用matlab做聚类分析
- 格式:doc
- 大小:41.50 KB
- 文档页数:4
MATLAB中的时间序列聚类分析方法时间序列聚类分析是一种统计学方法,它可以对时间序列数据进行分类和分组。
在许多领域,如金融、气象、医疗等,时间序列数据广泛存在,并且对于了解其内在模式和趋势至关重要。
MATLAB作为一种强大的数学建模和计算工具,提供了丰富的时间序列分析工具和函数,使得时间序列聚类分析成为可能。
在MATLAB中,时间序列聚类分析可以通过多种方法实现。
下面将介绍几种常用的方法和算法。
一、基于距离的时间序列聚类分析1. 动态时间规整(DTW)DTW是一种基于距离的时间序列相似性度量方法,它通过在时间序列中找到最佳对应点的方式,将两个时间序列进行规整(即拉伸或压缩),从而计算它们之间的距离。
MATLAB提供了dtw函数,可以方便地计算两个时间序列之间的DTW 距离。
2. 基于相似性矩阵的聚类在时间序列聚类中,可以先计算相似性矩阵,然后使用聚类算法对其进行聚类。
常用的相似性度量方法有欧氏距离、余弦相似度等。
MATLAB中可以利用pdist函数计算时间序列数据的相似性矩阵,并使用linkage函数进行层次聚类。
二、基于模型的时间序列聚类分析1. 自回归移动平均模型(ARMA)ARMA模型是一种常用的时间序列建模方法,其拟合了时间序列的自相关和滑动平均关系。
MATLAB中提供了armax和arima函数,可以用于估计ARMA模型的参数,并根据模型进行聚类分析。
2. 隐马尔可夫模型(HMM)HMM是一种统计模型,用于描述由隐藏状态和观测状态组成的随机过程。
在时间序列聚类中,可以使用HMM模型对时间序列的隐藏状态进行建模,然后对隐藏状态进行聚类分析。
MATLAB中提供了hmmtrain和hmmdecode函数,可以用于HMM模型的训练和预测。
三、基于频域的时间序列聚类分析1. 快速傅里叶变换(FFT)FFT是一种高效的频域分析方法,可以将时间序列信号转化为频域信号。
在时间序列聚类分析中,通过对时间序列进行FFT变换,可以得到其频率成分,进而进行聚类分析。
利用Matlab进行数据聚类与分类的方法导言在当今大数据时代,处理和分析庞大的数据成为许多领域的重要任务,而数据聚类与分类是其中重要的一环。
Matlab作为一种功能强大的编程语言和工具,在数据聚类与分类方面具有广泛的应用。
本文将介绍利用Matlab进行数据聚类与分类的常用方法和技巧。
一、数据聚类的概念与方法1.1 数据聚类的定义数据聚类是指将具有相似特征的数据对象自动分成若干组的过程,旨在将相似的数据归为一类,不相似的数据分开。
1.2 常用的数据聚类方法- K-means聚类算法:K-means是一种常见且简单的数据聚类方法,通过迭代优化的方式将数据划分成K个簇。
- 层次聚类算法:层次聚类是一种基于树形结构的聚类方法,它将数据逐步合并或分裂,直到得到最终的聚类结果。
- 密度聚类算法:密度聚类根据数据点的密度特征进行聚类,能够有效地发现任意形状和大小的聚类簇。
- 谱聚类算法:谱聚类结合图论的思想,通过计算数据的拉普拉斯矩阵特征向量,将数据聚类成多个划分。
二、利用Matlab进行数据聚类2.1 准备工作在使用Matlab进行数据聚类之前,需要准备好数据集。
通常,数据集需要进行预处理,包括数据清洗、特征选择和降维等步骤。
2.2 K-means聚类利用Matlab的统计工具箱,可以轻松实现K-means聚类算法。
首先,将数据集读入Matlab并进行必要的归一化处理。
然后,使用kmeans函数运行K-means聚类算法,指定聚类的簇数K和迭代次数等参数。
最后,根据聚类结果进行数据可视化或进一步的分析。
2.3 层次聚类Matlab中的cluster函数提供了层次聚类的功能。
将数据集转换为距离矩阵,然后调用cluster函数即可实现层次聚类。
该函数支持不同的聚类算法和距离度量方法,用户可以根据具体需求进行调整。
2.4 密度聚类实现密度聚类可以使用Matlab中的DBSCAN函数。
DBSCAN是一种基于密度的聚类算法,它通过确定数据点的领域密度来判定是否为核心对象,并通过核心对象的连接性将数据点分为不同的簇。
在Matlab中如何进行数据聚类分析数据聚类分析是一种常用的数据处理方法,在各个领域都有广泛的应用。
在Matlab中,数据聚类分析相对简单且易于实现。
本文将介绍在Matlab中如何进行数据聚类分析的基本步骤和常用的聚类算法,并通过实例演示其具体操作。
一、数据预处理在进行数据聚类分析之前,通常需要对原始数据进行预处理以保证聚类的准确性。
首先,要对数据进行标准化,使得不同维度的特征具有相同的范围和重要性。
常见的标准化方法有z-score标准化和min-max标准化。
其次,要对数据进行降维处理,以便对高维数据进行分析。
常见的降维方法有主成分分析(PCA)和线性判别分析(LDA)等。
最后,要对数据进行异常值处理,去除可能对聚类结果产生干扰的异常值。
二、选择聚类算法在Matlab中,有多种聚类算法可供选择,如K-means聚类、层次聚类、密度聚类等。
不同的聚类算法适用于不同的数据情况和分析目的。
