复数的基本概念和几何意义(最新整理)
- 格式:pdf
- 大小:229.36 KB
- 文档页数:7
复数的概念及其定义复数是数学中一种特殊的数,它由实部和虚部组成。
一个复数可以用以下形式表示:z = a + bi其中,a是实部,b是虚部,而i是虚数单位,满足i^2 = -1。
在复平面上,我们可以将复数z = a + bi表示为一个有序对(a, b)。
其中实部a对应于 x 轴的坐标,虚部b对应于 y 轴的坐标。
这样,在复平面上,每个点都对应着唯一的一个复数。
复数的重要性和应用1. 扩展了实数域复数扩展了实数域,使得我们可以处理更多的问题。
例如,在求解方程时,有些方程在实数域中无解,但在复数域中却有解。
2. 描述振荡和周期性现象振荡和周期性现象在科学和工程领域中非常常见。
通过使用复数来描述这些现象,我们可以更方便地进行分析和计算。
3. 信号处理在信号处理领域中,复数广泛用于描述和分析信号。
例如,在频域中使用傅里叶变换将信号从时域转换为频域时,复数起到了重要的作用。
4. 电路分析在电路分析中,复数被用来描述电压和电流的相位关系。
通过使用复数,我们可以方便地进行交流电路的计算和分析。
5. 分形和动力系统复数在分形和动力系统研究中也扮演着重要角色。
通过使用复数,我们可以更好地理解这些系统的行为和性质。
复数的几何意义中的关键概念在复平面上,有几个重要的概念与复数的几何意义密切相关。
1. 模长(Magnitude)一个复数z = a + bi的模长表示为|z|,它等于实部a和虚部b的平方和的平方根。
模长表示了一个复数到原点的距离。
|z| = √(a^2 + b^2)2. 辐角(Argument)辐角是一个与复数相关的角度,在极坐标系中表示。
辐角通常用 Greek 字母θ表示。
对于一个非零复数z = a + bi,其辐角定义如下:θ = arctan(b/a)需要注意的是,在计算辐角时需要考虑a的正负和a=0的特殊情况。
3. 共轭复数(Conjugate)对于一个复数z = a + bi,其共轭复数定义为z* = a - bi。
复数的基本概念和几何意义复数是数学中的一个重要概念,它包含实数和虚数部分,可以用a+bi的形式表示,其中a是实数部分,bi是虚数部分,i是虚数单位,它满足i^2 = -复数的几何意义可以通过复平面来理解。
复平面是一个二维平面,横轴表示实数轴,纵轴表示虚数轴。
复数可以在复平面上表示为一个点。
实数部分决定了复数的横坐标,虚数部分决定了复数的纵坐标。
复数的模长表示复数到原点的距离,即复数的绝对值,用,z,表示。
复数的几何意义可以表现在以下几个方面:1.向量:复数可以看作是向量,实部表示向量在横轴上的投影,虚部表示向量在纵轴上的投影。
复数的加减法对应了向量的加减法,复数的乘法对应了向量的缩放和旋转。
2. 极坐标:复数可以用极坐标表示,在复平面上,复数z可以表示为z = r(cosθ + isinθ),其中r表示模长,θ表示与正实数轴的夹角。
复数的极坐标形式可以简化复数的运算。
3.旋转:复数的乘法可以表示复平面中的旋转。
如果复数z1表示一个向量,复数z2代表一个旋转角度,那么z1×z2的结果就表示了z1绕原点旋转z2对应的角度后的位置。
4.平移:将一个向量加上一个复数的结果就是将这个向量沿着复平面的一些方向平移。
平移是复数的加法对应的几何意义。
5. 共轭复数:共轭复数是将复数的虚数部分取负得到的,即z的共轭复数为z* = a - bi。
在复平面中,共轭复数对应于复数关于实数轴的对称点。
复数的几何意义在多个学科中都得到了广泛的应用。
在工程和物理学中,复数用于描述交流电路的电压和电流,光学中的波长和波矢也可以用复数表示。
在信号处理和通信领域,复数被用于分析和处理信号的频谱特性。
在数学中,复数进一步推广了实数域,使得更多的方程和函数都能够得到解析解。
而在几何学中,复数以及复数的扩展形式,如四元数和八元数等,被用于描述高维空间中的旋转和变换。
总之,复数不仅是数学中的重要概念,也具有丰富的几何意义。
它不仅可以用于解决实数域无法处理的问题,还能够用于表示各种向量、旋转和变换等几何概念。
复数运算的几何意义解读复数是由实数和虚数构成的数学概念,具有实部和虚部两个部分。
在复平面中,复数可以表示为一个有序数对(a,b),其中a为实部,b为虚部。
复数运算的几何意义可以通过复平面的几何解释来理解。
首先,复数可以用来表示平面上的点。
复平面以实轴为x轴,以虚轴为y轴,每个复数可以对应平面上的一个点。
实部表示该点在x轴上的位置,虚部表示该点在y轴上的位置。
例如,复数z=3+4i表示平面上的一个点,该点在x轴上的位置是3,在y轴上的位置是4加法运算是复数运算中的一种基本操作。
两个复数相加得到的结果是一个新的复数,其实部等于两个复数的实部之和,虚部等于两个复数的虚部之和。
在几何上,两个复数的加法可以理解为将两个平面上的点进行向量相加,得到一个新的点。
减法运算也是复数运算中的一种基本操作。
两个复数相减得到的结果是一个新的复数,其实部等于第一个复数的实部减去第二个复数的实部,虚部等于第一个复数的虚部减去第二个复数的虚部。
在几何上,两个复数的减法可以理解为将第二个复数对应的点作为向量,进行与第一个复数对应的点的相反方向的向量相加。
乘法运算是复数运算中的另一种基本操作。
两个复数相乘得到的结果是一个新的复数,其实部等于两个复数的实部的乘积减去两个复数的虚部的乘积,虚部等于第一个复数的实部与第二个复数的虚部之积加上第一个复数的虚部与第二个复数的实部之积。
在几何上,两个复数的乘法可以理解为将两个平面上的点进行相乘得到一个新的点。
除法运算是复数运算中的一种特殊操作。
两个复数相除得到的结果是一个新的复数,其实部等于两个复数相乘的实部之和除以两个复数相乘的模的平方,虚部等于两个复数相乘的虚部之差除以两个复数相乘的模的平方。
在几何上,两个复数的除法可以理解为将第二个复数对应的点作为向量,进行与第一个复数对应的点的相反方向的向量相加。
复数的模是复数到原点的距离,可以用勾股定理计算。
复数的模平方等于复数实部的平方加上虚部的平方。
复数的基本概念与运算例题和知识点总结一、复数的基本概念复数是指形如$a + bi$ 的数,其中$a$ 和$b$ 都是实数,$i$ 是虚数单位,满足$i^2 =-1$。
在复数$a + bi$ 中,$a$ 被称为实部,记作$Re(z)$;$b$ 被称为虚部,记作$Im(z)$。
当$b = 0$ 时,复数$a + bi$ 就变成了实数$a$;当$a =0$ 且$b \neq 0$ 时,复数$a + bi$ 就被称为纯虚数。
复数的模长定义为:对于复数$z = a + bi$,其模长为$|z| =\sqrt{a^2 + b^2}$。
复数的辐角定义为:以$x$ 轴正半轴为始边,向量$\overrightarrow{OZ}$(其中$O$ 为原点,$Z$ 为复数$z = a +bi$ 对应的点)为终边的角$\theta$ 叫做复数$z$ 的辐角。
二、复数的运算(一)复数的加法设$z_1 = a + bi$,$z_2 = c + di$,则它们的和为:$z_1 +z_2 =(a + c) +(b + d)i$ 。
例如:$z_1 = 2 + 3i$,$z_2 = 1 2i$,则$z_1 + z_2 =(2 +1) +(3 2)i = 3 + i$ 。
