全等三角形的性质:典型例题
- 格式:doc
- 大小:226.55 KB
- 文档页数:5
全等三角形的性质一、知识回顾1、全等形的概念:能够完全重合的两个图形叫做全等形。
2、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。
用符号“≌”表示,读作:全等。
4、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等.(2)全等三角形的周长、面积相等.5、全等三角形的表示:△ABC和△A'B'C'全等,记作△ABC≌△A'B'C'.通常对应顶点字母写在对应位置上.二、典型例题例1:下列判断正确的是()A.形状相同的图形叫全等形B.图形的面积相等的图形叫全等形C.部分重合的两个图形全等D.两个能完全重合的图形是全等形分析:要判断选项的正误,要以全等形的概念为依据,结合各选项认真验证,与之相符和是正确的,反之,是错误的.解答:A、如果形状相同而面积不同,则不是全等形,错;B、如果面积相等,而形状不同,则不是全等形,错;C、根据全等形概念,强调是完全重合,错.D、正确.故选D.______________________________________________________ _______________________________例2:在下列各组图形中,是全等的图形是()分析:能够完全重合的两个图形叫做全等形.只有选项C能够完全重合,A 中大小不一致,B,D中形状不同.解答:由全等形的概念可以判断:C中图形完全相同,符合全等形的要求,而A、B、D中图形很明显不相同,A中大小不一致,B,D中形状不同.故选C.______________________________________________________ _______________________________例3:下列说法中,错误的是()A.全等三角形的面积相等B.全等三角形的周长相等C.面积相等的三角形全等D.面积不等的三角形不全等分析:判断选项是否正确,要根据全等三角形的性质,全等三角形的周长、面积分别相等;而面积相等的三角形不一定重合,即不一定全等,可得选项C 是错误的.解答:全等的三角形一定是能够互相重合的三角形,故全等的三角形面积相等,周长相等,而面积相同的两个三角形不一定能重合,即不一定全等,面积不等的三角形一定不会重合,不会全等.∴根据全等三角形的定义可知A、B、D均正确,C不正确.故选C.______________________________________________________ _______________________________例4:已知△ABC≌△A′B′C′,若∠A=50°,∠B′=80°,则∠C的度数是()A.30°B.40°C.50°D.60°分析:根据全等三角形的对应角相等,可求得∠B=∠B′=80°;根据三角形内角和定理,即可求得∠C的度数.解答:∵△ABC≌△A′B′C′∴∠B=∠B′=180°∴∠C=180°-∠A-∠B=50°故选C.______________________________________________________ _______________________________例5:如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A.4cm B.5cm C.6cmD.以上都不对分析:由△ABC≌△BAD,A和B,C和D分别是对应顶点,知AD和BC 是对应边,全等三角形的对应边相等即可得.解答:∵△ABC≌△BAD,A和B,C和D分别是对应顶点∴AD=BC=5cm.故选B.______________________________________________________ _______________________________例6:如图△ABC≌△BAD,若AB=9,BD=8,AD=7,则BC的长为()A.9 B.8 C.7 D.6分析:观察图形根据已知找出对应边,运用两三角形全等的性质得对应边相等可求解.解答:∵△ABC≌△BAD,∴BC=AD=7.故选C______________________________________________________ _______________________________例7:(2003·海南)如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确的个数是()A.1个B.2个C.3个D.4个分析:根据已知找准对应关系,运用三角形全等的性质“全等三角形的对应角相等,对应边相等”求解即可.解答:∵△ABC≌△AEF,AB=AE,∠B=∠E∴EF=BC,∠EAF=∠BAC∴∠EAB+∠BAF=∠FAC+∠BAF即∠EAB=∠FACAC与AE不是对应边,不能求出二者相等,也不能求出∠FAB=∠EAB∴①、②错误,③、④正确故选B.______________________________________________________ _______________________________例8:如图,在△ABC中,D、E分别是AB,BC上的点,若△ACE≌△ADE≌△BDE,则∠ABC=()A.30°B.35°C.45°D.60°分析:运用全等三角形的性质可得出∠C=∠EDA=∠EDB=90°和∠B=∠BAE=∠CAE,从而求出∠B.解答:∵△ADE≌△BDE则∠ADE=∠BDE又∵∠ADE+∠BDE=180°∴∠ADE=∠BDE=90°∵△ACE≌△ADE∴∠C=∠ADE=90°∴∠CAB+∠B=90°又∵△ACE≌△ADE≌△BDE∴∠CAE=∠EAD=∠B=90°/3 =30°故选A.三、解题经验全等形的概念:两个能完全重合的图形是全等形,做题时要严格按照定义去判断。
1.判定两个三角形全等的基本事实:边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.判定两个三角形全等的基本事实:边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.判定两个三角形全等的基本事实:角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL ”定理是直角三角形所独有的,对于一般三角形不成立. 【归纳】判定两个三角形全等常用的思路方法如下: HL SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边—K 知识参考答案:1.(1)边边边2.(1)SAS 3.(1)ASA4.(1)AAS5.(1)HLK —重点 三角形全等的判定K —难点 三角形全等的判定和性质的综合运用 K —易错三角形全等的判定一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △△D.以上答案都不对C.BDE△≌CDE【答案】B二、用边角边(SAS)证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC【答案】C【解析】∵AB=AC(已知),∠A=∠A(公共角),∴只需要AE=AD,∴△ABE≌△ACD,故选C.三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【答案】D【解析】∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选D.【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【答案】D五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【答案】B【解析】∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选B.【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【解析】∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,CAB DBA AB ABDAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADB≌△BCA(ASA),∴BC=AD.。
全等三角形经典例题〔全等三角形的概念和性质〕类型一、全等形和全等三角形的概念1、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形及镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A及点A1对应,点B及点B1对应,点C及点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,假设运动方向一样,那么称它们是真正合同三角形(如图1),假设运动方向相反,那么称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,那么必须将其中一个翻转180°,以下各组合同三角形中,是镜面合同三角形的是( )〔答案〕B;提示:抓住关键语句,两个镜面合同三角形要重合,那么必须将其中一个翻转180°,B答案中的两个三角形经过翻转180°就可以重合,应选B;其它三个选项都需要通过平移或旋转使它们重合.类型二、全等三角形的对应边,对应角类型三、全等三角形性质3、如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,如果60BAF∠=︒,那么DAE∠等于〔〕.A.60° B.45° C.30° D.15°〔答案〕D;〔解析〕因为△AFE是由△ADE折叠形成的,所以△AFE≌△ADE,所以∠FAE=∠DAE,又因为60BAF∠=︒,所以∠FAE=∠DAE==15°.〔点评〕折叠所形成的三角形及原三角形是全等的关系,抓住全等三角形对应角相等来解题.举一反三:〔变式〕如图,在长方形ABCD中,将△BCD沿其对角线BD翻折得到△BED,假设∠1=35°,那么∠2=________.〔答案〕35°;提示:将△BCD沿其对角线BD翻折得到△BED,所以∠2=∠CBD,又因为AD∥BC,所以∠1=∠CBD,所以∠2=35°.4、如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,假设∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.〔答案〕∠α=80°〔解析〕∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x,∠2=5x,∠3=3x,∴28x+5x+3x=36x=180°,x=5°即∠1=140°,∠2=25°,∠3=15°∵△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,∴△ABE≌△ADC≌△ABC∴∠2=∠ABE,∠3=∠ACD∴∠α=∠EBC+∠BCD=2∠2+2∠3=50°+30°=80°“比例〞设未知数x是比拟常用的解题思路.举一反三:〔变式〕如图,在△ABC中,∠A:∠ABC:∠BCA =3:5:10,又△MNC≌△ABC,那么∠BCM:∠BCN等于〔〕A.1:2 B.1:3 C.2:3 D.1:4〔答案〕D;提示:设∠A=3x,∠ABC=5x,∠BCA=10x,那么3x+5x+10x=18x=180°,x=10°. 又因为△MNC≌△ABC,所以∠N=∠B=50°,CN=CB,所以∠N=∠CBN=50°,∠ACB=∠MCN=100°,∠BCN=180°-50°-50°=80°,所以∠BCM:∠BCN=20°:80°=1:4.〔全等三角形判定一〔SSS,SAS〕〕类型一、全等三角形的判定1——“边边边〞1、如图,在△ABC和△ADE中,AB=AC,AD=AE,BD=CE,求证:∠BAD=∠CAE.(答案及解析〕证明:在△ABD和△ACE中,∴△ABD≌△ACE〔SSS〕∴∠BAD=∠CAE〔全等三角形对应角相等〕. (点评〕把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD=∠CAE,先找出这两个角所在的三角形分别是△BDA和△CAE,然后证这两个三角形全等.