A.-2 B.2 C.4 D.2或-27.一个数的立方是它本身,那么这个数是( ) A. 0 B.0或1 C.-1或1 D.0或1或-1 8.假如一个有理数的正偶次幂长短负数,那么这个数是( ) A.正数 B.负数 C. 非负数 D.任何有理数 9.-24×(-22)×(-2) 3=( ) A. 29B.-29C.-224D.22410.两个有理数互为相反数,那么它们的n 次幂的值( ) A.相等 B.不相等 C.绝对值相等 D.没有任何干系 11.一个有理数的平方是正数,则这个数的立方是( ) A.正数 B.负数 C.正数或负数 D.奇数 12.(-1)2001+(-1)2002÷1+(-1)2003的值等于( )A.0B. 1C.-1D.2 二.填空题1.(-2)6中指数为,底数为;4的底数是,指数是;523⎪⎭⎫ ⎝⎛-的底数是,指数是,成果是;2.依据幂的意义,(-3)4暗示,-43暗示;3.平方等于641的数是,立方等于641的数是;4.一个数的15次幂是负数,那么这个数的2003次幂是;5.平方等于它本身的数是,立方等于它本身的数是;6.=⎪⎭⎫ ⎝⎛-343,=⎪⎭⎫ ⎝⎛-343,=-433; 7.()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号衔接可暗示为;8.假如44a a -=,那么a 是;9.()()()()=----20022001433221 ;10.假如一个数的平方是它的相反数,那么这个数是;假如一个数的平方是它的倒数,那么这个数是; 11.若032>b a -,则b 0 盘算题1.()42-- 2.3211⎪⎭⎫⎝⎛3.()20031-4.()33131-⨯--5.()2332-+- 6.()2233-÷- 7.()()3322222+-+-- 8.()34255414-÷-⎪⎭⎫ ⎝⎛-÷9.()⎪⎭⎫ ⎝⎛-÷----721322246 10.()()()33220132-⨯+-÷---解答题 1.按提醒填写:2.3.某种细菌在造就进程中,每半小时决裂一次(由一个决裂成两个),若这种细菌由1个决裂为16个,则这个进程要经由多长时光?4.你吃过“手拉面”吗?假如把一个面团拉开,然后半数,再拉开,再半数,……如斯来去下去,半数10次,会拉出若干根面条?探讨创新乐土 1.你能求出1021018125.0⨯的成果吗?2.若a 是最大的负整数,求2003200220012000a a a a+++的值.3.若a 与b 互为倒数,那么2a 与2b 是否互为倒数?3a 与3b 是否互为倒数? 4.若a 与b 互为相反数,那么2a 与2b 是否互为相反数?3a 与3b 是否互为相反数? 5.比较下面算式成果的大小(在横线上填“>”.“<”或“=” ):2234+342⨯⨯()2213+-()132⨯-⨯()()2222-+-()()222-⨯-⨯经由过程不雅察归纳,写出能反应这一纪律的一般结论. 6.依据乘方的意义可得4442⨯=,44443⨯⨯=,则()()5324444444444444=⨯⨯⨯⨯=⨯⨯⨯⨯=⨯,试盘算n m a a ⋅(m .n 是正整数)7.不雅察下列等式,2311=,233321=+,23336321=++,23333104321=+++…想一想等式左边各项幂的底数与右边幂的底数有什么关系?猜一猜可以引出什么纪律,并把这种纪律用等式写出来数学生涯实践假如今天是礼拜天,你知道再是日1002是礼拜几吗?大家都知道,一个礼拜有7天,要解决这个问题,我们只需知道1002被7除的余数是若干,假设余数是1,因为今天是礼拜天,那么再过这么多天就是礼拜一;假设余数是2,那么再过这么多天就是礼拜二;假设余数是3,那么再过这么多天就是礼拜三……是以,我们就用下面的实践来解决这个问题.起首经由过程列出左侧的算式,可以得出右侧的结论:(1)27021+⨯= 显然12被7除的余数为2; (2)47022+⨯= 显然22被7除的余数为4; (3)17023+⨯= 显然32被7除的余数为1; (4)27224+⨯= 显然42被7除的余数为;(5)52= 显然52被7除的余数为;(6)62= 显然62被7除的余数为; (7)72= 显然72被7除的余数为; ……然后细心不雅察右侧的成果所反应出的纪律,我们可以猜测出1002被7除的余数是.所以,再过1002天必是礼拜.同理,我们也可以做出下列断定:今天是礼拜四,再过1002天必是礼拜.小小数学沙龙1.你知道1003的个位数字是几吗?2.盘算()()10110022-+-3.