最新版初中七级数学题库 7.2二元一次方程组解法知识检测(A)
- 格式:doc
- 大小:61.08 KB
- 文档页数:2
最新七年级初一数学下册第二学期 二元一次方程组测试题及答案(共五套) 百度文库一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩2.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,0x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩3.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )小月:您好,我要买5支签字笔和3本笔记本 售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A .10元B .11元C .12元D .13元4.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩5.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩6.已知10a b +=,6a b -=,则22a b -的值是( ) A .12B .60C .60-D .12-7.若2446x y x y -=⎧⎨+=⎩,则x +y 的值是( )A .﹣5B .5C .﹣4D .48.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17D .189.已知二元一次方程3x-y=5,给出下列变形①y=3x+5②53y x +=③-6x+2y=-10,其中正确的是( ) A .②B .②③C .①③D .①②10.新运算“△”定义为(a ,b )△(c ,d )=(ac +bd ,ad +bc ),如果对于任意数a ,b 都有(a ,b )△(x ,y )=(a ,b ),则(x ,y )=( ) A .(0,1)B .(0,﹣1)C .(﹣1,0)D .(1,0)11.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( ) A .6(1)5(211)y x x y=-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y xx y=⎧⎨+-=⎩D .65(21)y xx y =⎧⎨+=⎩12.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( ) A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =2二、填空题13.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.14.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.15.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A、B两种文学书籍若干本,用去6138元,已知A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.16.为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由A、B、C三种饼干搭配而成,每袋礼包的成本均为A、B、C三种饼干成本之和.每袋甲类礼包有5包A种饼干、2包B种饼干、8包C种饼干;每袋丙类礼包有7包A种饼干、1包B种饼干、4包C种饼干.已知甲每袋成本是该袋中A种饼干成本的3倍,利润率为30%,每袋乙的成本是其售价的56,利润是每袋甲利润的49;每袋丙礼包利润率为25%.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为4:6:5,则当天该网店销售总利润率为__________.17.方程组1111121132x yx zy z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.18.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.19.如图,长方形ABCD被分成若干个正方形,已知32cmAB=,则长方形的另一边AD=_________cm.20.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.21.若关于x,y的方程组322x yx y a+=⎧⎨-=-⎩的解是正整数,则整数a的值是_____.22.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干. 23.如图,在长方形ABCD中,放入六个形状,大小相同的长方形(即空白的长方形),AD=12cm,FG=4cm,则图中阴影部分的总面积是 __________2cm.24.若m1,m2,…m2016是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2016=1546,(m1﹣1)2+(m2﹣1)2+…+(m2016﹣1)2=1510,则在m1,m2,…m2016中,取值为2的个数为____.三、解答题25.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.26.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?27.当,m n 都是实数,且满足28m n =+,就称点21,2n P m+⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y p q x y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.28.对x ,y 定义一种新运算T ,规定()22,ax by T x y a y +=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示); (2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值.29.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P ++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y ,的值并在图3中填出剩余的数字.30.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”;(2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值. 31.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫= ⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭. ①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.32.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由. 33.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示,m p之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t之间的关系,并写出所有,s t可能的取值.34.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?35.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.36.下图是小欣在“A超市”买了一些食品的发票.后来不小心发票被弄烂了,有几个数据看不清.(1)根据发票中的信息,请求出小欣在这次采购中,“雀巢巧克力”与“趣多多小饼干”各买了多少包;(2)“五一”期间,小欣发现,A 、B 两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A 超市累计购物超过50元后,超过50元的部分打九折;在B 超市累计购物超过100元后,超过100元的部分打八折. 请问:①“五一”期间,小欣去哪家超市购物更划算?②“五一”期间,小欣又到“B 超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据关键语句“若每组7人,余3人”可得方程7y +3−x ;“若每组8人,则缺5人.”可得方程8y−5=x ,联立两个方程可得方程组. 【详解】解:设运动员人数为x 人,组数为y 组,由题意得: 列方程组为7385y x y x -⎧⎨+⎩== 故选D . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.2.B解析:B 【分析】将x 、y 的值分别代入x-2y 中,看结果是否等于1,判断x 、y 的值是否为方程x-2y=1的解. 【详解】 A 项,当0x =,12y 时,1202()12x y -=-⨯-=,所以0,12x y =⎧⎪⎨=-⎪⎩是方程21x y -=的解;B 项,当1x =,1y =时,21211y =-⨯=-,所以1,1x y =⎧⎨=⎩不是方程21x y -=的解;C 项,当1x =,0y =时,21201x y -=-⨯=,所以1,0x y =⎧⎨=⎩是方程21x y -=的解;D 项,当1x =-,1y =-时,212(1)1x y -=--⨯-=,所以1,1x y =-⎧⎨=-⎩是方程21x y -=的解, 故选B. 【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.3.C解析:C 【分析】设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y 的值. 【详解】设购买1支签字笔应付x 元,1本笔记本应付y 元, 根据题意得53523544x y x y +⎧⎨+⎩==,解得8x+8y=96, 即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付12元, 故选C . 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.4.A解析:A 【分析】图2中,第一个方程x 的系数为2,y 的系数为1,相加为11;第二个方程x 的系数为4,y 的系数为3,相加为27,据此解答即可. 【详解】解:图2所示的算筹图所表示的方程组是2114327x y x y +=⎧⎨+=⎩.故选:A . 【点睛】本题考查了二元一次方程组的应用,读懂题意、明确图1表示方程组的方法是解题关键.5.A解析:A【分析】根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答 【详解】设这所学校现初中在校生x 人,小学在校生y 人,则30008%11%300010%x y x y +=⎧⎨+=⨯⎩故选A 【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程6.B解析:B 【分析】先利用加减消元法解方程组106a b a b +=⎧⎨-=⎩可得a 、b 的值,再代入求值即可得.【详解】由题意得:106a b a b +=⎧⎨-=⎩,解得82a b =⎧⎨=⎩,则22222864460a b -==-=-, 故选:B . 【点睛】本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.7.B解析:B 【分析】①+②得:2x+2y =10,进而即可求得x+y =5. 【详解】解:2446x y x y -=⎧⎨+=⎩①②,①+②得:2x+2y =10, ∴x+y =5. 故选:B . 【点睛】本题考查了解二元一次方程组的方法,要熟练掌握,注意加减法和代入法的应用.8.B解析:B【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比.【详解】解:根据题意、结合图形可得:330433a b a a b +=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩, ∴阴影部分面积223()310300=-=⨯=a b ,整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比300118006==, 故选B .【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键. 9.B解析:B【分析】根据等式基本性质进行分析即可.【详解】用x 表示y 为y=3x-5,故①不正确;用y 表示x 为53y x +=,故②正确;方程两边同乘以-2可得-6x+2y=-10,故③正确.故选B.【点睛】考核知识点:二元一次方程. 10.D解析:D【解析】【分析】根据新定义运算法则列出方程 {ax by a ay bx b +=+=①②,由①②解得关于x 、y 的方程组,解方程组即可.【详解】由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则 {ax by a ay bx b +=+=①②由①+②,得:(a+b)x+(a+b)y=a+b ,∵a ,b 是任意实数,∴x+y=1,③由①−②,得(a−b)x−(a−b)y=a−b ,∴x−y=1,④由③④解得,x=1,y=0,∴(x,y)为(1,0);故选D.11.A解析:A【分析】设原有树苗x 棵,公路长为y 米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可.【详解】设原有树苗x 棵,公路长为y 米,由题意,得6(1)5(211)y x x y =-⎧⎨+-=⎩, 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找. 12.C解析:C【分析】根据同类项的定义可得关于a 、b 的方程组,解方程组即得答案.【详解】解:由同类项的定义,得122a b a b -=⎧⎨+=⎩,解得:10a b =⎧⎨=⎩. 故选:C .【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.二、填空题13.【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增解析:1 8【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k ax am a⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴512 857208axa a a a==++,故答案为:18.【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.14.【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩, 解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.15.777【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a解析:777【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a 的值.【详解】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,设甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,由题意得:()()()()76991761382a x bx ax b x ⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a故答案为:777.【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键. 16.25%【分析】设每包A 、B 、C 三种饼干的成本分别为x 、y 、z ,从甲礼包入手,先求出5x=y+4z ,再由甲的利润率求出甲礼包的售价为19.5x ,成本15x ;由乙礼包所提供的条件可求出乙礼包的售价为解析:25%【分析】设每包A 、B 、C 三种饼干的成本分别为x 、y 、z ,从甲礼包入手,先求出5x=y+4z ,再由甲的利润率求出甲礼包的售价为19.5x ,成本15x ;由乙礼包所提供的条件可求出乙礼包的售价为12x ,成本为10x ;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x ,进而确定丙礼包的售价为15x ,成本为12x ;最后再由利润率的求法求出总利润率即可.【详解】解:设每包A 、B 、C 三种饼干的成本分别为x 、y 、z ,依题意得:5x+2y+8z=15x ,∴5x=y+4z ,由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x ,成本15x ; ∵每袋乙的成本是其售价的56,利润是每袋甲利润49, 可知每袋乙礼包的利润是:4.5x ×49=2x , 则乙礼包的售价为12x ,成本为10x ; 由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x ,∵每袋丙礼包利润率为:25%,∴丙礼包的售价为15x ,成本为12x ;∵甲、乙、丙三种礼包袋数之比为4:6:5, ∴19.54612515415610512100%25%415610512x x x x x x x x x⨯+⨯+⨯-⨯-⨯-⨯⨯=⨯+⨯+⨯, ∴总利润率是25%,故答案为:25%.【点睛】本题考查三元一次方程组的应用;理解题意,能够通过已知条件逐步确定甲、乙、丙的售价与成本价是解题的关键.17.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴=综上所述方程组的解是43445 xyz⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.18.5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由题意可得:5x+15y+40z=10(x﹣3)+20(y﹣2)+30(z﹣1)①,z=y﹣7 ②;由①得:x+y﹣2z=20 ③,将②代入③得:x+y﹣2(y﹣7)=20,解得:x﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x﹣3)﹣(y﹣2)=(x﹣y)﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.19.