《二次函数》教学案例
- 格式:doc
- 大小:180.67 KB
- 文档页数:4
华师大版数学九年级下册《26.1 二次函数》教学设计3一. 教材分析华师大版数学九年级下册《26.1 二次函数》是学生在初中阶段学习二次函数的起始章节,它是在学生已经掌握了函数概念、一次函数和二次方程的基础上进行的。
本节课的主要内容是介绍二次函数的定义、性质和图像,以及二次函数的顶点公式。
教材通过生动的实例和丰富的练习,帮助学生理解和掌握二次函数的知识,为学生进一步学习高中数学打下坚实的基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对函数概念、一次函数和二次方程有一定的了解。
但二次函数相对于一次函数来说,其图像和性质更加复杂,需要学生通过实例和练习来进一步理解和掌握。
此外,学生的学习兴趣和动机对他们的学习效果有很大影响,因此教师需要设计有趣的教学活动来激发学生的学习兴趣。
三. 教学目标1.知识与技能:使学生理解和掌握二次函数的定义、性质和图像,能够运用二次函数的知识解决实际问题。
2.过程与方法:通过实例和练习,培养学生的观察能力、推理能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:二次函数的定义、性质和图像。
2.难点:理解二次函数的顶点公式,并能运用其解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考和探索;通过分析具体案例,使学生理解和掌握二次函数的知识;通过小组合作,培养学生的合作意识和解决问题的能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,如投影仪和黑板。
3.准备教案和教学笔记。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索二次函数的概念。
例如:“什么是二次函数?它与一次函数有什么区别?”2.呈现(10分钟)通过分析具体案例,使学生理解和掌握二次函数的定义、性质和图像。
例如,展示一个二次函数的图像,引导学生观察其特点。
二次函数大单元教学设计优秀案例二次函数大单元教学设计优秀案例一、引言在数学教学中,二次函数是一个非常重要的概念和内容。
它不仅涉及到数学知识本身,还涉及到数学应用和解决实际问题的能力。
近年来,针对二次函数的教学设计越来越受到重视,如何设计出一篇优秀的二次函数大单元教学案例成为数学教师们需要思考的问题。
在本文中,我们将根据深度和广度的要求,分享一个优秀的二次函数大单元教学设计案例,并探讨其中的教学价值和启示。
二、教学设计案例分析1. 教学内容安排本次教学设计案例的主要内容安排如下:(1)二次函数的定义与性质;(2)二次函数的图像与性质;(3)二次函数的应用:抛物线运动问题;(4)解二次方程与图象的关系。
2. 教学方法在本次教学中,我们采用了多种教学方法,包括课堂讲授、示范演示、小组合作、实践探究等。
通过多种形式的教学,可以激发学生的学习兴趣,增强他们的学习动力,提高他们的学习效果。
3. 教学环节本次教学设计案例中,我们特别设计了以下几个教学环节:引入知识、概念讲解、案例探究、综合应用等。
在案例探究环节中,我们精心设计了一些生动有趣的案例,让学生在实际问题解决中感受二次函数的魅力,培养他们的数学思维和解决问题的能力。
4. 教学资源在这次教学中,我们充分利用了多媒体教学资源,包括幻灯片、视频教学、电子课件等。
通过多媒体教学资源的运用,可以提高教学效果,激发学生的学习兴趣,加深他们对知识的理解和记忆。
5. 教学评价本次教学设计案例中,我们采用了多种教学评价方法,包括课堂练习、作业布置、小组讨论等。
通过多种形式的教学评价,可以全面了解学生的学习情况,及时发现问题,调整教学策略,提高教学效果。
三、个人观点和理解在我看来,这个优秀的二次函数大单元教学设计案例,不仅内容深度丰富,而且教学方法灵活多样,教学环节设计合理,教学资源充分利用,教学评价全面多元,对于学生的数学学习能力和解决实际问题的能力有着很好的培养作用。
数学《二次函数》教案(4篇)数学《二次函数》教案篇一教学目标(一)教学学问点1、经受探究二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)力量训练要求1、经受探究二次函数与一元二次方程的关系的过程,培育学生的探究力量和创新精神。
2、通过观看二次函数图象与x轴的交点个数,争论一元二次方程的根的状况,进一步培育学生的数形结合思想。
3、通过学生共同观看和争论,培育大家的合作沟通意识。
(三)情感与价值观要求1、经受探究二次函数与一元二次方程的关系的过程,体验数学活动布满着探究与制造,感受数学的严谨性以及数学结论确实定性。
2、具有初步的创新精神和实践力量。
教学重点1、体会方程与函数之间的联系。