举一反三:(变式〕:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.(答案〕证明:连接DC,在△ACD及△BDC中∴△ACD≌△BDC〔SSS〕∴∠CAD=∠DBC〔全等三角形对应角相等〕类型二、全等三角形的判定2——“边角边〞2、3、举一反三:(变式〕,如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,并且AE=12〔AB+AD〕,求证:∠B+∠D=180°.(答案〕证明:在线段AE上,截取EF=EB,连接FC,∵CE⊥AB,∴∠CEB=∠CEF=90°在△CBE 和△CFE 中,∴△CBE 和△CFE 〔SAS 〕∴∠B =∠CFE∵AE =12〔AB +AD 〕,∴2AE = AB +AD ∴AD =2AE -AB∵AE =AF +EF ,∴AD =2〔AF +EF 〕-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC 〔SAS 〕∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°. 类型三、全等三角形判定的实际应用4、如图,公园里有一条“Z 字形道路ABCD ,其中AB ∥CD ,在AB ,BC ,CD 三段路旁各有一个小石凳E ,M ,F ,且BE =CF ,M 在BC 的中点.试判断三个石凳E ,M ,F 是否恰好在一条直线上?Why ?(答案及解析〕三个小石凳在一条直线上证明:∵AB 平行CD 〔〕∴∠B =∠C 〔两直线平行,内错角相等〕∵M 在BC 的中点〔〕∴BM =CM 〔中点定义〕在△BME 和△CMF 中∴△BME ≌△CMF 〔SAS 〕∴∠EMB =∠FMC 〔全等三角形的对应角相等〕∴∠EMF =∠EMB +∠BMF =∠FMC +∠BMF =∠BMC =180°〔等式的性质〕∴E ,M ,F 在同一直线上(点评〕对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决. 由易证△BME≌△CMF ,可得∠EMB =∠FMC ,再由∠EMF =∠EMB +∠BMF =∠FMC +∠BMF =∠BMC =180°得到E ,M ,F 在同一直线上.〔全等三角形判定二〔ASA ,AAS 〕〕类型一、全等三角形的判定3——“角边角〞1、如图,G是线段AB上一点,AC和DG相交于点E.请先作出∠ABC的平分线BF,交AC于点F;然后证明:当AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.(答案及解析〕证明:∵AD∥BC,∴∠DAC=∠C∵BF平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE及△BCF中∴△DAE≌△BCF〔ASA〕∴DE=BF(点评〕利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.(变式〕:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.(答案〕证明:∵MQ和NR是△MPN的高,∴∠MQN=∠MRN=90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2在△MPQ 和△NHQ 中,∴△MPQ ≌△NHQ 〔ASA 〕 ∴PM =HN类型二、全等三角形的判定4——“角角边〞2、:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、BF CD ⊥,垂足为E 、F ,求证:CE BF =.(答案及解析〕证明:∵ CD AE ⊥,CD BF ⊥ ∴︒=∠=∠90BFC AEC∴︒=∠+∠90B BCF∵,90︒=∠ACB ∴︒=∠+∠90ACF BCF ∴B ACF ∠=∠在BCF ∆和CAE ∆中∴BCF ∆≌CAE ∆〔AAS 〕∴BF CE =(点评〕要证BF CE =,只需证含有这两个线段的BCF ∆≌CAE ∆.同角的余角相等是找角等的好方法.3、平面内有一等腰直角三角板〔∠ACB =90°〕和一直线MN .过点C 作CE ⊥MN 于点E ,过点B 作BF ⊥MN 于点F .当点E 及点A 重合时〔如图1〕,易证:AF +BF =2CE .当三角板绕点A 顺时针旋转至图2的位置时,上述结论是否仍然成立?假设成立,请给予证明;假设不成立,线段AF 、BF 、CE 之间又有怎样的数量关系,请直接写出你的猜测,不需证明.(答案及解析〕解:图2,AF +BF =2CE 仍成立,证明:过B 作BH ⊥CE 于点H ,∵∠CBH +∠BCH =∠ACE +∠BCH =90°∴∠CBH =∠ACE在△ACE 及△CBH 中, 90ACH CBH AEC CHB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ACE≌△CBH.〔AAS〕∴CH=AE,BF=HE,CE=EF,∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.(点评〕过B作BH⊥CE及点H,易证△ACH≌△CBH,根据全等三角形的对应边相等,即可证得AF+BF=2CE.正确作出垂线,构造全等三角形是解决此题的关键.举一反三:(变式〕错误!未找到引用源。
(一)全等三角形的特征 ∵△ABC ≌△DEF∴AB= ,AC= BC= , (全等三角形的对应边 ) ∠A= ,∠B= ,∠C= ; (二)三角形全等的识别方法1、如图:△ABC 与△DEF 中2、如图:△ABC 与△DEF 中∵⎪⎩⎪⎨⎧===__________________________________________________________∵⎪⎩⎪⎨⎧===__________________________________________________________∴△ABC ≌△DEF ( ) ∴△ABC ≌△DEF ( )3、如图:△ABC 与△DEF 中4、如图:△ABC 与△DEF 中∵⎪⎩⎪⎨⎧===__________________________________________________________ ∵⎪⎩⎪⎨⎧===__________________________________________________________ ∴△ABC ≌△DEF ( ) ∴△ABC ≌△DEF ( )证明思路⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS SAS1.已知如图,AE=AC,AB=AD,∠EAB=∠CAD,试说明:∠B=∠D2.如图,BC=DE,AC=AE, ∠C=∠E. AB与AD相等吗?请说明理由。
3.△ABC和△EDC中,∠BCA=∠DCE, BC=DC①若加条件_____________,则可得△ABC≌△EDC(SAS)②若加条件_____________,则可得△ABC≌△EDC(ASA)4.如图,A B∥DE, ∠A=∠D, AB=DE,请说明AC∥DF5.如图,∠B=∠ E, AB=DE,①求证:,△ABC≌△DEC②AC和DC相等吗?6.已知:如图:AB=DE,AD=CF,BC=EF.①求证;△AB C≌△DEF②AB∥DE吗?为什么?DCBDABAABCDA B C。
全等三角形经典例题(全等三角形的概念和性质)类型一、全等形和全等三角形的概念1、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A→B→C→A,及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°,下列各组合同三角形中,是镜面合同三角形的是( )(答案)B ;提示:抓住关键语句,两个镜面合同三角形要重合,则必须将其中一个翻转180°,B 答案中的两个三角形经过翻转180°就可以重合,故选B ;其它三个选项都需要通过平移或旋转使它们重合.类型二、全等三角形的对应边,对应角 类型三、全等三角形性质3、如图,将长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,那么DAE ∠等于( ).A 。
60° B 。
45° C 。
30° D.15°(答案)D ;(解析)因为△AFE 是由△ADE 折叠形成的,所以△AFE ≌△ADE,所以∠FAE=∠DAE ,又因为60BAF ∠=︒,所以∠FAE =∠DAE =90602︒-︒=15°.(点评)折叠所形成的三角形与原三角形是全等的关系,抓住全等三角形对应角相等来解题.举一反三:(变式)如图,在长方形ABCD 中,将△BCD 沿其对角线BD 翻折得到△BED ,若∠1=35°,则∠2=________。
(答案)35°;提示:将△BCD 沿其对角线BD 翻折得到△BED,所以∠2=∠CBD ,又因为AD ∥BC ,所以∠1=∠CBD ,所以∠2=35°.4、 如图,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.(答案)∠α=80°(解析)∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x ,∠2=5x ,∠3=3x ,∴28x +5x +3x =36x =180°,x =5° 即∠1=140°,∠2=25°,∠3=15°∵△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的, ∴△ABE ≌△ADC ≌△ABC ∴∠2=∠ABE ,∠3=∠ACD∴∠α=∠EBC +∠BCD =2∠2+2∠3=50°+30°=80°(点评)此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应角相等的性质来解决问题。
八年级数学全等三角形常考题型例题单选题1、如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=4,AB=6,则S△ABD:S△ACD=()A.3:2B.2:3C.1:1D.4:3答案:A解析:过点D作DE⊥AB于点E,根据角平分线的性质得,DE=DC再根据三角形面积公式即可求解.解:过点D作DE⊥AB于点E,在Rt△ABC中,∠C=90°∴DC⊥AC,∵AD是∠BAC的平分线,∴DE=DC,∵S△ABDS△ACD =12AB·DE12AC·DC=ABAC,∵AC=4,AB=6,S△ABD S△ACD =ABAC=64=32,所以答案是:A.小提示:本题考查了角平分线的性质,三角形的面积,正确理解角平分线的性质是解本题的关键.2、作∠AOB的平分线时,以O为圆心,某一长度为半径作弧,与OA,OB分别相交于C,D,然后分别以C,D 为圆心,适当的长度为半径作弧使两弧在∠AOB的内部相交于一点,则这个适当的长度()A.大于12CD B.等于12CD C.小于12CD D.以上都不对答案:A解析:根据作已知角的角平分线的方法即可判断.因为分别以C,D为圆心画弧时,要保证两弧在∠AOB的内部交于一点,所以半径应大于12CD,故选:A.小提示:本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).3、如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A .①②③B .①②④C .①③④D .①②③④答案:D解析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.解:在△ABC 中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD 、BE 分别平分∠BAC 、∠ABC ,∴∠BAD+∠ABE=12(∠BAC+∠ABC)=12(180°-∠ACB)=12(180°-90°)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF ⊥AD ,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB ,又∵∠ABP=∠FBP ,BP=BP ,∴△ABP ≌△FBP(ASA),∴∠BAP=∠BFP ,AB=FB ,PA=PF ,故②正确.