我们经常应用的数是十进制数,如91031061022639123+⨯+⨯+⨯=,暗示十进制的数要用10个数码:0.1.2.3.4.5.6.7.8.9,在电子盘算机顶用的是二进制,只要用两个数码:0和1,如二进制中的1202110112+⨯+⨯=等于十进制的5,10111=1212120211234+⨯+⨯+⨯+⨯等于十进制的23,那么二进制中的1101等于十进制中的数是若干?4.19993222221+++++= s ,求s 的值答案:1.C2.A3.B4.C5.B6.D7.D8.D9.B 10.C 11.C 12.C1.6,-2,4,1,23-,5,32243-; 2.4个-3相乘,3个4的积的相反数;3.81±,41; 4.负数; 5.0和1, 0,1和-1; 6.427,6427,6427---; 7.()572⋅-<()372⋅-<()472⋅-; 8.9,0; 9.-1; 10.-1和0,1;11.< 盘算题1.-162.8273.-14.25.16.-17.28.-59 9.-73 10.-1 解答题1.差,积,商,幂2.mm 8.20422.010=⨯3.2小时4.1024210=根探讨创新乐土 1.88188125.080125101101101102101=⨯=⨯⨯=⨯ 2.0 3.均是互为倒数4.2a 与2b 不必定互为相反数,3a 与3b 互为相反数 5.>,>,=,两数的平方和大于或等于这两数的积的2倍; 6.nm nmaa a +=⋅7.等式左边各项幂的底数的和等于右边幂的底数,()23332121n n +++=+++数学生涯实践2,47425+⨯=,4,17926+⨯=,1,271827+⨯=,2,2,=,- 小小数学沙龙1.个个个n n n 9991999999+⨯=n n n n 10999999999++⨯ 个个个=nn n 10)1999(999++⨯ 个个=n n n 1010999+⨯个=nn 10)1999(⨯+ 个=nn 1010⨯=个个n n 101010101010⨯⨯⨯⨯⨯⨯⨯=n210 2.1003的个位数字是1,提醒:331=,932=,2733=,8134=,24335=,72936=……个位数字是按3,9.7.1轮回的; 3.1002- 4.135. 199922221++++= s ①20003222222++++=∴ s ②由②-①: 122000-=s。
有理数的乘方一.选择题 1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加 2、-32的值是( )A 、-9B 、9C 、-6D 、6 3、下列各对数中,数值相等的是( ) A 、 -32与 -23B 、-23与 (-2)3C 、-32与(-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积 B 、任何一个有理数的偶次幂是正数 C 、-32与 (-3)2互为相反数 D 、一个数的平方是94,这个数一定是32 5、下列各式运算结果为正数的是( )A 、-24×5 B 、(1-2)×5 C 、(1-24)×5D 、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4D 、2或-2 7、一个数的立方是它本身,那么这个数是( ) A 、 0 B 、0或1 C 、-1或1D 、0或1或-1 8、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系 11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数 D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ; 3、平方等于641的数是 ,立方等于641的数是 ;4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ; 7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0 计算题1、()42-- 2、3211⎪⎭⎫ ⎝⎛3、()20031- 4、()33131-⨯--5、()2332-+- 6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----72132224610、()()()33220132-⨯+-÷---解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园 1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a +++的值。