复数加法满足交换律和结合律,即$z_1 + z_2 = z_2 + z_1$,$(z_1 + z_2) + z_3 = z_1 +(z_2 + z_3)$。
(二)复数的减法设$z_1 = a + bi$,$z_2 = c + di$,则它们的差为:$z_1 z_2 =(a c) +(b d)i$ 。
例如:$z_1 = 5 + 4i$,$z_2 = 2 i$,则$z_1 z_2 =(5 2) +(4 + 1)i = 3 + 5i$ 。
(三)复数的乘法设$z_1 = a + bi$,$z_2 = c + di$,则它们的乘积为:\\begin{align}z_1z_2&=(a + bi)(c + di)\\&=ac + adi + bci + bdi^2\\&=(ac bd) +(ad + bc)i\end{align}\例如:$z_1 = 3 + 2i$,$z_2 = 1 + 4i$,则\\begin{align}z_1z_2&=(3 + 2i)(1 + 4i)\\&=3 + 12i + 2i + 8i^2\\&=3 + 14i 8\\&=-5 + 14i\end{align}\(四)复数的除法设$z_1 = a + bi$,$z_2 = c + di$($c + di \neq 0$),则它们的商为:\\begin{align}\frac{z_1}{z_2}&=\frac{a + bi}{c + di}\\&=\frac{(a + bi)(c di)}{(c + di)(c di)}\\&=\frac{ac + bd +(bc ad)i}{c^2 + d^2}\\&=\frac{ac + bd}{c^2 + d^2} +\frac{bc ad}{c^2 + d^2}i\end{align}\例如:$z_1 = 6 + 8i$,$z_2 = 2 + 2i$,则\\begin{align}\frac{z_1}{z_2}&=\frac{6 + 8i}{2 + 2i}\\&=\frac{(6 + 8i)(2 2i)}{(2 + 2i)(2 2i)}\\&=\frac{12 12i + 16i 16i^2}{4 + 4}\\&=\frac{28 + 4i}{8}\\&=\frac{7}{2} +\frac{1}{2}i\end{align}\三、复数运算的例题例 1:计算$(2 + 3i) +(4 5i)$解:原式$=(2 + 4) +(3 5)i = 6 2i$例 2:计算$(3 2i) (1 + 4i)$解:原式$=(3 1) +(-2 4)i = 2 6i$例 3:计算$(1 + 2i)(3 4i)$解:\\begin{align}&(1 + 2i)(3 4i)\\=&3 4i + 6i 8i^2\\=&3 + 2i + 8\\=&11 + 2i\end{align}\例 4:计算$\frac{2 + 3i}{1 i}$解:\\begin{align}&\frac{2 + 3i}{1 i}\\=&\frac{(2 + 3i)(1 + i)}{(1 i)(1 + i)}\\=&\frac{2 + 2i + 3i + 3i^2}{1 i^2}\\=&\frac{-1 + 5i}{2}\\=&\frac{1}{2} +\frac{5}{2}i\end{align}\四、复数在几何中的应用复数可以用平面直角坐标系中的点来表示,实部对应$x$ 轴坐标,虚部对应$y$ 轴坐标。
复数知识点总结一、复数的定义形如\(a + bi\)(\(a,b\in R\),\(i\)为虚数单位)的数叫做复数,其中\(a\)叫做复数的实部,\(b\)叫做复数的虚部。
当\(b = 0\)时,复数\(a + bi\)为实数;当\(b \neq 0\)时,复数\(a +bi\)为虚数;当\(a = 0\)且\(b \neq 0\)时,复数\(a + bi\)为纯虚数。
二、虚数单位\(i\)虚数单位\(i\)满足\(i^2 =-1\)。
三、复数的代数形式复数的代数形式为\(z = a + bi\)(\(a,b\in R\))。
四、复数的几何意义1、复平面建立直角坐标系来表示复数的平面叫做复平面,\(x\)轴叫做实轴,\(y\)轴叫做虚轴。
实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。
2、复数的模复数\(z = a + bi\)的模\(|z| =\sqrt{a^2 + b^2}\)。
3、复数与向量复数\(z = a + bi\)对应复平面内的向量\(\overrightarrow{OZ} =(a,b)\)。
五、复数的四则运算1、加法\((a + bi) +(c + di) =(a + c) +(b + d)i\)2、减法\((a + bi) (c + di) =(a c) +(b d)i\)3、乘法\((a + bi)(c + di) = ac + adi + bci + bdi^2 =(ac bd) +(ad + bc)i\)4、除法\\begin{align}\frac{a + bi}{c + di}&=\frac{(a + bi)(c di)}{(c + di)(c di)}\\&=\frac{ac adi + bci bdi^2}{c^2 + d^2}\\&=\frac{(ac + bd) +(bc ad)i}{c^2 + d^2}\end{align}\六、共轭复数当两个复数的实部相等,虚部互为相反数时,这两个复数互为共轭复数。
复数的知识点总结一、基本概念复数是指由实数和虚数构成的数,形式为 a + bi,其中a 和b 都是实数,i 是虚数单位,满足 i² = -1。
实数是指具有有限位小数的数或无理数,而虚数是不能用实数表示的数。
二、复数的表示法复数有一般式、三角式和指数式三种表示法。
1. 一般式:a + bi其中 a 表示实部,b 表示虚部。
2. 三角式:r(cosθ + i sinθ)其中 r 表示复数的模,θ 表示复数的辐角或幅角。
3. 指数式:re^(iθ)其中 r 表示复数的模,e 是自然对数的底数,θ 表示复数的幅角。
三、基本运算1. 加法(a + bi) + (c + di) = (a + c) + (b + d)i即实部相加,虚部相加。
2. 减法(a + bi) - (c + di) = (a - c) + (b - d)i即实部相减,虚部相减。
3. 乘法(a + bi) × (c + di) = (ac - bd) + (ad + bc)i即实数部分按照常规乘法规则计算,虚数部分交叉相乘。
4. 除法(a + bi) ÷ (c + di) = (ac + bd)/(c² + d²) + (bc - ad)/(c² + d²)i即分子分母同除以 c + di,然后将分子分母分别展开并化简。
5. 共轭复数(a + bi) 的共轭复数为 (a - bi),共轭复数满足以下性质:a. 它们的实部相等。
b. 它们的虚部相等,但符号相反。
c. 一个复数与它的共轭复数的积等于这个复数的模的平方。
d. 两个复数的积的共轭等于它们的共轭的积。
四、复数的模和幅角1. 复数模|r|复数的模是指复数与原点之间的距离,可以用勾股定理求出。