在选择聚类算法时,应根据数据的特点、分析目的和算法的优缺点进行综合考虑。
下面将以K-means聚类算法为例进行演示。
三、K-means聚类算法实例演示K-means聚类算法是一种简单且常用的聚类算法。
其基本思想是通过迭代计算,将数据样本划分为K个簇,使得同一簇内的样本相似度较高,不同簇之间的相似度较低。
现假设有一组二维数据集,要对其进行聚类分析。
```matlab% 生成随机数据X = [randn(100,2)+ones(100,2); randn(100,2)-ones(100,2)];% K-means聚类K = 2; % 设置簇的个数[idx, C] = kmeans(X, K); % 进行聚类分析% 绘制聚类结果figure;plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12);hold on;plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12);plot(C(:,1),C(:,2),'kx','MarkerSize',15,'LineWidth',3);legend('Cluster 1','Cluster 2','Centroids','Location','NW');title 'Cluster Assignments and Centroids';hold off;```上述代码中,通过`randn`函数生成了一个含有200个样本的二维数据集X,然后利用`kmeans`函数进行聚类计算,得到了每个样本属于的簇的索引`idx`和簇的中心点坐标`C`。
§8.利用Matlab和SPSS软件实现聚类分析1. 用Matlab编程实现运用Matlab中的一些基本矩阵计算方法,通过自己编程实现聚类算法,在此只讨论根据最短距离规则聚类的方法。
调用函数:min1.m——求矩阵最小值,返回最小值所在行和列以及值的大小min2.m——比较两数大小,返回较小值std1.m——用极差标准化法标准化矩阵ds1.m——用绝对值距离法求距离矩阵cluster.m——应用最短距离聚类法进行聚类分析print1.m——调用各子函数,显示聚类结果聚类分析算法假设距离矩阵为vector,a阶,矩阵中最大值为max,令矩阵上三角元素等于max聚类次数=a-1,以下步骤作a-1次循环:求改变后矩阵的阶数,计作c求矩阵最小值,返回最小值所在行e和列f以及值的大小gfor l=1:c,为vector(c+1,l)赋值,产生新类令第c+1列元素,第e行和第f行所有元素为,第e列和第f列所有元素为max源程序如下:%std1.m,用极差标准化法标准化矩阵function std=std1(vector)max=max(vector); %对列求最大值min=min(vector);[a,b]=size(vector); %矩阵大小,a为行数,b为列数for i=1:afor j=1:bstd(i,j)= (vector(i,j)-min(j))/(max(j)-min(j));endend%ds1.m,用绝对值法求距离function d=ds1(vector);[a,b]=size(vector);d=zeros(a);for i=1:afor j=1:afor k=1:bd(i,j)=d(i,j)+abs(vector(i,k)-vector(j,k));endendendfprintf('绝对值距离矩阵如下:\n');disp(d)%min1.m,求矩阵中最小值,并返回行列数及其值function [v1,v2,v3]=min1(vector);%v1为行数,v2为列数,v3为其值[v,v2]=min(min(vector'));[v,v1]=min(min(vector));v3=min(min(vector));%min2.m,比较两数大小,返回较小的值function v1=min(v2,v3);if v2>v3v1=v3;elsev1=v2;end%cluster.m,最短距离聚类法function result=cluster(vector);[a,b]=size(vector);max=max(max(vector));for i=1:afor j=i:bvector(i,j)=max;endend;for k=1:(b-1)[c,d]=size(vector);fprintf('第%g次聚类:\n',k);[e,f,g]=min1(vector);fprintf('最小值=%g,将第%g区和第%g区并为一类,记作G%g\n\n',g,e,f,c+1);for l=1:cif l<=min2(e,f)vector(c+1,l)=min2(vector(e,l),vector(f,l));elsevector(c+1,l)=min2(vector(l,e),vector(l,f));endend;vector(1:c+1,c+1)=max;vector(1:c+1,e)=max;vector(1:c+1,f)=max;vector(e,1:c+1)=max;vector(f,1:c+1)=max;end%print1,调用各子函数function print=print1(filename,a,b); %a为地区个数,b为指标数fid=fopen(filename,'r')vector=fscanf(fid,'%g',[a b]);fprintf('标准化结果如下:\n')v1=std1(vector)v2=ds1(v1);cluster(v2);%输出结果print1('fname',9,7)2.