有理数乘方练习题一、选择题(每题3分,共15分)1. 计算下列哪个选项的结果为正数:A. \( (-2)^3 \)B. \( (-3)^2 \)C. \( (-4)^5 \)D. \( (-5)^6 \)2. 下列哪个选项的计算结果为负数:A. \( 3^2 \)B. \( (-2)^4 \)C. \( 5^3 \)D. \( (-3)^3 \)3. 根据有理数乘方的规则,下列哪个选项的计算结果最大:A. \( 2^3 \)B. \( 3^2 \)C. \( 4^1 \)D. \( 5^0 \)4. 计算下列哪个选项的结果为1:A. \( (-1)^2 \)B. \( (-1)^3 \)C. \( (-1)^4 \)D. \( (-1)^5 \)5. 下列哪个选项的计算结果为0:A. \( 0^1 \)B. \( 0^2 \)C. \( 0^3 \)D. \( 0^0 \)二、填空题(每题2分,共20分)6. 计算 \( (-3)^3 \) 的结果为 _________ 。
7. 计算 \( 2^{-3} \) 的结果为 _________ 。
8. 任何非零数的0次方都等于 _________ 。
9. \( (-2)^3 \) 等于 _________ 。
10. \( 5^3 \) 等于 _________ 。
11. 如果 \( a \) 是一个负数,那么 \( a^2 \) 是一个 _________ 数。
12. \( (-3)^2 \) 等于 _________ 。
13. \( (-1)^{\text{偶数}} \) 总是等于 _________ 。
14. \( (-1)^{\text{奇数}} \) 总是等于 _________ 。
15. 如果 \( a \) 和 \( b \) 是两个正数,那么 \( a^b \) 总是一个 _________ 数。
三、计算题(每题5分,共30分)16. 计算 \( 3^3 - 2^2 \)。
专题04 有理数乘方专题测试学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每题4分,共计48分)1.(2018春扬州市期末)用四舍五入法按要求对3.1415926分别取近似值,其中错误的是()A.3.1(精确到0.1)B.3.141(精确到千分位)C.3.14(精确到百分位)D.3.1416(精确到0.0001)【答案】B【解析】试题解析:A、3.1(精确到0.1),正确;B、3.142(精确到千分位),故本选项错误;C、3.14(精确到百分位),正确;D、3.1416(精确到0.0001),正确,故选B.2.(2018秋海口市期中)现规定一种新的运算“*”:,如 * ,则的结果为A.B.C.D.【答案】C【详解】∵,∴=()=.故选C.【名师点睛】解答本题的关键是根据新定义进行运算.所以学生学习时要动脑,不要死学.3.(2018春抚顺市期末)用四舍五入法按要求对1.06042 取近似值,其中错误的是()A.1.1(精确到0.1)B.1.06(精确到0.01)C.1.061(精确到千分位)D.1.0604(精确到万分位)【答案】C【详解】1.0604 ≈1.1(精确到0.1),故A选项正确,不符合题意;1.0604 ≈1.06(精确到0.01),故B选项正确,不符合题意;.1.0604 ≈1.060(精确到千分位),故C选项错误,符合题意;1.0604 ≈1.0604(精确到万分位),故D选项正确,不符合题意,故选C.【名师点睛】本题考查了近似数,根据要求结合近似数的定义正确求解是解题的关键.4.(2018春德州市期末)小明做了一下4道计算题:①﹣62=﹣36;②(﹣)2=;③(﹣4)3=﹣64;④(﹣1)100+(﹣1)1000=0请你帮他检查一下,他一共做对了()A.1道题B.2道题C.3道题D.4道题【答案】C【详解】①﹣62=﹣36,正确;②(﹣)2=,正确;③(﹣4)3=﹣64,正确;④(﹣1)100+(﹣1)1000=2,错误.正确的题目共有3个,故选C.【名师点睛】本题考查了有理数的乘方运算法则,熟练运用有理数的乘方运算法则进行计算是解决本题的关键.5.(2018秋南宁市期中)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,该舰的满载排水量为6.75×104吨,这个用科学记数法表示的数据的原数为()A.6750吨B.67500吨C.675000吨D.6750000吨【答案】B【详解】6.75×104吨,这个用科学记数法表示的数据的原数为67500吨.故选B.【名师点睛】本题考查了科学记数法﹣原数,把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.6.