|r| = √(a² + b²)2. 复数的幅角θ复数的幅角是指复数与正实轴正方向的夹角,可以用反正切函数求出。
复数的概念及几何意义复数是数学中一种形式的数,包括实数和虚数。
它们一般有两个部分组成:实部和虚部。
复数的一般形式为a+bi,其中a和b分别是实数,i是虚数单位,满足i^2=-1复数的几何意义可以通过将它们表示为平面上的点来理解。
实部表示复数在实轴上的位置,虚部则表示复数在虚轴上的位置。
复数a+bi可以被视为复平面上的一个点(x, y),其中x是实部,y是虚部。
这个点与坐标原点形成的直角坐标系中的位置坐标。
复数的模是指复数与原点(0, 0)之间的距离,可以通过勾股定理计算。
给定复数a+bi,它的模记作,a+bi,定义为sqrt(a^2 + b^2)。
复数的模可以用来衡量复数的大小。
复数的幅角或辐角表示复数相对于正实轴的旋转角度。
可以使用三角函数来计算复数的幅角。
例如,对于复数a+bi,其幅角记作arg(a+bi),可以通过求解tan(theta) = b/a来计算,其中theta是幅角。
复数的几何意义在很多数学和物理领域都有广泛应用。
以下是一些常见的应用领域:1.电路分析:复数在电路分析中起着重要的作用,特别是在交流电路的分析中。
复数可以表示电路元件的阻抗和容抗,并且可以通过复数运算来计算电路中电流和电压的相位关系。
2.信号处理:复数在信号处理领域中用于分析和处理复杂波形。
通过将信号表示为复数的幅角和频率,可以进行频域分析和滤波等操作。
3.控制理论:复数在控制系统理论中用于表示系统的频率响应和稳定性。
复数的幅角和模可以用于设计控制系统的稳定性条件。
4.波动理论:复数在波动理论中用于描述波的传播和干涉。
复数的幅角和模可以用于计算波的相位差和振幅。
5.分形几何:复数在分形几何中用于描述复杂图形的生成和变换。
复数的幅角可以用于旋转和缩放图形。
总结起来,复数是一种数学工具,它可以通过几何方法来理解和解释。
复数的几何意义涵盖了电路分析、信号处理、控制理论、波动理论和分形几何等多个领域。
通过了解复数的几何意义,可以更好地应用和理解复数的数学概念。
复数的概念及复数的几何意义复数是数学中一种特殊的数形式,由实数和虚数组成。
在复数形式中,虚数单位i满足i²=-1、一个典型的复数可以表示为a+bi,其中a是实部,b是虚部。
复数的几何意义可以通过使用复平面来解释。
复平面是由实数轴和虚数轴组成的平面,将复数表示为平面上的点。
实部对应于横坐标,虚部对应于纵坐标。
根据这个表示法可以将复数表示为平面上的点。
实部和虚部可以是任意实数,因此复数在平面上可以表示为平面上的任意点。
平面上的坐标点(a,b)对应于复数a+bi。
平面上的原点(0,0)对应于复数0,纵坐标为0的点(0,b)对应于纯虚数bi,而横坐标为0的点(a,0)对应于纯实数a。
复数的运算可以通过在复平面上进行向量运算来实现。
两个复数的加法就是将两个向量叠加在一起,而减法就是将一个向量从另一个向量中减去。
乘法可以通过将复数旋转和缩放来实现。
复数的模可以用勾股定理推导得出:对于复数a+bi,它的模等于√(a²+b²),表示为,a+bi。
模是复数的长度或距离原点的距离。
两个复数的模的乘积等于它们的乘积的模,即,a+bi, * ,c+di, = ,(a+bi)(c+di)。
复数的共轭是将虚部取负得到的,即a-bi是复数a+bi的共轭。
共轭复数在复平面上呈镜像关系,共轭对称于实轴。
复数的实部是自身的共轭,虚部取负是自身的共轭。
通过使用复数,可以解决许多实数范围内无法解决的问题。
例如,求根公式中的虚数单位i是由复数域推导而来。
复数也广泛应用于工程学、物理学和信号处理等领域。
实际上,电路和信号可以使用复数进行建模和分析。
总之,复数是数学中重要的概念之一,它由实数和虚数组成,并可以通过复平面表示。
复数的几何意义在于将复数表示为平面上的点,实部对应于横坐标,虚部对应于纵坐标。
复数可以进行向量运算,包括加法、减法、乘法和取共轭。
复数的模是其到原点的距离,模的乘积等于乘积的模。
复数的共轭是虚部取负得到的。
复数一、考点、热点回顾1.复数的有关概念 (1)复数①定义:形如a +b i (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,满足i 2=-1. ②表示方法:复数通常用字母z 表示,即z =a +b i (a ,b ∈R ),这一表示形式叫做复数的代数形式.a 叫做复数z 的实部,b 叫做复数z 的虚部.注意:复数m +n i 的实部、虚部不一定是m 、n ,只有当m ∈R ,n ∈R 时,m 、n 才是该复数的实部、虚部. (2)复数集①定义:全体复数所成的集合叫做复数集. ②表示:通常用大写字母C 表示.2.复数的分类(1)复数z =a +b i (a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0)虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数a =0非纯虚数a ≠0(2)复数集、实数集、虚数集、纯虚数集之间的关系3.复数相等的充要条件设a 、b 、c 、d 都是实数,则a +b i =c +d i ⇔a =c 且b =d ,a +b i =0⇔a =b =0. 注意:(1)应用复数相等的充要条件时注意要先将复数化为z =a +b i (a ,b ∈R )的形式,即分离实部和虚部.(2)只有当a =c 且b =d 的时候才有a +b i =c +d i ,a =c 和b =d 有一个不成立时,就有a +b i ≠c +d i. (3)由a +b i =0,a ,b ∈R ,可得a =0且b =0.4.复平面的概念建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.5.复数的两种几何意义 (1)复数z =a +b i (a ,b ∈R )←――→一一对应复平面内的点Z (a ,b ).(2)复数z =a +b i (a ,b ∈R )←――→一一对应平面向量OZ →.6.复数的模复数z =a +b i (a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模,记作|z |,且|z |= a 2+b 2.注意:复数a +b i (a ,b ∈R )的模|a +b i|=a 2+b 2,两个虚数不能比较大小,但它们的模表示实数,可以比较大小.二、典型例题考点一、复数的概念 例1、下列命题:①若a ∈R ,则(a +1)i 是纯虚数; ②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2; ④实数集是复数集的真子集.其中正确的是( )A.①B.②C.③D.④ 【解析】 对于复数a +b i (a ,b ∈R ),当a =0且b ≠0时,为纯虚数.对于①,若a =-1,则(a +1)i 不是纯虚数,即①错误.两个虚数不能比较大小,则②错误.对于③,若x =-2,则x 2-4=0,x 2+3x +2=0,此时(x 2-4)+(x 2+3x +2)i =0,不是纯虚数,则③错误.显然,④正确.故选D.【答案】 D变式训练1、1.