【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:768 43【解析】【分析】可以设最小的正方形的边长为x ,第二小的正方形的边长为y ,根据已知AB=CD=32cm ,可得到两个关于x 、y 的方程,求方程组即可得解,然后求长方形另一边AD 的长即可.【详解】设最小的正方形的边长为x ,第二小的正方形的边长为y ,将各个正方形的边长都用x 和y 表示出来(如图),根据AB=CD=32cm ,可得:643322532y x y x x y -+-⎧⎨+⎩== 解得:x=12843cm ,y=22443cm . 长方形的另一边AD=3y-x+y=4y-x=76843 cm . 故答案为:76843【点睛】 本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.20.105【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设甲每件x 元,乙每件y 元,丙每件z 元,依题意得:3×(1)-2×(2)得:x+y+z=105解析:105【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设甲每件x 元,乙每件y 元,丙每件z 元,依题意得:37315(1)410420(2)x y z x y z ++=⎧⎨++=⎩3×(1)-2×(2)得:x+y+z=105,∴购买甲、乙、丙各1件,共需105元.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 21.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a ,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键. 22.5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组解析:5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组进行求解即可得.【详解】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,由题意得201020101510y x y x +=⨯⎧⎨+=⨯⎩, 解得:5100x y =⎧⎨=⎩, 所以,用25台这样的抽水机去抽水时,泉水每小时涌出量用5台抽水机去抽,剩下的就抽原有的泉水了,100÷(25-5)=5(小时),故答案为:5.【点睛】本题考查了二元一次方程组的应用,弄清题意,找到等量关系列出方程组是解题的关键,这里要注意的是泉水是不断涌出的.23.48【解析】设小长方形的长为x cm ,宽为y cm ,根据图形可得①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm ,宽为y cm ,根据图形可得3124x y x y +=⎧⎨-=⎩,①,② ①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×10-6×2×6=482cm .故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 24.520【解析】试题分析:解决此题可以先设0有a 个,1有b 个,2有c 个,根据据题意列出。
最新七年级初一下册数学《 二元一次方程组考试试题》含答案.一、选择题1.若二元一次方程组,3x y a x y a-=⎧⎨+=⎩的解是二元一次方程3570x y --=的一个解,则a 为( ) A .3 B .5 C .7 D .9 2.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -= 3.方程组3453572x y x y +=⎧⎪⎨-+=-⎪⎩的解是( )A .20.25x y =⎧⎨=-⎩B . 4.53x y =-⎧⎨=⎩C .10.5x y =-⎧⎨=-⎩D .10.5x y =⎧⎨=⎩4.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( ) A .1a =-B .1a =C .23a =D .32a =5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .10011003x y x y +=⎧⎪⎨+=⎪⎩ C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩ 6.已知方程组()21119x y kx k y +=⎧⎨+-=⎩的解满足 x +y =3,则 k 的值为( )A .k =-8B .k =2C .k =8D .k =﹣27.《九章算术》是我国东汉初年编订的一部数学经典著作。
在它的“方程”一章里,一次方程组是由算筹布置而成的。
《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项。
最新初一数学下学期 二元一次方程组测试题及答案(共五套) word 版一、选择题1.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g2.方程组5213310x y x y +=⎧⎨-=⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩3.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -=4.下列判断中,正确的是( ) A .方程x y =不是二元一次方程 B .任何一个二元一次方程都只有一个解C .方程25x y -=有无数个解,任何一对x 、y 都是该方程的解D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解5.下列方程组是三元一次方程组的是( ) A .123x y y z z x +=⎧⎪+=⎨⎪-=⎩B .02310x y z x yz y z ++=⎧⎪-=⎨⎪-=⎩C .22154x y y z x z ⎧+=⎪+=⎨⎪-=⎩D .563x y w z z x +=⎧⎪+=⎨⎪+=⎩6.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③7.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩8.如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm ,则每块墙砖的截面面积是( )A .425cm 2B .525cm 2C .600cm 2D .800cm 29.在解方程组2278ax by cx y +=⎧⎨+=⎩,时,甲同学正确解得32x y =⎧⎨=⎩,乙同学把c 看错了,而得到26x y =-⎧⎨=⎩,那么a ,b ,c 的值为( ) A .2a =-,4b =,5c =B .4a =,5b =,2c =-C .5a =,4b =,2c =D .不能确定10.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有( ) A .4种B .5种C .6种D .7种11.若a 为方程250x x +-=的解,则22015a a ++的值为( ) A .2010B .2020C .2025D .201912.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 二、填空题13.为了应对疫情对经济的冲击,增加就业岗位,某区在5月份的时候开设了一个夜市,分为餐饮区、百货区和杂项区三个区域,三者摊位数量之比5:4:3,市场管理处对每个摊位收取50元/月的管理费,到了6月份,市场管理处扩大夜市规模,并将新增摊位数量的1 2用于餐饮,结果餐饮区的摊位数量占到了夜市总摊位数量的920,同时将餐饮区、百货区和杂项区每个摊位每月的管理费分别下调了10元、20元和30元,结果市场管理处6月份收到的管理费比5月份增加了112,则百货区新增的摊位数量与该夜市总摊位数量之比是______.14.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.15.某“欣欣”奶茶店开业大酬宾推出...A B C D四款饮料.1千克A饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C饮料的原料是3千克苹果,9千克梨,6千克西瓜;1千克D饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元16.若m=m=________.17.解放碑某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,7小时车库恰好停满:如果开放3个进口和2个出口,4小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过_______小时车库恰好停满.18.关于x,y的方程组223321x y mx y m+=+⎧⎨-=-⎩的解满足不等式组5030x yx y->⎧⎨-<⎩,则m的取值范围_____.19.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.20.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.21.若方程组2232x y k x y k +=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____.22.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干. 23.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (241)=_________,F (635)=___________ ;(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:()()F s k F t =,当F (s )+F (t )=18时,则k 的最大值是___. 24.若是满足二元一次方程的非负整数,则的值为___________.三、解答题25.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求st的值.26.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值;丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值. 27.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y p q x y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.28.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.29.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a =2,则三角形AOB 的面积为 ;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围. 30.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?31.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm 的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?32.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.33.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A种魔方多少个时,两种活动费用相同?34.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元:(1)求x y、的值;(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件、乙2件、丙1件,共需315元;如果购买甲1件,乙2件,丙3件,共需285元,某顾客想购买甲、乙、丙各一件共需多少元?35.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.36.(1)阅读下列材料并填空:对于二元一次方程组4354{336x yx y+=+=,我们可以将x,y的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b==,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x yx y+=+=的过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设每块巧克力的质量为x克,每块果冻的质量为y克,根据每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,列出方程组即可解答【详解】设每块巧克力的质量为x 克,每块果冻的质量为y 克, 由题意得3250x yx y =+=⎧⎨⎩ ,解得2030x y ==⎧⎨⎩ , 即一块巧克力的质量是20g. 故选A. 【点睛】此题考查二元一次方程组的应用,列出方程组是解题关键2.A解析:A 【分析】利用代入消元法即可求解. 【详解】 解:5213310x y x y +=⎧⎨-=⎩①②,由②得:310y x =-③,把③代入②可得:()5231013x x +-=, 解得3x =,把3x =代入③得1y =-, 故方程组的解为31x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键.3.D解析:D 【分析】方程组两方程相减消去x 即可得到结果. 【详解】解:2311?255? x y x y -=⎧⎨+=-⎩①②②-①得:8y=-16,即-8y=16, 故选D . 【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.D解析:D 【分析】根据二元一次方程的概念和二元一次方程的解逐项进行判断即可. 【详解】A .方程x y =是二元一次方程,故错误;B .任何一个二元一次方程都有无数个解,故错误;C .方程25x y -=有无数个解,但并不是任何一对x 、y 都是该方程的解,故错误;D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解,故正确; 故选:D . 【点睛】本题主要考查了二元一次方程的概念和二元一次方程的解,熟练掌握二元一次方程的概念和解法是解题的关键.5.A解析:A 【分析】根据三元一次方程组的定义来求解,对A 、B 、C 、D 四个选项进行一一验证. 【详解】A 、满足三元一次方程组的定义,故A 选项正确;B 、含未知数项的次数为2次,∴不是三元一次方程,故B 选项错误;C 、未知数的次数为2次,∴不是三元一次方程,故C 选项错误;D 、含有四个未知数,不满足三元一次方程组的定义,故D 选项错误; 故选:A . 【点睛】本题主要考查了三元一次方程组的定义,清楚三元一次方程组必须满足“三元”和“一次”两个要素是关键.6.C解析:C 【详解】解:①∵∠B+∠BCD=180°, ∴AB ∥CD ; ②∵∠1=∠2, ∴AD ∥BC ; ③∵∠3=∠4, ∴AB ∥CD ; ④∵∠B=∠5,∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④.故选C .【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.7.C解析:C【分析】先将111222327327a x b y c a x b y c +=⎧⎨+=⎩化简为11122232773277a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩,然后用“整体代换”法,求出方程组的解即可;【详解】解:111222327327a x b y c a x b y c +=⎧⎨+=⎩, 11122232773277a x b y c a x b y c ⎧+=⎪⎪∴⎨⎪+=⎪⎩, 设3727x t y s ⎧=⎪⎪⎨⎪=⎪⎩, 111222a tb sc a t b s c +=⎧∴⎨+=⎩, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩, ∴方程组111222a t b s c a t b s c +=⎧⎨+=⎩的解为34t s =⎧⎨=⎩, 337247x y ⎧=⎪⎪∴⎨⎪=⎪⎩,解得:714x y =⎧⎨=⎩. 故选C .【点睛】此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.8.B解析:B【解析】【分析】设每块墙砖的长为xcm ,宽为ycm ,根据“三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm”列方程组求解可得.【详解】解:设每块墙砖的长为xcm ,宽为ycm ,根据题意得:1032240x y x y +⎧⎨+⎩==, 解得:3515x y ⎧⎨⎩==, 则每块墙砖的截面面积是35×15=525cm 2,故选:B .【点睛】本题主要考查二元一次方程组的应用,理解题意找到题目蕴含的相等关系列方程组是解题的关键.9.B解析:B【详解】由甲同学的解正确,可知3c+2×7=8,解得c=-2,且3a+2b=22①,由于乙看错c ,所以 -2x+6b=22②,解由①②构成的方程组可得a=4,b=5.故选B.10.A解析:A【分析】根据题意列出二元一次方程,再结合实际情况求得正整数解.【详解】解:设买x 支2元一支的圆珠笔,y 支3元一支的圆珠笔,根据题意得:2330x y,且,x y 为正整数, 变形为:3023x y ,由x 为正整数可知,302x 必须是3的整数倍, ∴当3023x ,即1y =时,13.5x =不是整数,舍去;当3026x,即2y =时,12x =是整数,符合题意; 当3029x ,即3y =时,10.5x =不是整数,舍去;当30212x ,即4y =时,9x =是整数,符合题意;当30215x ,即5y =时,7.5x =不是整数,舍去;当30218x ,即6y =时,6x =是整数,符合题意;当30221x,即7y =时, 4.5x =不是整数,舍去; 当30224x,即8y =时,3x =是整数,符合题意; 当30227x,即9y =时, 1.5x =不是整数,舍去; 故共有4种购买方案,故选:A .【点睛】本题考查了二元一次方程的应用,解题定关键是根据题意列出不定方程,然后根据实际问题对解得要求,逐一列举出来舍去不符合题意的即可. 11.B解析:B【分析】先根据a 为方程250x x +-=的解得到25a a +=,然后整体代入即可解答.【详解】解:∵a 为方程250x x +-=的解∴250a a +-=,即25a a +=∴22015a a ++=5+2015=2020.故答案为B .