2019人教版高中数学必修 第二章统计分层训练进阶冲关2.2.2用样本的数字特征估计总体的数字特征(含答案)
- 格式:doc
- 大小:576.50 KB
- 文档页数:9
2019-2020学年度最新高中数学新人教版必修3教案:第2章2-2-2 用样本的数字特征估计总体的数字特征-含答案1.会求样本的众数、中位数、平均数、标准差、方差.(重点)2.理解用样本的数字特征来估计总体数字特征的方法.(重点)3.会应用相关知识解决实际统计问题.(难点)[基础·初探]教材整理1众数、中位数、平均数阅读教材P72~P73的内容,完成下列问题.1.众数:在一组数据中,出现次数最多的数叫做众数.如果有两个或两个以上数据出现的最多且出现的次数相等,那么这些数据都是这组数据的众数;如果一组数据中,所有数据出现的次数都相等,那么认为这组数据没有众数.2.中位数:将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的那个数是这组数据的中位数;当数据有偶数个时,处在最中间的两个数的平均数是这组数据的中位数.3.平均数:一组数据的总和除以这组数据的个数取得的商叫做这组数据的平均数,一般记为x=1n(x1+x2+…+x n).4.三种数字特征的比较1.判断(正确的打“√”,错误的打“×”)(1)中位数一定是样本数据中的某个数.()(2)在一组样本数据中,众数一定是唯一的.()【答案】(1)×(2)×2.已知一组数据为20,30,40,50,50,60,70,80.其中平均数、中位数和众数的大小关系是()A.平均数>中位数>众数B.平均数<中位数<众数C.中位数<众数<平均数D.众数=中位数=平均数【解析】众数为50,平均数x=18(20+30+40+50+50+60+70+80)=50,中位数为12(50+50)=50,故选D.【答案】 D3.一组观察值4,3,5,6出现的次数分别为3,2,4,2,则样本平均值为( ) A .4.55 B .4.5 C .12.5 D .1.64【解析】x =4×3+3×2+5×4+6×23+2+4+2≈4.55.【答案】 A教材整理2 频率分布直方图中的众数、中位数、平均数 阅读教材P 72~P 73的内容,完成下列问题.在频率分布直方图中,众数是最高矩形中点的横坐标,中位数左边和右边的直方图的面积应该相等,平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.教材整理3 标准差、方差阅读教材P 74~P 77例2上面的内容,完成下列问题. 1.标准差的计算公式标准差是样本数据到平均数的一种平均距离,一般用s 表示, s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 2.方差的计算公式 标准差的平方s 2叫做方差.s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].其中,x i (i =1,2,…,n )是样本数据,n 是样本容量,x 是样本平均数.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4. 则:(1)平均命中环数为________; (2)命中环数的标准差为________.【解析】 (1)x =7+8+7+9+5+4+9+10+7+410=7.(2)s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s=2.【答案】(1)7(2)2[小组合作型](2)这个问题中,平均数能客观地反映该工厂的工资水平吗?为什么?【精彩点拨】先结合众数、中位数、平均数的意义求出众数、中位数、平均数,再结合影响平均数的因素作答.【尝试解答】(1)由题中表格可知:众数为1 200,中位数为1 220,平均数为(2 200+1 250×6+1 220×5+1 200×10+490)÷23=1 230(元/周).(2)虽然平均数为1 230元/周,但从题中表格中所列出的数据可见,只有经理在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该厂的工资水平.1.众数、中位数、平均数都是刻画数据特征的,但任何一个样本数据改变都会引起平均数的改变,而众数、中位数不具有这个性质.所以平均数可以反映出更多的关于样本数据全体的信息,它是样本数据的重心.2.在样本中出现极端值的情况下,众数、中位数更能反映样本数据的平均水平.[再练一题]1.已知一组数据按从小到大排列为-1,0,4,x,6,15,且这组数据的中位数是5,那么数据的众数是________,平均数是________.【解析】 ∵中位数为5,∴4+x2=5,即x =6.∴该组数据的众数为6,平均数为-1+0+4+6+6+156=5.【答案】 6 5甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,从中抽取6件测量数据为:甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定. 【精彩点拨】【尝试解答】 (1)x 甲=16[99+100+98+100+100+103]=100, x 乙=16[99+100+102+99+100+100]=100,s2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)由(1)知x甲=x乙,比较它们的方差,∵s2甲>s2乙,故乙机床加工零件的质量更稳定.1.在实际问题中,仅靠平均数不能完全反映问题,还要研究其偏离平均值的离散程度(即方差或标准差),方差大说明取值分散性大,方差小说明取值分散性小或者取值集中、稳定.2.关于统计的有关性质及规律(1)若x1,x2,…,x n的平均数为x,那么mx1+a,mx2+a,…,mx n+a的平均数是m x+a;(2)数据x1,x2,…,x n与数据x1+a,x2+a,…,x n+a的方差相等;(3)若x1,x2,…,x n的方差为s2,那么ax1,ax2,…,ax n的方差为a2s2.[再练一题]2.某校高二年级在一次数学选拔赛中,由于甲、乙两人的竞赛成绩相同,从而决定根据平时在相同条件下进行的六次测试确定出最佳人选,这六次测试的成绩数据如下:求两人比赛成绩的平均数以及方差,并且分析成绩的稳定性,从中选出一位参加数学竞赛.【解】 设甲、乙两人成绩的平均数分别为x 甲,x 乙, 则x 甲=130+16(-3+8+0+7+5+1)=133, x 乙=130+16(3-1+8+4-2+6)=133,s 2甲=16[(-6)2+52+(-3)2+42+22+(-2)2]=473, s 2乙=16[(02+(-4)2+52+12+(-5)2+32]=383. 因此,甲与乙的平均数相同,由于乙的方差较小,所以乙的成绩比甲的成绩稳定,应该选乙参加竞赛比较合适.125 121 123 125 127 129 125 128 130129 126 124 125 127 126 122 124 125 126 128 (1)填写下面的频率分布表:(2)(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数. 【精彩点拨】 将数据分组后依次填写分布表.然后画出直方图,最后根据数字特征在直方图中的求法求解.【尝试解答】 (1)(3)在[124.5,126.5)中的数据最多,取这个区间的中点值作为众数的近似值,得众数为125.5,事实上,众数的精确值为125.图中虚线对应的数据是124.5+2×58=125.75,事实上中位数为125.5.使用“组中值”求平均数:x -=121.5×0.1+123.5×0.15+125.5×0.4+127.5×0.2+129.5×0.15=125.8,事实上平均数的精确值为x -=125.75.1.利用频率分布直方图求数字特征 (1)众数是最高的矩形的底边的中点;(2)中位数左右两侧直方图的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.利用直方图求众数、中位数、平均数均为近似值,往往与实际数据得出的不一致,但它们能粗略估计其众数、中位数和平均数.[再练一题]3.某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图2-2-20所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.求:图2-2-20(1)高一参赛学生的成绩的众数、中位数;(2)高一参赛学生的平均成绩.【解】(1)由题图可知众数为65,又∵第一个小矩形的面积为0.3,∴设中位数为60+x,则0.3+x×0.04=0.5,得x=5,∴中位数为60+5=65.(2)依题意,平均成绩为:55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,∴平均成绩约为67.[探究共研型]探究【提示】一组数据的平均数、中位数都是唯一的,众数不唯一,可以有一个,也可以有多个,还可以没有.如果有两个数据出现的次数相同,并且比其他数据出现的次数都多,那么这两个数据都是这组数据的众数.探究2如何从样本的数字特征中了解数据中是否存在极端数据?【提示】中位数不受几个极端数据的影响,而平均数受每个数据的影响,“越离群”的数据,对平均数的影响越大,因此如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以了解样本数据中极端数据的信息.探究3众数、中位数有哪些应用?【提示】(1)众数只与这组数据中的部分数据有关,当一组数据中有不少数据重复出现时,众数往往更能反映问题.(2)中位数仅与数据的排列位置有关,中位数可能在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.探究4【提示】(1)数据的离散程度可以通过极差、方差或标准差来描述,极差反映了一组数据变化的最大幅度,它对一组数据中的极端值极为敏感,一般情况下,极差大,则数据波动性大;极差小,则数据波动性小.极差只需考虑两个极端值,便于计算,但没有考虑中间的数据,可靠性较差.(2)标准差和方差则反映了一组数据围绕平均数波动的大小,方差、标准差的运算量较大.因为方差与原始数据单位不同,且平方后可能夸大了偏差程度,所以虽然标准差与方差在体现数据离散程度上是一样的,但解决问题时一般用标准差.探究5【提示】(1)样本的数字特征具有随机性,这种随机性是由样本的随机性引起的.(2)样本的数字特征具有规律性,在很广泛的条件下,简单随机样本的数字特征(如众数、中位数、平均数和标准差等)随样本容量的增加而稳定于总体相应的数字特征(总体的数字特征是一定的,不存在随机性).某班4个小组的人数为10,10,x,8,已知该组数据的中位数与平均数相等,求这组数据的中位数.【精彩点拨】x的大小未知,可根据x的取值不同分别求中位数.【尝试解答】该组数据的平均数为14(x+28),中位数一定是其中两个数的平均数,由于x不知是多少,所以要分几种情况讨论:(1)当x≤8时,原数据按从小到大的顺序排列为x,8,10,10,其中位数为12×(10+8)=9.若14(x+28)=9,则x=8,此时中位数为9.(2)当8<x≤10时,原数据按从小到大的顺序排列为8,x,10,10,其中位数为12(x+10).若14(x+28)=12·(x+10),则x=8,而8不在8<x≤10的范围内,所以舍去.(3)当x>10时,原数据按从小到大的顺序排列为8,10,10,x,其中位数为12×(10+10)=10.若14(x +28)=10,则x =12,此时中位数为10.综上所述,这组数据的中位数为9或10.当在数据中含有未知数x ,求该组数据的中位数时,由于x 的取值不同,所以数据由小到大(或由大到小)排列的顺序不同,由于条件的变化,问题的结果有多种情况,不能用同一标准或同一种方法解决,故需分情况讨论,讨论时要做到全面合理,不重不漏.[再练一题]4.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为____________.【解析】 设5个班级中参加的人数分别为x 1,x 2,x 3,x 4,x 5,则由题意知x 1+x 2+x 3+x 4+x 55=7,(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20,五个整数的平方和为20,则必为0+1+1+9+9=20,由|x -7|=3可得x =10或x =4.由|x -7|=1可得x =8或x =6,由上可知参加的人数分别为4,6,7,8,10,故最大值为10.【答案】 101.样本101,98,102,100,99的标准差为( ) A.2B .0C.1 D.2【解析】样本平均数x=100,方差为s2=2,∴标准差s=2,故选A.【答案】 A2.甲乙两名学生六次数学测验成绩(百分制)如图2-2-21所示.图2-2-21①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学高;③甲同学的平均分比乙同学低;④甲同学成绩的方差小于乙同学成绩的方差.上面说法正确的是()A.③④B.①②④C.②④D.①③【解析】甲的中位数81,乙的中位数87.5,故①错,排除B、D;甲的平均分x=16(76+72+80+82+86+90)=81,乙的平均分x′=16(69+78+87+88+92+96)=85,故②错,③对,排除C,故选A.【答案】 A3.甲、乙、丙、丁四名射手在选拔赛中所得的平均环数x及其方差s2如下表所示,则选送决赛的最佳人选应是()【解析】∵x乙=x丙>x甲=x丁,且s2甲=s2乙<s2丙<s2丁,∴应选择乙进入决赛.【答案】 B4.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量得到频率分布直方图如图2-2-22,则图2-2-22(1)这20名工人中一天生产该产品数量在[55,75)的人数是________.(2)这20名工人中一天生产该产品数量的中位数为________.(3)这20名工人中一天生产该产品数量的平均数为________.