在△APH 和△FPD 中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP ,PA=PF ,∴△APH ≌△FPD(ASA),∴PH=PD,故③正确.连接CP,如下图所示:∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确,综上所述,①②③④均正确,故选:D.小提示:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.4、作∠AOB平分线的作图过程如下:作法:(1)在OA和OB上分别截取OD、OE,使OD=OE.DE的长为半径作弧,两弧交于点C.(2)分别以D,E为圆心,大于12(3)作射线OC,则OC就是∠AOB的平分线.用下面的三角形全等的判定解释作图原理,最为恰当的是()A.SSS B.SAS C.ASA D.AAS答案:A解析:根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明△OCE≌△OCD,即可得答案.∵分别以D,E为圆心,大于12DE的长为半径作弧,两弧交于点C;∴CE=CD,在△OCE和△OCD中,{OE=OD CD=CE OC=OC,∴△OCE≌△OCD(SSS),故选:A.小提示:本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键.5、如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB 和AD,使它们分别落在角的两边上,过点A、C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是()A .SSSB .SASC .ASAD .AAS答案:A解析:根据题意两个三角形的三条边分别对应相等,即可利用“边边边”证明这两个三角形全等,即可选择. 在△ABC 和△ADC 中,{AB =ADBC =DC AC =AC,∴△ABC ≅△ADC(SSS),∴∠BAC =∠DAC ,即∠QAE =∠PAE .∴此角平分仪的画图原理是SSS .故选:A .小提示:本题考查了三角形全等的判定和性质.根据题意找到可证明两三角形全等的条件是解答本题的关键.6、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带( )A .第1块B .第2块C .第3块D .第4块答案:B解析:本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.小提示:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A.14B.13C.12D.10答案:C解析:∵平行四边形ABCD∴AD∥BC,AD=BC,AO=CO∴∠EAO=∠FCO∵在△AEO和△CFO中,{∠AEO=∠CFO AO=CO ∠AOE=∠COF∴△AEO≌△CFO∴AE=CF,EO=FO=1.5∵C四边形ABCD=18∴CD+AD=9∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C小提示:本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.8、如图,在△ABC中,AQ=PQ,PR=PS,若PR⊥AB,PS⊥AC,垂足分别为点R,S,给出下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS.其中正确的是 ( )A.①②③B.①C.①②D.①③答案:C解析:先求证两个三角形全等,可得角、边对应相等,再根据同位角相等从而得出平行关系即可解题.如图在RT△APR和RT△APS中,PS=PR,AP=AP,∴RT△APR≅RT△APS,∴AS=AR,①正确;因为AQ=PQ∴∠PAQ=∠QPA,又因为∠PAQ=∠PAR,∴∠PQC=∠PAQ+∠QPA=∠BAC,∴QP∥AR,②正确;△ BRP和△QPS中只有一个条件PR=PS,没有别的条件可以证明这两个三角形全等,③错误;所以正确答案选C.小提示:本题考查了全等三角形的判定,考查了全等三角形对应边对应角相等的性质,本题中求证RT△APR≅RT△APS 是解题的关键填空题9、如图,在ΔABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为_______.答案:9.解析:根据等腰三角形的性质及全等三角形的判定与性质即可求解.因为△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD≅△ACE(ASA),所以BD=EC,EC=9.小提示:此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.10、如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件____,使△ABC≌△ADC.答案:∠D=∠B(答案不唯一)解析:本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.解:添加的条件为∠D=∠B,理由是:在△ABC和△ADC中,{∠BAC=∠DAC∠D=∠BAC=AC,∴△ABC≌△ADC(AAS),所以答案是:∠D=∠B.小提示:本题主要考查全等三角形的判定定理,能熟记全等三角形的判定定理是解决本题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.11、如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.答案:120解析:根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,所以答案是:120.小提示:此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.12、如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,若∠A=50°,则∠DFE的度数为________.答案:40°解析:先利用HL定理证明Rt△ABC≌Rt△DEF,得出∠D的度数,再根据直角三角形两锐角互余即可得出∠DFE的度数.解:在Rt△ABC与Rt△DEF中,∵∠B=∠E=90°,AC=DF,AB=DE,∴Rt△ABC≌Rt△DEF(HL)∴∠D=∠A=50°,∴∠DFE=90°-∠D=90°-50°=40°.所以答案是:40°.小提示:此题主要考查直角三角形全等的HL定理.理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键.13、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是____.答案:SSS##边边边解析:由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.解:∵在△ONC和△OMC中{ON=OM CO=CO NC=MC,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,所以答案是:SSS.小提示:本题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解答题14、已知:AB//CD,AB=CD,AE=CF.求证:BF//DE.答案:见解析解析:根据AB∥CD,得到∠A=∠C,然后推出AF=CE,即可证明△ABF≌△CDE得到∠AFB=∠CED,则BF∥DE.解:∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,{AB=CD ∠A=∠C AF=CE,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴BF∥DE.小提示:本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知全等三角形的性质与判定条件是解题的关键.15、如图,∠C=∠E,AC=AE,点D在BC边上,∠1=∠2,AC和DE相交于点O.求证:△ABC≌△ADE.答案:见解析解析:先利用三角形外角性质证明∠ADE=∠B,然后根据“AAS”判断△ABC≌△ADE.∵∠ADC=∠1+∠B,即∠ADE+∠2=∠1+∠B,而∠1=∠2,∴∠ADE=∠B,在△ABC和△ADE中,{∠C=∠E ∠B=∠ADE AC=AE∴△ABC≌△ADE(AAS).小提示:本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.选用哪一种方法,取决于题目中的已知条件.。
典型例题直角三角形全等的判定例1:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。
分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。
已知:如图1,在Rt△ABC、Rt△中,∠ACB=∠=Rt∠,BC=,CD⊥AB于D,⊥于,D=求证:Rt△ABC≌Rt△证明:在Rt△CDB和Rt△中∵∴Rt△CDB≌Rt△(HL)由此得∠B=∠在Rt△ABC与Rt△△中∵∴Rt△ABD≌△(ASA)说明:文字证明题的书写格式要标准。
例2 :如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.求证:BE=CF分析: BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF证明:(略)说明:本题容易误认为AD⊥BC。
根据图形的直观“好象相等”或“好象垂直”要避免这种错误,要把“好象”变为确定。
例3:如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:(1) BD=DE+CE(2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;(3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明归纳(1)、(2)、(3),请用简捷的语言表述BD、DE、CE的关系。
分析:(1)由已知出发容易得到:BD=AE,再分析观察AE=AD+DE又易证AD=EC。
(2)猜想规律,再运用几何知识证明。
解:(1)略(2)BD=DE-CE(3)BD=DE-CE(4)结论:当B、C在异侧时,BD=DE+CE;当B、C在同侧时,BD=DE-CE说明:本题是阅读理解题,让学生在阅读的基础上,理解其中的内容、方法和思想。
三角形全等的判定方法(5种)例题+练习(全面)本文讲述了全等三角形的判定方法,重点是边角边和角边角。
边角边指两边及其夹角分别相等的两个三角形全等,可以简写成“SAS”。
需要注意的是,必须是两边及其夹角,不能是两边和其中一边的对角。
例如,在图中的△ABC和△ABD中,虽然有一个角和两边相等,但是这两个三角形不全等。
但是在例1中,如果AC=AD,且∠CAB=∠DAB,则可以证明△ACB≌△ADB。
在例2中,如果AD∥BC,且∠ABC=∠DCB,AB=DC,AE=DF,则可以证明BF=CE。
角边角是指两角及其夹边分别相等的两个三角形全等,可以简写成“ASA”。
例如,在例2中,如果AD平分∠BAC,且∠ABD=∠ACD,则可以直接判定△ABD≌△ACD。
在例3中,如果在Rt△ABC中,BC=2cm,CD⊥AB,且EC=BC,EF=5cm,则可以求出AE的长度。
除了边角边和角边角外,还有三种判定全等三角形的条件。
在例5中,如果在△ABC和△DEF中,AB=DE,BC=EF,且有一个角相等,则可以证明△ABC≌△DEF。
在例6中,如果AB∥DE,AB=DE,BF=CE,则可以证明△ABC≌△DEF。
在例7和例8中,分别是通过角平分线和垂线的判定方法来证明两个三角形全等。