【点睛】本题考查了一元二次方程的解和整体法的应用,正确理解并灵活应用一元二次方程的解解答问题是解答本题的关键.12.B解析:B【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡,8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-, 91644y x l ∴+=, 116x l ∴=. ∴标号为①的正方形的边长116l . 故选:B .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系. 二、填空题13.【分析】由题意设月份的餐饮区、百货区和杂项区三者摊位数量分别为,再假设新增摊位数量为,则餐饮区新增摊位数量为,进而根据条件得出n 和m 的关系,利用市场管理处月份收到的管理费比月份增加了建立关系式,解析:3:20【分析】由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n ,再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m ,进而根据条件得出n 和m 的关系,利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析即可得出答案.【详解】 解:由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n , 则5月份的管理费为:(543)50600n n n n ++⨯=(元),6月份的管理费为:1(1)60065012n n +⨯=(元), 再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m ,由餐饮区的摊位数量占到了夜市总摊位数量的920,可得: 91(12)5202n m n m +⨯=+,化简后可得:8m n =, 即有新增摊位数量为8n ,餐饮区新增摊位数量为4n ,且6月份下调后的餐饮区、百货区和杂项区每个摊位每月的管理费分别为:40元、30元、20元,由此可得百货区和杂项区6月份的管理费为:650(54)40290n n n n -+⨯=(元), 百货区和杂项区没新增摊位数量时管理费为:430320180n n n ⨯+⨯=(元), 则百货区和杂项区新增的摊位数量管理费为:290180110n n n -=(元),当百货区新增3n ,杂项区新增n 时,满足条件,所以百货区新增的摊位数量与该夜市总摊位数量之比是3:(128)3:203:20n n n n n +==.故答案为:3:20.【点睛】本题考查不定方程的应用,注意掌握根据条件得出n 和m 的关系以及利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析是解答本题的关键. 14.100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,解析:100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,则①所购商品的标价小于90元,x ﹣20+x =150,解得x =85;②所购商品的标价大于90元,x ﹣20+x ﹣30=150,解得x =100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键. 15.5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A解析:5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克, 根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩, 解得:153220a b c d +=⎧⎨+=⎩, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,故答案为:192.5.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.16.201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201【分析】根据能开平方的数一定是非负数,得199-x-y ≥0,x-199+y ≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m 的值.【详解】解:由题意可得,199-x-y ≥0,x-199+y ≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520230x y x y m x y m +=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m ,将y=4-m 代入③,解得x=2m-6,将x=2m-6,y=4-m 代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.17.【分析】先设1个进口1小时开进辆车,1个出口1小时开出辆车,车位总数是根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程根据已知条件如果开放3个进口和2个出口,4小时车库 解析:358【分析】先设1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程7(23)80%x y a -=根据已知条件如果开放3个进口和2个出口,4小时车库恰好停满,可列出方程4(32)80%x y a -=方程组可求得x 、y 关于a 的关系式题中所求空置率变为60%,只能开放2个进口和1个出口时,几个小时停满,60%(2)a x y ÷-将x 、y 关于a 的关系式代入即可求解.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a7(23)80%4(32)80%x y a x y a-=⎧⎨-=⎩解得:131752175a x a y ⎧=⎪⎪⎨⎪=⎪⎩ 1323560%(2)0.6(2)1751758a a a x y a ÷-=÷⨯-=(小时) 故答案为:358【点睛】本题解题关键是可以设出1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a ,根据已知条件便可列出方程组,得出x 、y 关于a 的关系式,求解的问题同列方程组思路相同. 18.m >﹣【分析】利用方程组中两个式子加减可得到和x-3y 用m 来表示,根据等量代换可得到关于m 的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x ﹣y =3m+2,将两个方程相减解析:m >﹣23 【分析】利用方程组中两个式子加减可得到5x y -和x-3y 用m 来表示,根据等量代换可得到关于m 的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x ﹣y =3m +2,将两个方程相减可得x ﹣3y =﹣m ﹣4,由题意得32040m m +>⎧⎨--<⎩, 解得:m >23-, 故答案为:m >23-. 【点睛】此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换19.3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数解析:3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x,依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【详解】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x依题意可得,5919()121640191:3:4 3164x y x yx y y z x z⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+=⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①②由①得32x y =③将③代入②得38 z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202yzx y y y==++故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键20.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x和y关于a的解,根据方程组的解是正整数,得到5-a与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a ,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键. 21.3【解析】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的。
新七年级初一数学下学期二元一次方程组测试题及答案(共五套) 百度文库一、选择题1.阅读理解:a,b,c,d是实数,我们把符号a bc d称为22⨯阶行列式,并且规定:a bad b cc d=⨯-⨯,例如,323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a xb y ca xb y c+=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为xyDxDDyD⎧=⎪⎪⎨⎪=⎪⎩,其中1122aDabb=,1122xbaDc b=,1122ya cDa c=.问题:对于用上面的方法解二元一次方程组3137x yx y-=⎧⎨+=⎩时,下面的说法错误..的是().A.311013D-==B.10xD=C.方程组的解为12xy=⎧⎨=⎩D.20yD=-2.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x人,鸡的价钱是y钱,可列方程组为().A.7384x yx y-=⎧⎨+=⎩B.7384x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374x yx y+=⎧⎨-=⎩3.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2 B.4 C.6 D.84.若关于x,y的方程组()348217x ymx m y+=⎧⎨+-=⎩的解也是二元一次方程x-2y=1的解,则m 的值为( )A .52B .32C .12D .15.用“代入法”将方程组7317x y x y +=⎧⎨+=⎩中的未知数y 消去后,得到的方程是( )A .3(7)17y y -+=B .3(7)17x x +-=C .210x =D .(317)7x x +-= 6.若二元一次方程3x -y =7,2x +3y =1,y =kx -9有公共解,则k 的取值为( ).A .3B .-3C .-4D .47.已知方程组()21119x y kx k y +=⎧⎨+-=⎩的解满足 x +y =3,则 k 的值为( )A .k =-8B .k =2C .k =8D .k =﹣28.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( )A .6(1)5(211)y x x y =-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y x x y =⎧⎨+-=⎩D .65(21)y x x y =⎧⎨+=⎩9.下列方程中是二元一次方程的是( ) A .(2)(3)0x y +-= B .-1x y = C .132x y=+D .5xy =10.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 11.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩12.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x 只鸡,y 只兔,则列出的方程组为( )A .30284x y x y +=⎧⎨+=⎩B .302484x y x y +=⎧⎨+=⎩C .304284x y x y +=⎧⎨+=⎩D .30284x y x y +=⎧⎨+=⎩二、填空题13.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____.14.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.15.若m=m =________.16.解放碑某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,7小时车库恰好停满:如果开放3个进口和2个出口,4小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过_______小时车库恰好停满. 17.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.19.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.20.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.21.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 22.若(x ﹣y +3)2+=0,则x +y 的值为______. 23.若方程123x y -=的解中,x 、y 互为相反数,则32x y -=_________ 24.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.三、解答题25.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值. ②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数. 26.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.27.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理. 你认为哪种方案既省时又省钱?试比较说明.28.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.29.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a =2,则三角形AOB 的面积为 ;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围. 30.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV 汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.31.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数。
第7章 一次方程7.2.3 用加减法解二元一次方程组(1)1.用加减法解二元一次方程组⎩⎨⎧3x -2y =5,①3x +4y =-1.②下列四种解法中,正确的是( )A .①+②,得6x -2y +(-4y )=5-1B .②-①,得4y -2y =-1+5,所以y =2C .②-①,得4y +2y =-1-5,所以y =-1D .②-①,得4y +2y =1-5,所以y =-232.[xx·宁夏]已知x 、y 满足方程组⎩⎨⎧x +6y =12,3x -2y =8,则x +y 的值为( )A .9B .7C .5D .33.[xx·北京]方程组⎩⎨⎧x -y =3,3x -8y =14的解为 ( )A.⎩⎨⎧x =-1y =2B.⎩⎨⎧x =1y =-2 C.⎩⎨⎧x =-2y =1 D.⎩⎨⎧x =2y =-1 4.[xx·无锡]方程组⎩⎨⎧x -y =2,x +2y =5的解是____.5.[xx·嘉兴]用消元法解方程组⎩⎨⎧x -3y =5,①4x -3y =2 ②时,两位同学的解法如下:解法一:由①-②,得3x =3.解法二:由②,得3x +(x -3y )=2.③把①代入③,得3x +5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”; (2)请选择一种你喜欢的方法,完成解答. 6.解方程组:(1)[xx·常州]⎩⎨⎧2x -3y =7,x +3y =-1;(2)[xx·宿迁]⎩⎨⎧x +2y =0,3x +4y =6.7.[xx·随州]已知⎩⎨⎧x =2,y =1是关于x 、y 的二元一次方程组⎩⎨⎧ax +by =7,ax -by =1的一组解,则a+b =____.8.校田园科技社团计划购进A 、B 两种花卉,两次购买每种花卉的数量以及每次的总费用如下表所示:花卉数量/株 总费用/元AB 第一次购买 10 25 225 第二次购买2015275(1)你从表格中获取了什么信息?(请用自己的语言描述,写出一条即可) (2)A 、B 两种花卉每株的价格各是多少元?9.对于有理数x 、y ,定义新运算:x y =ax +by ,其中a 、b 是常数,等式右边是通常的加法和乘法运算.例如,34=3a +4b ,则若34=8,即可知3a +4b =8.已知12=1,(-3)3=6,求2(-5)的值.参考答案【分层作业】 1. C 2. C 3. D【解析】⎩⎨⎧x -y =3,①3x -8y =14.②②-①×3,得-5y =5,解得y =-1. 把y =-1代入①,得x +1=3,解得x =2.故原方程组的解为⎩⎨⎧x =2,y =-1.4.⎩⎨⎧x =3,y =1【解析】⎩⎨⎧x -y =2,①x +2y =5.②②-①,得3y =3,解得y =1.把y =1代入①,得x -1=2,解得x =3.故原方程组的解是⎩⎨⎧x =3,y =1.5.解:(1)解法一中的解题过程有错误. 由①-②,得3x =3“×”, 应为由①-②,得-3x =3.(2)由①-②,得-3x =3,解得x =-1. 把x =-1代入①,得-1-3y =5,解得y =-2.所以原方程组的解是⎩⎨⎧x =-1,y =-2.6. (1)解:⎩⎨⎧2x -3y =7,①x +3y =-1.②①+②,得3x =6,解得x =2. 将x =2代入①,得y =-1.故原方程组的解为⎩⎨⎧x =2,y =-1.(2)解:⎩⎨⎧x +2y =0,①3x +4y =6.②由①,得x =-2y .③把③代入②,得3×(-2y )+4y =6, 解得y =-3.将y =-3代入③,得x =6.故原方程组的解为⎩⎨⎧x =6,y =-3.7. 5【解析】根据二元一次方程组的定义,将⎩⎨⎧x =2,y =1代入⎩⎨⎧ax +by =7,ax -by =1,得⎩⎨⎧2a +b =7,2a -b =1,解得⎩⎨⎧a =2,b =3,所以a +b =5.8.解:(1)略.答案不唯一,信息合理即可. (2)设A 、B 两种花卉每株的价格分别是x 元、y 元.由题意,得⎩⎨⎧10x +25y =225,20x +15y =275,解得⎩⎨⎧x =10,y =5.答:A 、B 两种花卉每株的价格分别是10元、5元.9.解:根据题意,得⎩⎨⎧a +2b =1,①-3a +3b =6.②①×3+②,得b =1. 将b =1代入①,得a =-1. 故2(-5)=2a -5b =-2-5=-7.。
