一起学奥数-余数问题.ppt
- 格式:ppt
- 大小:402.50 KB
- 文档页数:13
小学五年级奥数—数论之同余问题数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:1 当时:我们称a可以被b整除,q称为a除以b的商或完全商2 当时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c 就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16 39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19 42除以5的余数等于3+4 7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1 3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
数论之余数问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
【知识点拨】1.余数的加法定理①a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
②当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
2.余数的乘法定理①a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
②当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例题精讲:【模块一:带余除法的定义和性质】【例 1】用某自然数a去除1992,得到商是46,余数是r,求a和r.【巩固】1、 (清华附中小升初分班考试)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.2、一个两位数除310,余数是37,求这样的两位数。
【例 2】(2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【巩固】用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?【例 3】三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。
【巩固】一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.【例 4】有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?【巩固】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【例 5】有一个大于1的整数,除45,59,101所得的余数相同,求这个数.巩固1、有一个整数,除39,51,147所得的余数都是3,求这个数.2、在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【例 6】两位自然数ab与ba除以7都余1,并且a b⨯.>,求ab ba【巩固】学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班?【巩固】在除13511,13903及14589时能剩下相同余数的最大整数是_________.【例 7】20032与22003的和除以7的余数是________.【例 8】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【巩固】用自然数n去除63,91,129得到的三个余数之和为25,那么n=________【巩固】号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【例 9】(《小学生数学报》数学邀请赛试题)六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是________元.【巩固】(全国小学数学奥林匹克试题)商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是________千克.【例 10】求2461135604711⨯⨯÷的余数.【巩固】 (华罗庚金杯赛模拟试题)求478296351⨯⨯除以17的余数.【巩固】"2"20002222个除以13所得余数是_____.【巩固】 求89143除以7的余数.【巩固】 222212320012002+++++除以7的余数是多少?【巩固】 ()30313130+被13除所得的余数是多少?【巩固】 1996777777⋅⋅⋅个除以41的余数是多少?【例 11】一个大于1的数去除290,235,200时,得余数分别为a,2a+,则这个自然数是多少?a+,5【巩固】一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【例 12】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【巩固】(2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【例 13】托玛想了一个正整数,并且求出了它分别除以3、6和9的余数.现知这三余数的和是15.试求该数除以18的余数.课 后 作 业练习1. 两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.练习2. 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?练习3. 1013除以一个两位数,余数是12.求出符合条件的所有的两位数.练习4:有一个自然数,除345和543所得的余数相同,且商相差33.求这个数是多少?练习5:若2836,4582,5164,6522四个自然数都被同一个自然数相除,所得余数相同且为两位数,除数和余数的和为_______.练习6:2008222008+除以7的余数是多少?【备选5】一个自然数被7,8,9除的余数分别是1,2,3,并且三个商数的和是570,求这个自然数.。
第五讲余数问题内容概述从此讲开始,我们来进一步研究数论的有关知识。
小学奥数中的数论问题,涉及到整数的整除性、余数问题、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
在整数的除法中,只有能整除和不能整除两种情况。
当不能整除时,就产生余数,余数问题在小学数学中非常重要。
一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r(也就是a=b×q+r), 0≤r<b;当r=0时,我们称a能被b整除;当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的商余数问题和整除性问题是有密切关系的,因为只要我们去掉余数那么就能和整除性问题联系在一起了。
余数有如下一些重要性质,我们将通过例题给大家讲解。
例题讲析【例1】(清华附中小升初分班考试)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。
分析:法1:因为甲=乙×11+32,所以甲+乙=乙×11+32+乙=乙×12+32=1088;则乙=(1088-32)÷12=88,甲=1088-乙=1000。
法2:将余数先去掉变成整除性问题,利用倍数关系来做:从1088中减掉32以后,1056就应当是乙数的(11+1)倍,所以得到:乙数=1056÷12=88 ,甲数=1088-88=1000 。
【例2】 1013除以一个两位数,余数是12。
求出符合条件的所有的两位数。
分析:1013-12=1001,1001=7×11×13,那么符合条件的所有的两位数有13、77、91 有的同学可能会粗心的认为11也是。
11小于12,所以不行。
大家做题时要仔细认真。
【例3】(小学数学奥林匹克初赛)有苹果、桔子各一筐,苹果有240个、桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分封最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果?分析:此题是一道求除数的问题。
——梦想从这里起飞学生课程讲义课程名称二年级奥数上课时间任课老师沈老师第24 讲,本讲课题:余数妙用二内容概要利用余数的性质,解决有趣的数学问题。
我们已经学习了有余数的除法,都知道在有余数的除法里,余数要比除数小。
利用余数,可以解决许多有趣的实}际问题,就看你会不会巧妙地应用余数了。
解答习题时,首先要把重复出现的部分作为一组,再想总数里有几个这样的一组。
如果相除没有余数,说明某个物体(或数)是一组中的最后一个;如果相除有余数,那么余数是几,某个物体(或数)就是一组中的第几个,从而解出所求问题。
【例1】王老师把1~40号卡片依次发给小亮、小红、小云、小强4个同学,第26张卡片应发给谁?举一反三1.1.把1—50号卡片依次发给甲、乙、丙、丁4个同学,已知1号发给甲,40号应发给谁?2.小亮练习书法,他把“我爱伟大的祖国”这句话依次反复书写,第58个字应写什么?3.把10~40号卡片依次发给甲、乙、丙、丁4个同学,已知10号发给甲,30号卡片应发给谁?——梦想从这里起飞【例2】有一列数3,1,2,3,1,2,3,1,2……,第20个数是多少?这20个数的和是多少?随堂练习21.有一列数4,0,2,1,4,0,2,1,4,0,2,1,…,第30个数是多少?这30个数的和是多少?2.有一列数2,1,0,3,4,2,1,0,3,4,2,1,0,3,4…第64个数是多少?这64个数的和是多少?3.一串字母共有43个,按ABCDEABCDEABCDE…排列,最后一个是什么字母?这串字母中A、B、C、D、E各有多少个?【例3】小明问小刚:“今天是星期五,再过31天,是星期几?”同学们,你能帮助小刚回答这个问题吗?随堂练习31.2015年6月29日是星期一,2015年8月1日是星期几?2.2015年10月1日是星期四,2016年1月1日是星期几?——梦想从这里起飞3.2016年11月1日是星期二2017年1月1日是星期几?【例4】 8个队员围成一圈做游戏,从1号队员开始,按箭头方向向下一个人传球,在传球时按顺序报数,当报到75时,球在几号队员手上?随堂练习41.把1~38号卡片依次发给小青、小红、小明、小华4个人,已知1号发给小青,20号该发给谁?38号呢?2.6个小朋友围在一起做“传花”游戏,从A 开始按箭头方向向下一个人传花。
课题名称:余数问题授课教师:刘彬教学目标1:余数的定义2:余数的三大定理知识点一、余数的定义一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≢r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
例1 (第五届小学数学报竞赛决赛)用某自然数a去除1992,得到商是46,余数是r,求a和r.【解析】因为1992是a的46倍还多r,得到19924643 (14)a=,=⨯+,所以43÷=,得1992464314r=.14【巩固】(清华附中小升初分班考试)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【巩固】一个两位数除310,余数是37,求这样的两位数。
例2 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【巩固】 用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?例 3 (2000年“祖冲之杯”小学数学邀请赛试题)三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。
1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理 a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2. 当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。