(2019春连云港市期中)按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是(). A.1022.01(精确到0.01) B.1.0×103(保留2个有效数字)C.1020(精确到十位) D.1022.010(精确到千分位)【答案】C【解析】A、1022.0099(精确到0.01)≈10 .01,正确;B、1022.0099(保留2个有效数字)≈1.0×103,正确;C、1022.0099(精确到十位)≈10 ,故错误;D、1022.0099(精确到千分位)≈10 .010,正确.故选C.7.(2018春南昌市期末)我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.若每天用水时间按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水.请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水()A.23760毫升B.2.376×105毫升C.23.8×104毫升D.237.6×103毫升【答案】B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:2×0.05×(22×60×60)×30=0.1×79200×30=2.376×105毫升.故选B.名师点睛:用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1,当原数的绝对值<1时,n 为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上零).8.(2019春南昌市期中)若a的相反数为1,则a2019是()A.2019 B.﹣2019 C.1 D.﹣1【答案】D【详解】∵a的相反数为1,∴a=−1,∴a2019=(−1)2019=−1.故答案选:D.【名师点睛】本题考查了相反数的定义,解题的关键是根据相反数的定义求出a的值.9.(2017春沧州市期中)如果a2=(-3)2,那么a等于()A.3 B.-3 C.9 D.±3【答案】D【解析】利用平方根定义即可求出a的值.解:∵a2=(-3)2=9,∴a=±3.故选D.10.(2017春武汉市期中)用四舍五入按要求对0.06019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.06(精确到千分位)C.0.06(精确到百分位) D.0.0602(精确到0.0001)【答案】B【解析】A.0.0601 ≈0.1(精确到0.1),所以A选项的说法正确;B.0.0601 ≈0.060(精确到千分位),所以B选项的说法错误;C.0.0601 ≈0.06(精确到百分),所以C选项的说法正确;D.0.0601 ≈0.060 (精确到0.0001),所以D选项的说法正确。
有理数的乘方(1)之杨若古兰创作一.选择题1、118暗示()A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加2、-32的值是()A、-9B、9C、-6D、63、以下各对数中,数值相等的是()A、-32与-23B、-23与 (-2)3C、-32与(-3)2D、(-3×2)2与-3×224、以下说法中准确的是()A、23暗示2×3的积B、任何一个有理数的偶次幂是负数C、-32 与 (-3)2互为相反数 D5、以下各式运算结果为负数的是()A、-24×5B、(1-2)×5C、(1-24)×5D、1-(3×5)6二、填空题1、(-2)6中指数为,底数为;4果是;2、根据幂的意义,(-3)4暗示,-43暗示;34、一个数的15次幂是负数,那么这个数的2003次幂是;5、平方等于它本人的数是,立方等于它本人的数是;计算题135有理数的乘方(2)一.选择题1、如果一个有理数的平方等于(-2)2,那么这个有理数等于()A、-2B、2C、4D、2或-22、一个数的立方是它本人,那么这个数是()A、 0B、0或1C、-1或1D、0或1或-13、如果一个有理数的正偶次幂是非负数,那么这个数是()A、负数B、负数C、非负数D、任何有理数4、-24×(-22)×(-2) 3=()A、 29B、-29C、-224D、2245A、相等B、不相等C、绝对值相等D、没有任何关系6、一个有理数的平方是负数,则这个数的立方是()A、负数B、负数C、负数或负数D、奇数7、(-1)2001+(-1)2002(-1)2003的值等于()A、0B、 1C、-1D、2二、填空题12345、如果一个数的平方是它的相反数,那么这个数是;如果一个数的平方是它的倒数,那么这个数是;6计算题13解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这类细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此来去下去,对折10次,会拉出多少根面条?