新七年级初一下学期数学《 二元一次方程组考试试题》含答案.一、选择题1.下列各方程中,是二元一次方程的是( )A .253x y x y-=+B .x+y=1C .2115x y =+ D .3x+1=2xy2.方程组5213310x y x y +=⎧⎨-=⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩3.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③B .①③C .②③D .①②4.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( )A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩5.三元一次方程5x y z ++=的正整数解有( )A .2组B .4组C .6组D .8组6.已知甲乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x 元,年支出为y 元,可列出方程组为( )A .4002740034x y x y -=⎧⎪⎨+=⎪⎩ B .4003440027x y x y =+⎧⎪⎨-=⎪⎩ C .4002440037x y x y -=⎧⎪⎨-=⎪⎩ D .4003740024x y x y -=⎧⎪⎨-=⎪⎩ 7.已知方程组()21119x y kx k y +=⎧⎨+-=⎩的解满足 x +y =3,则 k 的值为( )A .k =-8B .k =2C .k =8D .k =﹣28.若关于x 、y 的方程组2{44x y ax y a+=-=的解是方程3x 2y 10+=的一个解,则a 的值为( ) A .2 B .-2C .1D .-19.如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .675cm 210.已知二元一次方程3x-y=5,给出下列变形①y=3x+5②53y x +=③-6x+2y=-10,其中正确的是( ) A .②B .②③C .①③D .①②11.已知下列各式:①12+=y x;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( ) A .1B .2C .3D .412.下列方程组的解为31x y =⎧⎨=⎩的是( )A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩二、填空题13.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________. 14.甲乙两人共同解方程组515(1)42(2)ax y x by +=⎧⎨-=-⎩,由于甲看错了方程(1)中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程(2)中的b ,得到方程组的解为54x y =⎧⎨=⎩;计算20192018110a b ⎛⎫+-= ⎪⎝⎭________.15.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 16.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下: 购票人数 1~50 51~100 100以上 门票价格13元/人11元/人9元/人如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.17.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____.18.如图,长方形ABCD被分成若干个正方形,已知32cmAB=,则长方形的另一边AD=_________cm.19.关于x,y的方程组223321x y mx y m+=+⎧⎨-=-⎩的解满足不等式组5030x yx y->⎧⎨-<⎩,则m的取值范围_____.20.如图,长方形ABCD被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒21.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干. 22.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.23.如图,在长方形ABCD中,放入六个形状,大小相同的长方形(即空白的长方形),AD=12cm,FG=4cm,则图中阴影部分的总面积是 __________2cm.24.若方程123x y -=的解中,x 、y 互为相反数,则32x y -=_________ 三、解答题25.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值. ②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数. 26.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.27.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?28.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.29.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足2(25)220a b a b ++++-=,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,其中点C 在y 轴负半轴上.(1)求A ,B 两点的坐标;(2)如图1,连AD 交BC 于点E ,若点E 在y 轴正半轴上,求BE OEOC-的值; (3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系.30.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”; (2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值.31.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV 汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.32.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A 款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).33.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.34.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元:、的值;(1)求x y(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件、乙2件、丙1件,共需315元;如果购买甲1件,乙2件,丙3件,共需285元,某顾客想购买甲、乙、丙各一件共需多少元?35.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求 a 、 b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下a0.80超过17吨但不超过30吨部分b0.80超过30吨的部分 6.000.8036.在今年“六•一”期间,扬州市某中学计划组织初一学生到上海研学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该学校初一年级参加研学活动的师生共有303名,旅行社承诺每辆车安排一名导游,导游也需一个座位.旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保证所租的每辆车均有一名导游,租车方案调整为:同时租65座、甲种客车和乙种客车的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案应如何安排?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】根据二元一次方程的定义对四个选项进行逐一分析. 解:A 、分母中含有未知数,是分式方程,故本选项错误;B 、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C 、D 、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误. 故选B .2.A解析:A 【分析】利用代入消元法即可求解. 【详解】解:5213310x y x y +=⎧⎨-=⎩①②,由②得:310y x =-③,把③代入②可得:()5231013x x +-=, 解得3x =,把3x =代入③得1y =-,故方程组的解为31x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键.3.A解析:A 【分析】根据二元一次方程组的解法逐个判断即可. 【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解∴结论①正确由题意,解方程组35661516x yx y+=⎧⎨+=⎩得:2345xy⎧=⎪⎪⎨⎪=⎪⎩把23x=,45y=代入310x ky+=得2431035k⨯+=解得10k=,则结论②正确解方程组356310x yx ky+=⎧⎨+=⎩得:20231545xkyk⎧=-⎪⎪-⎨⎪=⎪-⎩又k为整数x、y不能均为整数∴结论③正确综上,正确的结论是①②③故选:A.【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.4.A解析:A【分析】根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答【详解】设这所学校现初中在校生x人,小学在校生y人,则30008%11%300010% x yx y+=⎧⎨+=⨯⎩故选A【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程5.C解析:C【分析】最小的正整数是1,当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1;当x=3时,y+z=2,y分别取1,此时z分别对应1;依此类推,然后把个数加起来即可.【详解】解:当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1,有3组正整数解;当x=2时,y+z=3,y 分别取1,2,此时z 分别对应2,1,有2组正整数解; 当x=3时,y+z=2,y 分别取1,此时z 分别对应1,有1组正整数解; 所以正整数解的组数共:3+2+1=6(组). 故选:C . 【点睛】本题考查三元一次不定方程的解,解题关键是确定x 、y 、z 的值,分类讨论.6.C解析:C 【分析】由甲、乙两人的年收入之比为3:2,年支出之比为7:4,得到乙的收入为23x ,乙的支出为47y ,根据题意找出等量关系,列出方程中选出正确选项即可. 【详解】设甲的年收入为x 元,年支出为y 元,∵甲、乙两人的年收入之比为3:2,年支出之比为7:4, ∴乙的收入为23x ,乙的支出为47y , 根据题意列出方程组得:4002440037x y x y -=⎧⎪⎨-=⎪⎩. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,根据题意找出等量关系是解答本题的关键.7.C解析:C 【分析】方程组两方程相减表示出x+y ,代入已知方程计算即可求出k 的值. 【详解】解:()21119x y kx k y +=⎧⎪⎨+-=⎪⎩①②,②-①得:()()2218k x k y -+-=,即()()218k x y -+=, 代入x+y=3得:k-2=6, 解得:k=8, 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.A解析:A【解析】(1)−(2)得:6y=−3a ,∴y=−2a , 代入(1)得:x=2a ,把y=−2a ,x=2a 代入方程3x+2y=10, 得:6a −a=10,即a=2.故选A. 9.D解析:D【解析】试题分析:设小长方形的宽为xcm ,则长为3xcm ,根据图示列式为x+3x=60cm ,解得x=15cm ,因此小长方形的面积为15×15×3=675cm 2.故选D.点睛:此题主要考查了读图识图能力的,解题时要认真读图,从中发现小长方形的长和宽的关系,然后根据关系列方程解答即可.10.B解析:B【分析】根据等式基本性质进行分析即可.【详解】用x 表示y 为y=3x-5,故①不正确;用y 表示x 为53y x +=,故②正确;方程两边同乘以-2可得-6x+2y=-10,故③正确.故选B.【点睛】考核知识点:二元一次方程. 11.A解析:A【分析】根据二元一次方程的定义即可判断.【详解】①是分式方程,故不是二元一次方程;②正确;③是二元二次方程,故不是二元一次方程;④有3个未知数,故不是二元一次方程;⑤是一元一次方程,不是二元一次方程.故选:A .【点睛】考查二元一次方程的定义,含有2个未知数,未知项的最高次数是1的整式方程就是二元一次方程.12.D解析:D【解析】把31x y =⎧⎨=⎩代入选项A 第2个方程24x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项B 第2个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项C 第1个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项D 两个方程均成立,故正确; 故选D.二、填空题13.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:∴两式相加得:,即,把代入得到,,故此方程组的解为:.故答案为:.【点睛】本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】 本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.14.0【分析】根据题意,将代入方程(2)可得出b 的值,代入方程(1)可得出a 的值,将a 与b 的值代入所求式子即可得出结果.【详解】解:根据题意,将代入方程组中的4x-by=-2得:-12+b=-2解析:0【分析】根据题意,将31x y =-⎧⎨=-⎩代入方程(2)可得出b 的值,54x y =⎧⎨=⎩代入方程(1)可得出a 的值,将a 与b 的值代入所求式子即可得出结果.【详解】解:根据题意,将31x y =-⎧⎨=-⎩代入方程组中的4x-by=-2得:-12+b=-2,即b=10; 将54x y =⎧⎨=⎩代入方程组中的ax+5y=15得:5a+20=15,即a=-1, ∴20192018110a b ⎛⎫+- ⎪⎝⎭=1-1=0.故答案为:0.【点睛】此题考查了二元一次方程组的解,方程组的解为能使方程组中两方程成立的未知数的值.15.无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=解析:13xy=⎧⎨=⎩无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:3(98)x y-=,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13 xy=⎧⎨=⎩;∵当x、y是整数时,9-x是8的倍数,∴x可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13xy=⎧⎨=⎩;无数.【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.16.15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数解析:15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.【详解】解:设人数较少的部门有x 人,人数较多的部门有y 人,∵945不能被11和13整除且945÷9=105(人),∴两个部门的人数之和为105(人),∵1245不能被11和13整除,∴1≤x ≤50,51≤y ≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩, 解得:4560x y =⎧⎨=⎩, ∴15-=x y ,故答案为:15.【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.17.19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x①和z=3x②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之解析:19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x ①和z=3x ②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时获得的总利润即可.【详解】解:设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,设甲种蜂蜜卖出a 瓶, 则:10%320%30%22%3ax ay az ax ay az,整理得:4z=3y+6x ①, 当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,设丙种蜂蜜卖出b 瓶, 则:310%220%30%20%32bx by bz bx by bz ,整理得:z=3x ②,由①②可得:y=2x ,∴当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,设丙种蜂蜜卖出c 瓶, 则该公司得到的总利润率为:510%620%30%0.5 1.20.30.5 2.40.9100%19%56565123cx cy cz x y z x x x cx cy czx y z x x x,故答案为:19%.【点睛】本题考查了三元一次方程组的应用,利用利润、成本与利润率之间的关系列式计算是解题的关键.18.