2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点1、探究方程与函数之间的联系的过程。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法争论探究法。
教具预备投影片二张第一张:(记作§2.8.1A)其次张:(记作§2.8.1B)教学过程Ⅰ。
创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,争论了它们之间的关系。
当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
数学《二次函数》教案篇二教学目标(一)教学学问点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步进展估算力量。
(二)力量训练要求1、经受用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
高中数学中的二次函数应用案例分析二次函数是高中数学中一个重要的内容,也是数学中的一种基本函数类型。
它在实际生活中有着广泛的应用,可以用来描述许多自然现象和经济问题。
本文将通过几个案例分析,展示二次函数在实际问题中的应用。
案例一:抛物线的轨迹假设有一位运动员在训练中进行跳远,他的跳远轨迹可以用一个抛物线来描述。
我们知道,抛物线的方程可以表示为y=ax^2+bx+c,其中a、b、c为常数。
通过观察运动员的跳远过程,我们可以得到一些数据点,例如跳远的起点、最高点和落地点。
根据这些数据点,我们可以建立一个二次函数模型,进而预测运动员在不同距离上的跳远成绩。
案例二:物体的自由落体在物理学中,自由落体是一个常见的现象。
当一个物体从高处自由下落时,它的运动轨迹可以用一个抛物线来描述。
假设有一个小球从高楼上自由落下,我们可以通过观察小球在不同时间点的位置,建立一个二次函数模型来描述小球的运动。
通过这个模型,我们可以计算小球在不同时间点的位置和速度,进而研究物体的自由落体规律。
案例三:经济学中的成本函数在经济学中,成本函数是一个重要的概念。
假设有一个公司生产某种产品,它的生产成本可以用一个二次函数来表示。
这个二次函数的自变量可以是产品的产量,因变量可以是生产成本。
通过分析这个二次函数,我们可以研究不同产量下的生产成本变化规律,进而优化生产过程,提高经济效益。
案例四:建筑物的抗震设计在建筑工程中,抗震设计是非常重要的。
为了保证建筑物在地震中的稳定性,工程师需要通过数学模型来分析建筑物的抗震性能。
其中,二次函数可以用来描述建筑物受力分布的曲线。
通过分析这个二次函数,工程师可以确定建筑物的结构参数,进而设计出更加安全可靠的建筑物。
通过以上几个案例的分析,我们可以看到二次函数在实际问题中的广泛应用。
它不仅可以用来描述物体的运动轨迹,还可以用来分析经济问题、优化生产过程和设计建筑物等。
在高中数学教学中,教师可以通过这些案例,引导学生理解二次函数的概念和性质,培养学生的实际问题解决能力。
二次函数的教学案例一、引言二次函数是高中数学中重要的一章内容,它的掌握对于学生的数学素养和解决实际问题具有重要意义。
为了帮助学生更好地理解和应用二次函数,我们设计了以下教学案例。
二、教学目标1. 理解二次函数的定义和性质。
2. 熟练掌握二次函数的图像、基本形态和常见应用。
3. 能够通过解析法和图像法解决与二次函数相关的实际问题。
三、案例一:抛物线的图像1. 案例描述在开展本案例之前,教师可以先引入抛物线的概念,并介绍二次函数的标准形式和顶点形式。
然后,以抛物线为例,引导学生通过调整二次函数的系数、平移抛物线的顶点等方式,探索二次函数图像的变化规律,并让学生总结出不同参数对图像的影响。
2. 案例步骤a. 给出一个标准形式的二次函数:y=ax^2+bx+c,其中a、b、c为常数。
b. 让学生通过改变a、b、c的值,观察抛物线图像的变化。
c. 引导学生思考,当a、b、c取不同值时,抛物线的开口方向、顶点位置以及对称轴的位置会发生怎样的变化。
d. 提醒学生注意特殊情况,如a=0和b=0时的图像特点。
四、案例二:二次函数的应用1. 案例描述通过使用实际问题,让学生理解二次函数在现实生活中的应用,并培养他们解决实际问题的能力。
例如,利用二次函数探究物体的抛射运动、汽车的油耗问题等。
2. 案例步骤a. 给出一个具体的实际问题,如某物体的自由落体运动问题。
b. 引导学生分析问题,提取相关信息,并建立数学模型。
c. 根据已建立的二次函数模型,解决问题。
可以采用解析法或图像法,视情况而定。
d. 让学生思考,当问题中的条件发生变化时,二次函数模型会如何变化,对应的结果会有何变化。
五、案例三:二次函数方程的解1. 案例描述通过解二次函数方程,让学生进一步理解二次函数,掌握解方程的方法和技巧。
2. 案例步骤a. 给出一个二次函数方程,如x^2-3x+2=0。
b. 引导学生分析方程的形式,并指导其利用因式分解、配方法或求根公式等解方程的方法解题。