总之,掌握全等三角形的判定方法对于解决几何问题非常重要。
1.如图所示,在三角形ABC中,已知AB=DC,∠ABC=∠DCB。
根据角角边相等可知,∠ACB=∠DCB。
又因为AB=DC,所以BC=AC。
因此,根据SSS(边边边)相等可知,△ABC≌△DCB。
同时,∠ACB=∠DCB,AC=BC=DC。
2.如图所示,在三角形ABD和ABF中,已知AD=AE,∠1=∠2,BD=CE。
根据角角边相等可知,∠ABD=∠BCE。
又因为AD=CE,所以BD=BE。
因此,根据SAS(边角边)相等可知,△ABD≌△BCE。
同时,∠ABD=∠BCE,AD=CE=BE。
全等三角形知识总结及典型例题知识点1:全等三角形的定义和表示方法(1)定义:能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角(2)“全等”用“≌”表示,读作“全等于”,记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
例1. 如图所示,图中两个三角形能完全重合,下列写法正确的是( )A .△ABE ≌△AFB B .△ABE ≌△ABFC .△ABE ≌△FBAD .△ABE ≌△FAB知识点2:全等三角形的性质性质:全等三角形中,对应边相等,对应角相等。
【注意:全等三角形的对应线段(对应边上的中线,对应边上的高,对应角的平分线)相等;全等三角形的周长相等,面积相等。
】例2.如图,△ABD ≌△ACE ,点B 和点C 是对应顶点,AB=8,AD=6,BD=7,则BE 的长是( )A .1 B .2C .4D .6例3.如图,△ABD ≌△EBC ,AB=3cm ,BC=. (1)求DE 的长;(2)判断AC 与BD 的位置关系,并说明理由.(1)“边边边”(SSS ):三边对应相等的两个三角形全等。
(2)“边角边”(SAS ):两边和它们的夹角对应相等的两个三角形全等。
(3)“角边角”(ASA ):两角和它们的夹边对应相等的两个三角形全等。
(4)“角角边”(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等。
(5)“斜边,直角边”(HL ):斜边和一条直角边对应相等的两个直角三角形全等。
【注意:①三角形全等证明时要注意应用“公共边”、“公共角”、“对顶角”等 。
②证明线段或角相等通常转换证明线段或角所在的三角形全等。
③在判定两个三角形全等时,至少有一边对应相等。
④有两边和一角对应相等,角必须是这两边的夹角。
⑤“HL ”只适合于Rt ⊿ 。
⑥利用全等三角形可以测出不能(或不易)直接测量长度的线段长,例如,河宽,或利用全等测量小口瓶的内径等。
完整版)全等三角形经典例题(含答案)全等三角形证明题精选1.在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F。
证明:△ADE≌△CBF;若AC与BD相交于点O,证明:AO=CO。
2.已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D。
证明:AC∥DE;若BF=13,EC=5,求BC的长。
3.在△ABC中,BD⊥AC于点D,CE⊥AB于点E,AD=AE。
证明:BE=CD。
4.点O是线段AB和线段CD的中点。
证明:△AOD≌△BOC;AD∥BC。
5.点C是AE的中点,∠A=∠ECD,AB=CD。
证明:∠B=∠D。
6.已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC。
证明:AE=BC。
7.在△ABE和△DEF中,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF。
证明:AF=DF。
8.点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF。
证明:AB∥DE。
9.在△ABC中,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB。
证明:AE=CE。
10.点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF。
证明:DE=CF。
11.点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD。
证明:AE=FB。
12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.证明:BD=CE;∠M=∠N。
13.在△ABC中,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD。
证明:AB=AC。
14.在△ABC和△CED中,AB∥CD,AB=CE,AC=CD。
证明:∠B=∠E。
15.在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F。
证明:AB=AC;若AD=2,∠DAC=30°,求AC的长。
16.已知直角三角形ABC和直角三角形DBF,且它们相似,∠D=28°,求∠GBF的度数。
专题12.1 全等三角形1.基本概念(1)全等形:能够完全重合的两个图形叫做全等形.(2)全等三角形:能够完全重合的两个三角形叫做全等三角形. (注意对应的顶点写在对应的位置上)(3)对应顶点:全等三角形中互相重合的顶点叫做对应顶点.(4)对应边:全等三角形中互相重合的边叫做对应边.(5)对应角:全等三角形中互相重合的角叫做对应角.2.基本性质全等三角形的性质:全等三角形的对应边相等,对应角相等.【例题1】如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.【答案】见解析。
【解析】证明:∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAE=90°,∠BAE+∠BAD=90°,∴∠CAE=∠BAD.又AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE(ASA).∴BD=CE.【点拨】在利用角边角判定该定理证明全等后,全等三角形对应边相等。
【例题2】已知,如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DF B.AD=BE C.DF=EF D.BC=EF【答案】C.【解析】A.∵△ABC≌△DEF,∴AC=DF,故此结论正确;B.∵△ABC≌△DEF,∴AB=DE;∵DB是公共边,∴AB﹣BD=DE﹣BD,即AD=BE;故此结论正确;C.∵△ABC≌△DEF,∴AC=DF,故此结论DF=EF错误;D.∵△ABC≌△DEF,∴BC=EF,故此结论正确。
【点拨】考查平行线性质,全等三角形对应边相等。
【例题3】如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°【答案】D.【解析】∵△ABC≌△DEF,∠A=45°,∠F=35°∴∠D=∠A=45°∴∠E=180°﹣∠D﹣∠F=100°.【点拨】全等三角形对应角相等。
【典型例题】例1.(2008年陕西)已知:如图,B、C、E三点在同一直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.分析:已知条件中具备AC=CE,要证明两个三角形全等,需要推证其它的对应边、对应角相等,而由AC∥DE 得∠E=∠ACB,∠D=∠ACD,又因为∠ACD=∠B,所以∠D=∠B.得到两个三角形全等的条件。
解:∵AC∥DE,∴∠ACD=∠D,∠BCA=∠E.又∵∠ACD=∠B,∴∠B=∠D.在△ABC和△CDE中,,∴△ABC≌△CDE.评析:从已知条件入手寻找三角形全等的条件,灵活运用平行线的性质推导∠D=∠ACD,∠E=∠ACE.解题关键是利用平行线的性质获得三角形全等的条件。
例2.(2008年浙江衢州)如图,AB∥CD(1)用直尺和圆规作∠C的平分线CP,CP交AB于点E(保留作图痕迹,不写作法);(2)在(1)中作出的线段CE上取一点F,连结AF.要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不要求证明).分析:根据角平分线的作法,分三步得到∠C的平分线.对于补充条件使△ACF≌△AEF,由于已具备公共边AF=AF,∠ACF=∠AEF,根据全等三角形判定方法和题目要求再补充一个角相等即可.解:(1)作图略(2)AF⊥CE,∠AFC=∠AFB,∠CAF=∠BAF(选一个即可)评析:掌握三角形全等的判定方法,分析已知,结合图形探索全等所需条件是解题关键.例3.如图所示,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=AB,已知△ABE≌△ADF.(1)在图中,可以通过平移、翻折、旋转中哪一种方法,使△ABE变到△ADF的位置.(2)线段BE与DF有什么关系?证明你的结论.分析:根据平移、翻折、旋转的特点△ABE经过旋转变到△ADF的位置,因为平移后对应边平行,翻折后有一组对应边在同一直线上.讨论BE与DF的关系要考虑它们之间的数量关系和位置关系,根据全等易得BE=DF.对应位置关系,需要延长BE交DF于G,观察证明∠DGB=90°.解:(1)图中通过绕点A旋转90°,使△ABE变到△ADF的位置.(2)延长BE交DF于G,∵△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF.又∠AEB=∠DEG,∴∠DGB=∠DAB=90°.∴BE⊥DF.评析:本题意在考查对平移、翻折、旋转的理解;合理猜想、探索、推理、论证能力也在考查之中.例4.(2008年河南)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB =AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.分析:首先由旋转的特点得AQ=AP,又由∠QAP=∠BAC,结合图形,利用角的差得∠QAB=∠PAC,又AB =AC,得△AQB≌△APC,从而BQ=CP.而点P在△ABC外部时,与点P在△ABC内部时基本相同,只是在证∠QAB=∠PAC时利用角的和而不是差.解:∵∠QAP=∠BAC,∴∠QAP+∠PAB=∠BAC+∠PAB,即∠QAB=∠PAC.在△QAB和△PAC中,,∴△QAB≌△PAC,∴BQ=CP.评析:分析已知条件,观察图形,培养“直觉”图形的意识,确认边、角之间的关系,尽快地找到解题的突破口.例5.如图所示,已知△ABC中,a=5cm,b=4cm,c=3cm,∠B=53°,∠C=37°,请你从中选择适当的数据画一个三角形,使之与△ABC全等,把你所能画的三角形全部画出来,不写画法,并在所画出的三角形中标出你选用到的数据,并说明符合条件的三角形可有多少种不同的画法?分析:利用SSS、AAS等方法画三角形与已知△ABC全等时,同学们不够熟练,为此不妨利用三角形内角和为180°,从而可知∠A=90°,在具体画图时可先画出∠A=90°后仍选用SSS、AAS等方案画图为宜,即在所画出的图形中仍只标明∠B、∠C的度数即可.解:要画出与△ABC全等的三角形,可由题设中所给出的五个数据中任选三个得十种不同的画法,其中有四种画法不符合SAS、SSS、ASA、AAS,故有六种画法符合要求.(1)利用“SSS”,即a=5cm,b=4cm,c=3cm;(2)利用“SAS”,即a=5cm,c=3cm,∠B=53°;(3)利用“SAS”,即a=5cm,b=4cm,∠C=37°;(4)利用“AAS”,即c=3cm,∠B=53°,∠C=37°;(5)利用“AAS”,即b=4cm,∠B=53°,∠C=37°;(6)利用“ASA”,即∠B=53°,a=5cm,∠C=37°.评析:当题目要求在所给条件中选择进行作图时,可利用分类的思想进行讨论来作,因此其作图具有开放性.这就要求思考问题要周密,分类要准确,做到不重不漏.【方法总结】1. 在探索三角形全等方法的时候,利用了一个非常重要的数学思想,就是分类讨论思想.在讨论问题时,我们常常用分类的方法,分类要有标准,标准不同,分类的结果也不同.在分类讨论时,要注意标准的一致性,做到讨论的对象不丢,不漏,不交叉.2. 