【解析】(1)(0.040×10+0.025×10)×20=13.(2)设中位数为x,则0.2+(x-55)×0.04=0.5,x=62.5.(3)0.2×50+0.4×60+0.25×70+0.1×80+0.05×90=64.【答案】(1)13(2)62.5(3)645.甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图2-2-23所示:图2-2-23(1)填写下表:①从平均数和方差结合分析偏离程度;②从平均数和中位数结合分析谁的成绩好些;③从平均数和命中9环以上的次数相结合看谁的成绩好些;④从折线图上两人射击命中环数及走势分析谁更有潜力.【解】(1)乙的射靶环数依次为2,4,6,8,7,7,8,9,9,10.所以x乙=110(2+4+6+8+7+7+8+9+9+10)=7;乙的射靶环数从小到大排列为2,4,6,7,7,8,8,9,9,10,所以中位数是7+82=7.5;甲的射靶环数从小到大排列为5,6,6,7,7,7,7,8,8,9,所以中位数为7.于是填充后的表格如下表所示:(2)①甲、乙的平均数相同,均为7,但s甲乙小,而乙偏离平均数的程度大.②甲、乙的平均水平相同,而乙的中位数比甲大,说明乙射靶成绩比甲好.③甲、乙的平均水平相同,而乙命中9环以上(包含9环)的次数比甲多2次,可知乙的射靶成绩比甲好.④从折线图上看,乙的成绩呈上升趋势,而甲的成绩在平均线上波动不大,说明乙的状态在提升,更有潜力.学业分层测评(十三)用样本的数字特征估计总体的数字特征(建议用时:45分钟)[学业达标]一、选择题1.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图2-2-24所示,则( )图2-2-24A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差【解析】 由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.【答案】 C2.若样本1+x 1,1+x 2,1+x 3,…,1+x n 的平均数是10,方差为2,则对于样本2+x 1,2+x 2,…,2+x n ,下列结论正确的是( )A .平均数是10,方差为2B .平均数是11,方差为3C .平均数是11,方差为2D .平均数是10,方差为3【解析】 若x 1,x 2,…,x n 的平均数为x ,方差为s ,那么x 1+a ,x 2+a ,…,x n +a 的平均数为x +a ,方差为s .【答案】 C3.如图2-2-25是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,甲、乙两人这几场比赛得分的平均数分别为x 甲,x 乙;标准差分别是s 甲,s 乙,则有( )图2-2-25A.x 甲>x 乙,s 甲>s 乙B.x 甲>x 乙,s 甲<s 乙C.x 甲<x 乙,s 甲>s 乙D.x 甲<x 乙,s 甲<s 乙【解析】 观察茎叶图可大致比较出平均数与标准差的大小关系,或者通过公式计算比较.【答案】 C4.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是x =2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别为( )A .2,13 B .2,1 C .4,13D .4,3【解析】 平均数为x ′=3x -2=3×2-2=4,方差为s ′2=9s 2=9×13=3.【答案】 D5.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如图2-2-26所示.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a ,b 的值分别为( )图2-2-26A .0.27,78B .0.27,83C .2.7,78D .2.7,83【解析】 由题意,4.5到4.6之间的频率为0.09,4.6到4.7之间的频率为0.27,后6组的频数成等差数列,设公差为d ,则6×0.27+15d =1-0.01-0.03-0.09,∴d =-0.05.∴b =(0.27×4+6d )×100=78,a =0.27. 【答案】 A 二、填空题6.一个样本数据按从小到大的顺序排列为:13,14,19,x,23,27,28,31,中位数为22,则x =________.【解析】 由题意知x +232=22,则x =21. 【答案】 217.甲、乙两位同学某学科的连续五次考试成绩用茎叶图表示如图2-2-27所示,则平均分数较高的是________,成绩较为稳定的是________.图2-2-27【解析】x甲=70,x乙=68,s 2甲=15×(22+12+12+22)=2,s 2乙=15×(52+12+12+32)=7.2.【答案】甲甲8.已知样本9,10,11,x,y的平均数是10,标准差为2,则xy=________.【解析】由平均数得9+10+11+x+y=50,∴x+y=20.又由(9-10)2+(10-10)2+(11-10)2+(x-10)2+(y-10)2=(2)2×5=10,得x2+y2-20(x+y)=-192,(x+y)2-2xy-20(x+y)=-192,∴xy=96.【答案】96三、解答题9.从高三抽出50名学生参加数学竞赛,由成绩得到如图2-2-28的频率分布直方图.图2-2-28由于一些数据丢失,试利用频率分布直方图求:(1)这50名学生成绩的众数与中位数;(2)这50名学生的平均成绩.【解】(1)由众数的概念可知,众数是出现次数最多的数.在直方图中高度最高的小长方形的底边中点的横坐标即为所求,所以众数应为75.由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将所有小矩形的面积一分为二的垂直于横轴的直线与横轴交点的横坐标所对应的成绩即为所求.∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3,∴前三个小矩形面积的和为0.3.而第四个小矩形面积为0.03×10=0.3,0.3+0.3>0.5,∴中位数应约位于第四个小矩形内.设其底边为x ,高为0.03,∴令0.03x =0.2得x ≈6.7, 故中位数应约为70+6.7=76.7.(2)样本平均值应是频率分布直方图的“重心”,即所有数据的平均值,取每个小矩形底边的中点的横坐标乘以每个小矩形的面积求和即可.∴平均成绩为45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.021×10)+95×(0.016×10)=73.65.10.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:(1)(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?【解】 (1)画茎叶图如下:中间数为数据的十位数.从茎叶图上看,甲、乙的得分情况都是分布均匀的,只是乙更好一些.乙发挥比较稳定,总体情况比甲好.(2)x 甲=27+38+30+37+35+316=33.x 乙=33+29+38+34+28+366=33.s 2甲=16[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]≈15.67.s 2乙=16[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]≈12.67.甲的极差为11,乙的极差为10.综合比较以上数据可知,选乙参加比赛较合适.[能力提升]1.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,x ,已知这组数据的平均数为6,则这组数据的方差为( )A .6 B.6 C .66D .6.5【解析】 ∵x =111(2+4+4+5+5+6+7+8+9+11+x )=111(61+x )=6,∴x =5.方差为:s 2=42+22+22+12+12+02+12+22+32+52+1211=6611=6.【答案】 A2.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图2-2-29中以x 表示:89⎪⎪⎪7 74 0 1 0 x 9 1图2-2-29则7个剩余分数的方差为( )A.1169B.367C .36D.677【解析】 根据茎叶图,去掉1个最低分87,1个最高分99, 则17[87+94+90+91+90+(90+x )+91]=91, ∴x =4.∴s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=367.【答案】 B3.若40个数据的平方和是56,平均数是22,则这组数据的方差是________,标准差是________.【解析】 设这40个数据为x i (i =1,2,…,40),平均数为x . 则s 2=140×[(x 1-x )2+(x 2-x )2+…+(x 40-x )2] =140[x 21+x 22+…+x 240+40x 2-2x (x 1+x 2+…+x 40)] =140⎣⎢⎡⎦⎥⎤56+40×⎝ ⎛⎭⎪⎫222-2×22×40×22=140×⎝ ⎛⎭⎪⎫56-40×12=0.9. ∴s =0.9=910=31010. 【答案】 0.9310104.某地区100位居民的人均月用水量(单位:t)的分组及各组的频数如下: [0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数;(3)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?【解】(1)频率分布表(2)频率分布直方图如图:众数:2.25,中位数:2.02,平均数:2.02.(3)人均月用水量在3t以上的居民所占的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量在3t以下,因此政府的解释是正确的.。
必修一第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1交集与并集3.2全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2.1函数的概念2.2函数的表示方法2.3映射§3 函数的单调性§4 二次函数性质的再研究4.1二次函数的图像4.2二次函数的性质§5 简单的幂函数第二章指数函数与对数函数§1 正指数函数§2 指数扩充及其运算性质2.1指数概念的扩充2.2指数运算是性质§3 指数函数3.1指数函数的概念3.2指数函数的图像和性质3.3指数函数的图像和性质§4 对数4.1对数及其运算4.2换底公式§5 对数函数5.1对数函数的概念5.2 的图像和性质5.3对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数的应用§1 函数和方程1.1利用函数性质判定方程解的存在1.2利用二分法求方程的近似解§2 实际问题的函数建模2.1实际问题的函数刻画2.2用函数模型解决实际问题2.3函数建模案例必修二第一章立体几何初步§1 简单几何体1.1简单旋转体1.2简单多面体§2 直观图§3 三视图3.1简单组合体的三视图3.2由三视图还原成实物图§4 空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理§5 平行关系5.1平行关系的判定5.2平行关系的性质§6 垂直关系6.1垂直关系的判定6.2垂直关系的性质§7 简单几何体的面积和体积7.1简单几何体的侧面积7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3球的表面积和体积第二章解析几何初步§1 直线和直线的方程1.1直线的倾斜角和斜率1.2直线的方程1.3两条直线的位置关系1.4两条直线的交点1.5平面直接坐标系中的距离公式§2 圆和圆的方程2.1圆的标准方程2.2圆的一般方程2.3直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1空间直接坐标系的建立3.2空间直角坐标系中点的坐标3.3空间两点间的距离公式必修三第一章统计§1 从普查到抽样§2 抽样方法2.1简单随机抽样2.2分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1平均数、中位数、众数、极差、方差4.2标准差§5 用样本估计总体5.1估计总体的分布5.2估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8最小二乘估计第二章算法初步§1 算法的基本思想1.1算法案例分析1.2排序问题与算法的多样性§2 算法框图的基本结构及设计2.1顺序结构与选择结构2.2变量与赋值2.3循环结构§3 几种基本语句3.1条件语句3.2 循环语句第三章概率§1 随机事件的概率1.1频率与概率1.2生活中的概率§2 古典概型2.1古典概型的特征和概率计算公式2.2建立概率模型2.3互斥事件§3 模拟方法——概率的应用必修四第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1任意角的正弦函数、余弦函数的定义4.2单位圆与周期性4.3单位圆与诱导公式§5 正弦函数的性质与图像5.1从单位圆看正弦函数的性质5.2正弦函数的图像5.3正弦函数的性质§6 余弦函数的图像和性质6.1余弦函数的图像6.2余弦函数的性质§7 正切函数7.1正切函数的定义7.2正切函数的图像和性质7.3正切函数的诱导公式§8 函数的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1位移、速度和力1.2向量的概念§2 从位移的合成到向量的加法2.1向量的加法2.2向量的减法§3 从速度的倍数到数乘向量3.1数乘向量3.2平面向量基本定理§4 