对于复数a +b i (a ,b ∈R ),下列说法正确的是( )A.若a =0,则a +b i 为纯虚数B.若a +(b -1)i =3-2i ,则a =3,b =-2C.若b =0,则a +b i 为实数D.i 的平方等于1解析:选C.对于A ,当a =0时,a +b i 也可能为实数; 对于B ,若a +(b -1)i =3-2i ,则a =3,b =-1; 对于D ,i 的平方为-1.故选C.2.若4-3a -a 2i =a 2+4a i ,则实数a 的值为( ) A.1 B.1或-4 C.-4 D.0或-4解析:选C.易知⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4.考点二、复数的分类例2、已知m ∈R ,复数z =m (m +2)m -1+(m 2+2m -3)i ,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?【解】 (1)要使z 为实数,m 需满足m 2+2m -3=0,且m (m +2)m -1有意义,即m -1≠0,解得m =-3.(2)要使z 为虚数,m 需满足m 2+2m -3≠0,且m (m +2)m -1有意义,即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 为纯虚数,m 需满足m (m +2)m -1=0,且m 2+2m -3≠0,解得m =0或-2.变式训练2、当实数m 为何值时,复数lg (m 2-2m -7)+(m 2+5m +6)i 是(1)纯虚数;(2)实数.解:(1)复数lg (m 2-2m -7)+(m 2+5m +6)i 是纯虚数,则⎩⎪⎨⎪⎧lg (m 2-2m -7)=0,m 2+5m +6≠0,解得m =4.(2)复数lg (m 2-2m -7)+(m 2+5m +6)i 是实数,则⎩⎪⎨⎪⎧m 2-2m -7>0,m 2+5m +6=0,解得m =-2或m =-3.考点三、复数相等 例3、(1)若(x +y )+y i =(x +1)i ,求实数x ,y 的值;(2)已知a 2+(m +2i )a +2+m i =0(m ∈R )成立,求实数a 的值;(3)若关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,求实数a 的值.【解】 (1)由复数相等的充要条件,得⎩⎪⎨⎪⎧x +y =0,y =x +1,解得⎩⎨⎧x =-12,y =12.(2)因为a ,m ∈R ,所以由a 2+am +2+(2a +m )i =0,可得⎩⎪⎨⎪⎧a 2+am +2=0,2a +m =0,解得⎩⎨⎧a =2,m =-22或⎩⎨⎧a =-2,m =22,所以a =±2.(3)设方程的实根为x =m ,则原方程可变为3m 2-a2m -1=(10-m -2m 2)i ,所以⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或-715.变式训练3、已知A ={1,2,a 2-3a -1+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解:由题意知,a 2-3a -1+(a 2-5a -6)i =3(a ∈R ),所以⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0, 即⎩⎪⎨⎪⎧a =4或a =-1,a =6或a =-1, 所以a =-1.考点四、复数与复平面内的点例4、已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z 满足下列条件时,求a 的值(或取值范围).(1)在实轴上; (2)在第三象限.【解】 (1)若对应的点在实轴上,则有2a -1=0,解得a =12.(2)若z 对应的点在第三象限,则有 ⎩⎪⎨⎪⎧a 2-1<0,2a -1<0.解得-1<a <12.故a 的取值范围是⎝⎛⎭⎫-1,12. 变式训练4、求实数a 取什么值时,复平面内表示复数z =a 2+a -2+(a 2-3a +2)i 的点(1)位于第二象限; (2)位于直线y =x 上.解:根据复数的几何意义可知,复平面内表示复数z =a 2+a -2+(a 2-3a +2)i 的点就是点Z (a 2+a -2,a 2-3a +2).(1)由点Z 位于第二象限,得 ⎩⎪⎨⎪⎧a 2+a -2<0,a 2-3a +2>0,解得-2<a <1. 故满足条件的实数a 的取值范围为(-2,1). (2)由点Z 位于直线y =x 上,得 a 2+a -2=a 2-3a +2,解得a =1. 故满足条件的实数a 的值为1.考点五、复数与复平面内的向量例5、(1)已知M (1,3),N (4,-1),P (0,2),Q (-4,0),O 为复平面的原点,试写出OM →,ON →,OP →,OQ →所表示的复数;(2)已知复数1,-1+2i ,-3i ,6-7i ,在复平面内画出这些复数对应的向量;(3)在复平面内的长方形ABCD 的四个顶点中,点A ,B ,C 对应的复数分别是2+3i ,3+2i ,-2-3i ,求点D 对应的复数.【解】 (1)OM →表示的复数为1+3i ;ON →表示的复数为4-i ;OP →表示的复数为2i ; OQ →表示的复数为-4.(2)复数1对应的向量为OA →,其中A (1,0);复数-1+2i 对应的向量为OB →,其中B (-1,2);复数-3i 对应的向量为OC →,其中C (0,-3);复数6-7i 对应的向量为OD →,其中D (6,-7). 如图所示.(3)记O 为复平面的原点,由题意得OA →=(2,3),OB →=(3,2),OC →=(-2,-3).设OD →=(x ,y ),则AD →=(x -2,y -3),BC →=(-5,-5).由题知,AD →=BC →,所以⎩⎪⎨⎪⎧x -2=-5,y -3=-5,即⎩⎪⎨⎪⎧x =-3,y =-2,故点D 对应的复数为-3-2i.变式训练5、在复平面内,把复数3-3i 对应的向量按顺时针方向旋转π3,所得向量对应的复数是_____________.解析:3-3i 对应向量为(3,-3),与x 轴正半轴夹角为30°,顺时针旋转60°后所得向量终点在y 轴负半轴上,且模为2 3.故所得向量对应的复数是-23i.答案:-23i考点六、复数的模 例6、(1)设(1+i )x =1+y i ,其中x ,y 是实数,则|x +y i|=( )A.1B. 2C. 3D.2 (2)已知复数z 满足z +|z |=2+8i ,求复数z .【解】 (1)选B.因为x +x i =1+y i ,所以x =y =1, 所以|x +y i|=|1+i|=12+12= 2. (2)法一:设z =a +b i (a ,b ∈R ), 则|z |=a 2+b 2,代入原方程得a +b i +a 2+b 2=2+8i ,根据复数相等的充要条件,得⎩⎨⎧a +a 2+b 2=2,b =8,解得⎩⎪⎨⎪⎧a =-15,b =8.所以z =-15+8i.法二:由原方程得z =2-|z |+8i (*). 