全等三角形的几种识别方法都是采用直观感知,操作确认的方式得到的,这是数学发现的一种重要方法,就是由特殊事例推出一般结论的方法,在学习中,同学们要体会这种方法的运用.3. 转化思想是数学中常见的一种思想方法,解题时运用转化思想,可将未知问题转化为已知问题,化复杂为简单.【模拟试题】(答题时间:45分钟)一. 选择题1. 下列条件,不能使两三角形全等的是()A. 两边一角对应相等B. 两角及其中一角的对边对应相等C. 三边对应相等D. 两边及其夹角对应相等2. 如图所示,已知OA=OB,OC=OD,AD、BC相交于E,则图中全等三角形有()A. 2对B. 3对C. 4对D. 5对3. (2008年成都)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A. ∠B=∠E,BC=EFB. BC=EF,AC=DFC. ∠A=∠D,∠B=∠ED. ∠A=∠D,BC=EF4. 如图所示,AB=AC,AE=AD,则①△ABD≌△ACE;②△BOE≌△COD;③点O在∠BAC的平分线上.以上结论()A. 都正确B. 都不正确C. 只有一个正确D. 只有一个不正确5. 如图所示,欲测量内部无法到达的古塔相对两点A、B间的距离,可延长AO至点C,使CO=AO,延长BO至点D,使DO=BO,则△COD≌△AOB,从而通过测量CD就可得A、B间的距离,其全等的根据是()A. SASB. ASAC. AASD. SSS6. 如图所示,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以作出()A. 2个B. 4个C. 6个D. 8个二. 填空题7. 已知△ABC≌△DEF,∠A=52°,∠B=31°,ED=10,则∠F=__________,AB=__________.8. 如图所示,BD⊥AC,CE⊥AB,垂足分别为D、E,若△ABD≌△ACE,则∠B=__________,∠BAD=__________,∠ADB=__________,AB=__________,AD=__________,BD=__________,如果△BEO≌△CDO,那么∠BOE =__________,DO=__________.9. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积是18cm2,则EF边上的高是__________cm.10. (2008年海南)已知在△ABC和△A1B1C1中,AB=A1B1,∠A=∠A1,要使△ABC≌△A1B1C1,还需添加一个条件,这个条件可以是__________.11. 如图所示,已知:△ABC中,AC=BC,∠ACB=90°,l是过C的任意一条直线,AD⊥l于D,BE⊥l于E,且AD=2厘米,BE=5厘米,那么线段DE=__________厘米.12. 如图所示,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号:__________.①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.三. 解答题13. (2008年济南)已知:如图,AB∥DE,AC∥DF,BE=CF.求证:AB=DE.14. (2008年北京)已知:如图,C为BE上一点,点A、D分别在BE两侧.AB∥ED,AB=CE,BC=ED.求证:AC=CD.15. 已知:如图所示,D、A、E在一条直线上,△ADC≌△AEB,∠BAC=40°,∠D=45°.求:(1)∠B的度数;(2)∠BMC的度数.16. 如图,若点C是AB的中点,CD∥BE且CD=BE,则∠D与∠E相等吗?小华的思考过程如下:CD∥BE→∠1=∠B ①AC=CB,∠1=∠B,CD=BE→△ACD≌△CBE ②△ACD≌△CBE→∠D=∠E ③你能说明每一步的理由吗?17. 如图所示,AD和BC相交于点O,BE⊥AD,DF⊥BC,BE=DF,∠ABC=∠CDA,那么AB=CD吗?说明理由.四. 应用与探究题18. 如图所示,小冰想测量一下他手中举起的等腰直角三角板的斜边BC是否水平,于是他采用如下行动,从BC 的中点D处悬挂一物体,若自然下垂后刚好垂直通过A,则说明:(1)AD⊥BC;(2)BC处于水平位置,请解释其中的几何道理.19. 在一次战役中,如图所示,我军阵地与敌军阵地隔河相望.为炸掉它需知我军阵地与碉堡的距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出一个办法,他面向碉堡方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部,然后,他转过一个角度,保持刚才姿态,这时视线落在自己所在岸的某一点上,接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与碉堡间的距离.(1)按这个战士的方法,找出教室或操场与你距离相等的两点,并通过测量加以验证.(2)你能解释其中的道理吗?【试题答案】一. 选择题1. A2. C3. D4. A5. A6. B二. 填空题7. 97°10 8. ∠C ∠CAE ∠AEC AC AE CE ∠COD EO 9. 6 10. 如:∠B=∠B1,AC=A1C1等11. 7 12. ①②④三. 解答题13. 利用ASA证明14. 证△ABC≌△CED(SAS)15. (1)25°(2)65°16. ①两直线平行,同位角相等;②SAS;③全等三角形对应角相等17. 先证△BEO≌△DFO,再证△BOA≌△DOC四. 应用与探究题18. 可用SSS证△ABD≌△ACD19. (1)略(2)他两次所确定的三角形全等.。
全等三角形的的性质与判定难题50道1.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),⋯,按此方式依次操作,则第6个正六边形的边长为( )A .511()32a ⨯B .511()23a ⨯C .611()32a ⨯D .611()23a ⨯2.如图,在等边ABC ∆中,点D ,E 分别在边BC ,AC 上,且//DE AB ,过点E 作EF DE ⊥,交BC 的延长线于点F ,(1)求F ∠的度数;(2)若3CD =,求DF 的长.3.数学课上,李老师出示了如下的题目:“在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,如图,试确定线段AE 与DB 的大小关系,并说明理由”. 小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AEDB (填“>”,“ <”或“=” ). (2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“ <”或“=” ).理由如下:如图2,过点E 作//EF BC ,交AC 于点F .(请你完成以下解答过程) (3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的边长为1,2AE =,求CD 的长(请你直接写出结果).4.如图,过等边ABC ∆的边AB 上一点P ,作P E A C ⊥于E ,Q 为BC 延长线上一点,且PA CQ =,连PQ 交AC 边于D . (1)求证:PD DQ =;(2)若ABC ∆的边长为1,求DE 的长.5.如图所示,已知等边ABC ∆的边长为a ,P 是ABC ∆内一点,//PD AB ,//PE BC ,//PF AC ,点D 、E 、F 分别在BC 、AC 、AB 上,猜想:PD PE PF ++= ,并证明你的猜想.6.如图,已知ABC ∆和CDE ∆均为等边三角形,且点B 、C 、D 在同一条直线上,连接AD 、BE ,交CE 和AC 分别于G 、H 点,连接GH .(1)请说出AD BE =的理由; (2)试说出BCH ACG ∆≅∆的理由;(3)试猜想:CGH ∆是什么特殊的三角形,并加以说明.7.如图,已知ABC ∆是边长为6cm 的等边三角形,动点P ,Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,其中点P 运动的速度是1/cm s ,点Q 运动的速度是2/cm s ,当点Q 运动到点C 时,P ,Q 都停止运动.(1)出发后运动2s 时,试判断BPQ ∆的形状,并说明理由;那么此时PQ 和AC 的位置关系呢?请说明理由;(2)设运动时间为t ,BPQ ∆的面积为S ,请用t 的表达式表示S .8.已知:在等边ABC ∆中,点D 、E 、F 分别为边AB 、BC 、AC 的中点,点G 为直线BC 上一动点,当点G 在CB 延长线上时,有结论“在直线EF 上存在一点H ,使得DGH ∆是等边三角形”成立(如图①),且当点G 与点B 、E 、C 重合时,该结论也一定成立. 问题:当点G 在直线BC 的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.9.已知点C 为线段AB 上一点,分别以AC 、BC 为边在线段AB 同侧作ACD ∆和BCE ∆,且CA CD =,CB CE =,ACD BCE ∠=∠,直线AE 与BD 交于点F ,(1)如图1,若60ACD ∠=︒,则AFB ∠= ;如图2,若90ACD ∠=︒,则AFB ∠= ;如图3,若120ACD ∠=︒,则AFB ∠= ;(2)如图4,若ACD α∠=,则AFB ∠= (用含α的式子表示);(3)将图4中的ACD ∆绕点C 顺时针旋转任意角度(交点F 至少在BD 、AE 中的一条线段上),变成如图5所示的情形,若ACD α∠=,则AFB ∠与α的有何数量关系?并给予证明.10.如图1,ABC ∆为等边三角形,面积为S .1D 、1E 、1F 分别是ABC ∆三边上的点,且11112AD BE CF AB ===,连接11D E 、11E F 、11F D ,可得△111D E F 是等边三角形,此时△11AD F 的面积114S S =,△111D E F 的面积114S S =. (1)当2D 、2E 、2F 分别是等边ABC ∆三边上的点,且22213AD BE CF AB ===时如图2,①求证:△222D E F 是等边三角形;②若用S 表示△22AD F 的面积2S ,则2S = ;若用S 表示△222D E F 的面积2S ',则2S '= .(2)按照上述思路探索下去,并填空:当n D 、n E 、n F 分别是等边ABC ∆三边上的点,11n n n AD BE CF AB n ===+时,(n 为正整数)△n n n D E F 是 三角形;若用S 表示△n n AD F 的面积n S ,则n S = ;若用S 表示△n n n D E F 的面积n S ',则n S '= .11.如图,在等边ABC ∆的三边上分别取点D 、E 、F ,使AD BE CF ==. (1)试说明DEF ∆是等边三角形;(2)连接AE 、BF 、CD ,两两相交于点P 、Q 、R ,则PQR ∆为何种三角形?试说明理由.12.如图所示,一个六边形的六个内角都是120︒,其中连续四边的长依次是1、9、9、5.求这个六边形的周长.13.如图,已知D 是ABC ∆的边BC 上的一点,CD AB =,BDA BAD ∠=∠,AE 是ABD ∆的中线.(1)若60B ∠=︒,求C ∠的值; (2)求证:AD 是EAC ∠的平分线.14.如图,ABC ∆为等边三角形,BD 平分ABC ∠交AC 于点D ,//DE BC 交AB 于点E . (1)求证:ADE ∆是等边三角形.(2)求证:12AE AB =.15.如图.在等边ABC ∆中,ABC ∠与ACB ∠的平分线相交于点O ,且//OD AB ,//OE AC . (1)试判定ODE ∆的形状,并说明你的理由;(2)线段BD 、DE 、EC 三者有什么关系?写出你的判断过程.16.如图,ABC ∆是等边三角形,DF AB ⊥,DE CB ⊥,EF AC ⊥,求证:DEF ∆是等边三角形.17.用三根火柴棒可以搭成一个等边三角形,你能用9根火柴搭出5个等边三角形吗? 18.如图,ABC ∆是等边三角形,AD 是高,并且AB 恰好是DE 的垂直平分线. 求证:ADE ∆是等边三角形.19.