【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:768 43【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y 表示出来(如图),根据AB=CD=32cm,可得:64332 2532y x y xx y-+-⎧⎨+⎩==解得:x=12843cm,y=22443cm.长方形的另一边AD=3y-x+y=4y-x=76843cm.故答案为:768 43【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.19.m>﹣【分析】利用方程组中两个式子加减可得到和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减解析:m>﹣23【分析】利用方程组中两个式子加减可得到5x y-和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减可得x﹣3y=﹣m﹣4,由题意得32040 mm+>⎧⎨--<⎩,解得:m>23 -,故答案为:m>23 -.【点睛】此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换20.98【解析】【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE列出三元一次方程组,再利用加减消元法即可求得y的值.【解析:98【解析】【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE 列出三元一次方程组,再利用加减消元法即可求得y的值.【详解】设未知的三块面积分别为x,y,z(如图),则x+y+76=24+87+55+19+z ,z+y+87=55+x+24+19+76,即x+y-z=109①,z+y-x=87②由①+②得,y=98.即图中阴影部分的面积是98﹒故答案为:98.【点睛】本题主要考查了矩形的性质,解决本题的关键是理清三角形与矩形间的面积关系,列出三元一次方程组,再通过加减消元,得到阴影部分的面积.21.5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组解析:5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组进行求解即可得.【详解】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,由题意得201020101510y x y x +=⨯⎧⎨+=⨯⎩, 解得:5100x y =⎧⎨=⎩, 所以,用25台这样的抽水机去抽水时,泉水每小时涌出量用5台抽水机去抽,剩下的就抽原有的泉水了,100÷(25-5)=5(小时),故答案为:5.【点睛】本题考查了二元一次方程组的应用,弄清题意,找到等量关系列出方程组是解题的关键,这里要注意的是泉水是不断涌出的.22.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】分析:先把代入得,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案.解答:解:把代入,得,解得,c=-2.再把代入ax+by=-2,得,解得:,所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.23.48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得3124x yx y+=⎧⎨-=⎩,①,②①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=482cm.故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 24.【解析】试题分析:根据x、y互为相反数,可得x+y=0,然后和方程构成方程组,解得,所以3x-2y=.三、解答题25.(1){-6,+3};(2)①y=7,②a=3,点A 表示的数1;(3)-3或-21【分析】(1)直接根据关联数的定义解题即可;(2)①首先根据关联数的定义求出a 的值,然后即可求解;②通过关联数的定义建立方程组求解即可;(3)通过关联数的定义建立关于A ,B 的方程组,然后通过A ,B 的速度的关系找到A ,B 之间的关系,最后通过解方程即可得出答案.【详解】(1)∵点A 表示-3,a =3,336,3233x y ∴=--=-=-+⨯=+,∴点A 的3关联数G (-3,3)={-6,+3};(2)①点A 表示-1,G (A ,a )={-5,y},51a ∴-=--解得4a =,1247y ∴=-+⨯=;②∵G (A ,a )={-2,7},272A a A a -=-⎧∴⎨=+⎩解得13A a =⎧⎨=⎩; (3)∵G (A ,3)={x ,y},G (B ,2)={m ,n},323x A y A =-⎧∴⎨=+⨯⎩,222m B n B =-⎧⎨=+⨯⎩. ∵点A 的速度是点B 速度的3倍,3A B ∴=,13B A ∴=. 6y m -=,()626A B ∴+--=,即16263A A ⎛⎫+--= ⎪⎝⎭, 解得3A =-或21A =-.【点睛】本题主要考查定义新运算,掌握关联数的定义是解题的关键.26.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.27.1【分析】利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9ym,进而利用AD为18m,AB为13m,得出等式求出即可.【详解】设通道的宽是xm,AM=8ym.因为AM∶AN=8∶9,所以AN=9ym.。
最新初一数学下学期 二元一次方程组测试题及答案(共五套)一、选择题1.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩2.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩的解是( ).A .35a b =⎧⎨=⎩ B .35a b =⎧⎨=-⎩C .41a b =⎧⎨=-⎩D .41a b =⎧⎨=⎩3.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A .8374y x y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374y x y x -=-⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩4.下列各组数是二元一次方程371x y y x +=⎧⎨-=⎩的解是( )A .12x y =⎧⎨=⎩B .01x y =⎧⎨=⎩C .70x y =⎧⎨=⎩D .12x y =⎧⎨=-⎩5.下列方程组是三元一次方程组的是( ) A .123x y y z z x +=⎧⎪+=⎨⎪-=⎩B .02310x y z x yz y z ++=⎧⎪-=⎨⎪-=⎩C .22154x y y z x z ⎧+=⎪+=⎨⎪-=⎩D .563x y w z z x +=⎧⎪+=⎨⎪+=⎩6.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( )A .1a =-B .1a =C .23a =D .32a =7.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( )A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁8.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有( ) A .2种 B .3种C .4种D .5种9.已知且x +y =3,则z 的值为( ) A .9B .-3C .12D .不确定10.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173B .888C .957D .6911.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩ C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩12.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩二、填空题13.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.14.商场购进A 、B 、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C 的标价为80元,为了促销,商场举行优惠活动:如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..15.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.16.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天. 17.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩的解为__________. 18.若m 1,m 2,…,m 2019是从0,1,2,这三个数中取值的一列数,m 1+m 2+…+m 2019=1525,( m 1-1)2+(m 2-1)2+…+(m 2019-1)2=1510,则在m 1,m 2,…,m 2019中,取值为2的个数为___________.19.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x 斤,燕每只重y 斤,则可列方程组为________________ 20.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.21.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本. 22.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______. 23.若方程组2232x y k x y k +=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____.24.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 三、解答题25.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示); (2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示); 乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少? 26.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解; (3)已知,m n 是实数, 且27m n +=,若(),P m n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.27.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m 根小木棍摆出了p 个小正方形,请你用等式表示,m p 之间的关系: ; (2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s 排,共t 个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t 之间的关系,并写出所有,s t 可能的取值.28.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器 乙型机器 价格(万元/台) a b 产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元. (1) 求a 、b 的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.29.a取何值时(a为整数),方程组2420x ayx y+=⎧⎨-=⎩的解是正整数,并求这个方程组的解.30.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】方程组利用加减消元法求出解即可.【详解】解:7317x yx y+=⎧⎨+=⎩①②,②﹣①得:2x=10,解得:x=5,把x=5代入①得:y=2,则方程组的解为52 xy=⎧⎨=⎩.故选:A.【点睛】本题考查了二元一次方程组的解法以及二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.本题还可以利用代入法求解.2.C解析:C【分析】首先将35x y =⎧⎨=⎩代入到3526x my x ny -=⎧⎨+=⎩,可求得m 和n ;将m 和n 代入到()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩,可求得a+b ,a-b 的值;再通过求解二元一次方程组,即可求得答案. 【详解】 ∵二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩∴955656m n -=⎧⎨+=⎩∴450m n ⎧=⎪⎨⎪=⎩ 将450m n ⎧=⎪⎨⎪=⎩代入()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩ 得()()()435526a b a b a b ⎧+--=⎪⎨⎪+=⎩∴35a b a b +=⎧⎨-=⎩∴41a b =⎧⎨=-⎩故选:C . 【点睛】本题考查了二元一次方程方程组的知识;解题的关键是熟练掌握二元一次方程方程组的性质,从而完成求解.3.B解析:B 【分析】设该物品的价格是x 钱,共同购买该商品的由y 人,根据题意每人出8钱,则多3钱;每人出7钱,则差4钱列出二元一次方程组. 【详解】设该物品的价格是x 钱,共同购买该商品的由y 人, 依题意可得8374y x y x -=⎧⎨-=-⎩故选:B【点睛】本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组.4.A解析:A【解析】分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择.详解:∵y﹣x=1,∴y=1+x.代入方程x+3y=7,得:x+3(1+x)=7,即4x=4,∴x=1,∴y=1+x=1+1=2.∴解为12 xy=⎧⎨=⎩.故选A.点睛:本题要注意方程组的解的定义.5.A解析:A【分析】根据三元一次方程组的定义来求解,对A、B、C、D四个选项进行一一验证.【详解】A、满足三元一次方程组的定义,故A选项正确;B、含未知数项的次数为2次,∴不是三元一次方程,故B选项错误;C、未知数的次数为2次,∴不是三元一次方程,故C选项错误;D、含有四个未知数,不满足三元一次方程组的定义,故D选项错误;故选:A.【点睛】本题主要考查了三元一次方程组的定义,清楚三元一次方程组必须满足“三元”和“一次”两个要素是关键.6.B解析:B【分析】直接把2xy a=⎧⎨=⎩代入方程,即可求出a的值.【详解】解:根据题意,∵2xy a=⎧⎨=⎩是方程25x y+=的一个解,∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.7.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=, ∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.8.A解析:A 【解析】 【分析】设购买甲种笔记本x 个,则乙种笔记本y 个,利用购甲、乙两种笔记本共用70元得到x=14-3y ,利用143y y-=14y –3为整数可判断y=1,2,7,14,然后求出对应x 的值从而得到购笔记本的方案. 【详解】设购买甲种笔记本x 个,购买乙种笔记本y 个, 根据题意得5x +15y =70,则x =14–3y ,因为143y y -为整数,而143y y-=14y –3, 所以y =1,2,7,14,当y =1时,x =11;当y =2时,x =4;y =7和y =14舍去,所以购笔记本的方案有2种. 故选A . 【点睛】本题考查了二元一次方程的解,分析题意,找到关键描述语,找到合适的等量关系,特别是确定甲种笔记本数量和乙种笔记本数量关系,然后利用整除性确定方案.9.B解析:B 【解析】 【分析】先利用x +y =3,得2x+2y=6,3x+3y=9,进而将方程组进行化简整理,再用代入消元法即可求解. 【详解】解:∵x +y =3,将其代入方程组得,由(1)得y=z-6,将其代入(2)得z=-3, 故选B. 【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉代入消元的方法和对原方程组进行化简是解题关键.10.A解析:A 【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案. 【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018 =a 12+a 22+…+a 20142+2156, 设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845, 解得x=888,y=957,z=173, ∴有888个1,957个-1,173个0, 故答案为173.【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.11.B解析:B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B . 12.D解析:D 【分析】根据方程组的解的定义,只要检验12x y =⎧⎨=⎩是否是选项中方程的解即可.【详解】A 、把12x y =⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12x y =⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B 、把12x y =⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误; C 、把12x y =⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误; D 、把12x y =⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12x y =⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确. 故选D . 【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.