平面向量的坐标4.1平面向量的坐标表示4.2平面向量线性运算的坐标表示4.3向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1点到直线的距离公式7.2向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1两角差的余弦函数2.2两角和与差的正弦、余弦函数2.3两角和与差的正切函数§3 二倍角的三角函数必修五第一章数列§1 数列1.1数列的概念1.2数列的函数特性§2 等差数列2.1等差数列2.2等差数列的前n项和§3 等比数列3.1等比数列3.2等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1正弦定理1.2余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1不等关系1.2不等关系与不等式§2 一元二次不等式2.1一元二次不等式的解法2.2一元二次不等式的应用§3 基本不等式3.1基本不等式3.2基本不等式与最大(小)值§4 简单线性规划4.1二元一次不等式(组)与平面区域4.2简单线性规划4.3简单线性规划的应用选修2—1第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1充分条件2.2必要条件2.3充要条件§3 全称量词与存在量词3.1全称量词与全称命题3.2存在量词与特称命题3.3全称命题与特称命题的否定§4 逻辑连结词“且”“或”“非”4.1逻辑连结词“且”4.2逻辑连结词“或”4.3逻辑连结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理3.1空间向量的标准正交分解与坐标表示3.2空间向量基本定理3.3空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算5.1直线间的夹角5.2平面间的夹角5.3直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆1.1椭圆及其标准方程1.2椭圆的简单性质§2 抛物线2.1抛物线及其标准方程2.2抛物线的简单性质§3 双曲线3.1双曲线及其标准方程3.2双曲线的简单性质§4 曲线与方程4.1 曲线与方程4.2圆锥曲线的共同特征4.3直线与圆锥曲线的交点选修2—2第一章推理与证明§1 归纳与类比1.1归纳推理1.2类比推理§2 综合法与分析法2.1综合法2.2分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1导数的概念2.2导数的几何意义§3 计算导数§4 导数的四则运算法则4.1导数的加法与减法法则4.2导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数的应用§1 函数的单调性与极值1.1导数与函数的单调性1.2函数的极值§2 导数在实际问题中的应用2.1实际问题中导数的意义2.2最大值、最小值问题第四章定积分§1 定积分的概念1.1定积分的背景——面积和路程问题1.2定积分§2 微积分基本定理§3 定积分的简单应用3.1平面图形的面积3.2简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1数的概念的扩展1.2复数的有关概念§2 复数的四则运算2.1复数的加法与减法2.2复数的乘法与除法。
数学(高二上)导学案必修三第二章第二节课题:用样本估计总体二、合作探究归纳展示任务1 标准差问题平均数向我们提供了样本数据的重要信息,但是平均数有时也会使我们作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的.因此,只有平均数还难以概括样本数据的实际状态.如:有两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:甲:7879549107 4乙:9578768677如果你是教练,你应当如何对这次射击作出评价?思考1甲、乙两人本次射击的平均成绩分别为多少环?答经计算得:x甲=110(7+8+7+9+5+4+9+10+7+4)=7,同理可得x乙=7.思考2观察下图中两人成绩的频率分布条形图,你能说明其水平差异在哪里吗?答直观上看,还是有差异的.如:甲成绩比较分散,乙成绩相对集中.思考3对于甲乙的射击成绩除了画出频率分布条形图比较外,还有没有其它方法来说明两组数据的分散程度?答还经常用甲乙的极差与平均数一起比较说明数据的分散程度.甲的环数极差=10-4=6,乙的环数极差=9-5=4.它们在一定程度上表明了样本数据的分散程度,与平均数一起,可以给我们许多关于样本数据的信息.显然,极差对极端值非常敏感,注意到这一点,我们可以得到一种“去掉一个最高分,去掉一个最低分”的统计策略.思考4 如何用数字去刻画这种分散程度呢?答 考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示 . 思考5 所谓“平均距离”,其含义如何理解?答 假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i =1,2,…,n ).于是,样本数据是x 1,x 2,…,x n 到x 的“平均距离”是S =|x 1-x |+|x 2-x |+…+|x n -x |n .由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 思考6 标准差的取值范围如何?若s =0表示怎样的意义?答 从标准差的定义可以看出,标准差s ≥0,当s =0时,意味着所有的样本数据等于样本平均数. 任务2 方差思考1 方差的概念是怎样定义的?答 人们有时用标准差的平方s 2—方差来代替标准差,作为测量样本数据分散程度的工具,方差:s 2=1n ·[(x 1-x )2+(x 2-x )2+…+(x n -x )2].思考2 对于一个容量为2的样本:x 1,x 2(x 1<x 2),它们的平均数和标准差如果分别用x 和a 表示,那么x 和a 分别等于什么? 答 x =12(x 1+x 2),a =12(x 2-x 1).思考3 在数轴上,x 和a 有什么几何意义?由此说明标准差的大小对数据的离散程度有何影响?答 x 和a 的几何意义如下图所示.说明了标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中在平均数周围.思考4 现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.如何求得总体的平均数和标准差呢?答 通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.例1求出问题中的甲乙两运动员射击成绩的标准差,并说明他们的成绩谁比较稳定?解x甲=110(7+8+7+9+5+4+9+10+7+4)=7,同理可得x乙=7.根据标准差的公式,s甲=110[(7-7)2+(8-7)2+…+(4-7)2]=2;同理可得s乙≈1.095.所以s甲>s乙.因此说明甲的成绩离散程度大,乙的成绩离散程度小.由此可以估计,乙比甲的射击成绩稳定.跟踪训练1如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.答案 6.8任务3标准差及方差的应用例2画出下列四组样本数据的条形图,说明它们的异同点.(1)5,5,5,5,5,5,5,5,5;(2)4,4,4,5,5,5,6,6,6;(3)3,3,4,4,5,6,6,7,7;(4)2,2,2,2,5,8,8,8,8.解四组样本数据的条形图如下:四组数据的平均数都是5.0,标准差分别是:0.00,0.82,1.49,2.83.它们有相同的平均数,但它们有不同的标准差,说明数据的分散程度是不一样的.跟踪训练2从甲、乙两种玉米中各抽10株,分别测得它们的株高如下:甲:25、41、40、37、22、14、19、39、21、42;乙:27、16、44、27、44、16、40、40、16、40;(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?解(1)x甲=110(25+41+40+37+22+14+19+39+21+42)=30,x乙=110(27+16+44+27+44+16+40+40+16+40)=31,x甲<x乙.即乙种玉米的苗长得高.(2)由方差公式得:s2甲=110[(25-30)2+(41-30)2+…+(42-30)2]=104.2,同理s2乙=128.8,∴s2甲<s2乙.即甲种玉米的苗长得齐.答乙种玉米苗长得高,甲种玉米苗长得齐.例3甲、乙两人同时生产内径为25.40 mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):甲25.4625.3225.4525.3925.3625.3425.4225.4525.3825.4225.3925.4325.3925.4025.44的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.四、作业布置 1、基础知识:1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高 答案 B2.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( )A.1169B.367C .36D.677答案 B3.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是x =2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别为( )A .2,13B .2,1C .4,13D .4,3答案 D4.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则:(1)平均命中环数为________; (2)命中环数的标准差为________.。
2.2.2 用样本的数字特征估计总体的数字特征[课时作业] [A 组 学业水平达标]1.下列说法不正确的是( ) A .方差是标准差的平方 B .标准差的大小不会超过极差C .若一组数据的值大小相等,没有波动变化,则标准差为0D .标准差越大,表明各个样本数据在样本平均数周围越集中;标准差越小,表明各个样本数据在样本平均数周围越分散解析:标准差越小,表明各个样本数据在样本平均数周围越集中;标准差越大,表明各个样本数据在样本平均数的周围越分散. 答案:D2.数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,这个小组的平均分是( ) A .97.2 B .87.29 C .92.32D .82.86解析:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5的平均数为:(2+3-3-5+12+12+8+2-1+4-10-2+5+5)÷14=167≈2.29,故这个小组的平均成绩是85+2.29=87.29(分).故选B. 答案:B3.一次数学考试后,某老师从自己所带的两个班级中各抽取5人,记录他们的考试成绩,得到如图所示的茎叶图.已知甲班5名同学成绩的平均数为81,乙班5名同学成绩的中位数为73,则x -y 的值为( ) A .2 B .-2 C .3D .-3解析:由题意得72+77+80+x +86+905=81⇒x =0,易知y =3.∴x -y =-3,故选D. 答案:D4.某品牌空调在春节期间举行促销活动,下面的茎叶图表示某专卖店记录的每天销售量的情况(单位:台),则销售量的中位数是( )A .13B .14C .15D .16解析:由茎叶图可知这些数分别为5,8,10,14,16,16,20,23,∴中位数为14+162=15,故选C.答案:C5.某项测试成绩满分为10分,现随机抽取30名学生参加测试,得分如图所示,假设得分值的中位数为m e ,平均值为x ,众数为m 0,则( )A .m e =m 0=xB .m e =m 0<xC .m e <m 0<xD .m 0<m e <x解析:由图可知m 0=5.由中位数的定义知应该是第15个数与第16个数的平均值,由图知将数据从小到大排,第15个数是5,第16个数是6, 所以m e =5+62=5.5.x =130(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)≈5.97>5.5,所以m 0<m e <x ,故选D. 答案:D6.对某商店一段时间内的顾客人数进行了统计,得到了样本的茎叶图(如图所示),则该样本中的中位数为________,众数为________.解析:将样本数据按大小顺序排列,排在中间位置或中间两个数的平均数是中位数,出现次数最多的是众数,所以根据图中数据可知该样本中的中位数为45,众数为45. 答案:45 457.样本中共有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为________. 解析:由题意知15(a +0+1+2+3)=1,解得a =-1.所以样本方差为s 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.答案:28.若1,2,3,4,m 这五个数的平均数为3,则这五个数的方差为________.解析:由1+2+3+4+m 5=3得m =5,所以这五个数的方差为15[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2. 答案:29.如图所示的是甲、乙两人在一次射击比赛中中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数字所在圆环被击中时所得的环数),每人射击了6次.甲射击的靶 乙射击的靶(1)请用列表法将甲、乙两人的射击成绩统计出来;(2)请用学过的统计知识,对甲、乙两人这次的射击情况进行比较.