九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。
2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。
3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。
二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。
2. 教学难点:通过图像理解和应用二次函数的性质。
三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。
四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。
2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。
3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。
4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。
五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。
六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。
初中数学二次函数说课教案本节课主要教学二次函数的图像和性质。
通过学习,使学生掌握二次函数的图像特点,了解二次函数的顶点、对称轴、开口方向等性质,并能运用这些性质解决实际问题。
二、教学目标1. 知识与技能:学生能理解二次函数的图像和性质,学会如何判断二次函数的开口方向、对称轴和顶点位置。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现二次函数的图像和性质之间的关系,培养学生的观察能力和逻辑思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学与生活的紧密联系。
三、教学重点与难点1. 教学重点:二次函数的图像和性质。
2. 教学难点:如何引导学生发现二次函数的图像和性质之间的关系。
四、教学方法采用讲解法、演示法、讨论法等多种教学方法,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
五、教学过程1. 导入新课通过复习一次函数和正比例函数的图像和性质,引出二次函数的图像和性质,激发学生的学习兴趣。
2. 自主探究让学生通过观察二次函数的图像,总结二次函数的性质,如开口方向、对称轴、顶点等。
3. 讲解与演示教师讲解二次函数的图像和性质,并通过多媒体演示二次函数的图像变化,使学生更直观地理解二次函数的性质。
4. 小组讨论学生分组讨论如何运用二次函数的性质解决实际问题,如判断二次函数的开口方向、对称轴等。
5. 巩固练习布置一些有关二次函数的练习题,让学生运用所学的知识解决问题,巩固所学内容。
6. 总结与反思让学生总结本节课所学的内容,反思自己的学习过程,提高学生的自我认知能力。
六、课后作业布置一些有关二次函数的课后作业,让学生进一步巩固所学知识。
通过以上教学设计,相信学生能更好地理解和掌握二次函数的图像和性质,提高学生的数学素养。
在教学过程中,教师要关注学生的个体差异,充分调动学生的积极性,使学生在轻松愉快的氛围中学习数学。
九年级数学《二次函数》教学案例分析和思考一、教学案例分析九年级数学《二次函数》是数学课程中的一个重要内容,涉及到函数的概念、图象和性质等知识。
在教学中,老师需要设计合适的案例来引导学生深入理解和掌握这一内容。
下面我们以一个实际教学案例为例进行分析。
案例:已知二次函数y=x^2-4x+3,求解以下问题:1. 函数的自变量和因变量的取值范围是什么?2. 函数的图象是什么样的?3. 函数的最值是多少?4. 函数的零点是多少?教学方法:1. 引入案例:老师可以通过一个具体的例子来引出二次函数的定义和基本形式,让学生了解二次函数的一般形式,并明确自变量和因变量的概念。
可以通过实例让学生自己尝试列出函数的自变量和因变量的取值范围。
2. 图象的绘制:通过将二次函数的标准形式y=ax^2+bx+c与函数的图像联系起来,让学生掌握函数图像的一般特点。
可以通过实例来引导学生描绘函数的图像,让他们理解二次函数图像的丰富性和多样性。
3. 最值和零点的求解:通过对二次函数的一般形式进行分析,引导学生理解函数最值和零点的概念,让他们通过函数的形式来求解最值和零点,并通过具体实例进行练习,从而掌握解题方法。
案例分析反思:通过以上案例的教学分析,我们可以看出,在教学《二次函数》的过程中,需要引导学生从具体问题出发,理解函数的定义、图象、性质等内容,通过实例来加深学生对二次函数的理解和掌握。