直接调用Matlab函数实现2.1调用函数层次聚类法(Hierarchical Clustering)的计算步骤:①计算n个样本两两间的距离{d ij},记D②构造n个类,每个类只包含一个样本;③合并距离最近的两类为一新类;④计算新类与当前各类的距离;若类的个数等于1,转到5);否则回3);⑤画聚类图;⑥决定类的个数和类;Matlab软件对系统聚类法的实现(调用函数说明):cluster 从连接输出(linkage)中创建聚类clusterdata 从数据集合(x)中创建聚类dendrogram 画系统树状图linkage 连接数据集中的目标为二元群的层次树pdist计算数据集合中两两元素间的距离(向量) squareform 将距离的输出向量形式定格为矩阵形式zscore 对数据矩阵X 进行标准化处理各种命令解释⑴T = clusterdata(X, cutoff)其中X为数据矩阵,cutoff是创建聚类的临界值。
matlab曲线聚类
在MATLAB中进行曲线聚类,通常涉及以下步骤:
1.数据预处理:首先,对曲线数据进行预处理,包括去除异常值、平滑处理等,以便更好地反映数据的真实特征。
2.特征提取:从预处理后的数据中提取与聚类相关的特征。
对于曲线数据,可以考虑提取曲线的形状、趋势、周期性等特征。
3.聚类算法选择:根据所提取的特征,选择合适的聚类算法。
常见的聚类算法包括K-means、层次聚类、DBSCAN等。
对于曲线聚类,可能需要考虑算法的曲线拟合能力。
4.聚类参数设置:根据所选的聚类算法,设置合适的参数。
例如,对于K-means算法,需要选择簇的数量和初始聚类中心。
5.聚类执行:使用MATLAB中的聚类函数(如kmeans)对提取的特征进行聚类。
这通常涉及到计算距离矩阵、执行聚类操作等步骤。
6.结果评估:对聚类结果进行评估,包括计算聚类效果指标(如轮廓系数、Davies-Bouldin指数等)以及可视化聚类结果,以便更好地理解数据的分布和聚类效果。
需要注意的是,曲线聚类是一个相对复杂的问题,可能需要针对具体应用场景进行定制化的设计和优化。
同时,MATLAB提供了丰富的工具和函数库,可以帮助用户更方便地进行曲线聚类分析。
在Matlab中如何进行数据聚类分析在Matlab中进行数据聚类分析的方法主要包括准备数据、选择合适的聚类算法、执行聚类算法、评估聚类结果等步骤。
下面将详细介绍在Matlab中进行数据聚类分析的步骤。
一、准备数据在进行数据聚类分析之前,首先需要准备好要进行聚类的数据。
数据可以是一个矩阵,每一行表示一个样本,每一列表示一个特征。
需要确保数据的格式正确,没有缺失值或异常值。
数据的准备也包括数据的预处理,如归一化、标准化等。
二、选择合适的聚类算法根据数据的特点和实际问题的要求,选择合适的聚类算法是非常重要的。
常用的聚类算法包括K均值聚类、层次聚类、密度聚类等。
不同的算法适用于不同的数据类型和聚类目标。
在Matlab中,可以使用内置的聚类算法函数,如kmeans、dbscan等,也可以使用第三方工具包,如matlab-bgl、cluster等。
三、执行聚类算法在选择好聚类算法之后,可以在Matlab中调用相应的聚类函数进行聚类分析。
以下以K均值聚类为例进行说明。
假设数据矩阵为X,聚类的类别数为K,可以按照以下步骤进行聚类:1. 调用kmeans函数进行聚类:```matlab[idx, centers] = kmeans(X, K);```其中,idx是每个样本的所属类别标签,centers是各个类别的中心点。
2. 可以通过绘制散点图来展示聚类结果:```matlabgscatter(X(:,1), X(:,2), idx);```其中,X(:,1)和X(:,2)表示数据矩阵中的两个特征,idx表示聚类结果。
四、评估聚类结果聚类结果的质量评估是判断聚类算法好坏的重要指标之一。
在Matlab中,可以使用内置的聚类评估函数来评估聚类结果。
以下以轮廓系数为例进行评估:1. 调用silhouette函数计算轮廓系数:```matlabs = silhouette(X, idx);```其中,X是数据矩阵,idx是聚类结果。
用matlab做聚类分析转载一:MATLAB提供了两种方法进行聚类分析:1、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;2、分步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数进行聚类。