解析:(1)甲、乙两人的射击成绩统计表如下:(2)x 甲=16×(8×2+9×2+10×2)=9(环),x 乙=16×(7×1+9×3+10×2)=9(环),s 2甲=16×[(8-9)2×2+(9-9)2×2+(10-9)2×2]=23,s 2乙=16×[(7-9)2+(9-9)2×3+(10-9)2×2]=1,因为x 甲=x 乙,s 2甲<s 2乙,所以甲与乙的平均成绩相同,但甲的发挥比乙稳定.[B 组 应考能力提升]1.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表:A.25B.725C.35D .2解析:x 甲=7,s 2甲=15[(6-7)2+(7-7)2+(7-7)2+(8-7)2+(7-7)2]=25,x 乙=7,s 2乙=15[(6-7)2+(7-7)2+(6-7)2+(7-7)2+(9-7)2]=65,两组数据的方差中较小的一个为s 2甲,即s 2=25.故选A.答案:A2.样本中共有五个个体,其值分别为0,1,2,3,m .若该样本的平均值为1,则其方差为( )A.105 B.305C. 2D .2解析:依题意得m =5×1-(0+1+2+3)=-1,样本方差s 2=15(12+02+12+22+22)=2,即所求的样本方差为2. 答案:D3.已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m ,n 的比值m n=________.解析:由茎叶图可知甲的数据为27,30+m,39,乙的数据为20+n,32,34,38.由此可知乙的中位数是33,所以甲的中位数也是33,所以m =3.由此可以得出甲的平均数为33,所以乙的平均数也是33,所以有20+n +32+34+384=33,所以n =8,所以m n =38.答案:384.农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下(单位:cm): 甲:9,10,11,12,10,20 乙:8,14,13,10,12,21(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.解析:(1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12,x 乙=8+14+13+10+12+216=13,s 2甲=16×[(9-12)2+(10-12)2+(11-12)2+(12-12)2+(10-12)2+(20-12)2]≈13.67,s 2乙=16×[(8-13)2+(14-13)2+(13-13)2+(10-13)2+(12-13)2+(21-13)2]≈16.67.因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐. 5.某校对高二年级的男生进行体检,现将高二男生的体重(kg)数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[60,65)的人数为200.根据一般标准,高二男生体重超过65 kg 属于偏胖,低于55 kg 属于偏瘦,观察图中的信息,回答下列问题:(1)求体重在[60,65)内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.解析:(1)体重在[60,65)内的频率=1-(0.03+0.07+0.03+0.02+0.01)×5=0.2, 则频率组距=0.25=0.04,补全的频率分布直方图如图所示.(2)设男生总人数为n ,由200n=0.2,可得n =1 000.体重超过65 kg 的总人数为(0.03+0.02+0.01)×5×1 000=300, 在[65,70)的人数为0.03×5×1 000=150,应抽取的人数为6×150300=3,在[70,75)的人数为0.02×5×1 000=100,应抽取的人数为6×100300=2,在[75,80]的人数为0.01×5×1 000=50,应抽取的人数为6×50300=1.所以在[65,70),[70,75),[75,80]三段应抽取的人数分别为3,2,1. (3)中位数为60 kg ,平均数为(52.5×0.03+57.5×0.07+62.5×0.04+67.5×0.03+72.5×0.02+77.5×0.01)×5=61.75(kg).。
第2课时标准差导入新课思路1平均数为我们提供了样本数据的重要信息,但是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176 cm,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.所以我们学习从另外的角度来考察样本数据的统计量——标准差.(教师板书课题)思路2在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员:7,8,7,9,5,4,9,10,7,4;乙运动员:9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥得更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?我们知道,x甲=7,x乙=7.两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?从上图直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据——标准差.推进新课新知探究提出问题(1)如何通过频率分布直方图估计数字特征(中位数、众数、平均数)?(2)有甲、乙两种钢筋,现从中各抽取一个标本(如下表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.甲110 121312512125135125135125乙115 112513115125125145125145哪种钢筋的质量较好?(3)某种子公司为了在当地推行两种新水稻品种,对甲、乙两种水稻进行了连续7年的种植对比实验,年亩产量分别如下:(千克)甲:600, 880, 880, 620, 960, 570, 900(平均773)乙:800, 860, 850, 750, 750, 800, 700(平均787)请你用所学统计学的知识,说明选择哪种品种推广更好?(4)全面建设小康社会是我们党和政府的工作重心,某市按当地物价水平计算,人均年收入达到1.5万元的家庭即达到小康生活水平.民政局对该市100户家庭进行调查统计,它们的人均收入达到了1.6万元,民政局即宣布该市民生活水平已达到小康水平,你认为这样的结论是否符合实际?(5)如何考查样本数据的分散程度的大小呢?把数据在坐标系中刻画出来,是否能直观地判断数据的离散程度?讨论结果:(1)利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点) 估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. (2)由上图可以看出,乙样本的最小值100低于甲样本的最小值110,乙样本的最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.我们把一组数据的最大值与最小值的差称为极差(range ).由上图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论. (3)选择的依据应该是,产量高且稳产的品种,所以选择乙更为合理.(4)不符合实际.样本太小,没有代表性.若样本里有个别高收入者与多数低收入者差别太大.在统计学里,对统计数据的分析,需要结合实际,侧重于考察总体的相关数据特征.比如,市民平均收入问题,都是考察数据的分散程度.(5)把问题(3)中的数据在坐标系中刻画出来.我们可以很直观地知道,乙组数据比甲组数据更集中在平均数的附近,即乙的分散程度小, 如何用数字去刻画这种分散程度呢? 考察样本数据的分散程度的大小,最常用的统计量是方差和标准差.标准差:考察样本数据的分散程度的大小,最常用的统计量是标准差(standard deviation).标准差是样本数据到平均数的一种平均距离,一般用s 表示. 所谓“平均距离”,其含义可作如下理解:假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i=1,2,…,n).于是,样本数据x 1,x 2,…,x n 到x 的“平均距离”是S=nx x x x x x n ||||||21-++-+- .由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差: s=])()()[(122221x x x x x x nn -++-+- .意义:标准差用来表示稳定性,标准差越大,数据的离散程度就越大,也就越不稳定.标准差越小,数据的离散程度就越小,也就越稳定.从标准差的定义可以看出,标准差s≥0,当s=0时,意味着所有的样本数据都等于样本平均数.标准差还可以用于对样本数据的另外一种解释.例如,在关于居民月均用水量的例子中,平均数x =1.973,标准差s=0.868,所以x +s=2.841,x +2s=3.709; x -s=1.105,x -2s=0.237.这100个数据中,在区间[x -2s,x +2s ]=[0.237,3.709]外的只有4个,也就是说,[x -2s, x +2s ]几乎包含了所有样本数据.从数学的角度考虑,人们有时用标准差的平方s 2——方差来代替标准差,作为测量样本数据分散程度的工具: s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2].显然,在刻画样本数据的离散程度上,方差与标准差是一样的.但在解决实际问题时,一般多采用标准差.需要指出的是,现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.如何求得总体的平均数和标准差呢?通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.两者都是描述一组数据围绕平均数波动的大小,实际应用中比较广泛的是标准差.如导入中的运动员成绩的标准差的计算器计算.用计算器计算运动员甲的成绩的标准差的过程如下:即s 甲=2.用类似的方法,可得s 乙≈1.095.由s 甲>s 乙可以知道,甲的成绩离散程度大,乙的成绩离散程度小.由此可以估计,乙比甲的射击成绩稳定. 应用示例思路1例1 画出下列四组样本数据的条形图,说明它们的异同点. (1)5,5,5,5,5,5,5,5,5; (2)4,4,4,5,5,5,6,6,6; (3)3,3,4,4,5,6,6,7,7;(4)2,2,2,2,5,8,8,8,8. 分析:先画出数据的条形图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:四组样本数据的条形图如下:四组数据的平均数都是5.0,标准差分别是:0.00,0.82,1.49,2.83. 它们有相同的平均数,但它们有不同的标准差,说明数据的分散程度是不一样的.例2 甲、乙两人同时生产内径为25.40 mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm): 甲25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.39 乙25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 25.36 25.3425.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:每一个工人生产的所有零件的内径尺寸组成一个总体.由于零件的生产标准已经给出(内径25.40 mm),生产质量可以从总体的平均数与标准差两个角度来衡量.总体的平均数与内径标准尺寸25.40 mm 的差异大时质量低,差异小时质量高;当总体的平均数与标准尺寸很接近时,总体的标准差小的时候质量高,标准差大的时候质量低.这样,比较两人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数与标准差的大小即可.但是,这两个总体的平均数与标准差都是不知道的,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本的平均数、标准差,以此作为两个总体之间差异的估计值. 解:用计算器计算可得甲x ≈25.401,乙x ≈25.406;s 甲≈0.037,s 乙≈0.068.从样本平均数看,甲生产的零件内径比乙的更接近内径标准(25.40 mm),但是差异很小;从样本标准差看,由于s 甲<s 乙,因此甲生产的零件内径比乙的稳定程度高得多.于是,可以作出判断,甲生产的零件的质量比乙的高一些.点评:从上述例子我们可以看到,对一名工人生产的零件内径(总体)的质量判断,与所抽取的零件内径(样本数据)直接相关.显然,我们可以从这名工人生产的零件中获取许多样本.这样,尽管总体是同一个,但由于样本不同,相应的样本频率分布与平均数、标准差等都会发生改变,这就会影响到我们对总体情况的估计.如果样本的代表性差,那么对总体所作出的估计就会产生偏差;样本没有代表性时,对总体作出错误估计的可能性就非常大.这也正是我们在前面讲随机抽样时反复强调样本代表性的理由.在实际操作中,为了减少错误的发生,条件许可时,通常采取适当增加样本容量的方法.当然,关键还是要改进抽样方法,提高样本的代表性. 变式训练某地区全体九年级的3 000名学生参加了一次科学测试,为了估计学生的成绩,从不同学校的不同程度的学生中抽取了100名学生的成绩如下:100分12人,90分30人,80分18人,70分24人,60分12人,50分4人.请根据以上数据估计该地区3 000名学生的平均分、合格率(60或60分以上均属合格). 