二、填空题 13.6 【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】 解:设8解析:6【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得3202x y =-,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】解:设80分的邮票购买x 张,120分的邮票购买y 张,0.8x+1.2y=16, 解得3202x y =-, ∵x 、y 都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 14.31800【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯,∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.15.【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩, 解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.16.24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃解析:24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.【详解】解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:969620606030a b x a b x+⎧⎨+⎩== 解得:b=103x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天). 故答案为:24.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键.17.【分析】将解方程组变形为,依据题意得,求解即可.【详解】∵关于,的方程组的解为,将解方程组变形为,∴关于,的方程组的解为,解得,故答案为:.【点睛】本题考查了二元一次方程组的解法 解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】 将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可.【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩, 将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩, ∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得1856x y ⎧=⎪⎨⎪=⎩, 故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.18.508【分析】先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可.【详解】解:设0有a 个,1有b 个,2有c 个,由题意得:解得:故取值为2的个数为508个,故答案为:508解析:508【分析】先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组2019215251510a b c b c a c ++=⎧⎪+=⎨⎪+=⎩求解即可.【详解】解:设0有a 个,1有b 个,2有c 个,由题意得:2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩解得:1002509508 abc=⎧⎪=⎨⎪=⎩故取值为2的个数为508个,故答案为:508.【点睛】此题主要考查了三元一次方程组的应用,会根据题意设未知数列方程并正确求解是解题的关键.19.【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,【解析:45561 x y y xx y+=+⎧⎨+=⎩【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,45561 x y y xx y+=+⎧⎨+=⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.20.3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数解析:3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x,依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【详解】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x依题意可得,5919()121640191:3:4 3164x y x yx y y z x z⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+=⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①②由①得32x y =③将③代入②得38 z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202yzx y y y==++故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键21.311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x元/本,则甲为(7+x)元/本解析:311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x元/本,则甲为(7+x)元/本,甲购买了a本,乙买了b本,∴A的单价为x元/本,B为(7+x)元/本, A购买了a本,B买了b本,依题意得:①-②得:7a-7b=2177,∴a-b=311,即甲种书籍比乙种书籍多买了311本.【点睛】 本题考查了一元二次方程的实际应用,难度较大,设三个未知数并整理方程是解题关键. 22.7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】由题意得,解得:或,当a=2,b=-2时,=7;当a=-2,b=2时,=3,故答案为:7或解析:7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】 由题意得04a b a b +=⎧⎨-=⎩, 解得:22a b =⎧⎨=-⎩或22a b =-⎧⎨=⎩, 当a=2,b=-2时,2a ab 1 a ab 1-+++=7; 当a=-2,b=2时,2a ab 1a ab 1-+++=3, 故答案为:7或3.【点睛】 本题考查了解二元一次方程组以及代数式求值,正确求出a 、b 的值是解题的关键. 23.3【解析】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.24.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393 a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值.三、解答题25.(1)2(a+b);(2)(2+21ba+);(2+21ab+);(3)36.【分析】(1)根据两地间的距离=两人的速度之和×第一次相遇所需时间,即可得出结论;(2)利用时间=路程÷速度结合2小时后第一次相遇,即可得出结论;(3)设AB两地的距离为S千米,根据路程=速度×时间,即可得出关于(a+b),S的二元一次方程组(此处将a+b当成一个整体),解之即可得出结论.【详解】(1)A、B两地的距离可以表示为2(a+b)千米.故答案为:2(a+b).(2)甲乙相遇时,甲已经走了2a千米,乙已经走了2b千米,根据相遇后他们的速度都提高了1千米/小时,得甲还需21ba+小时到达B地,乙还需21ab+小时到达A地,所以甲从A到B所用的时间为(2+21ba+)小时,乙从B到A所用的时间为(2+21ab+)小时.故答案为:(2+21ba+);(2+21ab+).(3)设AB两地的距离为S千米,3小时36分钟=185小时.依题意,得:2()182(11)5S a bS a b=+⎧⎪⎨=+++⎪⎩,令x=a+b,则原方程变形为2182(2)5S xS x=⎧⎪⎨=+⎪⎩,解得:1836 xS=⎧⎨=⎩.答:AB两地的距离为36千米.【点睛】本题考查了列代数式以及二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.26.(1)B;(2),x y的最小整数解为104xy=⎧⎨=⎩;(3)隐线中s的最大值和最小值的和为7 2【分析】(1)将A,B,C三点坐标代入方程,方程成立的点即为所求,(2)将P,Q代入方程,组成方程组求解即可,(3)将P代入隐线方程,27n+=组成方程组,求解方程组的解,再由()2723147s n n n=--=-即可求解.【详解】解:(1)将A,B,C 三点坐标代入方程,只有B 点符合,∴隐线326x y +=的亮点的是B.(2)将()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭代入隐线方程 得:226163h t h -=⎧⎪⎨-=⎪⎩解得253t h ⎧=⎨=-⎩代入方程得:5626x y -=,x y ∴的最小整数解为104x y =⎧⎨=⎩(3)由题意可得273n n s ==⎪⎩72n =-n ∴= ()2723147s n n n ∴=--=-212s ∴=- s ∴的最大值为14,最小值为212- 隐线中s 的最大值和最小值的和为2171422-= 【点睛】本题考查了二元一次方程的新定义,二元一次方程与直线的关系,运用了数形结合的思想,理解题意是解题关键.27.(1)31p m +=;(2)正方形有16个,六边形有12个;(3)216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木棍,则摆p 个正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;(2)设连续摆放了六边形x 个, 正方形y 个,则连续摆放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由题意列出方程组解决问题即可;(3)由(1)可知每排用的小木棍数比这排小正方形个数的3倍多1根,由此可得s 、t 间的关系,再根据s 、t 均为正整数进行讨论即可求得所有可能的取值.【详解】(1)摆1个正方形需要4根小木棍,4=4+3×(1-1),摆2个正方形需要7根小木棍,4=4+3×(2-1),摆3个正方形需要10根小木棍,10=4+3×(3-1),……,摆p 个正方形需要m=4+3×(p-1)=3p+1根木棍,故答案为:31p m +=;(2)设六边形有x 个,正方形有y 个,则51311104x y x y +++=⎧⎨+=⎩, 解得1216x y =⎧⎨=⎩, 所以正方形有16个,六边形有12个;(3)据题意,350t s +=,据题意,t s ≥,且,s t 均为整数,因此,s t 可能的取值为:216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的实际运用,找出连续摆放正方形共用小木棍的根数,六方形共用小木棍的根数是解决问题的关键.28.(1)3018a b =⎧⎨=⎩;(2)有 4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器. (3)最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【解析】【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x 台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x 的取值范围,再分别求出对应的成本即可解题.【详解】。
专题7.2 二元一次方程组的解法姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间60分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·江西赣州市·七年级期末)方程组:251x y x y +=⎧⎨-=⎩的解是( )A .14x y =⎧⎨=⎩B .01x y =⎧⎨=-⎩C .21x y =⎧⎨=⎩D .12x y =-⎧⎨=-⎩2.(2021·全国七年级)已知22m nx y +与45n m x y --是同类项,则mn 的值是( )A .1B .3C .1-D .3-3.(2020·山东枣庄市·八年级月考)已知方程组1222x y x y n⎧-=⎪⎨⎪-=⎩中的x ,y 互为相反数,则n 的值为( ) A .2B .﹣2C .0D .44.(2020·山东枣庄市·八年级月考)已知关于x 、y 方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式4x ﹣3y =7成立,则m 的值为( ) A .8B .0C .4D .﹣25.(2020·四川巴中市·七年级期末)下列说法正确的是( ) A .二元一次方程2317x y +=的正整数解有2组B .若52x y =⎧⎨=⎩是232x y k -=的一组解,则k 的值是12C .方程组23321y x x y =-⎧⎨+=⎩的解是11x y =⎧⎨=-⎩ D .若3m n x +与22112m x y --是同类项,则2m =,1n = 6.(2020·苏州高新区实验初级中学七年级月考)整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值,则关于x 的方程4mx n --=的解为( ) A .-1B .0C .1D .27.(2020·浙江金华市·七年级期中)已知关于x ,y 的方程组343x y a x y a +=-⎧⎨-=⎩,给出下列结论:①51x y =⎧⎨=-⎩是方程组的一个解;①当0a =时,x ,y 的值相等;①当22264x y ⨯=时,1a =;①当1a =-时,方程组的解,也是方程21x y a +=+的解.其中正确的是( ) A .①①①B .①①①C .①①①D .①①①①8.(2021·全国八年级)已知关于x 、y 的二元一次方程组2125x y ax ky a +=-⎧⎨-=-⎩给出下列结论:①当k =2时,此方程组无解;①若k =1,则代数式22x •4y =14;①当a =0时,此方程组一定有八组整数解(k 为整数),其中正确的是( ) A .①①①B .①①C .①①D .①①9.(2020·城固县第三中学八年级月考)对于任意实数,规定新运算:x y ax by xy =+-※,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知211=※,()322-=-※,则a b ※的值为( ) A .3B .4C .6D .710.(2021·全国七年级)若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( ) A .6B .9C .12D .16二、填空题(本大题共6小题,每小题4分,共24分.不需写出解答过程,请把答案直接填写在横线上) 11.(2020·浙江杭州市·七年级其他模拟)把方程21x y -=变形:用含x 的代数式表示y =______;用含y 的代数式表示x =______.12.(2020·浙江杭州市·七年级其他模拟)已知2(32)5230x x y -+--=∣∣,则x =____,y =____.13.(2020·浙江杭州市·七年级其他模拟)方程组23632x y x y +=⎧⎨-=⎩,则52x y +=________.14.(2020·南阳市实验学校七年级月考)小红和小风两人在解关于x ,y 的方程组3528ax y bx y +=⎧⎨+=⎩时,小红只因看错了系数a ,得到方程组的解为12x y =-⎧⎨=⎩,小风只因看错了系数b ,得到方程组的解为14x y =⎧⎨=⎩,则ab =____________.15.(2020·浙江杭州市·七年级其他模拟)已知关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩的解为53x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩的解是___.16.(2020·浙江杭州市·七年级其他模拟)已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论:①当10a =时,方程组的解是155x y =⎧⎨=⎩;①当x ,y 的值互为相反数时,20a =;①不存在一个实数a 使得x y =;①若3533x a -=,则5a =,正确的有__________(写编号)三、解答题(本大题共7小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2021·山东青岛市·八年级期末)解方程(本题共有2道小题)(1)34528a b a b -=⎧⎨+=⎩ (2)11233210x y x y +⎧-=⎪⎨⎪+=⎩18.(2021·武汉外国语学校七年级期末)已知关于x 、y 的二元一次方程组为3331x y x y a +=⎧⎨+=+⎩(1)直接写出....二元一次方程组的解为(结果用含a 的式子表示)______________ (2)若21x y a -=-,求a 的值19.(2021·全国七年级)阅读小林同学数学作业本上的截图内容并完成任务.任务:(1)这种解方程组的方法称为________;(2)小林的解法正确吗?________(填“正确”或“不正确”),如果不正确,错在第________步,并选择恰当的方法解该方程组.20.(2021·全国七年级)已知关于x ,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足0x y +=,求m 的值 (3)无论实数m 取何值,方程250x y mx -++=总有一个固定的解,请求出这个解?21.(2020·丰县欢口镇欢口初级中学七年级月考)若关于x 、y 的二元一次方程组3x 2y m 22x y m 5-=+⎧⎨-=-⎩.()1解方程组(结果用含m 的式子表示x 、y);()2若方程组的解x 、y 满足方程x y 3+=-,求m 的值; ()3若方程组的解x 、y 满足31x y -<+<,且m 为整数,求m 的值.22.(2020·磴口县第一完全中学)根据要求,解答下列问题. (1)解下列方程组(直接写出方程组的解即可): A .2323x y x y +=⎧⎨+=⎩ B .32102310x y x y +=⎧⎨+=⎩ C .2727x y x y -=⎧⎨-+=⎩方程组A 的解为 ,方程组B 的解为 ,方程组C 的解为 ;(2)以上每个方程组的解中,x 值与y 值的大小关系为 ;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.23.(2021·全国七年级)善于思考的小军在解方程组253?4115?x yx y+=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:解:将方程①变形:4x+10y+y=5,即2(2x+5y)+y=5,①把方程①代入①,得2×3+y=5.①y=﹣1.把y=﹣1代入①,得x=4.①原方程组的解为41 xy=⎧⎨=⎩.请你解决以下问题:(1)模仿小军的“整体代换法”解方程组:325? 9419?x yx y-=⎧⎨-=⎩①②(2)已知x,y满足方程组22223212472836?x xy yx xy y⎧-+=⎨++=⎩①②,求x2+4y2的值.。