下边详细介绍两种方法:1、一次聚类Clusterdata函数可以视为pdist、linkage与cluster的综合,一般比较简单。
【clusterdata函数:调用格式:T=clusterdata(X,cutoff)等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,cutoff) 】2、分步聚类(1)求出变量之间的相似性用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化【pdist函数:调用格式:Y=pdist(X,’metric’)说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集metirc取值为:’euclidean’:欧氏距离(默认)‘seuclidean’:标准化欧氏距离;‘mahalanobis’:马氏距离…】pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。
这样可以缩小保存空间,不过,对于读者来说却是不好操作,因此,若想简单直观的表示,可以用squareform函数将其转化为方阵,其中x(i,j)表示第i个样本与第j个样本之的距离,对角线均为0.(2)用linkage函数来产生聚类树【linkage函数:调用格式:Z=linkage(Y,’method’)说明:Y为pdist函数返回的M*(M-1)/2个元素的行向量,method可取值:‘single’:最短距离法(默认);’complete’:最长距离法;‘average’:未加权平均距离法;’weighted’:加权平均法‘centroid’:质心距离法;‘median’:加权质心距离法;‘ward’:内平方距离法(最小方差算法)】返回的Z为一个(M-1)*3的矩阵,其中前两列为索引标识,表示哪两个序号的样本可以聚为同一类,第三列为这两个样本之间的距离。
用matlab做聚类分析MATLAB提供了两种方法进行聚类分析:一、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;二、步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenet函数评价聚类信息;(4)用cluster函数进行聚类。
下边详细介绍两种方法:1、一次聚类Clusterdata函数可以视为pdist、linkage与cluster的综合,即Clusterdata函数调用了pdist、linkage和cluster,用来由原始样本数据矩阵X创建系统聚类,一般比较简单。
clusterdata函数的调用格式:T=clusterdata(X,cutoff)输出参数T是一个包含n个元素的列向量,其元素为相应观测所属类的类序号。
输入 的矩阵,矩阵的每一行对应一个观测(样品),每一列对应一个变量。
Cutoff 参数X是n p为阈值。
(1)当0<cutoff<2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,’cutoff’,cutoff) ;(‘cutoff’指定不一致系数或距离的阈值,参数值为正实数)(2)Cutoff>>2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z, ‘maxclust’,cutoff) ;(‘maxclust’指定最大类数,参数值为正整数)2、分步聚类(1)求出变量之间的相似性用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化【pdist函数:调用格式:Y=pdist(X,’metric’)说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集‘seuclidean’:metirc取值为:’euclidean’:欧氏距离(默认)标准化欧氏距离;‘mahalanobis’:马氏距离;闵科夫斯基距离:‘ minkowski’;绝对值距离:‘ cityblock’…】pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。
matlab的kmeans函数用法使用Matlab的Kmeans函数进行聚类分析Kmeans是一种常用的聚类分析方法,它可以将数据集分成K个不同的类别。
在Matlab中,可以使用Kmeans函数来实现聚类分析。
本文将介绍Kmeans函数的用法,以及如何使用它进行聚类分析。
Kmeans函数的语法Kmeans函数的语法如下:[idx, C] = kmeans(X, k)其中,X是一个n×p的矩阵,表示n个样本的p个特征值;k是聚类的个数;idx是一个n×1的向量,表示每个样本所属的类别;C 是一个k×p的矩阵,表示每个类别的中心点。
Kmeans函数的使用方法下面我们将通过一个简单的例子来介绍Kmeans函数的使用方法。
假设我们有一个包含100个样本的数据集,每个样本有两个特征值。