解:运用计算器计算得:100450126024701880309012100⨯+⨯+⨯+⨯+⨯+⨯=79.40,(12+30+18+24+12)÷100=96%,所以样本的平均分是79.40分,合格率是96%,由此来估计总体3 000名学生的平均分是79.40分,合格率是96%.思路2例1 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm 2),试根据这组数据估计哪一种水稻品种的产量比较稳定.品种 第1年 第2年 第3年 第4年 第5年 甲 9.8 9.9 10.1 10 10.2 乙9.410.310.89.79.8解:甲品种的样本平均数为10,样本方差为 [(9.8-10)2 +(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02. 乙品种的样本平均数也为10,样本方差为 [(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.24. 因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.例2 为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差.天数151—180 181—210 211—240 241—270 271—300 301—330 331—360 361—390灯泡数1111820251672分析:用每一区间内的组中值作为相应日光灯的使用寿命,再求平均寿命. 解:各组中值分别为165,195,225,255,285,315,345,375,由此算得平均数约为165×1%+195 ×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9≈268(天). 这些组中值的方差为1001×[1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+25×(285-268)2+16×(315-268)2+7×(345-268)2+2×(375-268)2]=2 128.60(天2). 故所求的标准差约6.2128≈46(天).答:估计这种日光灯的平均使用寿命约为268天,标准差约为46天. 知能训练 (1)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为____________.(2)若给定一组数据x 1,x 2,…,x n ,方差为s 2,则ax 1,ax 2,…,ax n 的方差是____________. (3)在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:甲 27 38 30 37 35 31 乙 33 29 38 34 28 36试判断选谁参加某项重大比赛更合适? 答案:(1)9.5,0.016 (2)a 2s 2(3)甲x =33,乙x =33,33734722=>=乙甲s s ,乙的成绩比甲稳定,应选乙参加比赛更合适. 拓展提升某养鱼专业户在一个养鱼池放入一批鱼苗,一年以后准备出售,为了在出售以前估计卖掉鱼后有多少收入,这个专业户已经了解到市场的销售价是每千克15元,请问,这个专业户还应该了解什么?怎样去了解?请你为他设计一个方案.解:这个专业户应了解鱼的总重量,可以先捕出一些鱼(设有x 条),作上标记后放回鱼塘,过一段时间再捕出一些鱼(设有a 条),观察其中带有标记的鱼的条数,作为一个样本来估计总体,则鱼塘中鱼的总条数鱼的条数鱼塘中所有带有标记的条鱼中带有标记的条数)(x aa =这样就可以求得总条数,同时把第二次捕出的鱼的平均重量求出来,就可以估计鱼塘中的平均重量,进而估计全部鱼的重量,最后估计出收入. 课堂小结1.用样本的数字特征估计总体的数字特征分两类:用样本平均数估计总体平均数,平均数对数据有“取齐”的作用,代表一组数据的平均水平.用样本标准差估计总体标准差.样本容量越大,估计就越精确,标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度. 2.用样本估计总体的两个手段(用样本的频率分布估计总体的分布;用样本的数字特征估计总体的数字特征),需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本容量越大,估计的结果也就越精确. 作业习题2.2A 组4、5、6、7,B 组1、2.设计感想统计学科,最大的特点就是与现实生活的密切联系,也是新教材的亮点.仅仅想借助“死记硬背一些概念及公式,简单模仿课本例题”来学习,是绝对不行的.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差,其原因在于样本的随机性.这种偏差是不可避免的.虽然我们从样本数据得到的分布、均值和标准差并不是总体的真正分布、均值和标准差,而只是总体的一个估计,但这种估计是合理的,特别是当样本的容量很大时,它们确实反映了总体的信息.教师建议:亲身经历“提出问题,收集数据,分析数据,并作出合理决策”过程,在此过程中不仅可以加深对概念等知识的深刻理解,更重要的是发展了思维,培养了分析及解决问题能力,同时在情感、意志等领域也得到了协调发展,这才是学校学习的科学而全面的目标,习题设置有层次,尽量源于教材,又高于教材,这也是高考命题原则.。
第二章统计2.2 用样本估计总体2.2.1用样本的频率分布估计总体分布课时目标 1.理解用样本的频率分布估计总体分布的方法.2.会列频率分布表,画频率分布直方图,频率分布折线图,茎叶图.3.能够利用图形解决实际问题.1,用样本估计总体的两种情况(1)用样本的____________估计总体的分布.(2)用样本的____________估计总体的数字特征.2,数据分析的基本方法(1)借助于图形分析数据的一种基本方法是用图将它们画出来,此法可以达到两个目的,一是从数据中____________,二是利用图形________信息.(2)借助于表格分析数据的另一方法是用紧凑的________改变数据的排列方式,此法是通过改变数据的____________,为我们提供解释数据的新方式.3,频率分布直方图在频率分布直方图中,纵轴表示____________,数据落在各小组内的频率用________________来表示,各小长方形的面积的总和等于____.4,频率分布折线图和总体密度曲线(1)频率分布折线图连接频率分布直方图中各小长方形__________,就得到了频率分布折线图.(2)总体密度曲线随着样本容量的增加,作图时所分的____增加,组距减小,相应的频率分布折线图就会越来越接近于一条________,统计中称之为总体密度曲线,它反映了总体在各个范围内取值的百分比.5,茎叶图(1)适用范围:当样本数据较少时,用茎叶图表示数据的效果较好.(2)优点:它不但可以____________,而且可以__________,给数据的记录和表示都带来方便.(3)缺点:当样本数据______时,枝叶就会很长,茎叶图就显得不太方便.一、选择题1,下列说法不正确的是()A,频率分布直方图中每个小矩形的高就是该组的频率B,频率分布直方图中各个小矩形的面积之和等于1C,频率分布直方图中各个小矩形的宽一样大D,频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的2,一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] 频数12 13 24 15 16 13 7 则样本数据落在(10,40]上的频率为()A,0.13 B.0.39 C.0.52 D.0.643,100辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,则时速在[60,70)的汽车大约有()A.30辆B.40辆C,60辆D.80辆4,如图是总体密度曲线,下列说法正确的是()A,组距越大,频率分布折线图越接近于它B,样本容量越小,频率分布折线图越接近于它C,阴影部分的面积代表总体在(a,b)内取值的百分比D,阴影部分的平均高度代表总体在(a,b)内取值的百分比5,一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.则样本在区间[20,+∞)上的频率为()A,20% B.69%C,31% D.27%6,某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A,90 B.75 C.60 D.45题号 1 2 3 4 5 6答案二、填空题7,将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________. 8,在如图所示的茎叶图中,甲,乙两组数据的中位数分别是________.9.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在各组上的频率为m,该组上直方图的高为h,则|a-b|=________.三、解答题10,抽查100袋洗衣粉,测得它们的重量如下(单位:g):494498493505496492485483508 511495494483485511493505488 501491493509509512484509510 495497498504498483510503497 502511497500493509510493491 497515503515518510514509499 493499509492505489494501509 498502500508491509509499495 493509496509505499486491492 496499508485498496495496505 499505496501510496487511501496(1)列出样本的频率分布表:(2)画出频率分布直方图,频率分布折线图;(3)估计重量在[494.5,506.5]g的频率以及重量不足500 g的频率.能力提升11,在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?12,某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表.(2)作出频率分布直方图.(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.答案: 2.2.1 用样本的频率分布估计总体分布 知识梳理1,(1)频率分布 (2)数字特征 2.(1)提取信息 传递 (2)表格 构成形式 3.频率/组距 小长方形的面积 1 4.(1)上端的中点 (2)组数 光滑曲线5,(2)保留所有信息 随时记录 (3)较多作业设计1,A 2,C [样本数据落在(10,40]上的频数为13+24+15=52,故其频率为52100=0.52.] 3,B [时速在[60,70)的汽车的频率为:0,04×(70-60)=0.4,又因汽车的总辆数为100, 所以时速在[60,70)的汽车大约有0.4×100=40(辆).]4,C5,C [由题意,样本中落在[20,+∞)上的频数为5+4+2=11,∴在区间[20,+∞)上的频率为1135≈0.31.]6,A [∵样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36, ∴样本总数为360.3=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.] 7,60解析 ∵n·2+3+42+3+4+6+4+1=27, ∴n =60.8,45,46解析 由茎叶图及中位数的概念可知x 甲中=45,x 乙中=46. 9.m h解析频率组距=h ,故|a -b|=组距=频率h =m h . 10,解 (1)在样本数据中,最大值是518,最小值是483,它们相差35,若取组距为4,由于354=834,要分9组,组数合适,于是决定取组距为4 g ,分9组,使分点比数据多一位小数,且把第一组起点稍微减小一点,得分组如下:[482.5,486.5),[486.5,490.5),…,[514.5,518.5). 列出频率分布表:分组 个数累计 频数 频率 累积频率 [482.5,486.5) 正 8 0.08 0.08 [486.5,490.5) 3 0.03 0.11[490.5,494.5) 正正正 17 0.17 0.28 [494.5,498.5) 正正正正- 21 0.21 0.49 [498.5,502.5) 正正 14 0.14 0.63 [502.5,506.5) 正 9 0.09 0.72[506.5,510.5) 正正正 19 0.19 0.91 [510.5,514.5) 正- 6 0.06 0.97[514.5,518.5] 3 0.03 1.00合计 100 1.00(2)频率分布直方图与频率分布折线图如图.(3)重量在[494.5,506.5]g 的频率为:0.21+0.14+0.09=0.44.设重量不足500 g 的频率为b ,根据频率分布表,b -0.49500-498.5≈0.63-0.48502.5-498.5,故b ≈0.55.因此重量不足500 g 的频率约为0.55. 11,解 (1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.12,解 (1)(2)(3)答对下述两条中的一条即可:①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%;说明该市空气质量有待进一步改善.2.2.2用样本的数字特征估计总体的数字特征课时目标 1.会求样本的众数,中位数,平均数,标准差,方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1,众数,中位数,平均数(1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数.(2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.②当数据个数为偶数时,中位数为排列的最中间的两个数的________.