模电 场效应管放大电路
- 格式:ppt
- 大小:7.05 MB
- 文档页数:61
绪论一.符号约定•大写字母、大写下标表示直流量。
如:V CE、I C等。
•小写字母、大写下标表示总量〔含交、直流〕。
如:v CE、i B等。
•小写字母、小写下标表示纯交流量。
如:v ce、i b等。
•上方有圆点的大写字母、小写下标表示相量。
如:等。
二.信号〔1〕模型的转换〔2〕分类〔3〕频谱二.放大电路〔1〕模型〔2〕增益如何确定电路的输出电阻r o?三.频率响应以及带宽第一章半导体二极管一.半导体的根底知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯洁的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
表达的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素〔多子是空穴,少子是电子〕。
*N型半导体: 在本征半导体中掺入微量的五价元素〔多子是电子,少子是空穴〕。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的上下:假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。
模电重点知识点总结模拟电路是电子工程中非常重要的一部分,它是将模拟信号转化为数字信号的基础,是许多电子设备中必不可少的一部分。
本篇文章总结了模拟电路的重点知识点,其中包括基本概念、运算放大器、放大器的基本电路、滤波器以及反馈电路。
一、基本概念模拟电路学科的基础是电子学,模拟电路是在电子学的基础上发展出来的。
模拟电路是使用模拟信号(即具有连续变化的信号)来进行处理和传输的电路系统,模电电路学科的重点是模型的构建和研究。
模型是为了研究和分析电路行为而建立的,包括元器件模型和电路模型两大类。
电路模型是把现实电路抽象成一种理想化的形式,以便于计算机分析和求解。
元器件模型可以在真实电路中被观测到,并用来构建电路模型。
在电子电路中,元件是构成电路的基本单元。
其中,二极管、晶体管、场效应管、放大器、集成电路等元件是模拟电路中最基本的元件。
同时,电阻、电容、电感等被用来构建各种基本电路。
二、运算放大器运算放大器是模拟电路中非常基本的元件,它的主要作用是放大电压。
它由电路图中两个输入端、一个输出端,以及一些内部元件所组成。
其中,反馈元件是运算放大器重要的特征,因为它对运算放大器的电路行为产生了显著的影响。
反馈可以使放大器的放大增益更加稳定,但如果反馈网络设计不当,可能会引起放大器的振荡。
运算放大器有两种输入方式:一种是差分输入,一种则是单端输入。
差分输入的两个输入端之间的电压差是放大器输入信号的一部分。
当放大器的两个输入端的信号相同时,差分输入电路可以过滤掉这些信号的共同部分,只保留差异部分。
而单端输入则是将输入信号连接到放大器的一个输入端,将另一个端子地接。
如果输入信号与地之间有电压差,则放大器将按比例返回这个电压信号。
三、放大器的基本电路放大器是模拟电路中最为基本的电路之一,并且有其他电路中无法替代的作用。
放大器的主要功能是将输入信号变大,并将其输出到一个外部负载。
其中常用的放大器电路有:共射放大(cs)电路、共基放大(cb)电路、共集电极放大(ce)电路、差分放大器等。
第3章 场效应管及其基本放大电路试卷3.1判断下列说法是否正确,用“√”和“ ”表示判断结果填入空内1. 结型场效应管外加栅源电压u GS应使栅源间的耗尽层承受反偏电压,才能保证其输入电阻R G大的特点。
( )2. 耗尽型MOS管在栅源电压u GS为正或为负时均能实现压控电流的作用。
( )3. 若耗尽型N沟道MOS管的栅源电压u GS大于零,则其输入电阻会明显变小。
( )4. 工作于恒流区的场效应管,低频跨导g m与漏极电流I DQ成正比。
( )5. 增强型MOS管采用自给偏压时,漏极电流i D必为零。
( )【解3.1】:1. √ 2.√ 3.× 4.× 5.√3.2选择填空1. 场效应管的栅-源之间的电阻比晶体管基-射之间的电阻 。
A.大 B.小 C.差不多2. 场效应管是通过改变 来改变漏极电流的。
所以是 控制型器件。
A.栅源电压 B.漏源电压 C.栅极电流D.电压 E.电流3. 用于放大时,场效应管工作在特性曲线的 。
A.可变电阻区 B.恒流区 C.截止区4. N沟道结型场效应管中参加导电的载流子是 。
A.自由电子和空穴 B.自由电子 C.空穴5. 对于结型场效应管,当︱u GS︱︱U GS(off)︱时,管子一定工作在 。
A.恒流区 B.可变电阻区 C.截止区 B.击穿区6. 当栅源电压u GS=0V时,能够工作在恒流区的场效应管有 。
A.结型场效应管 B.增强型MOS管 C.耗尽型MOS管7. 某场效应管的开启电压U GS(th)=2V,则该管是 。