专题7.2 二元一次方程组的应用【十一大题型】【华东师大版】【题型1 行程问题】 (1)【题型2 工程问题】 (2)【题型3 配套问题】 (3)【题型4 年龄问题】 (4)【题型5 销售问题】 (4)【题型6 分配问题】 (5)【题型7 几何图形问题】 (7)【题型8 数字问题】 (8)【题型9 古代问题】 (9)【题型10 方案问题】 (10)【题型11 图表问题】 (11)【题型1 行程问题】【例1】(2023春·山东临沂·七年级统考期末)甲、乙两人在400米的环形跑道上练习赛跑,如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过200秒甲第一次追上乙,求甲、乙两人的平均速度.【变式1-1】(2023春·江苏连云港·七年级统考期末)我县境内的某段铁路桥长2200m,现有一列高铁列车从桥上通过,测得此列高铁从开始上桥到完全过桥共用30s,整列高铁在桥上的时间是25s,试求此列高铁的车速和车长.【变式1-2】(2023春·河北廊坊·七年级廊坊市第四中学校考期中)琪琪沿街匀速行走,发现每隔12min从背后驶过一辆7路公交车,每隔6min从迎面驶来一辆7路公交车.假设每辆7路公交车行驶速度相同,而且7路公交车总站每隔固定时间发一辆车.问:(1)7路公交车行驶速度是琪琪行走速度的倍.(2)7路公交车总站每间隔min发一辆车.【变式1-3】(2023春·湖南娄底·七年级统考期末)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,则他从家里到学校需10分钟,从学校到家里需15分钟.(1)小华家离学校多远?(2)小华从家里到学校到达中点的时间与小华从学校到家里到达中点的时间会一样吗?如果不一样,哪种情况所花的时间更多?请通过计算说明理由.【题型2 工程问题】【例2】(2023春·安徽芜湖·七年级校考期末)自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过小时水池的水刚好注满.【变式2-1】(2023春·四川泸州·七年级泸县五中校考期中)制造某种产品,1人用机器,3人靠手工,每天可制造60件;2人用机器,2人靠手工,每天可制造80件.3人用机器,1人靠手工,每天可制造多少件产品?【变式2-2】(2023春·湖南常德·七年级统考期末)玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需要6周完成,共需装修费5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元,玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)设工作总量为1,甲公司的每周工作效率为m,乙公司每周的工作效率为n,根据题意列出关于m、n的二元一次方程组.(2)如果从节约时间的角度考虑,应选哪家公司?请说明理由.(3)如果从节约开支的角度考虑,应选哪家公司?请说明理由.【变式2-3】(2023春·河北邯郸·七年级统考期中)有一块面积为180亩的荒地需要绿化,甲工程队绿化若干天后,因有急事,剩余工作由乙工程队完成,已知甲工程队每天绿化8亩,乙工程队每天绿化12亩,一共用20天完成.(1)设甲工程队绿化m天,乙工程队绿化n天,依题意可列方程组:______.(2)设甲工程队绿化荒地x亩,乙工程队绿化荒地y亩,请列方程组求甲、乙两工程队分别绿化荒地的亩数.【例3】(2023春·全国·七年级期末)张氏包装厂承接了一批纸盒加工任务,用如图①所示的长方形和正方形纸板作侧面和底面,做成如图①所示的竖式与横式两种上面无盖的长方体纸盒(加工时接缝材料不计).(1)做1个竖式纸盒和2个横式纸盒,需正方形纸板___________张(直接填空),需长方形纸板___________张(直接填空).(2)若该厂购进正方形纸板162张,长方形纸板338张,问竖式纸盒、横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(要求列二元一次方程组解决此问题)3.(2023秋·山东济南·七年级校考期末)列方程组解应题某校为7年级寄宿学生安排宿舍,每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,求该年级寄宿的学生人数和宿舍间数?【变式3-1】(2023春·山东菏泽·七年级统考期中)一套餐桌有一张桌子和六把椅子组成.如果1立方米木料可以制作10张桌子,或制作15把椅子.现有15立方米的木料,请你设计一下,用多少立方米的木料做桌子,多少立方米的木料做椅子,恰好配套成餐桌?【变式3-2】(2023春·广东江门·七年级统考期末)用铁皮材料做罐头盒,每张铁皮可制盒身30个,或制盒底50个,一个盒身与两个盒底配成一套.现有33张铁皮材料,分别用多少张制盒身、盒底,才能保证既恰好用完铁皮材料,又使盒身和盒底正好配套?【变式3-3】(2023秋·安徽滁州·七年级校考开学考试)一工厂有60名工人,要完成1200套产品的生产任务,每套产品由4个A型零件和3个B型零件配套组成,每个工人每天能加工6个A型零件或者3个B型零件.现将工人分成两组,每组分别加工一种零件,并要求每天加工的零件正好配套.(1)工厂每天应安排多少名工人生产A型零件?每天能生产多少套产品?(2)现工厂要在20天内完成1200套产品的生产,决定补充一些新工人,这些新工人只能独立进行A型零件的加工,且每人每天只能加工4个A型零件.①设每天安排x名熟练工人和m名新工人生产A型零件,求x的值(用含m的代数式表示)①请问至少需要补充多少名新工人才能在规定期限完成生产任务?【例4】(2023春·全国·七年级专题练习)5年前母亲的年龄是女儿年龄的15倍,15年后,母亲的年龄比女儿年龄的2倍多6岁.那么现在这对母女的年龄分别是多少?【变式4-1】(2023春·七年级课时练习)爸爸、妈妈、我、妹妹,四人今年的年龄之和是101岁,爸爸比妈妈大1岁,我比妹妹大6岁,十年前,我们一家的年龄之和是63岁,今年爸爸的年龄是()A.38岁B.39岁C.40岁D.41岁【变式4-2】(2023秋·湖南永州·七年级校考开学考试)甲对乙说:“我像你这样大岁数的那年,你的岁数等于我今年的岁数的一半;当你到我这样大岁数的时候,我的岁数是你今年岁数的二倍少7岁.”则今年甲的年龄为岁,乙的年龄为岁.【变式4-3】(2023春·福建泉州·七年级统考期末)南安英都拔拔灯是国家级非物质文化遗产之一,因疫情原因停办了好几年,今年正月又重新举行,吸引了众多的海内外游客参与.其中一位34岁的男子带着他的两个孩子参与了拔拔灯活动,下面是记者与两个孩子的对话:记者:两位小朋友,你们几岁了?这么小就来拔拔灯了.妹妹:我比哥哥少4岁;哥哥:两年后,妹妹年龄的3倍与我的年龄相加.恰好等于爸爸的年龄;根据对话内容,请你用方程(组)的知识帮记者求出今年哥哥和妹妹的年龄.【题型5 销售问题】【例5】(2023春·山东泰安·七年级统考期末)2020年1月底,武汉爆发“新冠”疫情,并开始向全国蔓延,出于防疫的需求,医用口罩迅速成为紧俏物资.某药店为解市民的燃眉之急,先后两次采购了A、B两种型号的医用口罩进行销售.已知这两种型号的医用口罩进货情况如表:(1)问A,B两种型号的口罩的进货单价各是多少元?(2)销售中发现B型口罩的销量明显好于A型,药店在计划第三次采购时,决定购进B型口罩的箱数比A 型口罩的箱数的2倍还多10箱,在采购总价不超过90000元的情况下,最多能购进多少箱B型口罩?【变式5-1】(2023春·重庆·七年级重庆市育才中学校考期中)向日葵水果店推出甲乙两种礼盒,甲礼盒中有樱桃1千克,枇杷0.5千克,香梨1千克,乙礼盒中有樱桃1千克,枇杷0.5千克,哈密瓜1千克,已知樱桃每千克30元,甲礼盒每盒100元,乙礼盒每盒98元,当然,顾客也可根据需要自由搭配,小陶用1100元买乙礼盒和自由搭配礼盒(香梨1千克,枇杷1千克,哈密瓜1千克)若干盒,则小陶一共可买礼盒个.【变式5-2】(2023春·黑龙江大庆·七年级校考期末)某商店分两次购进A,B型两种台灯进行销售,两次购进的数量及费用如下表所示,由于物价上涨,第二次购进A,B型两种台灯时,两种台灯每台进价分别上涨30%,20%.(1)求第一次购进A,B型两种台灯每台进价分别是多少元?(2)A,B型两种台灯销售单价不变,第一次购进的台灯全部售出后,获得的利润为2800元,第二次购进的台灯全部售出后,获得的利润为1800元.①求A,B型两种台灯每台售价分别是多少元?①若按照第二次购进A,B型两种台灯的价格再购进一次,将再次购进的台灯全部售出后,要想使获得的利润为1000元,求有哪几种购进方案?【变式5-3】(2023秋·全国·七年级统考期末)为了解决农民工子女入学难的问题,我市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”.据统计,2004年秋季有5000名农民工子女进入主城区中小学学习,预计2005年秋季进入主城区中小学学习的农民工子女比2004年有所增加,其中小学增加20%,中学增加30%,这样,2005年秋季将新增1160名农民工子女在主城区中小学学习.(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000元计算,求2005年新增加的1160名中小学学生共免收多少“借读费”?(2)如果小学每增加40名学生需配备2名教师,中学每增加40名学生需配备3名教师,若按2005年秋季入学后,农民工子女在主城区中小学就读的学生增加的人数计算,一共需要配备多少名中小学教师?【题型6 分配问题】【例6】(2023春·北京海淀·七年级北京育英中学校考期末)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?【变式6-1】(2023春·广西桂林·七年级校考期中)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车,2名熟练工和3名新工人每月可安装14辆电动汽车(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?【变式6-2】(2023春·浙江·七年级期末)杭州某公司准备安装完成6000辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工a人,现招聘n名新工人(a>n),使得最后能刚好一个月(30天)完成安装任务,求a的值.【变式6-3】(2023春·吉林长春·七年级统考期末)问题解决:糖葫芦一般是用竹签串上山楂.再蘸以冰糖制作而成,现将一些山楂分别串在若干个竹签上,如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签,求竹签有多少根?山楂有多少个?反思归纳:现有m根竹签,n个山楂,若每根竹签串a个山楂,还剩b个山楂,则m、n、a、b满足的等量关系为(用含m、n、a、b的代数式表示).【题型7 几何图形问题】【例7】(2023春·江苏苏州·七年级校联考阶段练习)把长都是宽的两倍的1个大长方形纸片和4个相同的小长方形纸片按图①、图①方式摆放,则图①中的大长方形纸片未被4个小长方形纸片覆盖部分的面积为cm2.【变式7-1】(2023春·江苏常州·七年级统考期末)在长为18m,宽为15m的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,其示意图如图所示,则其中一个小长方形花圃的面积为()A.10m2B.12m2C.18m2D.28m2【变式7-2】(2023春·河南新乡·七年级校考阶段练习)如图,在长方形ABCD中,放入6个形状、大小都相同的小长方形,所标尺寸如图所示.(1)小长方形的长和宽各是多少?(2)求阴影部分的面积.【变式7-3】(2023春·山西·七年级统考期中)小敏通过观察发现,生活中很多产品的包装都是长方体,她从家里找了一个长方体包装盒,将其展开后,得到如图所示的示意图,根据示意图中的数据可得原长方体的体积为cm3.【题型8 数字问题】【例8】(2023春·河北唐山·七年级统考期中)某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数.(1)列一元一次方程求解.(2)如果设原两位数的十位数字为x,个位数字为y,列二元一次方程组.(3)检验(1)中求得的结果是否满足(2)中的方程组.【变式8-1】(2023春·重庆沙坪坝·七年级重庆市第七中学校校考期末)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.三阶幻方的填写规则是将9个不同的整数填入方格中,使得每行、每列、每条对角线上的三个数之和都相等.(1)如图1所示幻方,求x的值;(2)如图2所示幻方,求a,b的值;(3)如图3所示幻方,若m,n为正整数,直接写出一共有多少种填法,并把其中一种幻方填写完整.【变式8-2】(2023秋·辽宁铁岭·七年级统考阶段练习)在《最强大脑》节目中,有很多具有挑战性的比赛项目,其中《幻图圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;①外圆两直径上的四个数字之和相等;则图中外圆周上空白圆圈内填,内圆周上空白圆圈内填内应填.【变式8-3】(2023春·山东潍坊·七年级校考阶段练习)小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!【题型9 古代问题】【例9】(2023秋·安徽滁州·七年级校联考期中)被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每1只各重多少斤?”请列方程组解答上面的问题.【变式9-1】(2023春·湖北武汉·七年级校考阶段练习)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是()尺.A.5B.8C.32D.36【变式9-2】(2023春·江西南昌·七年级统考期末)《九章算术》是我国古代第一部数学专著,书中记载了这样一个问题:“今有上禾三秉,益实六斗,当下禾十秉.下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?”其大意是:今有上等水稻3捆,加稻谷6斗,与下等水稻10捆相当.下等水稻5捆,加稻谷1斗,与上等水稻2捆相当.问上等水稻、下等水稻每捆各有稻谷多少斗?【变式9-3】(2023秋·安徽·七年级校联考阶段练习)《九章算术》中有这样一道题,原文如下:今有上禾六秉,损实一斗八升,当下禾一十秉.下禾十五秉,损实五升,当上禾五秉.问:上、下禾实一秉各几何?大意为:今有上禾6束,减损其中之“实”1斗8升,与下禾10束之“实”相当;下禾15束,减损其中之“实”5升,与上禾5束之“实”相当.问上、下禾每1束之实各为多少?(10升为1斗)【题型10 方案问题】【例10】(2023春·湖南株洲·七年级校考期末)某电器超市销售每台进价为200元,170元的A、B两种型号的电风扇.如表所示是近2周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号电风扇的销售单价;(2)超市销售完A、B两种型号的电风扇共25台,能否实现利润为1200元的目标?请说明理由.(3)一家公司打算花费4000元同时购买A、B两种型号的电风扇若干台,请你为该公司设计不同的购买方案.【变式10-1】(2023秋·福建漳州·七年级校考阶段练习)某公司接到240台空调的安装任务.由于时间紧,该公司没有足够的熟练工人,故决定招聘一批新工人.根据以往安装经验可知,1名熟练工人和2名新工人每天一共可以安装8台空调;2名熟练工人和3名新工人每天一共可以安装14台空调.(1)求每名熟练工人和新工人每天分别可以安装多少台空调?(2)若该公司原有m名熟练工人,现计划招聘n名新工人(m,n均为正整数),为保证刚好用12天完成安装任务,你认为该公司有哪几种招聘方案?【变式10-2】(2023春·湖北荆州·七年级统考期末)荆州作为荆楚文化根脉所在,是楚文化发祥地.首届楚文化节于2023年3月至4月在荆州举办.为更好展现荆州,荆州市特推出A、B两种不同明信片套盒和单张明信片.已知一种A套盒和一种B套盒总价13元,2种A套盒和3种B套盒总价31元;单张明信片1元/张.(1)请求出A、B两种套盒的单价各是多少元?(2)某顾客计划用200元购买这三种商品共127件,如果资金刚好全部用完,问有几种购买方案?【变式10-3】(2023春·广东广州·七年级执信中学校考期中)杂交水稻的发展对解决世界粮食不足问题有着重大的贡献,某超市购进A、B两种大米销售,其中两种大米的进价、售价如下表:(1)该超市在3月份购进A、B两种大米共70袋,进货款恰好为1800元.①求这两种大米各购进多少袋;①据3月份的销售统计,两种大米的销售总额为900元,求该超市3月份已售出大米的进货款为多少元.(2)超市决定在4月份销售A、B两种大米共盈利100元(A,B两种品种都有购进),请你帮助设计一下进货方案,并写出来.【题型11 图表问题】【例11】(2023春·浙江嘉兴·七年级校联考阶段练习)流感期间,小李家购买防护用品的收据如表,有部分数据因污染无法识别,根据表格,解决下列问题:(1)小李家此次购买的酒精喷剂和医用口罩各多少件?(2)小李家计划再次购买消毒水和酒精喷剂共15件,且总价刚好490元,则消毒水购买多少件?(3)小李家准备用270元再次购买消毒纸巾和医用口罩,在270元刚好用完的条件下,有哪些购买方案?【变式11-1】(2023春·河南新乡·七年级统考期末)如图,2个塑料凳子叠放在一起的高度为60cm,4个塑料凳子叠放在一起的高度为80cm,塑料凳子相同且叠放时均忽略缝隙,则11个塑料凳子叠放在一起时的高度为()A.120cm B.130cm C.140cm D.150cm【变式11-2】(2023秋·甘肃武威·七年级校考开学考试)课余活动中,小杰、小明和小丽一起玩飞镖游戏,飞镖盘上A区域所得分值和B区域所得分值不同,每人投5次飞镖,其落点如图所示,已知小杰和小明的5次飞镖总分分别为39分和43分,小丽的5次飞镖总分为分.【变式11-3】(2023春·浙江温州·七年级校联考期中)根据以下素材,完成任务.。