(3)平均数①平均数的定义:如果有n个数x1,x2,…,x n,那么x=____________,叫做这n个数的平均数.②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数.样本平均数:________所有个体的平均数叫样本平均数.2,标准差,方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=________________________________________________________________________.(2)方差的求法:标准差的平方s2叫做方差.s2=________________________________________________________________________.一、选择题1,下列说法正确的是()A,在两组数据中,平均值较大的一组方差较大B,平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C,方差的求法是求出各个数据与平均值的差的平方后再求和D,在记录两个人射击环数的两组数据中,方差大的表示射击水平高2,已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有()A,a>b>c B.a>c>bC,c>a>b D.c>b>a3,甲,乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲,乙两同学在这次篮球比赛活动中,发挥得更稳定的是()A,甲B.乙C,甲,乙相同D.不能确定4,一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是()A.13s2B.s2C,3s2D.9s25,如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为()A,84,4.84 B.84,1.6C,85,1.6 D.85,0.46,如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B则()A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B题号 1 2 3 4 5 6答案二、填空题7,已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.8,甲,乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲10 8 9 9 9乙10 10 7 9 9如果甲,乙两人只能有1人入选,则入选的应为________.9,若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差为________.三、解答题10,甲,乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:平均数方差中位数命中9环及9环以上的次数甲乙(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11,下面是一家快餐店所有工作人员(共7人)一周的工资表:总经理大厨二厨采购员杂工服务员会计3 000元450元350元400元320元320元410元(1)计算所有人员一周的平均工资;(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12,1,平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3,极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2,2.2用样本的数字特征估计总体的数字特征知识梳理1,(1)最多 (2)中间 ①中间位置的 ②平均数 (3)①x 1+x 2+…+x n n ②总体中 样本中2,(1)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2] 作业设计1,B [A 中平均值和方差是数据的两个特征,不存在这种关系;C 中求和后还需取平均数;D 中方差越大,射击越不平稳,水平越低.]2,D [由题意a =110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,即b =16,c =18,∴c>b>a.]3,B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B .]4,D [s 20=1n [9x 21+9x 22+…+9x 2n -n(3x )2]=9·1n(x 21+x 22+…+x 2n -n x 2)=9·s 2(s 20为新数据的方差).]5,C [由题意x =15(84+84+86+84+87)=85.s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.]6,B [样本A 数据均小于或等于10,样本B 数据均大于或等于10,故x A <x B , 又样本B 波动范围较小,故s A >s B .] 7,91解析 由题意得8,甲解析 x 甲=9,2S 甲=0.4,x 乙=9,2S 乙=1.2,故甲的成绩较稳定,选甲.9,0.19 解析 这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19. 10,解 由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为: 2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x 甲=110×(5+6×2+7×4+8×2+9)=7010=7(环), x 乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s 2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s 2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2] =110×(25+9+1+0+2+8+9)=5.4. 根据以上的分析与计算填表如下:平均数 方差 中位数 命中9环及9环以上的次数甲 7 1.2 7 1乙 7 5.4 7.5 3 (2)①∵平均数相同,2S 甲<2S 乙,∴甲成绩比乙稳定. ②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11,解 (1)平均工资即为该组数据的平均数 x =17×(3 000+450+350+400+320+320+410)=17×5 250=750(元).(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x ′=16×(450+350+400+320+320+410)=16×2 250=375(元).这个平均工资能代表一般工作人员一周的收入水平.12,解 设第一组20名学生的成绩为x i (i =1,2,…,20),第二组20名学生的成绩为y i (i =1,2,…,20), 依题意有:x =120(x 1+x 2+…+x 20)=90,y =120(y 1+y 2+…+y 20)=80,故全班平均成绩为:140(x 1+x 2+…+x 20+y 1+y 2+…+y 20)=140(90×20+80×20)=85;又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 21=120(x 21+x 22+…+x 220-20x 2),s 22=120(y 21+y 22+…+y 220-20y 2) (此处,x =90,y =80),又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s 2=140(x 21+x 22+…+x 220+y 21+y 22+…+y 220-40z 2) =140(20s 21+20x 2+20s 22+20y 2-40z 2) =12(62+42+902+802-2×852)=51. s =51.所以全班同学的平均成绩为85分,标准差为51.。
2.1.1 简单随机抽样[课时作业][A组学业水平达标]1.某市有10万名高中毕业生参加高考,为了解这10万名考生的数学成绩,从中抽取2 000名考生的数学成绩进行统计分析,下列说法中正确的是( )A.10万名考生的数学成绩是总体B.样本容量为2 000名学生的数学成绩C.每位考生都是总体的一个个体D.2 000名考生是样本容量解析:抽取的是数学成绩,不是考生,样本容量是2 000,每位考生的数学成绩是总体的个体.答案:A2.为了了解2016年参加市运会的240名运动员的身高情况,从中抽取40名运动员进行测量.下列说法正确的是( )A.总体是240名运动员B.个体是每一个运动员C.40名运动员的身高是一个个体D.样本容量是40解析:根据统计的相关概念并结合题意可得,此题的总体、个体、样本这三个概念的考察对象都是运动员的身高,而不是运动员,并且一个个体是指一名运动员的身高,选项A,B表达的对象都是运动员,选项C未将个体和样本理解透彻.在这个问题中,总体是240名运动员的身高,个体是每个运动员的身高,样本是40名运动员的身高,样本容量是40.因此选D.答案:D3.要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,将它们编号为001,002,…,800,利用随机数表法抽取样本,从第7行第1个数8开始,依次向右,再到下一行,继续从左到右,请问选出的第7袋牛奶的标号是( )(为了便于说明,下面摘取了随机数表的第6行至第10行)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28A.425 B.506C.704 D.744解析:从第7行第1个数8开始向右读,第一个数为844,不符合条件,第二个数为217,符合条件,第三个数为533,符合条件,以下依次为:157,245,506,887,704,744,其中887不符合条件,故第7个数为744.答案:D4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310解析:简单随机抽样中每个个体被抽取的机会均等,都为1 10 .答案:A5.一次体育运动会,某代表团有6名代表参加,欲从中抽取一人检查是否服用兴奋剂,抽检人员将6名队员名字编号为1~6号,然后抛掷一枚骰子,朝上的一面是几就抽检几号对应的队员,问这种抽检方式是简单随机抽样吗?__________(填“是”或“不是”).解析:抛掷一枚均匀骰子,各面向上的机会是均等的,故每名队员被抽到的机会相等.答案:是6.某种福利彩票的中奖号码是从1~36个号码中,选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.解析:符合抽签法的特点:①个体数较少;②样本容量小.答案:抽签法7.关于简单随机抽样,有下列说法:①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等可能性抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.其中正确的有________(请把你认为正确的所有序号都写上).解析:由随机抽样的特征可判断.答案:①②③④8.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?解析:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.9.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?(下面抽取了第5行到9行的随机数表)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28解析:法一(抽签法)①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.法二(随机数表法)①将40件产品编号,可以编为00,01, 02,…,38,39;②在随机数表中任选一个数作为开始,例如从第7行第9列的数5开始;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34,至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.[B组应考能力提升]1.用随机数表法从100名学生(男生25人)中抽选20人,某男学生被抽到的可能性是( )A.1100B.125C.15D.14解析:从个体数为N=100的总体中抽取一个容量为n=20的样本,每个个体被抽到的可能性都是nN=15,故选C.答案:C2.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是( )33 21 18 34 29 78 64 56 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45 A.697 B.328C.253 D.007解析:根据题意依次读取数据到的样本编号为253,313,457,860,736,253,007,328,…,其中860,736大于700,舍去;253重复出现,所以第二个253舍去,所以得到的第5个样本编号为328.答案:B3.某大学为了支援我国西部教育事业,决定从2016年应届毕业生报名的18名志愿者中选取6人组成志愿小组.请用抽签法和随机数表法设计抽样方案.解析:抽签法:第一步,将18名志愿者编号,号码为1,2,3, (18)第二步,将18个号码分别写在18张形状、大小完全相同的纸条上,并揉成团,制成号签.第三步,将18个号签放入一个不透明的盒子里,充分搅匀.第四步,从盒子中逐个抽取6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者,就是志愿小组的成员.随机数表法:第一步,将18名志愿者编号,号码为01,02,03, (18)第二步,在随机数表中任选一个数字作为开始数字.第三步,从已选的这个数字开始,向右读,每次读取两位数字,凡不在01~18中的数,或已读过的数,都跳过去不做记录依次可得到6个号码.第四步,找出与以上号码对应的志愿者,就是志愿小组的成员.4.从北京某中学40名学生中选1人作为北京男篮的啦啦队队员,采用下面两种方法:解法一:将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这些号签放在一个暗盒中搅拌均匀,最后随机地从中抽取1个号签,与这个号签号码一致的学生幸运入选.解法二:将39个白球与1个红球混合放在一个黑暗箱中搅拌均匀,让40名学生逐一从中摸取一个球,摸到红球的学生为啦啦队员.两种方法是否都是抽签法?为什么?这两种方法有何异同?解析:解法一是抽签法,解法二不是抽签法,因为抽签法要求所有号签编号互不相同,而方法2中39个白球无法区分,这两种方法相同之处在于每名同学被选中的机会相等.。