教师应该根据学生的不同理解程度和能力,设计合适的案例和教学方法,让学生在实际问题中学会应用函数的知识。
在教学过程中,教师应该注重激发学生的学习兴趣,引导他们积极参与到教学案例的分析和解答中,从而提高他们的学习兴趣和学习主动性。
二、教学思考在九年级数学《二次函数》的教学过程中,我们需要重点思考以下几个问题:1. 如何引导学生理解函数的定义和性质?在教学《二次函数》的过程中,我们需要通过具体的案例和图像来引导学生理解函数的定义和性质,让他们能够通过具体问题来理解和应用函数的知识,从而提高他们的学习兴趣。
22.1.1二次函数教学案例一、教学目标1、知识与技能:能结合具体情境体会二次函数的意义,能够表示简单变量之间的二次函数关系,理解二次函数的有关概念.2、过程与方法:通过具体问题情景中的二次函数关系了解二次函数的一般表述式,感受二次函数中二次项系数a≠0的重要特征.3、情感态度:在探究二次函数的学习活动中,体会通过探究发现的乐趣.二、教学重点、难点1、结合具体情境体会二次函数的意义,掌握二次函数的有关概念.2、能通过生活中的实际问题情境,构建二次函数关系;三、教学用具PPT课件四、教学过程(一)情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x之间的关系式可表示为y=6x2 ,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他(n-1)个球队各比赛一场,整个比赛场次数应为1/2n(n-1),这里m是n的函数吗?问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?(二)思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题给予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=1/2n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t,第三年产量为20(1+x)(1+x)t,得到y=20(1+x)2.【设计意图】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.思考函数y=6x2,m=n2-n,y=20x2+40x+20有哪些共同点?【注意事项】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫做二次函数.其中x是自变量,a、b、c分别是二次项系数,一次项系数和常数项.【注意事项】针对上述定义,教师应强调以下几个问题:(1)关于自变量x的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax2,二次项系数则仅是指a的值;同样,一次项与一次项系数也不同.教师在学生理解的情况下,引导学生做课本P29练习.(三)运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2); (2)y=3x(2-x)+3x2; (3)y=-2x+1;(4)y=1-3x2.2.若y=(m+1)xm2+1-2x+3是y关于x的二次函数,试确定m的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x(元)满足一次函数关系m=162-2x,试写出商场销售这种商品的日销售利润y(元)与每件商品的销售价x(元)之间的函数关系式,y是x的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n个图中,每一横行共有(n+3)块瓷砖,每一竖列共有(n+2)块瓷砖(均用含n的代数式表示);(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数关系式(不要求写自变量n的取值范围).【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.【出示答案】1.解:(1)y=(x+2)(x-2)=x2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.(2)y=3x(2-x)+3x2=6x,该函数不是二次函数.(3)该函数不是二次函数.(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.2.解:∵是y关于x的二次函数.∴m+1≠0且m2+1=2,∴m≠-1且m2=1,∴m=1.3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:y=(162-3x)(x-30)即y=-3x2+252x-4860由此可知y是x的二次函数.4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n2+5n+6.(四)师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件.【设计意图】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.(五)作业布置教材习题22.1第1、2、7题;四、教学反思本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.。