因为|z |∈R ,所以2-|z |为z 的实部, 故|z |=(2-|z |)2+82,即|z |2=4-4|z |+|z |2+64,得|z |=17. 将|z |=17代入(*)式得z =-15+8i.变式训练6、已知复数z =3+a i (a ∈R ),且|z |<4,求实数a 的取值范围.解:法一:因为z =3+a i (a ∈R ),所以|z |=32+a 2, 由已知得32+a 2<42,所以a 2<7,所以a ∈(-7,7).法二:由|z |<4知z 在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z =3+a i 知z 对应的点在直线x =3上,所以线段AB (除去端点)为动点Z (3,a )的集合, 由图可知-7<a <7.三、课后练习1.若(x+y)i=x-1(x,y∈R),则2x+y的值为()A. B.2 C.0 D.1解析:由复数相等的充要条件知,x+y=0,x-1=0故x+y=0.故2x+y=20=1.答案:D2.已知集合M={1,2,(m2-3m-1)+(m2-5m-6)i},N={-1,3},且M∩N={3},则实数m的值为()A.4B.-1C.-1或4D.-1或6解析:由于M∩N={3},故3∈M,必有m2-3m-1+(m2-5m-6)i=3,所以得m=-1.答案:B3.给出下列复数:①-2i,②3+,③8i2,④isinπ,⑤4+i;其中表示实数的有(填上序号) ____________.解析:②为实数;③8i2=-8为实数;④i·sinπ=0·i=0为实数,其余为虚数.答案:②③④4.下列复数模大于3,且对应的点位于第三象限的为()A.z=-2-iB.z=2-3iC.z=3+2iD.z=-3-2i解析:A中|z|=<3;B中对应点(2,-3)在第四象限;C中对应点(3,2)在第一象限;D中对应点(-3,-2)在第三象限,|z|=>3.答案:D5.已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹为()A.一个圆B.线段C.两点D.两个圆解析:∵|z|2-2|z|-3=0,∴(|z|-3)(|z|+1)=0,∴|z|=3,表示一个圆,故选A.答案:A6.已知在△ABC中,对应的复数分别为-1+2i,-2-3i,则对应的复数为____________.解析:因为对应的复数分别为-1+2i,-2-3i,所以=(-1,2),=(-2,-3).又=(-2,-3)-(-1,2)=(-1,-5),所以对应的复数为-1-5i.答案:-1-5i7.在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i的对应点,(1)在虚轴上,求复数z;(2)在实轴负半轴上,求复数z.答案:(1)若复数z的对应点在虚轴上,则m2-m-2=0,所以m=-1或m=2.此时z=6i或z=0.(2)若复数z的对应点在实轴负半轴上,则m2-3m+2=0,m2-m-2<0,∴m=1能力提升8.若复数z=cosθ+(m-sinθ-cosθ)i为虚数,则实数m的取值范围是____________.解析:∵z为虚数,∴m-sinθ-cosθ≠0,即m≠sinθ+cosθ.∵sinθ+cosθ∈[],∴m∈(-∞,)∪,+∞).答案:(-∞,)∪,+∞)9.若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则a的取值范围是____________.解析:若复数为纯虚数,则有a2-a-2=0,|a-1|-1≠0即a=-1.故复数不是纯虚数时a≠-1.答案:{a|a≠-1}10.已知向量与实轴正向夹角为135°,向量对应复数z的模为1,则z=____________. 解析:依题意知Z点在第二象限且在直线y=-x上,设z=-a+ai(a>0).∵|z|=1,∴a2=12.而a>0,∴∴z=+答案:z=+11.已知复数z满足z+|z|=2+8i,则复数z=____________.解析:设z=a+bi(a,b∈R),则代入方程得,2+8i,∴解得a=-15∴z=-15+8i.答案:-15+8i12.已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∪P=P,求实数m的值.解析:M∪P=P,∴M⊆P,即(m2-2m)+(m2+m-2)i=-1或(m2-2m)+(m2+m-2)i=4i.由(m2-2m)+(m2+m-2)i=-1,得解得m=1;由(m2-2m)+(m2+m-2)i=4i,解得m=2.综上可知m=1或m=2.答案:m=1或m=213.已知复数z=2+cosθ+(1+sinθ)i(θ∈R),试确定复数z在复平面内对应的点的轨迹是什么曲线. 解析:设复数z=2+cosθ+(1+sinθ)i对应的点为Z(x,y),则x=2+cosθ,y=1+sinθ即cosθ=x-2,sinθ=y-1所以(x-2)2+(y-1)2=1.所以复数z 在复平面内对应点的轨迹是以(2,1)为圆心,1为半径的圆. 答案:复数z 在复平面内对应点的轨迹是以(2,1)为圆心,1为半径的圆.14. 已知复数z =m (m -1)+(m 2+2m -3)i(m ∈R ). (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围. 答案: (1)∵z 为实数,∴m 2+2m -3=0,解得m =-3或m =1.(2)∵z 为纯虚数,∴⎩⎪⎨⎪⎧m (m -1)=0,m 2+2m -3≠0.解得m =0.(3)∵z 所对应的点在第四象限,∴⎩⎪⎨⎪⎧m (m -1)>0,m 2+2m -3<0.解得-3<m <0.。
复数的基本运算及几何意义复数是由实部和虚部构成的数,可以用公式表示为 z = a + bi,其中a 是实部,b 是虚部,i 是虚数单位。
一、复数的四则运算1. 复数的加法:将实部和虚部分别相加即可。
例如:(2 + 3i) + (4 + 5i) = 6 + 8i2. 复数的减法:将实部和虚部分别相减即可。
例如:(2 + 3i) - (4 + 5i) = -2 - 2i3. 复数的乘法:根据分配律展开运算,注意 i 的平方为 -1。
例如:(2 + 3i) * (4 + 5i) = 8 + 22i - 15 = -7 + 22i4. 复数的除法:将分子乘以分母共轭复数,并进行合并化简。
例如:(2 + 3i) / (4 + 5i) = (2 + 3i) * (4 - 5i) / (4^2 + 5^2) = (8 + 7i) / 41二、复数在平面几何中的意义在平面直角坐标系中,复数可以看作是复平面上的点,实部对应横轴,虚部对应纵轴。
1. 复数的模:复数 z 的模表示为 |z|,是复平面上由原点到对应点的距离。
例如:z = 3 + 4i,则|z| = √(3^2 + 4^2) = 52. 复数的辐角:复数 z 的辐角表示为 arg(z),是复平面上由正实轴到对应位置向量的角度。
例如:z = 2 + 2i,则arg(z) = π/43. 欧拉公式:欧拉公式表示为e^(iθ) = cos(θ) + isin(θ),其中 e 是自然对数的底,i 是虚数单位,θ 是角度。
该公式将三角函数与指数函数联系了起来,是复数运算中的重要工具。