数学(人教版)必修三同步提升分层训练第二章统计 2.2.2 用样本的数字特征估计总体的数字特征A组基础练(建议用时20分钟)1.已知甲,乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为( A )A.32B.33C.34D.352.设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a(a 为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为( A )A.1+a,4B.1+a,4+aC.1,4D.1,4+a3.如图是一名篮球运动员在最近6场比赛中所得分数的茎叶图,则下列关于该运动员所得分数的说法错误的是( D )A.中位数为14B.众数为13C.平均数为15D.方差为194.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ( C )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差5.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据环保部门某日早6点至晚9点在A县,B县两个地区附近的PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,A县、B县两个地区浓度的方差较小的是( A )A.A县B.B县C.A县,B县两个地区相等D.无法确定6.某项测试成绩满分为10分,现随机抽取30名学生参加测试,得分如图所示,假设得分值的中位数为m e,平均值为,众数为m0,则( D )A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<7.一组样本数据的频率分布直方图如图所示,试估计此样本数据的中位数为.8.某商场对一个月内每天的顾客人数进行统计,得到如图所示的茎叶图,则该样本的众数是45.9.已知一组数据:87,x,90,89,93的平均数为90,则该组数据的方差为4.10.如图是甲,乙两位同学在5次数学测试中得分的茎叶图,则成绩较稳定(方差较小)的那一位同学的方差为2.11.某教师为了了解高三一模所教两个班级的数学成绩情况,将两个班的数学成绩(单位:分)绘制成如图所示的茎叶图.(1)分别求出甲,乙两个班级数学成绩的中位数、众数.(2)若规定成绩大于等于115分为优秀,分别求出两个班级数学成绩的优秀率.【解析】(1)由所给的茎叶图知,甲班50名同学的成绩由小到大排序,排在第25,26位的是108,109,出现次数最多的是103,故甲班数学成绩的中位数是108.5,众数是103;乙班48名同学的成绩由小到大排序,排在第24,25位的是106,107,数量最多的是92和101,故乙班数学成绩的中位数是106.5,众数为92和101.(2)由茎叶图中的数据可知,甲班中数学成绩为优秀的人数为20,优秀率为=;乙班中数学成绩为优秀的人数为18,优秀率为=. 12.为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m名学生进行体育测试.根据体育测试得到了这m名学生的各项平均成绩(满分100分),按照以下区间分为7组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到频率分布直方图(如图).已知测试平均成绩在区间[30,60)内的有20人.(1)求m的值及中位数n.(2)若该校学生测试平均成绩小于n,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?【解析】(1)由频率分布直方图知第1组、第2组和第3组的频率分别是0.02,0.02和0.06,则m×(0.02+0.02+0.06)=20,解得m=200.由图知,中位数n位于[70,80)内,则0.02+0.02+0.06+0.22+0.04(n-70)=0.5,解得n=74.5.(2)设第i(i=1,2,3,4,5,6,7)组的频率和频数分别为p i和x i,由图知,p1=0.02,p2=0.02,p3=0.06,p4=0.22,p5=0.40,p6=0.18,p7=0.10,则由x i=200×p i,可得x1=4,x2=4,x3=12,x4=44,x5=80,x6=36,x7=20,故该校学生测试平均成绩是==74<74.5,所以该校应该适当增加体育活动时间.B组提升练(建议用时20分钟)13.如图所示的茎叶图是甲、乙两位同学在期末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x,y 的值分别为( D )A.2,4B.4,4C.5,6D.6,414.一个样本a,3,5,7的平均数是b,且a,b是方程x2-5x+4=0的两根,则这个样本的方差是( C )A.3B.4C.5D.615.某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,已知记录的平均身高为175 cm,但有一名运动员的身高记录不清楚,其末位数记为x,那么x的值为2.16.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,其余三个数据为9,10,11,那么这组数据的方差s2可能的最大值是32.8.17.一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动.在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩 (百分制) 的茎叶图如图所示.(1)根据这10名同学的测试成绩,估计该班男、女生国学素养测试的平均成绩.(2)比较这10名同学中男生和女生的国学素养测试成绩的方差的大小.(只需直接写出结果)【解析】(1)设这10名同学中男、女生的平均成绩分别为,.则==73.75(分),==76(分).(2)女生国学素养测试成绩的方差大于男生国学素养测试成绩的方差.18.某同学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的盒饭,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该盒饭,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.(1)根据频率分布直方图估计开学季内市场需求量x的平均数和众数.(2)将y表示为x的函数.(3)根据频率分布直方图估计利润y不少于1 350元的概率(将频率视为概率).【解析】(1)由频率分布直方图得,开学季内市场需求量的众数的估计值是150盒.需求量为[100,120)的频率为0.005×20=0.1,需求量为[120,140)的频率为0.01×20=0.2,需求量为[140,160)的频率为0.015×20=0.3,需求量为[160,180)的频率为0.012 5×20=0.25,需求量为[180,200]的频率为0.007 5×20=0.15,110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153,故平均数的估计值为153盒.(2)因为每售出1盒该盒饭获利润10元,未售出的盒饭,每盒亏损5元,所以当100≤x≤150时,y=10x-5(150-x)=15x-750,当150<x≤200时,y=10×150=1 500,所以y=(x∈N).(3)因为利润不少于1 350元,所以由15x-750≥1 350,得x≥140.所以由(1)知利润不少于1 350元的概率P=1-0.1-0.2=0.7.C组培优练(建议用时15分钟)19.如图是民航部门统计的2017年春运期间几个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是 ( D )A.深圳的变化幅度最小,北京的平均价格最高B.深圳和厦门的春运期间往返机票价格同去年相比有所下降C.平均价格从高到低居于前三位的城市为北京、深圳、广州D.平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门20.随着移动互联网的发展,与餐饮美食相关的手机应用软件层出不穷.现从使用A和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数.(2)根据以上抽样调查数据,将频率视为概率,回答下列问题:①能否认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%?②如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?说明理由.【解析】(1)由已知,使用A款订餐软件的50个商家的“平均送达时间”的众数为55.使用A款订餐软件的50个商家的“平均送达时间”的平均数为15×0.06+25×0.34+35×0.12+45×0.04+55×0.4+65×0.04=40.(2)①使用B款订餐软件“平均送达时间”不超过40分钟的商家的比例估计值为0.04+0.20+0.56=0.80=80%>75%.故可以认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%.②使用B款订餐软件的50个商家的“平均送达时间”的平均数为15×0.04+25×0.2+35×0.56+45×0.14+55×0.04+65×0.02=35<40,所以选B款订餐软件.。
分层训练·进阶冲关A组基础练(建议用时20分钟)1.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是 ( C )A.40B.50C.120D.1502.为了解600名学生的视力情况,采用系统抽样的方法,从中抽取容量为20的样本,则需要分成几个小组进行抽取 ( A )A.20B.30C.40D.503.某客运公司有200辆客车,为了解客车的耗油情况,现采用系统抽样的方法按1∶10的比例抽取一个样本进行检测,将客车依次编号为1,2,…,200,则其中抽取的4辆客车的编号可能是( C )A.3,23,63,102B.31,61,87,127C.103,133,153,193D.57,68,98,1084.下列抽样中,适合用抽签法的是 ( B )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验5.某大学数学系共有本科生1 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( B )A.80B.40C.60D.206.高三某班有学生56人, 现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为( C )A.13B.17C.19D.217.为了了解1 203名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,现采用选取的号码间隔一样的系统抽样方法来确定所选取的样本,则抽样间隔k= 30.8.一个总体分为A,B两层,用分层抽样的方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为120.9.某校高三年级共有30个班,学校心理咨询师为了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取6个班进行调查,若抽到的编号之和为87,则抽到的最小编号为2.10.某学校三个兴趣小组的学生人数分布如下表(每名学生只参加一个小组)(单位:人).篮球组书画组乐器组高一45 30 a高二15 10 20学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为30.11.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计20至40岁40 18 58大于40岁15 27 42 总计55 45 100(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样的方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?【解析】(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众×5=×5=3(名).12.某批产品共有1 564件,产品按出厂顺序编号,号码从1到1 564,检测员要从中抽取15件产品做检测,请你给出一个系统抽样方案. 【解析】(1)先从1 564件产品中,用简单随机抽样的方法抽出4件产品,将其剔除.(2)将余下的1 560件产品编号:1,2,3,…,1 560.