高中物理动量守恒定律解题技巧讲解及练习题(含答案)

  • 格式:doc
  • 大小:463.00 KB
  • 文档页数:11

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

一、高考物理精讲专题动量守恒定律

1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.

①求弹簧恢复原长时乙的速度大小;

②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N

【解析】

【详解】

(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:

又知

联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为

由动量定理可得,挡板对乙滑块冲量的最大值为:

2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:

①物块C的质量?

②B离开墙后的运动过程中弹簧具有的最大弹性势能E P?

【答案】(1)2kg(2)9J

【解析】

试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2

即m c=2 kg

②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大

(m A +m C )v 3=(m A +m B +m C )v 4

得E p =9 J

考点:考查了动量守恒定律,机械能守恒定律的应用

【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.

3.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。物体P 置于P 1的最右端,质量为2m 且可以看作质点。P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。P 与P 2之间的动摩擦因数为μ,求:

(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。

【答案】(1) 201v v =,4

302v v = (2)L g v x -=μ3220,1620

p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得2

1v v =

。 对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4

30

2v v =

(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从

P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律

)(2)2()2(212212212

22021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L g

v x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律

p 222021))(2()2(2

1221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能16

2

P mv E =

注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg

【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。中档题

4.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2

.问:

(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?

【答案】(1)1

0v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】

试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:220111

22

mv mgR mv += 解得:v 1=5m/s

P 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:11

2mv mv mv ''=+ 22211

2111

222mv mv mv ''=+ 解得:1

0v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 2

2220.4m/s 5f m

a m M m

=

==+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2

(3)P 2滑到C 点速度为2v ',由22

1

2

mgR mv '= 得2

3m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:

22

()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:2222

11

()22

f L mv m M v '=

++

相关主题