4. 复数的乘法及除法的几何意义:复数的乘法相当于平移、旋转和伸缩,在复平面上实现了几何变换。
复数的除法相当于平移、旋转和收缩,在复平面上实现了逆向几何变换。
综上所述,复数的基本运算包括加法、减法、乘法和除法,可以使用公式进行计算。
在平面几何中,复数可以表示为复平面上的点,模表示距离,辐角表示角度。
复数的几何意义知识点总结一、复数的几何表示。
1. 复平面。
- 建立直角坐标系来表示复数的平面叫做复平面。
在复平面内,x轴叫做实轴,y轴叫做虚轴。
实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数。
- 例如,复数z = 3 + 2i,在复平面内对应的点为(3,2),其中3是实部,对应实轴上的坐标;2是虚部,对应虚轴上的坐标。
2. 复数的向量表示。
- 复数z = a+bi(a,b∈ R)与复平面内的向量→OZ=(a,b)一一对应,其中O为坐标原点,Z(a,b)为复数z对应的点。
- 向量的模|→OZ|=√(a^2)+b^{2},这个模就等于复数z = a + bi的模|z|=√(a^2)+b^{2}。
例如,对于复数z = 1 + i,其模| z|=√(1^2)+1^{2}=√(2),在复平面内对应的向量→OZ=(1,1),向量的模也是√(2)。
3. 复数的加减法的几何意义。
- 设复数z_1=a + bi,z_2=c+di(a,b,c,d∈ R),它们在复平面内对应的向量分别为→OZ_1=(a,b),→OZ_2=(c,d)。
- 复数的加法:z_1+z_2=(a + c)+(b + d)i,其几何意义是对应的向量相加,即→OZ_1+→OZ_2=(a + c,b + d)。
- 例如,z_1=1+2i,z_2=3 - i,z_1+z_2=(1 + 3)+(2-1)i = 4 + i,在复平面内→OZ_1=(1,2),→OZ_2=(3,-1),→OZ_1+→OZ_2=(1 + 3,2-1)=(4,1)。
- 复数的减法:z_1-z_2=(a - c)+(b - d)i,其几何意义是对应的向量相减,即→OZ_1-→OZ_2=(a - c,b - d)。
例如,z_1=3+2i,z_2=1 + i,z_1-z_2=(3 - 1)+(2 - 1)i=2 + i,在复平面内→OZ_1=(3,2),→OZ_2=(1,1),→OZ_1-→OZ_2=(3 - 1,2 - 1)=(2,1)。
复数知识点总结一、复数的定义复数是指形如$a + bi$ 的数,其中$a$ 和$b$ 均为实数,$i$ 为虚数单位,满足$i^2 =-1$ 。
$a$ 被称为实部,记作$Re(z)$;$b$ 被称为虚部,记作$Im(z)$。
例如:$3 + 2i$ ,其中 3 是实部,2 是虚部。
二、复数的表示形式1、代数形式就是我们常见的$a + bi$ 。
2、几何形式在平面直角坐标系中,以$x$ 轴为实轴,$y$ 轴为虚轴,复数$a + bi$ 可以用点$(a, b)$来表示。
3、三角形式复数$z = a + bi$ 可以表示为$z = r(\cos\theta + i\sin\theta)$,其中$r =\sqrt{a^2 + b^2}$称为复数的模,$\theta$ 称为复数的辐角。
4、指数形式根据欧拉公式$e^{i\theta} =\cos\theta + i\sin\theta$ ,复数可以表示为$z = re^{i\theta}$。
三、复数的运算1、加法$(a + bi) +(c + di) =(a + c) +(b + d)i$例如:$(3 + 2i) +(1 4i) = 4 2i$2、减法$(a + bi) (c + di) =(a c) +(b d)i$例如:$(5 + 3i) (2 i) = 3 + 4i$3、乘法$(a + bi)(c + di) =(ac bd) +(ad + bc)i$例如:$(2 + 3i)(1 + 2i) =-4 + 7i$4、除法$\frac{a + bi}{c + di} =\frac{(a + bi)(c di)}{(c + di)(c di)}=\frac{ac + bd}{c^2 + d^2} +\frac{bc ad}{c^2 +d^2}i$例如:$\frac{1 + 2i}{1 i} =\frac{3}{2} +\frac{1}{2}i$四、复数的模复数$z = a + bi$ 的模为$|z| =\sqrt{a^2 + b^2}$。
复数的几何意义在数学中,我们经常会遇到复数的概念和使用。
虽然复数在代数学中有着重要的作用,但它们在几何学中也具有深远的意义。
本文将探讨复数在几何学中的意义,并展示它们在平面几何中的应用。
1. 复数的定义复数是由一个实数和一个虚数组成的数,通常表示为"a+bi"的形式,其中a是实部,bi是虚部,而i是虚数单位,满足i^2 = -1。
复数可以用平面上的点来表示,实部对应点的x坐标,虚部对应点的y坐标。
2. 复数的模和参数复数的模表示复数到原点的距离,可以使用勾股定理来计算,即模=√(a^2 + b^2)。
复数的参数表示复数与正实轴之间的夹角,可以使用反三角函数来计算,即参数=arctan(b/a)。
3. 复数的几何表示复数可以用向量来表示,向量的起点为原点,终点为该复数对应的点。
因此,复数的几何表示就是平面上的一个向量。
通过调整实部和虚部的数值,可以得到不同的向量。
4. 复数的加法和减法复数的加法可以看作是向量的相加,即将两个复数的向量相加,得到一个新的向量。
减法可以看作是向量的相减,即将两个复数的向量相减,得到一个新的向量。
这两个操作在平面几何中对应着向量的平移。
5. 复数的乘法和除法复数的乘法可以看作是向量的旋转和缩放,即将一个复数的向量旋转一定角度,并将向量的长度乘以一个因子,得到一个新的向量。
除法可以看作是向量的反向旋转和缩放,即将一个复数的向量旋转一定角度,并将向量的长度除以一个因子,得到一个新的向量。
6. 复数的共轭复数的共轭表示将复数的虚部取相反数,保持实部不变。
共轭的几何意义是将复数表示的向量关于实轴反射得到的新向量。
7. 复数在平面几何中的应用复数在平面几何中有广泛的应用。
例如,可以使用复数来表示平移、旋转和缩放等变换。
复数的乘法和除法可以用来进行向量的旋转和缩放操作。
此外,复数还可以表示平面上的点,通过复数的运算可以得到点之间的距离和夹角等信息。
总结:复数在几何学中有着重要的意义,可以用来表示平面上的向量和点。
关于复数的知识点总结复数的知识点总结篇1复数的概念:形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。
全体复数所成的集合叫做复数集,用字母C表示。
复数的表示:复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:(1)复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。
显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=虚数单位i:(1)它的平方等于-1,即i2=-1;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