我们可以使用Matlab的rand函数生成这个数据集:X = rand(100,2);现在我们想将这个数据集分成3个不同的类别。
我们可以使用Kmeans函数来实现:[idx, C] = kmeans(X, 3);这里,idx是一个100×1的向量,表示每个样本所属的类别;C是一个3×2的矩阵,表示每个类别的中心点。
我们可以使用Matlab的scatter函数将每个样本按照它们所属的类别进行可视化:scatter(X(idx==1,1), X(idx==1,2), 'r');hold on;scatter(X(idx==2,1), X(idx==2,2), 'g');scatter(X(idx==3,1), X(idx==3,2), 'b');scatter(C(:,1), C(:,2), 'k', 'filled');hold off;这里,我们使用了scatter函数将每个样本按照它们所属的类别进行可视化。
一、背景介绍MATLAB是一种用于算法开发、数据分析、数值计算和工业应用的高级技术计算语言和交互环境。
在MATLAB中,有丰富的工具箱可以用于数据分析和聚类算法。
其中,k-means聚类算法是一种常用的数据聚类方法,它可以有效地将具有相似特征的数据点聚集在一起。
二、3维数据在数据分析领域中,数据往往具有多维特征。
对于3维数据而言,每个数据点通常由三个特征组成,例如在空间中的三个坐标值。
这种情况下,我们可以使用k-means算法来对3维数据进行聚类分析,以发现数据点之间的内在关系和模式。
三、k-means聚类算法原理1. 随机初始化K个聚类中心。
2. 计算每个数据点与各个聚类中心的距离,将数据点分配到距离最近的聚类中心所在的簇。
3. 根据分配得到的簇重新计算每个簇的中心。
4. 重复步骤2和3,直到聚类中心不再发生变化,或者达到设定的迭代次数。
四、MATLAB中的k-means算法实现在MATLAB中,可以利用自带的Kmeans函数来实现对3维数据的聚类分析。
具体步骤如下:1. 准备3维数据,假设数据矩阵为X,每行代表一个数据点,每列代表一个特征。
2. 调用Kmeans函数进行聚类分析,例如:[idx, C] = kmeans(X, K),其中idx是每个数据点所属的簇的索引,C是聚类中心的坐标。
3. 根据idx的结果可以将数据点可视化展示在3维空间中,并标记不同颜色表示不同的簇。
五、实例演示下面通过一个具体的实例来演示如何使用MATLAB对3维数据进行k-means聚类分析。
1. 准备数据假设有一组三维数据,保存在一个名为data的矩阵中,每行代表一个数据点,三列分别代表三个特征。
我们可以使用以下MATLAB代码生成一个包含30个数据点的示例数据:```matlabdata = randn(30, 3);```2. 聚类分析调用Kmeans函数进行聚类分析,并将结果可视化展示。
```matlabK = 3; 假设有3个聚类中心[idx, C] = kmeans(data, K);scatter3(data(:,1), data(:,2), data(:,3), 50, idx, 'filled');hold onscatter3(C(:,1), C(:,2), C(:,3), 200, 'Marker', 'x');hold off```3. 分析结果根据可视化结果,我们可以观察到数据点被有效地分为了3个簇,并且每个簇的中心也被标记出来。
用matlab做聚类分析
转载一:
MATLAB提供了两种方法进行聚类分析:
1、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;
2、分步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数进行聚类。
下边详细介绍两种方法:
1、一次聚类
Clusterdata函数可以视为pdist、linkage与cluster的综合,一般比较简单。
【clusterdata函数:
调用格式:T=clusterdata(X,cutoff)
等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster (Z,cutoff) 】
2、分步聚类
(1)求出变量之间的相似性
用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化
【pdist函数:调用格式:Y=pdist(X,’metric’)
说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集
metirc取值为:’euclidean’:欧氏距离(默认)‘seuclidean’:标准化欧氏距离;‘mahalanobis’:马氏距离…】
pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。
这样可以缩小保存空间,不过,对于读者来说却是不好操作,因此,若想简单直观的表示,可以用squareform函数将其转化为方阵,其中x(i,j)表示第i个样本与第j个样本之的距离,对角线均为0.