探究创新乐园1?2.345、比较上面算式结果的大小(在横线上填“>”、“<”或“=”):通过观察归纳,写出能反映这一规律的普通结论.67各项幂的底数与右边幂的底数有什么关系?猜一猜可以引出什么规律,并把这类规律用等式写出来数先生活实践大家都晓得,一个礼拜有77除的余数是多少,假设余数是1,由于今天是礼拜天,那么再过这么多天就是礼拜一;假设余数是2,那么再过这么多天就是礼拜二;假设余数是3,那么再过这么多天就是礼拜三……是以,我们就用上面的实践来解决这个成绩.首先通过列出左边的算式,可以得出右边的结论:(17除的余数为2;(27除的余数为4;(37除的余数为1;(47除的余数为;(57除的余数为;(67除的余数为;(77除的余数为;……7除的余数是...。
有理数的乘方
(时间55分钟,满分100分)
一.选择题(每题2分)
1、118表示( )
A 、11个8连乘
B 、11乘以8
C 、8个11连乘
D 、8个别1相加
2、-32的值是( )
A 、-9
B 、9
C 、-6
D 、6
3、下列各对数中,数值相等的是( )
A 、 -32 与 -23
B 、-23 与 (-2)3
C 、-32 与 (-3)2
D 、(-3×2)2与-3×22
4、下列说法中正确的是( )
A 、23表示2×3的积
B 、任何一个有理数的偶次幂是正数
C 、-32 与 (-3)2互为相反数
D 、一个数的平方是94,这个数一定是3
2 5、下列各式运算结果为正数的是( )
A 、-24×5
B 、(1-2)×5
C 、(1-24)×5
D 、1-(3×5)6
6、如果一个有理数的平方等于(-2)2,那么这个有理数等于( )
A 、-2
B 、2
C 、4
D 、2或-2
7、一个数的立方是它本身,那么这个数是( )
A 、 0
B 、0或1
C 、-1或1
D 、0或1或-1
8、如果一个有理数的正偶次幂是非负数,那么这个数是( )
A 、正数
B 、负数
C 、 非负数
D 、任何有理数
9、-24×(-22)×(-2) 3=( )
A 、 29
B 、-29
C 、-224
D 、224
10、两个有理数互为相反数,那么它们的n 次幂的值( )
A 、相等
B 、不相等
C 、绝对值相等
D 、没有任何关系
11、一个有理数的平方是正数,则这个数的立方是( )
A 、正数
B 、负数
C 、正数或负数
D 、奇数
12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )
A 、0
B 、 1
C 、-1
D 、2
二、填空题(每题2分)
1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;5
23⎪⎭
⎫ ⎝⎛-的底数是 ,指数是 ,结果是 ; 2、根据幂的意义,(-3)4表示 ,-43表示 ;
3、平方等于641的数是 ,立方等于64
1的数是 ; 4、一个数的15次幂是负数,那么这个数的2003次幂是 ;
5、平方等于它本身的数是 ,立方等于它本身的数是 ;
6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫ ⎝⎛-3
43 ,=-433 ; 7、()372⋅-,()472⋅-,()5
72⋅-的大小关系用“<”号连接可表示为 ; 8、如果44a a -=,那么a 是 ;
9、()()()()=----20022001433221 ;
10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;
11、若032>b a -,则b 0
12、底数是-1,指数是91的幂写做_________,结果是_________.
三、计算题(每题4分)
1、()3
3131-⨯--
2、()2332-+-
3、()2
233-÷-
4、()()3322222+-+--
5、()34255414-÷-⎪⎭
⎫ ⎝⎛-÷
6、()⎪⎭
⎫ ⎝⎛-÷----721322246 7、()()()33220132-⨯+-÷--- 答案:
1、C
2、A
3、B
4、C
5、B
6、D
7、D
8、D
9、B 10、C 11、C 12、C
1、6,-2,4,1,23-
,5,32
243- ; 2、4个-3相乘,3个4的积的相反数; 3、81±,41; 4、负数; 5、0和1, 0,1和-1; 6、427,6427,6427---;7、()572⋅-<()372⋅-<()472⋅-; 8、9,0; 9、-1; 10、-1和0,1;11、<
计算1、2 2、1 3、-1 4、2 5、-59 6、-73 7、-1。