复数模的性质:复数与实数、虚数、纯虚数及0的关系:对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d。
高考复数的相关知识点高考是中国学生进入大学的重要关卡,而数学是高考中的一门必考科目。
其中,复数是数学中一个重要的概念,也是高考数学中的一个难点。
本文将从复数基本概念、复数运算、复数的几何意义以及复数方程等方面介绍与高考相关的复数知识点。
一、复数基本概念复数是由实部与虚部组成的数,可以写成a+bi的形式,其中a和b分别表示实部和虚部,i表示虚数单位。
实部和虚部都是实数。
当虚部b不为零时,复数称为纯虚数;当实部a不为零时,复数既可以是实数又可以是虚数,称为非零实数。
复数中实部为零、虚部不为零的数,称为纯虚数。
二、复数运算1. 复数的加法和减法:将实部与实部相加(减),虚部与虚部相加(减),得到复数的实部与虚部。
2. 复数的乘法:按照分配率,将各项相乘并化简,得到复数的实部与虚部。
3. 复数的除法:将复数除以另一个复数时,可以采用有理化分母的方法,即将除数分子、分母都乘以除数的共轭复数。
三、复数的几何意义复数可以通过平面上的点表示。
复平面的实轴表示实部,虚轴表示虚部。
若复数z=a+bi,则可以在复平面上找到对应的点P(a,b)。
这个点到原点的距离叫做复数的模,记作|z|。
而这个点与实轴正半轴的夹角叫做复数的辐角,记作∠z。
根据复平面,我们可以将复数的加法、减法、乘法等运算转化为向量的运算,简化了计算的步骤。
同时,复数的模和辐角在求解复数方程时也起到了重要的作用。
四、复数方程复数方程是含有复数未知数的方程。
复数方程的解可以是实数,纯虚数,也可以是复数。
在高考中,求解复数方程通常采用联立方程组法或因式分解法。
1. 联立方程组法:将复数方程转化为实数方程,求解实数方程,然后判断得出复数的实部和虚部。
2. 因式分解法:将复数方程进行因式分解,然后利用因式分解的性质求解得到复数的实部和虚部。
五、高考相关题型高考中常见的与复数相关的题型有:1. 复数的运算:求两个复数的和、差或积。
2. 复数的模和辐角:求复数的模和辐角,或求两个复数的模的乘积、辐角的和。
复数的基本概念和几何意义复数是数学中的一个重要概念,它由一个实数部分和一个虚数部分组成。
一个复数可以用以下形式表示:a+bi,其中a为实数部分,b为虚数部分,i为虚数单位,即i^2=-1复数的基本概念包括实数部分和虚数部分。
实数部分是复数的实际部分,它可以是任何实数。
虚数部分是复数中的虚构部分,它必须乘以虚数单位i才能表示。
实数部分和虚数部分都可以是负数。
复数的几何意义可以通过复平面理解。
复平面是一个由实数轴和虚数轴构成的平面。
实数轴表示实数部分,虚数轴表示虚数部分。
复数a+bi 可以在复平面上表示为一个点,实数部分对应的是x坐标,虚数部分对应的是y坐标。
复数的模表示复数到原点的距离,可以通过勾股定理求得。
模的值是一个非负实数。
复数的共轭表示实数部分不变,虚数部分取相反数,即a-bi。
复数可以进行加法、乘法和求逆运算。
复数的加法和减法可以通过实数部分和虚数部分分别相加或相减得到。
复数的乘法可以通过FOIL法则展开得到。
复数的求逆可以通过取共轭复数,将实数部分除以模的平方得到。
复数的基本性质包括交换律、结合律、分配律等。
复数可以进行四则运算,并满足这些性质。
复数的重要应用包括在电路分析、量子力学、工程计算等领域。
复数在这些领域中能够提供更加精确和便捷的计算手段。
总结起来,复数是由实数部分和虚数部分组成的数,它可以在复平面上表示为一个点。
复数有加法、乘法和求逆等运算,满足交换律、结合律和分配律。
复数的几何意义可以帮助我们理解和应用它们。
复数在数学和实际应用中都有重要的意义。
(完整版)复数知识点总结复数是数学中的一个基本概念,特别是在代数和几何中扮演着重要角色。
以下是复数的知识点总结:1. 定义:复数是形如 a + bi 的数,其中 a 和 b 是实数,i 是虚数单位,满足 i² = -1。
2. 实部与虚部:对于复数 z = a + bi,a 称为它的实部(Re(z)),b 称为它的虚部(Im(z))。
3. 共轭复数:一个复数 z 的共轭复数表示为 z* 或者z̅,定义为a - bi。
共轭复数在复平面上关于实轴对称。
4. 模与辐角:复数 z 的模(|z|)是其实部和虚部的平方和的平方根,即|z| = √(a² + b²)。
辐角(arg(z))是从正实轴到复数在复平面上表示的向量的角度,通常用θ 表示。
5. 复数的乘法与除法:- 乘法:(a + bi)(c + di) = (ac - bd) + (ad + bc)i- 除法:(a + bi) / (c + di) = [(ac + bd) / (c² + d²)] + [(bc - ad) / (c² + d²)]i6. 欧拉公式:e^(ix) = cos(x) + i*sin(x),其中 e 是自然对数的底数,i 是虚数单位。
这个公式将复指数函数与三角函数联系起来。
7. 德摩弗定理:对于任何复数 z 和非零复数 w,有 (z/w) = (z - w) / (1 - wz),这个定理在处理复数序列和级数时非常有用。
8. 复数的极限与连续性:复数的极限定义与实数类似,但需要考虑复平面上的点。
复数函数的连续性也可以用类似实数函数的方式定义。
9. 解析函数:如果一个复数函数 f(z) 在某个区域内的每一点都可微分,则称 f(z) 在该区域内解析。
柯西-黎曼方程是判断一个复函数是否可微分的必要条件。
10. 级数展开:复数函数可以通过泰勒级数或劳朗级数在复平面上展开。
复数的几何意义复数是由实数和虚数构成的数学概念,它在几何学中有着重要的意义。
本文将探讨复数的几何意义,以及它在几何图形、向量和共轭等方面的应用。
一、复数的定义及表示方式复数是由实部和虚部构成的,通常可以表示为z = a + bi,其中a为实部,bi为虚部且i为虚数单位。
实部和虚部分别在数轴的实轴和虚轴上表示。
二、复数的几何意义1. 复平面复数可以看作是在复平面上的点,这个平面由实轴和虚轴组成。
实部决定复数的横坐标,虚部决定复数的纵坐标。
2. 几何解释当复数z不是实数时,可以将其表示为z = a + bi的形式,其中a和b都是实数。
在复平面上,可以将其视为一个点,即复数z对应着复平面上的一个点P(a,b)。
3. 共轭复数对于复数z = a + bi,它的共轭复数为z* = a - bi。
在复平面上,过点P(a,b)作虚轴的垂线,与虚轴的交点为点P',那么P'对应的复数就是z*。
共轭复数的实部相同,虚部相反。
共轭复数在几何上可以表示为关于x轴对称的点。
4. 复数的模复数的模表示复数到原点的距离,可以用勾股定理求得。
对于复数z = a + bi,它的模记为|z|,可以表示为|z| = √(a^2 + b^2)。
在复平面上,模就是复数对应点到原点的距离。
5. 向量复数也可以看作是一个向量,在二维平面上表示了大小和方向。
向量的模表示了向量的长度,角度表示了向量与x轴之间的夹角。
三、复数的应用1. 几何图形复数在几何图形中有着广泛的应用。
通过复数运算可以进行平移、旋转和缩放等操作,方便地进行几何变换。