(2)用linkage函数来产生聚类树
【linkage函数:调用格式:Z=linkage(Y,’method’)
说明:Y为pdist函数返回的M*(M-1)/2个元素的行向量,
method可取值:‘single’:最短距离法(默认);’complete’:最长距离法;
‘average’:未加权平均距离法;’weighted’:加权平均法
‘centroid’:质心距离法;‘median’:加权质心距离法;
‘ward’:内平方距离法(最小方差算法)】
返回的Z为一个(M-1)*3的矩阵,其中前两列为索引标识,表示哪两个序号的样本可以聚为同一类,第三列为这两个样本之间的距离。
另外,除了M个样本以外,对于每次新产
生的类,依次用M+1、M+2、…来标识。
为了表示Z矩阵,我们可以用更直观的聚类数来展示,方法为:dendrogram(Z), 产生的聚类数是一个n型树,最下边表示样本,然后一级一级往上聚类,最终成为最顶端的一类。
纵轴高度代表距离列。
另外,还可以设置聚类数最下端的样本数,默认为30,可以根据修改dendrogram(Z, n)参数n来实现,1<n<M。
dendrogram(Z,0)则表n=M的情况,显示所有叶节点。
(3)用cophenetic函数评价聚类信息
【cophenet函数: 调用格式:c=cophenetic(Z,Y)
说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。
】cophene检验一定算法下产生的二叉聚类树和实际情况的相符程度,就是检测二叉聚类树中各元素间的距离和pdist计算产生的实际的距离之间有多大的相关性,另外也可以用inc onsistent表示量化某个层次的聚类上的节点间的差异性。
(4)最后,用cluster进行聚类,返回聚类列。
转载二:
Matlab提供了两种方法进行聚类分析。
一种是利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;
另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用linkage函数定义变量之间的连接;(3)用cophenetic 函数评价聚类信息;(4)用cluster函数创建聚类。
1.Matlab中相关函数介绍
1.1 pdist函数
调用格式:Y=pdist(X,’metric’)
说明:用‘metric’指定的方法计算X 数据矩阵中对象之间的距离。
’
X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。
metric’取值如下:
‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离;
‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离;
‘minkowski’:明可夫斯基距离;‘cosine’:
‘correlation’:‘hamming’:
‘jaccard’:‘chebychev’:Chebychev距离。
1.2 squareform函数
调用格式:Z=squareform(Y,..)
说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。
1.3 linkage函数
调用格式:Z=linkage(Y,’method’)
说明:用‘method’参数指定的算法计算系统聚类树。
Y:pdist函数返回的距离向量;
method:可取值如下:
‘single’:最短距离法(默认);‘complete’:最长距离法;
‘average’:未加权平均距离法;‘weighted’:加权平均法;
‘centroid’:质心距离法;‘median’:加权质心距离法;
‘ward’:内平方距离法(最小方差算法)
返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。
1.4 dendrogram函数
调用格式:[H,T,…]=dendrogram(Z,p,…)
说明:生成只有顶部p个节点的冰柱图(谱系图)。
1.5 cophenet函数
调用格式:c=cophenetic(Z,Y)
说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。
1.6 cluster函数
调用格式:T=cluster(Z,…)
说明:根据linkage函数的输出Z 创建分类。
1.7 clusterdata函数
调用格式:T=clusterdata(X,…)
说明:根据数据创建分类。
T=clusterdata(X,cutoff)与下面的一组命令等价:
Y=pdist(X,’euclid’);
Z=linkage(Y,’single’);
T=cluster(Z,cutoff);
2. Matlab程序
2.1一次聚类法
X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900];
T=clusterdata(X,0.9)
2.2 分步聚类
Step1 寻找变量之间的相似性
用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore函数进行标准化。
X2=zscore(X); %标准化数据
Y2=pdist(X2); %计算距离
Step2 定义变量之间的连接
Z2=linkage(Y2);
Step3 评价聚类信息
C2=cophenet(Z2,Y2); //0.94698
Step4创建聚类,并作出谱系图
T=cluster(Z2,6);
H=dendrogram(Z2);
分类结果:{加拿大},{中国,美国,澳大利亚},{日本,印尼},{巴西},{前苏联}
剩余的为一类。
引自:/s/blog_5a13cf680100aj18.ht ml。