二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。
难点:各种性质的应用。
教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。
课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
二次函数的性质的教案一、教学目标1. 理解二次函数的定义和基本性质。
2. 掌握二次函数的图像、顶点、轴对称、判别式和零点。
3. 能够应用二次函数的性质解决实际问题。
二、教学重点1. 二次函数的基本性质。
2. 二次函数的图像和顶点。
3. 二次函数的轴对称、判别式和零点。
三、教学难点1. 解决实际问题时如何应用二次函数的性质。
2. 对二次函数图像和顶点的理解和应用。
四、教学方法1. 讲授法:通过讲解二次函数的定义和基本性质来引导学生理解。
2. 演示法:通过具体的案例演示二次函数的图像、顶点、轴对称、判别式和零点的求解过程。
3. 练习法:通过大量的练习题巩固学生对二次函数性质的理解和应用能力。
五、教学过程1. 引入:老师可以通过现实生活中的例子引入二次函数的概念,如抛物线的形状、物体的自由落体等,引发学生对二次函数的兴趣。
2. 讲解二次函数的定义和基本性质:首先介绍二次函数的定义:二次函数是形如f(x) = ax^2 + bx + c 的函数,其中a、b、c是实数且a不等于0。
然后讲解二次函数的基本性质:(1) 图像:二次函数的图像是一个抛物线,其开口方向由二次项的系数a 的正负号决定。
- 当a大于0时,抛物线开口向上;- 当a小于0时,抛物线开口向下。
(2) 顶点:二次函数的顶点坐标为(-b/2a, f(-b/2a))。
(3) 轴对称:二次函数的图像的轴对称轴是通过顶点的竖直线x = -b/2a。
(4) 判别式:二次函数的判别式是D = b^2 - 4ac,通过判别式可以判断二次函数的零点情况。
- 当D大于0时,二次函数有两个不相等的实数零点;- 当D等于0时,二次函数有一个重根;- 当D小于0时,二次函数无实数零点。
(5) 零点:二次函数的实数零点可以通过求解方程f(x) = 0得到。
3. 演示案例:选择几个典型的案例进行演示,如:(1) f(x) = x^2 - 3x + 2的图像和顶点;(2) f(x) = -2x^2 + 5x - 3的图像和顶点;(3) f(x) = 3x^2 - 6x + 3的轴对称轴和判别式。
二次函数大单元教学设计优秀案例一、概述在数学教学中,二次函数是一个重要的内容,涉及到数学中的很多重要概念和方法,如函数的图像、半径、焦点等等。
如何设计一个优秀的二次函数大单元教学案例,对于学生的数学学习至关重要。
本文将针对二次函数大单元的教学设计,为您提供一些优秀的案例。
二、案例一:二次函数的图像与性质在这个案例中,教师可以设计一些有趣的活动来帮助学生深入理解二次函数的图像与性质。
可以设计一个小组活动,让学生利用纸和笔,画出不同参数下的二次函数图像,并讨论它们的特点和性质。
教师可以引导学生发现二次函数的开口方向、顶点位置以及与坐标轴的交点等重要性质,并帮助学生建立对二次函数的直观认识。
三、案例二:二次函数的应用在这个案例中,教师可以设计一些实际生活中的问题,让学生利用二次函数来解决。
可以设计一个关于抛物线轨迹的问题,让学生分析并求解。
通过这样的案例,学生不仅可以学习到二次函数的具体应用,还能培养他们的问题解决能力和数学建模能力。
四、案例三:二次函数的推广与拓展在这个案例中,教师可以设计一些拓展性的问题,让学生通过对二次函数的推广来深化对数学知识的理解。
可以设计一个关于二次函数的相关不等式问题,让学生通过对二次函数的研究来解决。
通过这样的案例,学生不仅可以理解二次函数的概念,还能够将二次函数的相关知识运用到实际问题中。
五、总结通过以上三个案例的介绍,我们可以看出,一个优秀的二次函数大单元教学案例应该具备以下几个特点:能够引导学生利用实际的问题来理解数学知识;能够帮助学生将数学知识与实际问题相结合,培养学生的数学思维和解决问题的能力;能够通过案例的设计,让学生在实践中深化对数学知识的理解,拓展数学的应用领域。
六、个人观点作为一名数学教师,我认为一个优秀的二次函数大单元教学案例应该能够真正地引导学生去思考、去实践,并在实践中去深化对数学知识的理解。
只有这样,学生才能在学习中获得更多的收获,并能够将数学知识运用到实际生活中。