(3)取k==104,将总体平均分为15组,每组含104个个体.(4)从第一组,即1号到104号利用简单随机抽样法抽取一个编号s.(5)按编号把s,104+s,208+s,…,1 456+s共15个编号选出,这15个编号所对应的产品组成样本.B组提升练(建议用时20分钟)13.将参加夏令营的600名学生编号为001,002,…,600,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300住在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600住在第Ⅲ营区,三个营区被抽中的人数依次为( B )A.26,16,8B.25,17,8C.25,16,9D.24,17,914.某服装加工厂某月生产A,B,C三种产品共4 000件,为了保证产品质量,进行抽样检验,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A,C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C 产品的数量是( B ) A.80 B.800 C.90 D.90015.已知某种型号的产品共有N件,且40<N<50,现需要利用系统抽样抽取样本进行质量检测,若样本容量为7,则不需要剔除;若样本容量为8,则需要剔除1个个体,则N= 49.16.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为50;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为 1 015小时.17.某中学共有学生2 000名,各年级男、女生人数如下表:高一高二高三女生373 x y男生377 370 z已知高二女生占全校学生总数的19%.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应从高三抽取多少名?【解析】(1)因为=0.19,所以x=380.(2)高三学生人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,则应从高三抽取×48=12(名).18.为了适应新高考改革,尽快推行不分文理科教学,对比目前文理科学生考试情况进行分析,决定从80名文科同学中抽取10人,从300名理科同学中抽取50人进行分析.由于本题涉及文科生和理科生的混合抽取,你能选择合适的方法设计抽样方案吗?试一试.【解析】文科生抽样用抽签法,理科生抽样用随机数表法,抽样过程如下:(1)先抽取10名文科同学:①将80名文科同学依次编号为1,2,3, (80)②将号码分别写在形状、大小均相同的纸片上,制成号签;③把80个号签放入一个不透明的容器中,搅拌均匀,每次从中不放回地抽取一个号签,连续抽取10次;④与号签上号码相对应的10名同学的考试情况就构成一个容量为10的样本.(2)再抽取50名理科同学:①将300名理科同学依次编号为001,002, (300)②从随机数表中任选一数字作为开始数字,任选一方向作为读数方向,比如从随机数表的第4行第1列的数字1开始向右读(如图所示).每次读取三位,凡不在001~300范围内以及重复的数都跳过去,得到号码125,210,142,188,264,…;③这50个号码所对应的同学的考试情况就构成一个容量为50的样本.C组培优练(建议用时15分钟)19.我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%),现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过( B )A.6粒B.7粒C.8粒D.9粒20.某合资企业有150名职工,要从中随机抽出20人去参观学习.请用抽签法和随机数法进行抽取,并写出过程.(随机数表见课本附表) 【解析】方法一(抽签法):先把150名职工编号:1,2,3,…,150,把编号分别写在相同的小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取20个小球,这样就抽出了去参观学习的20名职工.方法二(随机数法):第一步,先把150名职工编号:001,002,003, (150)第二步,从随机数表中任选一个数,如第10行第4列数0.第三步,从数字0开始向右连续读数,每3个数字为一组,在读取的过程中,把大于150的数和与前面重复的数去掉,这样就得到20个号码如下: 086,027,079,050,074,146,148,093,077,119,022,025,042,045,128,12 1,038,130,125,033.(答案不唯一)。
分层训练·进阶冲关A组基础练(建议用时20分钟)1.已知甲,乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为( A )A.32B.33C.34D.352.设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为( A )A.1+a,4B.1+a,4+aC.1,4D.1,4+a3.如图是一名篮球运动员在最近6场比赛中所得分数的茎叶图,则下列关于该运动员所得分数的说法错误的是( D )A.中位数为14B.众数为13C.平均数为15D.方差为194.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( C )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差5.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据环保部门某日早6点至晚9点在A县,B县两个地区附近的PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,A县、B县两个地区浓度的方差较小的是( A )A.A县B.B县C.A县,B县两个地区相等D.无法确定6.某项测试成绩满分为10分,现随机抽取30名学生参加测试,得分如图所示,假设得分值的中位数为m e,平均值为,众数为m0,则( D )A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<7.一组样本数据的频率分布直方图如图所示,试估计此样本数据的中位数为.8.某商场对一个月内每天的顾客人数进行统计,得到如图所示的茎叶图,则该样本的众数是45.9.已知一组数据:87,x,90,89,93的平均数为90,则该组数据的方差为4.10.如图是甲,乙两位同学在5次数学测试中得分的茎叶图,则成绩较稳定(方差较小)的那一位同学的方差为2.11.某教师为了了解高三一模所教两个班级的数学成绩情况,将两个班的数学成绩(单位:分)绘制成如图所示的茎叶图.(1)分别求出甲,乙两个班级数学成绩的中位数、众数.(2)若规定成绩大于等于115分为优秀,分别求出两个班级数学成绩的优秀率.【解析】(1)由所给的茎叶图知,甲班50名同学的成绩由小到大排序,排在第25,26位的是108,109,出现次数最多的是103,故甲班数学成绩的中位数是108.5,众数是103;乙班48名同学的成绩由小到大排序,排在第24,25位的是106,107,数量最多的是92和101,故乙班数学成绩的中位数是106.5,众数为92和101.(2)由茎叶图中的数据可知,甲班中数学成绩为优秀的人数为20,优秀率为=;乙班中数学成绩为优秀的人数为18,优秀率为=.12.为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m名学生进行体育测试.根据体育测试得到了这m名学生的各项平均成绩(满分100分),按照以下区间分为7组:[30,40),[40,50), [50,60),[60,70),[70,80),[80,90),[90,100],并得到频率分布直方图(如图).已知测试平均成绩在区间[30,60)内的有20人.(1)求m的值及中位数n.(2)若该校学生测试平均成绩小于n,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?【解析】(1)由频率分布直方图知第1组、第2组和第3组的频率分别是0.02,0.02和0.06,则m×(0.02+0.02+0.06)=20,解得m=200.由图知,中位数n位于[70,80)内,则0.02+0.02+0.06+0.22+0.04(n-70)=0.5,解得n=74.5.(2)设第i(i=1,2,3,4,5,6,7)组的频率和频数分别为p i和x i,由图知,p1=0.02,p2=0.02,p3=0.06,p4=0.22,p5=0.40,p6=0.18,p7=0.10,则由x i=200×p i,可得x1=4,x2=4,x3=12,x4=44,x5=80,x6=36,x7=20,故该校学生测试平均成绩是==74<74.5,所以该校应该适当增加体育活动时间.B组提升练(建议用时20分钟)13.如图所示的茎叶图是甲、乙两位同学在期末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x,y的值分别为( D )A.2,4B.4,4C.5,6D.6,414.一个样本a,3,5,7的平均数是b,且a,b是方程x2-5x+4=0的两根,则这个样本的方差是 ( C )A.3B.4C.5D.615.某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,已知记录的平均身高为175 cm,但有一名运动员的身高记录不清楚,其末位数记为x,那么x的值为2.16.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,其余三个数据为9,10,11,那么这组数据的方差s2可能的最大值是32.8.17.一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动.在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩 (百分制) 的茎叶图如图所示.(1)根据这10名同学的测试成绩,估计该班男、女生国学素养测试的平均成绩.(2)比较这10名同学中男生和女生的国学素养测试成绩的方差的大小.(只需直接写出结果)【解析】(1)设这10名同学中男、女生的平均成绩分别为,.则==73.75(分),==76(分).(2)女生国学素养测试成绩的方差大于男生国学素养测试成绩的方差.18.某同学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的盒饭,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该盒饭,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.(1)根据频率分布直方图估计开学季内市场需求量x的平均数和众数.(2)将y表示为x的函数.(3)根据频率分布直方图估计利润y不少于1 350元的概率(将频率视为概率).【解析】(1)由频率分布直方图得,开学季内市场需求量的众数的估计值是150盒.需求量为[100,120)的频率为0.005×20=0.1,需求量为[120,140)的频率为0.01×20=0.2,需求量为[140,160)的频率为0.015×20=0.3,需求量为[160,180)的频率为0.012 5×20=0.25,需求量为[180,200]的频率为0.007 5×20=0.15,110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153,故平均数的估计值为153盒.(2)因为每售出1盒该盒饭获利润10元,未售出的盒饭,每盒亏损5元,所以当100≤x≤150时,y=10x-5(150-x)=15x-750,当150<x≤200时,y=10×150=1 500,所以y=(x∈N).(3)因为利润不少于1 350元,所以由15x-750≥1 350,得x≥140.所以由(1)知利润不少于1 350元的概率P=1-0.1-0.2=0.7.C组培优练(建议用时15分钟)19.如图是民航部门统计的2017年春运期间几个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是 ( D )A.深圳的变化幅度最小,北京的平均价格最高B.深圳和厦门的春运期间往返机票价格同去年相比有所下降C.平均价格从高到低居于前三位的城市为北京、深圳、广州D.平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门20.随着移动互联网的发展,与餐饮美食相关的手机应用软件层出不穷.现从使用A和B 两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数.(2)根据以上抽样调查数据,将频率视为概率,回答下列问题:①能否认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%?②如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?说明理由.【解析】(1)由已知,使用A款订餐软件的50个商家的“平均送达时间”的众数为55.使用A款订餐软件的50个商家的“平均送达时间”的平均数为15×0.06+25×0.34+35×0.12+45×0.04+55×0.4+65×0.04=40.(2)①使用B款订餐软件“平均送达时间”不超过40分钟的商家的比例估计值为0.04+0.20+0.56=0.80=80%>75%.故可以认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%.②使用B款订餐软件的50个商家的“平均送达时间”的平均数为15×0.04+25×0.2+35×0.56+45×0.14+55×0.04+65×0.02=35<40,所以选B款订餐软件.关闭Word文档返回原板块。