2. 向量复数可以表示向量,因此在物理学、工程学和计算机图形学等领域中广泛应用。
复数的加法和减法对应向量的平移,复数的乘法对应向量的缩放和旋转。
3. 共轭共轭复数在电路分析、信号处理等领域有着重要应用。
共轭复数可以用于表示交流电路中的功率、电流和电压关系,以及信号频谱中的共轭对称性等。
四、总结复数在几何学中有着重要的意义,可以表示复平面上的点,并且可以进行几何变换。
1、复数的定义:设i 为方程21x =-的根,i 称为虚数单位,形如()a bi a b R +∈、的数,称为复数.所有复数构成的集合称复数集,通常用C 来表示.a 为实部,b 为虚部 2.复数集整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ⎧⎧⎧⎪⎪⎨=⎨⎪⎩⎪⎪+∈⎨⎩⎪⎧≠⎪≠⎨⎪=⎩⎩3.复数的几何意义对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z).z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。
4. 两个复数相等的定义:a bi c di a c +=+⇔=且b d =(其中a b c d R ∈,,,,)特别地,00a bi a b +=⇔==.5.复数的四则运算 设111z a b i =+,222z a b i =+(1)加法:()()121212z z a a b b i +=+++,即实部与实部相加,虚部与虚部相加;(2)减法:()()121212z z a a b b i -=-+-,即实部与实部相减,虚部与虚部相减; (3)乘法:()()1212122112z z a a b b a b a b i ⋅=-++ , 特别22z z a b ⋅=+;(4)除法c diz a bi+=+(,a b 是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数,即分子分母同时乘以分母的共轭复数,然后再化简:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==⋅=++-+;(5)四则运算的交换率、结合率;分配率都适合于复数的情况。
复数知识点小结1、复数的概念复数 (,)z a bi a b R =+∈Re Im a z b z ⎧⎨⎩——实部————虚部——,其中21i =-,i 叫做虚数单位. 2、复数的分类 (0) (,)(0) (0b z a bi a b R b a =⎧=+∈⎨≠=⎩实数复数虚数特别地,时为纯虚数)3、两个复数相等定义:如果两个复数),(1R b a bi a z ∈+=和),(2R d c di c z ∈+=的实部与虚部分别相等,即d b c a ==且,那么这两个复数相等,记作di c bi a +=+.只有当两个复数都是实数时,才能比较大小;当两个复数不都是实数时,只有相等与不相等两种关系,不能比较大小.4、复平面——建立了直角坐标系来表示复数的平面。
复平面中,x 轴叫做实轴,y 轴叫做虚轴。
表示实数的点都在实轴上,表示纯虚数的点都在虚轴上,原点表示实数0。
5、复数的向量表示OZ Z 向量复平面上点复数↔↔+=),(b a bi a z6、复数的模复数模(绝对值)的定义,几何意义:复数z=a+bi (a,b ∈R )所对应的点Z(a,b)到坐标原点的距离。
|z|=|a+bi|=022≥+b a .[说明] ||||z z a ==为实数时,,所以实数绝对值是复数模的特殊情形。
当且仅当a=b=0时,|z|=07、复数的四则运算性质:R d c b a ∈,,,1)、加法:i d b c a di c bi a )()()()(+++=+++2)、减法:i d b c a di c bi a )()()()(-+-=+-+3)、乘法:i bc ad bd ac di c bi a )()())((++-=++4)、除法:i d c ad bc d c bd ac di c bi a 2222+-+++=++ (目的:分母实数化) [要点说明]①计算结果一律写成),(R b a bi a ∈+的代数形式;②复数的加法满足交换律、结合律;③复数乘法满足交换律、结合律及乘法对加法的分配律;交换律:1221z z z z ⋅=⋅结合律:)()(321321z z z z z z ⋅⋅=⋅⋅分配律:3121321)(z z z z z z z ⋅+⋅=+⋅④实数范围内正整数指数幂的运算律在复数范围内仍然成立,即n n n mn n m n m n m z z z z z z z z z N n m C z z z 2121*321)(,)(,,,,,=⋅==∈∈+时:8、i 的整数指数幂的周期性特征:414243441, 1, , 1k k k k k i i i i i i ++++==-=-=若为非负实数,则();024*******=+++++++k k k k i i i i )(9、||21z z -的几何意义:设12, (,,,)z a bi z c di a b c d R =+=+∈ 则2221)()(|)()(||)()(|||d b c a i d b c a di c bi a z z -+-=-+-=+-+=-几何意义:对应复平面上点12(,), (,)Z a b Z c d 两点间距离22)()(d b c a d -+-=10、共轭复数1)定义: 当两个复数的实部相等,虚部互为相反数时,这样的两个复数叫做互为共轭复数,记为bi a z -=问题:当R z ∈时,是否有共轭复数?两者关系如何?z z R z =⇔∈2)运算性质:结论可推广到n 个2121)1(z z z z ±=± 2121)2(z z z z ⋅=⋅ )0()()()3(22121≠=z z z z z 3)模的运算性质:① 121212||||||||||z z z z z z -≤±≤+;② 1212z z z z ⋅=⋅,可推广至有限多个,特别地n n z z= ③ 2121z z z z = ④ 22z z z z ==,特别地,当1=z 时,1=z z 即 1z z=. 11、复数的平方根:在复数集C 内,如果),,,(,R d c b a di c bi a ∈++满足:di c bi a +=+2)(, 则称bi a +是di c +的一个平方根.从运算结果可以看出,一个非零复数的平方根有两个,且互为相反数.12、复数的立方根 设i 2321+-=ω,则: 322331322(1) 1; (2) 10 ; (3) ;(4) 1,{}3.n n n nT ωωωωωωωωωωω++=++======即是的等比数列 13、实系数一元二次方程根的情况1)20(0)ax bx c a ++=≠实系数一元二次方程在复数集内根的情况:① 0 ,∆>当时有两个不相等的实根;② 0 ∆=当时,有两个相等的实根; ③ 0 ∆<当时,有两个共轭虚根.2)0∆<当时,2212112122Re ,||||b c x x x x x x x a a+==-⋅=== 3)120||x x a∆≥-=当时,;120||||22||b i b i x x a a a --∆<-=-=当时,12||x x -=综上:。