如图,60AOB ∠=︒,OC 平分AOB ∠,C 为角平分线上一点,过点C 作CD OC ⊥,垂足为C ,交OB 于点D ,//CE OA 交OB 于点E . (1)判断CED ∆的形状,并说明理由;(2)若3OC=,求CD的长.20.如图,在ABC∆中,AB AC=,120BAC∠=︒,D、F分别为AB、AC的中点,且DE AB⊥,FG AC⊥,点E、G在BC上,18BC cm=,求线段EG的长.(提示:需要添加辅助线)21.已知,如图,ABC∆是正三角形,D,E,F分别是各边上的一点,且AD BE CF==.请你说明DEF∆是正三角形.22.如图所示,DEF∆是等边三角形,且123∠=∠=∠,试问:ABC∆是等边三角形吗?请说明理由.23.如图,ABC∆为等边三角形,BD平分ABC∠,//DE BC.(1)求证:ADE∆是等边三角形;(2)求证:12AE AB=.24.如图ABC∆是等边三角形(1)如图①,//∆是等边三角形;DE BC,分别交AB、AC于点D、E.求证:ADE(2)如图②,ADE∆仍是等边三角形,点B在ED的延长线上,连接CE,判断BEC∠的度数及线段AE、BE、CE之间的数量关系,并说明理由.25.如图,E是AOB⊥,C、D是垂足,连接CD ∠的平分线上一点,EC OB⊥,ED OA交OE于点F,若60∠=︒.AOB(1)求证:OCD∆是等边三角形;(2)若5EF=,求线段OE的长.26.如图,ABCBCD CBE∠=∠=︒,BAC∆中,60∠=︒,点D、E分别在AB、AC上,30 BE、CD相交于点O,OG BC+=.OE OD OG⊥于点G,求证:227.如图,在ABC∠=∠=︒,EBC E∠,60∆中,AB AC=,D、E是ABC∆内两点,AD平分BAC若30=,则BC=cm.DE cmBE cm=,228.如图,已知ABC=,∆为等边三角形,D为BC延长线上的一点,CE平分ACD∠,CE BD 求证:ADE∆为等边三角形.29.如图,ABC∆∠=︒,DE与ABC ∆为等边三角形,D为BC边上一点,以AD为边作60ADE的外角平分线CE交于点E,连接AE,且CE BD∆是等边三角形.=.求证:ADE30.如图,在ABC+=.求ABD∠=︒,BD DC AB ∆中,AB AC=,D是三角形外一点,且60证:60∠=︒.ACD31.如图,在等边ABCOD AB,//OE AC.∠与ACB∠的平分线相交于点O,且//∆中,ABC(1)求证:ODE∆是等边三角形.(2)线段BD、DE、EC三者有什么数量关系?写出你的判断过程.(3)数学学习不但要能解决问题,还要善于提出问题.结合本题,在现有的图形上,请提出两个与“直角三角形”有关的问题.(只要提出问题,不需要解答)32.已知:如图,在ABC∠=︒,BD是中线,延长BC至点E,使C E C D=.A=,60∆中,AB AC求证:DB DE=.33.如图,ABD∆和BCD∆均是边长为2的等边三角形,E、F分别是AD、CD上的两个动点,且满足2+=.AE CF(1)求证:BDE BCF∆≅∆;(2)判断BEF∆的形状,并说明理由.34.已知:如图,四边形ABCD中,AB BC CD DA a∠=︒,M为BC上====,120BAD的点(M不与B、C重合),若AMN∆有一角等于60︒.(1)当M 为BC 中点时,则ABM ∆的面积为 (结果用含a 的式子表示); (2)求证:AMN ∆为等边三角形;(3)设AMN ∆的面积为S ,求出S 的取值范围(结果用含a 的式子表示).35.如图,点O 是等边ABC ∆内一点,110AOB ∠=︒,BOC α∠=,将B O C ∆绕点C 按顺时针方向旋转60︒得ADC ∆,连接OD . (1)COD ∆是什么三角形?说明理由;(2)若21AO n =+,21AD n =-,2(OD n n =为大于1的整数),求α的度数; (3)当α为多少度时,AOD ∆是等腰三角形?36.已知:如图,ABC ∆、CDE ∆都是等边三角形,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点. (1)求证:AD BE =; (2)求DOE ∠的度数;(3)求证:MNC ∆是等边三角形.37.已知:在AOB ∆和COD ∆中,OA OB =,OC OD =.(1)如图①,若60AOB COD ∠=∠=︒,求证:①AC BD =②60APB ∠=︒.(2)如图②,若A O B C O D α∠=∠=,则AC 与BD 间的等量关系式为 ,APB ∠的大小为 (直接写出结果,不证明)38.如图,ABC ∆是等边三角形,D 是AC 上一点,BD CE =,12∠=∠,试判断ADE ∆形状,并证明你的结论.39.等边ABC ∆边长为6,P 为BC 上一点,含30︒、60︒的直角三角板60︒角的顶点落在点P 上,使三角板绕P 点旋转.(1)如图1,当P 为BC 的三等分点,且PE AB ⊥时,判断EPF ∆的形状;(2)在(1)问的条件下,FE 、PB 的延长线交于点G ,如图2,求EGB ∆的面积; (3)在三角板旋转过程中,若2CF AE ==,()CF BP ≠,如图3,求PE 的长.40.为了使同学们更好地解答本题,我们提供了思路点拨,你可以依照这个思路填空,并完成本题解答的全过程,当然你也可以不填空,只需按照解答的一般要求,进行解答即可. 如图,已知AB AD =,60BAD ∠=︒,120BCD ∠=︒,延长BC ,使C E C D =,连接DE ,求证:BC DC AC +=. 思路点拨:(1)由已知条件AB AD=,60BAD∠=︒,可知:ABD∆是三角形;(2)同理由已知条件120BCD∠=︒得到DCE∠=,且CE CD=,可知;(3)要证BC DC AC+=,可将问题转化为两条线段相等,即=;(4)要证(3)中所填写的两条线段相等,可以先证明⋯.请你完成证明过程:41.已知ABC∆是等边三角形,点P是AC上一点,PE BC⊥于点E,交AB于点F,在CB 的延长线上截取BD PA=,PD交AB于点I,PA nPC=.(1)如图1,若1n=,则EBBD=,FIED=;(2)如图2,若60EPD∠=︒,试求n和FIED的值;(3)如图3,若点P在AC边的延长线上,且3n=,其他条件不变,则EBBD=.(只写答案不写过程)42.如图ABC∆为等边三角形,直线//a AB,D为直线BC上任一动点,将一60︒角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(如图1)求证:ADE∆是等边三角形;(2)若D为直线BC上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.43.如图,在等边ABC=,点P从点C出发沿CB边向点B点以2/cm s的速AB cm∆中,9度移动,点Q点从B点出发沿BA边向A点以5/cm s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,PBQ∆为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿ABC∆三边运动,请问经过几秒钟后点P与点Q第一次在ABC∆的哪条边上相遇?44.如图:在ABC⊥于Q.==,AE CD∆中,AB BC AC=,AD与BE相交于点P,BQ AD求证:①ADC BEA∆≅∆;②2=.BP PQ45.如图1,点B是线段AD上一点,ABC∆分别是等边三角形,连接AE和CD.∆和BDE(1)求证:AE CD=;(2)如图2,点P、Q分别是AE、CD的中点,试判断PBQ∆的形状,并证明.46.如图:已知ABC∆是等边三角形,D、E、F分别是AB、AC、BC边的中点,M是直线BC上的任意一点,在射线EF上截取EN,使EN FM=,连接DM、MN、DN.(1)如图①,当点M在点B左侧时,请你按已知要求补全图形,并判断DMN∆是怎样的特殊三角形(不要求证明);(2)请借助图②解答:当点M在线段BF上(与点B、F不重合),其它条件不变时,(1)中的结论是否依然成立?若成立,请证明;若不成立,请说明理由;(3)请借助图③解答:当点M在射线FC上(与点F不重合),其它条件不变时,(1)中的结论是否仍然成立?不要求证明.47.如图,ABC∆是等边三角形,点D、E、F分别是线段AB、BC、CA上的点,(1)若AD BE CF∆是等边三角形吗?试证明你的结论;==,问DEF(2)若DEF∆是等边三角形,问AD BE CF==成立吗?试证明你的结论.48.如图,已知ABC=,连∆为等边三角形,延长BC到D,延长BA到E,并且使AE BD 接CE,DE.求证:EC ED=.49.如图,已知ABC ∆与ACD ∆都是边长为2的等边三角形,如图有一个60︒角的三角板绕着点A 旋转分别交BC 、CD 于点P 、Q 两点(不与端点重合). (1)试说明:PAQ ∆是等边三角形; (2)求四边形APCQ 的面积;(3)填空:当BP = 时,APQ S ∆最小.50.如图,A 、B 、C 三点在同一直线上,ABM ∆和BCN ∆是正三角形,P 是AN 中点,Q 是CM 中点.求证:BPQ ∆是正三角形.全等三角形的的性质与判定难题50道参考答案与试题解析一.选择题(共1小题)1.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),⋯,按此方式依次操作,则第6个正六边形的边长为( )A .511()32a ⨯B .511()23a ⨯C .611()32a ⨯D .611()23a ⨯【解答】解:连接AD 、DF 、DB . 六边形ABCDEF 是正六边形,ABC BAF AFE ∴∠=∠=∠,AB AF =,120E C ∠=∠=︒,EF DE BC CD ===, 30EFD EDF CBD BDC ∴∠=∠=∠=∠=︒, 120AFE ABC ∠=∠=︒, 90AFD ABD ∴∠=∠=︒,在Rt ABD ∆和RtAFD 中 AF ABAD AD =⎧⎨=⎩Rt ABD Rt AFD(HL)∴∆≅∆, 1120602BAD FAD ∴∠=∠=⨯︒=︒,60120180FAD AFE ∴∠+∠=︒+︒=︒, //AD EF ∴,G 、I 分别为AF 、DE 中点,////GI EF AD ∴,60FGI FAD ∴∠=∠=︒,六边形ABCDEF 是正六边形,QKM ∆是等边三角形, 60EDM M ∴∠=︒=∠,ED EM ∴=,同理AF QF =, 即AF QF EF EM ===, 等边三角形QKM 的边长是a ,∴第一个正六边形ABCDEF 的边长是13a ,即等边三角形QKM 的边长的13,过F 作FZ GI ⊥于Z ,过E 作EN GI ⊥于N , 则//FZ EN , //EF GI ,∴四边形FZNE 是平行四边形,13EF ZN a ∴==,11112236GF AF a a ==⨯=,60FGI ∠=︒(已证), 30GFZ ∴∠=︒,11212GZ GF a ∴==,同理112IN a =, 1111123122GI a a a a ∴=++=,即第二个等边三角形的边长是12a ,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是1132a ⨯;同理第第三个等边三角形的边长是1122a ⨯,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是111322a ⨯⨯;同理第四个等边三角形的边长是111222a ⨯⨯,第四个正六边形的边长是11113222a ⨯⨯⨯;第五个等边三角形的边长是11112222a ⨯⨯⨯,第五个正六边形的边长是1111132222a ⨯⨯⨯⨯;第六个等边三角形的边长是1111122222a ⨯⨯⨯⨯,第六个正六边形的边长是111111322222a ⨯⨯⨯⨯⨯, 即第六个正六边形的边长是511()32a ⨯,故选:A .二.解答题(共49小题)2.如图,在等边ABC ∆中,点D ,E 分别在边BC ,AC 上,且//DE AB ,过点E 作EF DE ⊥,交BC 的延长线于点F ,(1)求F ∠的度数;(2)若3CD =,求DF 的长.【解答】解:(1)ABC ∆是等边三角形,60B ∴∠=︒, //DE AB ,60EDC B ∴∠=∠=︒,EF DE ⊥,90DEF ∴∠=︒,9030F EDC ∴∠=︒-∠=︒;(2)60ACB ∠=︒,60EDC ∠=︒,EDC∴∆是等边三角形.∴==,ED DC3∠=︒,F90∠=︒,30DEF∴==.DF DE263.