高中数学项目化教学案例教学目标:提高学生的数学思维能力,培养问题解决能力和团队合作意识。
教学内容:二次函数教学时间:4周教学流程:阶段一:导引(1周)1. 导入:老师通过展示一些生活中常见的二次函数图像,引发学生对二次函数的思考,并展示学习的重要性。
2. 前置知识巩固:老师通过提问和简短的小测验,复习学生已经学过的相关知识,如直线方程、平方根等,并解答学生的疑问。
3. 问题提出:老师通过提出一个实际问题,引导学生思考如何用二次函数来解决问题,并鼓励学生提出自己的问题。
阶段二:探究(2周)1. 学生小组分工:学生按照自己的兴趣和专长,自由组建小组,并确定组内成员的角色和任务。
2. 资料搜集:每个小组负责搜集相关的数据和图像,并归纳总结出一份资料报告。
3. 分析讨论:小组成员分享自己搜集到的资料,并进行讨论和分析。
老师提供辅导和引导,帮助学生深入理解二次函数的特点和应用。
4. 思维导图:学生使用思维导图工具,将所学内容进行整理和梳理。
阶段三:表达(1周)1. 队内展示:每个小组准备一份展示材料,用图表和文字形式展示自己的研究成果,并向其他小组展示。
2. 评价交流:学生根据展示材料和表达形式,互相评价和交流,提出建设性的意见和建议。
3. 总结反思:学生回顾整个项目化教学过程,总结收获和不足,并提出改进意见。
评价方式:1. 个人笔记:学生在整个过程中,记录自己的思考和收获。
2. 小组报告:小组展示材料的质量和表达形式的清晰度。
3. 增长指数:通过学生在项目化学习中的表现和参与度评定。
4. 合作能力:学生在小组合作中的表现和团队合作意识提升。
教学资源:1. 智能手机和电脑用于搜集数据和制作表格。
2. 白板和投影仪用于展示相关内容和讲解。
3. 思维导图工具和制作展示材料的软件。
教学方法和教学原则案例在教学过程中,选择合适的教学方法和遵循科学的教学原则对于提高教学效果具有重要意义。
本文将通过具体案例,详细介绍几种常用的教学方法和教学原则。
一、案例背景某中学数学教师张老师,在教授九年级的《二次函数》一课时,采用了不同的教学方法和遵循了教学原则,取得了良好的教学效果。
二、教学方法案例1.发现法张老师在课堂上先给出一个二次函数的图像,让学生观察并总结二次函数的性质。
学生在自主探究的过程中,发现了二次函数的顶点、开口方向、对称轴等概念。
2.情境法张老师创设了一个情境:假设学校要在一块空地上建造一个最大的游泳池,让学生利用二次函数的知识来设计游泳池的形状和大小。
学生在解决实际问题的过程中,加深了对二次函数应用的理解。
3.分组讨论法张老师将学生分成若干小组,每组讨论一个问题,如:二次函数的顶点式与一般式之间的关系。
学生在讨论过程中,互相启发,共同解决问题。
三、教学原则案例1.循序渐进原则张老师在教学《二次函数》时,从简单的二次函数图像入手,逐步引导学生掌握二次函数的性质、图像、公式等,使学生能够逐步建立起完整的知识体系。
2.启发性原则张老师在教学过程中,不断提出问题,引导学生思考。
如在讲解二次函数的顶点式时,引导学生思考:为什么顶点式的形式是y=a(x-h)^2+k?3.理论联系实际原则张老师通过设计实际问题,让学生将所学知识应用于解决具体问题,从而提高学生的实践能力。
如在讲解二次函数的应用时,让学生设计游泳池的形状和大小。
四、总结通过本案例,我们可以看到,张老师在教学过程中灵活运用了不同的教学方法和遵循了教学原则,取得了良好的教学效果。
九年级数学大单元教学设计案例九年级数学大单元教学设计案例(一)
嗨,亲爱的小伙伴们!今天来跟大家分享一个超有趣的九年级数学大单元教学设计案例。
咱们这个单元的主题是“二次函数”。
一提到二次函数,是不是有些小伙伴开始头疼啦?别担心,跟着我一起,会发现其实很有趣哒!
一开始呢,咱们通过一些实际生活中的例子,比如投篮时篮球的运动轨迹,或者喷泉的水花高度,来引出二次函数的概念。
这样大家就能直观地感受到二次函数在生活中的应用啦。
然后呀,咱们就一起深入探究二次函数的图像和性质。
我会带着大家动手画图,看看抛物线的开口方向、对称轴、顶点坐标是怎么来的。
这个过程就像解谜一样,超级有趣!
九年级数学大单元教学设计案例(二)
哈喽呀,同学们!今天给大家讲讲另一个九年级数学大单元教学设计案例,是关于“圆”的哟!
咱们先从圆的基本概念入手,像圆心、半径、直径这些。
我会给大家展示各种圆形的物品,让大家直观地感受圆的特点。
接着,咱们来研究圆的周长和面积的计算。
这可有点小挑战哦,但别怕,咱们一起推导公式,就像探险一样,一步步找到答案。
然后呢,咱们要学习圆与直线的位置关系。
这就像是圆和直线在玩游戏,有相交、相切、相离三种情况,咱们要弄清楚它们之间的规律。
在学习的过程中,咱们会有很多互动环节。
比如说,让大家自己动手画圆,测量周长和面积,验证公式是否正确。
还会有小组讨论,一起解决难题。
咱们来个小测试,看看大家掌握得怎么样。
不过别紧张,只要认真学了,一定没问题的!希望大家在这个单元里都能玩得开心,学得扎实!。