A.N沟道增强型MOS管 B.P沟道增强型MOS管C.N沟道耗尽型MOS管 D.P沟道耗尽型MOS管8. 共源极场效应管放大电路,其输出电压与输入电压 ;共漏极场效应管放大电路,其输出电压与输入电压 。
A.同相 B.反相【解3.2】:1.A 2.A,D 3.B 4.B 5.C 6.A C 7.A 8.B,A3.3判断图T3.3所示各电路能否进行正常放大?如果不能,指出其中错误,并加以改正。
模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。
2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。
3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。
4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。
二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。
2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。
3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。
4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。
三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。
2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。
四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。
2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。
3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。
五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。
mosfet的放大电路工作原理
一、mosfet放大电路的基本原理
mosfet(金属氧化物半导体场效应晶体管)放大电路是一种常见的电子设备,其工作原理基于半导体材料的特性。
在mosfet放大电路中,输入信号通过栅极控制源极和漏极之间的电流,从而实现信号的放大。
二、mosfet放大电路的组成
mosfet放大电路通常由电源、输入信号源、mosfet管、负载和反馈电路等部分组成。
电源为mosfet提供工作电压,输入信号源产生需要放大的信号,mosfet管作为放大器件,负载将放大的信号输出,反馈电路则用于稳定输出信号。
三、mosfet放大电路的工作过程
mosfet放大电路的工作过程可以分为三个阶段:静态工作状态、动态工作状态和反馈控制。
在静态工作状态下,电源为mosfet提供合适的偏置电压,使管子处于预定的导通状态。
在动态工作状态下,输入信号通过栅极控制源极和漏极之间的电流,产生放大的输出信号。
反馈控制则通过反馈电路对输出信号进行检测和调整,以保证输出信号的稳定性和准确性。
四、mosfet放大电路的特点
mosfet放大电路具有高输入阻抗、低噪声、宽频带和高效能等特点。
高输入阻抗可以减小信号源的负担,提高信号传输质量。
低噪声
和宽频带特性使得mosfet放大电路在通信、雷达和音频等领域有广泛应用。
而高效能则有助于降低设备的能耗和发热量,提高设备的使用寿命和稳定性。
总结:本文详细介绍了mosfet放大电路的工作原理、组成、工作过程和特点。
通过深入理解这些内容,有助于更好地应用mosfet 放大电路,提高电子设备的性能和稳定性。
场效应管放大原理
场效应管是一种三极管,利用了半导体材料的导电性质。
它的主要工作原理是通过控制栅极电压来控制源极-漏极之间的电流流动。
由于栅极与源极之间的电介质隔离,栅极和源极之间的电压关系可以通过改变栅极电压来影响漏极电流。
具体工作如下:
1. 通道形成:当栅极电压为零时,场效应管的源极和漏极之间没有电流流动,因为栅极电场会排斥电子进入通道。
但当栅极电压为正时,栅极电场会吸引电子进入通道,形成导电通道。
2. 漏极电流控制:增加栅极电压可以增加通道中的自由电子数量,进而增加漏极电流。
减小栅极电压则会减小通道中的自由电子数量,降低漏极电流。
因此,栅极电压的变化可以精确地控制漏极电流的大小。
场效应管的放大原理就是利用栅极电压的小变化来控制源极-漏极之间的大电流变化。
通过调整栅极电压,我们可以实现对电流的放大和控制。
这使得场效应管在电子设备中广泛应用,例如功放器、运放器、信号处理器等。
通过调整栅极电压和源极-漏极电压,我们可以达到理想的电流放大效果,实现对输入信号的放大和处理。