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED EC=,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE =DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作//EF BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED EC∆的边=.若ABC 长为1,2AE=,求CD的长(请你直接写出结果).【解答】解:(1)故答案为:=.(2)过E作//EF BC交AC于F,等边三角形ABC,∴∠=∠=∠=︒,AB AC BC==,ABC ACB A60AFE ACB∴∠=∠=︒,60∠=∠=︒,AEF ABC60即60∠=∠=∠=︒,AEF AFE A∴∆是等边三角形,AEFAE EF AF ∴==,60ABC ACB AFE ∠=∠=∠=︒,120DBE EFC ∴∠=∠=︒,60D BED FCE ECD ∠+∠=∠+∠=︒,DE EC =,D ECD ∴∠=∠,BED ECF ∴∠=∠,在DEB ∆和ECF ∆中DEB ECF DBE EFC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,DEB ECF ∴∆≅∆,BD EF AE ∴==,即AE BD =,故答案为:=.(3)解:1CD =或3,理由是:分为两种情况:①如图1过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,则//AM EN ,ABC ∆是等边三角形,1AB BC AC ∴===,AM BC ⊥, 1122BM CM BC ∴===, DE CE =,EN BC ⊥,2CD CN ∴=,//AM EN ,AMB ENB ∴∆∆∽, ∴AB BM BE BN=, ∴11221BN=-, 12BN ∴=, 13122CN ∴=+=, 23CD CN ∴==;②如图2,作AM BC ⊥于M ,过E 作EN BC ⊥于N ,则//AM EN ,ABC ∆是等边三角形,1AB BC AC ∴===,AM BC ⊥,1122BM CM BC ∴===, DE CE =,EN BC ⊥,2CD CN ∴=,//AM EN , ∴AB BM AE MN=, ∴1122MN=, 1MN ∴=,11122CN ∴=-=,21CD CN ∴==,即3CD =或1.4.如图,过等边ABC ∆的边AB 上一点P ,作P E A C ⊥于E ,Q 为BC 延长线上一点,且PA CQ =,连PQ 交AC 边于D .(1)求证:PD DQ =;(2)若ABC ∆的边长为1,求DE 的长.【解答】(1)证明:如图,过P 做//PF BC 交AC 于点F ,AFP ACB ∴∠=∠,FPD Q ∠=∠,PFD QCD ∠=∠ABC ∆为等边三角形,60A ACB ∴∠=∠=︒,60A AFP ∴∠=∠=︒,APF ∴∆是等边三角形;AP PF =,AP CQ =,PF CQ ∴=PFD QCD ∴∆≅∆,PD DQ ∴=.(2)APF ∆是等边三角形,PE AC ⊥,AE EF ∴=,PFD QCD ∆≅∆,CD DF ∴=,12DE EF DF AC =+=, 1AC =,12DE =. 5.如图所示,已知等边ABC ∆的边长为a ,P 是ABC ∆内一点,//PD AB ,//PE BC ,//PF AC ,点D 、E 、F 分别在BC 、AC 、AB 上,猜想:PD PE PF ++= a ,并证明你的猜想.【解答】解:PD PE PF a ++=.理由如下:如图,延长EP 交AB 于G ,延长FP 交BC 于H ,//PE BC ,//PF AC ,ABC ∆是等边三角形,60PGF B ∴∠=∠=︒,60PFG A ∠=∠=︒,PFG ∴∆是等边三角形,同理可得PDH ∆是等边三角形,PF PG ∴=,PD DH =,又//PD AB ,//PE BC ,∴四边形BDPG是平行四边形,∴=,PG BD∴++=++==.PD PE PF DH CH BD BC a故答案为a.6.如图,已知ABC∆均为等边三角形,且点B、C、D在同一条直线上,连接AD、∆和CDEBE,交CE和AC分别于G、H点,连接GH.(1)请说出AD BE=的理由;(2)试说出BCH ACG∆≅∆的理由;(3)试猜想:CGH∆是什么特殊的三角形,并加以说明.【解答】解:(1)ABC∆均为等边三角形∆和CDE=∴=,EC DCAC BC∠=∠=︒ACB ECD60∴∠=∠ACD ECBACD BCE∴∆≅∆∴=;AD BE(2)ACD BCE∆≅∆∴∠=∠CBH CAGACB ECD∠=∠=︒,点B、C、D在同一条直线上60∴∠=∠=∠=︒ACB ECD ACG60又AC BC=ACG BCH∴∆≅∆;(3)CGH∆是等边三角形,理由如下:ACG BCH∆≅∆∴=(全等三角形的对应边相等)CG CH又60∠=︒ACG∴∆是等边三角形(有一内角为60度的等腰三角形为等边三角形);CGH7.如图,已知ABC∆是边长为6cm的等边三角形,动点P,Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1/cm s,cm s,点Q运动的速度是2/当点Q运动到点C时,P,Q都停止运动.(1)出发后运动2s时,试判断BPQ∆的形状,并说明理由;那么此时PQ和AC的位置关系呢?请说明理由;(2)设运动时间为t,BPQ∆的面积为S,请用t的表达式表示S.【解答】解:(1)BPQ∆是等边三角形,//PQ AC,(2分)运动至2s时,2AP=,4BQ=,BP AB AP BQ∴=-==(4分)4又ABC∆是边长为6cm的等边三角形∴∠=︒B60∴∆是等边三角形(6分)BPQ∴∠=∠=︒60BPQ A∴.//PQ AC(2)过Q作QH AB⊥于H,=,30∠=︒,BQHBQ t2∴=,QH=.(10分)BH t=-BP t6213(6)3(6)2S t t t t ∴=-=-=+. (12分)8.已知:在等边ABC ∆中,点D 、E 、F 分别为边AB 、BC 、AC 的中点,点G 为直线BC上一动点,当点G 在CB 延长线上时,有结论“在直线EF 上存在一点H ,使得DGH ∆是等边三角形”成立(如图①),且当点G 与点B 、E、C 重合时,该结论也一定成立. 问题:当点G 在直线BC 的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.【解答】证明:连接DE 、EF 、DF .(1)当点G 在线段BE 上时,如图①,在EF 上截取EH 使EH BG =.D 、E 、F 是等边ABC ∆三边中点,DEF ∴∆、DBE ∆也是等边三角形且12DE AB BD ==. 在DBG ∆和DEH ∆中,60DB DE DBG DEH BG EH =⎧⎪∠=∠=︒⎨⎪=⎩,()DBG DEH SAS ∴∆≅∆,DG DH ∴=.BDG EDH ∴∠=∠.60BDE GDE BDG ∠=∠+∠=︒,60GDH GDE EDH ∴∠=∠+∠=︒∴在直线EF 上存在点H 使得DGH ∆是等边三角形.(2)当点G 在射线EC 上时,如图②,在EF 上截取EH 使EH BG =.由(1)可证DBG DEH ∆≅∆.DG DH ∴=,BDG EDH ∠=∠.60BDE BDG EDG ∠=∠-∠=︒,60GDH EDH EDG ∴∠=∠-∠=︒.∴在直线EF 上存在点H 使得DGH ∆是等边三角形.(3)当点G 在BC 延长线上时,如图③,与(2)同理可证,结论成立.综上所述,点G 在直线BC 上的任意位置时,该结论成立.9.已知点C 为线段AB 上一点,分别以AC 、BC 为边在线段AB 同侧作ACD ∆和BCE ∆,且CA CD =,CB CE =,ACD BCE ∠=∠,直线AE 与BD 交于点F ,(1)如图1,若60ACD ∠=︒,则AFB ∠= 120︒ ;如图2,若90ACD ∠=︒,则AFB ∠= ;如图3,若120ACD ∠=︒,则AFB ∠= ;(2)如图4,若ACDα∠=(用含α的式子表示);∠=,则AFB(3)将图4中的ACD∆绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若ACDα∠与α的有何数量关系?并给予∠=,则AFB证明.【解答】解:(1)如图1,CA CD∠=︒,ACD=,60所以ACD∆是等边三角形.∠=∠=︒,ACD BCE=,60CB CE所以ECB∆是等边三角形.AC DC∠=∠+∠,BCD BCE DCE∠=∠+∠,=,ACE ACD DCE又ACD BCE∠=∠,∴∠=∠.ACE BCDAC DC=,=,CE BC∴∆≅∆.ACE DCB∴∠=∠.EAC BDC∠是ADFAFB∆的外角.∴∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒AFB ADF FAD ADC CDB FAD ADC EAC FAD ADC DAC120.如图2,AC CD=,∠=∠=︒,EC CBACE DCB=,90∴∆≅∆.ACE DCB∴∠=∠,AEC DBC又FDE CDB∠=︒,DCB∠=∠,9090EFD ∴∠=︒.90AFB ∴∠=︒.如图3,ACD BCE ∠=∠,ACD DCE BCE DCE ∴∠-∠=∠-∠.ACE DCB ∴∠=∠.又CA CD =,CE CB =,ACE DCB ∴∆≅∆.EAC BDC ∴∠=∠.180180(180)120BDC FBA DCB ACD ∠+∠=︒-∠=︒--∠=︒, 120FAB FBA ∴∠+∠=︒.60AFB ∴∠=︒.故填120︒,90︒,60︒.(2)ACD BCE ∠=∠,ACD DCE BCE DCE ∴∠+∠=∠+∠.ACE DCB ∴∠=∠.CAE CDB ∴∠=∠.DFA ACD ∴∠=∠.180180180AFB DFA ACD α∴∠=︒-∠=︒-∠=︒-.(3)180AFB α∠=︒-;证明:ACD BCE α∠=∠=,则ACD DCE BCE DCE ∠+∠=∠+∠, 即ACE DCB ∠=∠.在ACE ∆和DCB ∆中AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,则()ACE DCB SAS ∆≅∆.则CBD CEA ∠=∠,由三角形内角和知EFB ECB α∠=∠=. 180180AFB EFB α∠=︒-∠=︒-.10.如图1,ABC ∆为等边三角形,面积为S .1D 、1E 、1F 分别是ABC ∆三边上的点,且。
教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。
8年级数学全等三角形经典例题一、全等三角形经典例题1。
例1:如图,在△ABC中,AB = AC,AD是BC边上的中线,求证:△ABD≌△ACD。
解析:1. 在△ABD和△ACD中:- 已知AB = AC(题目中给出的等腰三角形的两腰相等)。
- 因为AD是BC边上的中线,所以BD = CD(中线的定义)。
- AD = AD(公共边)。
2. 根据SSS(边边边)全等判定定理,可得△ABD≌△ACD。
二、全等三角形经典例题2。
例2:已知:如图,AB = AD,∠B = ∠D,∠1=∠2,求证:△ABC≌△ADE。
解析:1. 因为∠1 = ∠2,所以∠1+∠DAC = ∠2+∠DAC,即∠BAC = ∠DAE。
2. 在△ABC和△ADE中:- 已知AB = AD。
- ∠B = ∠D。
- 且∠BAC = ∠DAE(已证)。
3. 根据ASA(角边角)全等判定定理,可得△ABC≌△ADE。
三、全等三角形经典例题3。
例3:如图,在△ABC中,∠C = 90°,AC = BC,AD平分∠CAB交BC于D,DE⊥AB于E,AB = 6cm,求△DEB的周长。
解析:1. 因为AD平分∠CAB,∠C = 90°,DE⊥AB,根据角平分线的性质,可知CD = DE。
2. 在Rt△ACD和Rt△AED中:- AD = AD(公共边)。
- CD = DE(已证角平分线性质)。
- 根据HL(斜边直角边)定理,可得Rt△ACD≌Rt△AED。
- 所以AC = AE。
3. 因为AC = BC,AB = 6cm,设AC = BC=x,根据勾股定理AC^2+BC^2=AB^2,即x^2+x^2=6^2,2x^2=36,x^2=18,x = 3√(2)。
4. 又因为AE = AC = 3\sqrt{2}\),所以BE=AB - AE = 6 - 3\sqrt{2}\)。
5. 而△DEB的周长为DE+DB+BE,因为CD = DE,BC = BD + CD,所以△DEB的周长为BC+BE = 3\sqrt{2}+6 - 3\sqrt{2}=6cm。
全等三角形的性质和判定方法1.如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF.(1)求证:△ACE≌△BCD;(2)求证:BF⊥AE;(3)请判断∠CFE与∠CAB的大小关系并说明理由.2.如图一,∠ACB=90°,点D在AC上,DE⊥AB垂足为E,交BC的延长线于F,DE=EB,EG=EB,(1)求证:AG=DF;(2)过点G作GH⊥AD,垂足为H,与DE的延长线交于点M,如图二,找出图中与AB相等的线段,并证明.3.如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.4.如图,△ABC为等腰直角三角形,∠ACB=90°,直线l经过点A且绕点A在△ABC所在平面内转动,作BD⊥l,CE⊥l,D、E为垂足.(1)如图a,求证:DA+DB=2DE;(2)在图b和图c中,(1)的结论是否成立?若成立,请说明理由;若不成立?直接写出DE、DA、DB三条线段的数量关系.5.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,请探究:(1)求证:△DFE是等腰直角三角形;(2)四边形CEDF的面积是否发生变化?若不变化,请求出面积.6.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC的延长线上,连接AD,过B作BE⊥AD,垂足为E,交AC于点F,连接CE.(1)求证:△BCF≌△ACD.(2)猜想∠BEC的度数,并说明理由;(3)探究线段AE,BE,CE之间满足的等量关系,并说明理由.12.如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并说明你猜想的正确性.8.如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,延长AE交BC的延长线于点F.(1)判断FC与AD的数量关系,并说明理由;(2)若AB=BC+AD,则BE⊥AF吗?为什么?(3)在(2)的条件下,若EC⊥BF,EC=3,求点E到AB的距离.9.如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC于F.(1)求△CDE的面积;(2)证明:DF+CF=EF.10.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.11.如图,四边形ABCD中,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,∠BDC=90°,BD=CD;CE与BD交于F,连AF,M为BC中点,连接DM交CE于N.请说明:(1)△ABD≌△NCD;(2)CF=AB+AF.12.如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图l),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),找出图中与BE相等的线段(不需要添加辅助线),并说明理由.13.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值.14.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.15.情境观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.拓展延伸:如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE.要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.16.已知,如图:AD是△ABC的中线,AE⊥AB,AE=AB,AF⊥AC,AF=AC,连结EF.试猜想线段AD与EF 的关系,并证明.17.如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.18.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边作等腰直角△AED,连结BE、EC.试判断线段BE和EC的数量关系和位置关系,并证明你的结论.19.以△ABC的边AB、AC为直角边分别向外作等腰直角△ABD和△ACE,M是BC的中点,N是DE的中点,连接AM、AN.(1)如图1,当∠BAC=90°时,其他条件不变,猜想线段BM与AN之间的数量关系,并证明你的猜想;(2)如图2,当∠BAC≠90°时,其他条件不变,那么(1)中猜想的结论是否成立,如果成立,请给出证明;如果不成立,请说明理由.20.如图1,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴与G,连OB、OC.(1)判断△AOG的形状,并予以证明;(2)若点B、C关于y轴对称,求证:AO⊥BO;(3)在(2)的条件下,如图2,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B的坐标为(3,1),求点M的坐标.。
全等三角形的性质:典型例题
:
1.全等形:能够完全重合的两个图形叫做全等形。
2.全等三角形:能够完全重合的三角形(形状、大小相同)。
重合的顶点叫做对应点,重合的边叫做对应边,重合的叫叫做对应角。
3.全等三角形的符号:≌,注意:在写三角形全等的时候,先找出对应字母,然后按对应
顶点的字母顺序记两个三角形全等,再按顺序写出对应边和对应角。
4.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等,全等三角形的面积相等。
反之,面积相等的三角形是全等三角形是错误的。
5.常见的三角形的基本图形有,平移,旋转和翻折。
知识的探索:
一.根据全等三角形全等的性质填空: 1.如图所示,△ABC ≌△DEF , (这种情况是 )
对应顶点有:点___和点___,点___和点___,点___和点___; 对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,____和____,_____和_____.
2.如图(1),点O 是平行四边形ABCD 的对角线的交点,△AOB 绕O 旋转180°, 可以与△______重合,这说明△AOB ≌△______.这两个三角形的对应边是AO 与_____,OB 与_____,BA 与______;对应角是∠AOB 与________,∠OBA 与________,∠BAO 与________.(此种情况是 ) (2)如图,已知△ABC ≌△ADE,∠C=∠E,BC=DE, 其它的对应边有: ,
对应角有: 。
想一想: ∠ BAD= ∠ CAE 吗?为什么? 3.如图(2),已知△ABC 中,AB=3,AC=4, ∠ABC =118°,
那么△ABC 沿着直线AC 翻折,它就和△ADC 重合, 那么这两个三角形________,
即____________所以DA=______,∠ADC =_____°。
C
A
B
D
E
(此种情况是 )
自主探究:
类型一:.运用全等三角形的性质解决问题
1.如图,⊿OAD ≌⊿OBC,∠C=25°,∠O=70°,则∠AEB 的度数是( ) A. 120° B. 70° C. 60° D. 50°
E
C
A
D
B
O
E
D C
B A
E C
B
D
F
A
类型二:全等三角形性质与三角形内角和的综合 1. 如图所示,⊿ABE ≌⊿ACD ,AB=AC,BE=CD ∠B=50°,∠AEC=120°,则∠CAD 的度数是
( )
A. 120 °
B. 70 °
C. 60°
D. 50° (解题关键:找清全等三角形中的对应关系)
2.如图所示,在⊿ABC 中,D,E 分别是边AC,BC 边上的点,若⊿ADB ≌⊿EDB ≌⊿EDC,
则∠C 的度数是( )
A. 15°
B. 20°
C. 25°
D. 30° 类型三:全等三角形与平行线的综合
1.如图,⊿ADF ≌⊿CBE,且点E,B,D,F 在同一直线上,判定AD 与BC 的位置关系,并加以说明。
类型四:全等三角形的性质与判定的综合
1.如图,沿AD 将⊿ABC 对折,若B 与C 重合,结合全等三角形的定义,写出全等的三角形,并用等式表示对应边,对应角,0为AD 上一点,延长BO 交AC 与点F,延长CO 交AB 于E ,还有哪些三角形全等。
E
F
C
B D O
A
D
B
C
A
1、如图1已知AB 和CD 相交于O ,△AOD ≌△BOC , 点A 和点B 是对应点,那么∠DAO 的对应角是 ; 那么DO 的对应边是 。
2、如上图△ACD ≌△BDC ,点C 和点D 是对应点, 那么AD= ,∠DAC= 。
3、如图3已知△ABC ≌△DEF ,∠B=50°,∠D=80°则∠EFD= 。
4、如图4已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,其它对应边和对应角分别是 。
5、如图5已知△AOB ≌△COD ,△EOB ≌△FOD ,则图中 对角相等,有 对线段相等。
6、如图6,△ABD ≌△EBC,AB=3cm ,BC=4cm ,则DE= cm 。
2 1 B D E C A 图4
F
E
D C A B 图3
7、已知△ABC ≌△GFH ,若△ABC 的周长为24,AB=9,BC=11,则GF= ,HG= ,FH= 。
8、如图8已知△ABC ≌△ADE,其中BC 与DE 是对应边,则∠DAC 等于( ) A 、∠ACB B 、∠CAE C 、 ∠BAE D 、∠BAC
9、如图9已知△ABC ≌△DEF ,则在此图中,相等的线段组数是( ) A 、1 B 、2 C 、3 D 、4
10、如图10△ABC ≌△CDA ,则它们的一组对应边是( ) A 、AB=DC B 、CD=AB C 、AD=DC D 、AB=AC
11、下列说法中:①全等三角形形状相同。
②全等三角形对应边相等。
③全等三角形对
应角相等。
④全等三角形周长、面积分别相等。
其中正确说法的个数有( ) A 、1全 B 、2 个 C 、3个 D 、4个
12、Rt △ABC 和Rt △A ′B ′C ′可以完全重合,且∠C=∠C ′=90°, ∠B=∠B ′, AB= A ′B ′,那么下列不正确的是( )
A 、AC=A ′C ′
B 、BC=B ′
C ′ C 、AC=B ′C ′
D 、∠A=∠A ′ 13、已知△ABC ≌△DEF ,AB=2,BC=4,若△DEF 周长为偶数,则DF 取值为( )。
A 、3 B 、4 C 、5 D 、3或4或5
14如图已知△ABC ≌△ADE ,AB=AD ,AC=AE ,∠B=31°, ∠E=92°∠EAB=22°, 求:∠CAE 和∠CAD 的度数。
15、如图已知△ABC ≌△DEF ,BF=2.求:EC 的长
A D
B
E
C
C
B D
A C E F A
B
D
C
B
A
D
E
图
F
D
E
B
C
O
A
图5
B
A E
C
F
D
16、已知△ABC≌△DEF,AB=DE,BC=EF,∠A=70°, ∠E—∠F =60°.
求:∠B与∠C的度数
作业:
1.如图,将长方形ABCD沿AM折叠,使点D落在BC上的N点处,若AD=7cm,DM=3cm,∠NAB=
2.把一张平行四边形纸片ABCD沿BD对折,使点C落在E处,BE与AD相较于点0,若
∠DBC=15°,则∠BOD= °
3.如图所示,△ACE≌△DBF,AE=DF,CE=BF,AD=8,BC=2,
(1)求AC的长
(2)求证CE∥BF.
4.如图所示,△ABC≌△ADE,BC的延长线交DA于点F,交DE于点G,∠ACB=∠AED=105°,∠B=∠D=10°,求∠DFB和∠DGB的度数。