新七年级下学期数学《 二元一次方程组考试试题》含答案.word 版一、选择题1.下列各方程中,是二元一次方程的是( )A .253x y x y -=+B .x+y=1C .2115x y =+D .3x+1=2xy2.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,0x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩ 3.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( ) A .5 B .-5 C .15 D .254.小明要用40元钱买A 、B 两种型号的口罩,两种型号的口罩必须都买....,40元钱全部用尽,A 型每个6元,B 型口罩每个4元,则小明的购买方案有( )种.A .2种B .3种C .4种D .5种5.若关于x ,y 的方程组()348217x y mx m y +=⎧⎨+-=⎩的解也是二元一次方程x -2y =1的解,则m 的值为( )A .52B .32C .12D .16.已知31x y =⎧⎨=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x a y b =⎧⎨=⎩是哪一个方程的解( ) A .34x y += B .34x y -= C .439x y -= D .439x y += 7.12312342345345145125x x x a x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A .12345x x x x x >>>>B .42135x x x x x >>>>C .31425x x x x x >>>>D .53142x x x x x >>>>8.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( )A .173B .888C .957D .699.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .010.若a 为方程250x x +-=的解,则22015a a ++的值为( )A .2010B .2020C .2025D .201911.若二元一次方程组45ax by bx ay +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则a +b 的值是( ) A .9B .6C .3D .1 12.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩ B .135x y x y -=-⎧⎨+=-⎩ C .331x y x y -=⎧⎨-=⎩ D .2335x y x y -=-⎧⎨+=⎩二、填空题13.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.14.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.15.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案.16.为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由A 、B 、C 三种饼干搭配而成,每袋礼包的成本均为A 、B 、C 三种饼干成本之和.每袋甲类礼包有5包A 种饼干、2包B 种饼干、8包C 种饼干;每袋丙类礼包有7包A 种饼干、1包B 种饼干、4包C 种饼干.已知甲每袋成本是该袋中A 种饼干成本的3倍,利润率为30%,每袋乙的成本是其售价的56,利润是每袋甲利润的49;每袋丙礼包利润率为25%.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为4:6:5,则当天该网店销售总利润率为__________.17.方程组1111121132x yx zy z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.18.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.19.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.20.如图,长方形ABCD被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒21.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.22.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.23.已知|x﹣z+4|+|z﹣2y+1|+|x+y﹣z+1|=0,则x+y+z=________.24.对于有理数,规定新运算:x※y=ax+by+xy,其中a、b是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b=__________.三、解答题25.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.26.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a =2,则三角形AOB 的面积为 ;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围.27.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm )(1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?28.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN =43BM ,求m 和n 值.29.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.30.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x x y -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x 为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423x y =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: .(2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A 、分母中含有未知数,是分式方程,故本选项错误;B 、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C 、D 、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误. 故选B .2.B解析:B【分析】将x 、y 的值分别代入x-2y 中,看结果是否等于1,判断x 、y 的值是否为方程x-2y=1的解.【详解】A 项,当0x =,12y时,1202()12x y -=-⨯-=,所以0,12x y =⎧⎪⎨=-⎪⎩是方程21x y -=的解;B 项,当1x =,1y =时,21211y =-⨯=-,所以1,1x y =⎧⎨=⎩不是方程21x y -=的解; C 项,当1x =,0y =时,21201x y -=-⨯=,所以1,0x y =⎧⎨=⎩是方程21x y -=的解; D 项,当1x =-,1y =-时,212(1)1x y -=--⨯-=,所以1,1x y =-⎧⎨=-⎩是方程21x y -=的解,故选B.【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.3.A解析:A【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728x y x y +=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.故选A.【点睛】本题考查了用加减法解二元一次方程组.4.B解析:B【分析】根据题意得出方程,进而得出方程的整数解解答即可.【详解】解:设A 型x 个,B 型口罩y 个,由题意得6x+4y=40,因为x ,y 取正整数,解得:44x y =⎧⎨=⎩,61x y =⎧⎨=⎩,27x y =⎧⎨=⎩, 所以小明的购买方案有三种,故选:B .【点睛】此题考查二元一次方程的应用,关键是根据题意列出二元一次方程解答.5.A解析:A【分析】联立不含m 的方程求出x 与y 的值,进而求出m 的值即可.【详解】解:联立得:34821x y x y +=⎧⎨-=⎩①②, ①+②2⨯得:510x =,解得:2x =,把2x =代入①得:12y =, 把2x =,12y =代入得:12(21)72m m +-=, 解得:52m =. 故选:A .【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键. 6.D解析:D【分析】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩后求出,a b 的值,最后把x a y b =⎧⎨=⎩分别代入四个选项即可. 【详解】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩得:31032a b b -=⎧⎨+=⎩, 解得31a b =⎧⎨=-⎩,即31x y =⎧⎨=-⎩, 当31x y =⎧⎨=-⎩时, 30x y +=,A 选项错误;36x y -=,B 选项错误;4315x y -=,C 选项错误;439x y +=,D 选项正确;故选D【点睛】本题考查对方程的解的理解,方程的解:使方程成立的未知数的值.7.C解析:C【分析】本方程组涉及5个未知数1x ,2x ,3x ,4x ,5x ,如果直接比较大小关系很难,那么考虑方程①②,②③,③④,④⑤,⑤①均含有两个相同的未知数,通过12345a a a a a >>>>可得1x ,2x ,3x ,4x ,5x 的大小关系.【详解】方程组中的方程按顺序两两分别相减得1412x x a a -=-,2523x x a a -=-,3134x x a a -=-,4245x x a a -=-.∵12345a a a a a >>>>∴14x x >,25x x >,31x x >,42x x >,于是有31425x x x x x >>>>.故选C .【点睛】本题要注意并不是任何两个方程都能相减,需要消去两个未知数,保留两个未知数的差,这才是解题的关键.8.A解析:A【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案.【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018=a 12+a 22+…+a 20142+2156,设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845,解得x=888,y=957,z=173,∴有888个1,957个-1,173个0,故答案为173.【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.9.C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.10.B解析:B【分析】先根据a 为方程250x x +-=的解得到25a a +=,然后整体代入即可解答.【详解】解:∵a 为方程250x x +-=的解∴250a a +-=,即25a a +=∴22015a a ++=5+2015=2020.故答案为B .【点睛】本题考查了一元二次方程的解和整体法的应用,正确理解并灵活应用一元二次方程的解解答问题是解答本题的关键.11.C解析:C【分析】根据二元一次方程组的解及解二元一次方程组即可解答.【详解】解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得 2425a b b a +=⎧⎨+=⎩解得:1 2a b =⎧⎨=⎩∴a +b =1+2=3.故选:C .【点睛】此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.12.D解析:D【分析】根据方程组的解的定义,只要检验12x y =⎧⎨=⎩是否是选项中方程的解即可. 【详解】A 、把12x y =⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12x y =⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B 、把12x y =⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误; C 、把12x y =⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误; D 、把12x y =⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12x y =⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D .【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.二、填空题13.100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,解析:100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,则①所购商品的标价小于90元,x ﹣20+x =150,解得x =85;②所购商品的标价大于90元,x ﹣20+x ﹣30=150,解得x =100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.14.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方 解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系.【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x x x -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=,设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255a x bx a xb x +-=+, 化简得:2a b = ∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值. 15.五【分析】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号解析:五【分析】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据题意得:1280×(1+25%)x +(2199-199)×0.85y +(2399-499)z =20600整理得:16x +17y +19z =206∴16(x +y +z )+y +3z =16×12+14∵x 、y 、z 为非负整数,且x 、y 、z 最多一个为0,∴0≤x ≤12,0≤y ≤12,0≤z ≤10,∴14≤y +3z ≤42.设x +y +z =12-k ,y +3z =14+16k ,其中k 为非负整数.∴14≤14+16k ≤42,∴0≤k <2.∵k 为整数,∴k =0或1.(1)当k=0时,x+y+z=12,y+3z=14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.综上所述:共有111xyz=⎧⎪=⎨⎪=⎩,282xyz=⎧⎪=⎨⎪=⎩,453xyz=⎧⎪=⎨⎪=⎩,624xyz=⎧⎪=⎨⎪=⎩,110xyz=⎧⎪=⎨⎪=⎩五种方案.故答案为:五.【点睛】本题考查了三元一次方程的应用.分类讨论是解答本题的关键.16.25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为解析:25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为12x,成本为10x;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x,进而确定丙礼包的售价为15x,成本为12x;最后再由利润率的求法求出总利润率即可.【详解】解:设每包A、B、C三种饼干的成本分别为x、y、z,依题意得:5x+2y+8z=15x,∴5x=y+4z,由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x,成本15x;∵每袋乙的成本是其售价的56,利润是每袋甲利润49,可知每袋乙礼包的利润是:4.5x×49=2x,则乙礼包的售价为12x,成本为10x;由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x,∵每袋丙礼包利润率为:25%,∴丙礼包的售价为15x,成本为12x;∵甲、乙、丙三种礼包袋数之比为4:6:5,∴19.54612515415610512100%25% 415610512x x x x x xx x x⨯+⨯+⨯-⨯-⨯-⨯⨯=⨯+⨯+⨯,∴总利润率是25%,故答案为:25%.【点睛】本题考查三元一次方程组的应用;理解题意,能够通过已知条件逐步确定甲、乙、丙的售价与成本价是解题的关键.17.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】解析:43445 xyz⎧=⎪⎪=⎨⎪⎪=⎩【分析】先将三个方程依次标号,然后相加可得11194x y z++=④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.18.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
7。
2二元一次方程组的解法一.选择题(共8小题)1.方程组的解是()A.B.C.D.2.方程组的解是()A.B.C.D.3.若x=1,y=2满足方程(ax+by﹣12)2+|ay﹣bx+1|=0,则a,b的值为()A.a=3,b=4 B.a=﹣4,b=﹣3 C.a=2,b=5 D.a=﹣5,b=﹣24.解方程组时你认为最简单的方法是()A.用代入法先消去x或y B.用①×15﹣②×23,先消去xC.用①×6﹣②×4,先消去y D.用①×3+②×2,先消去y5.若4a﹣3b=7,3a+2b=19,则14a﹣2b是()A.48 B.52 C.58 D.606.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是() A.B.C.D.7.如果ma m b3﹣n与nab m是同类项,那么(m﹣n)2001的值是( )A.0 B.1 C.﹣1 D.﹣320018.已知,则x y的值为()A.16 B.9 C 8 D.6二.填空题(共6小题)9.二元一次方程组的解为_________ .10.若|x﹣8y+2|+(2y﹣x+1)2=0,则(﹣x+5y)3的值是_________ .11.若(3x﹣2y+4)2与|4x﹣y﹣3|互为相反数,则x= _________ ,y= _________ .12.x与y互为相反数,且x﹣y=3,那么x2+2xy+1的值为_________ .13.方程组有正整数解,则正整数a= _________ .14.若二元一次方程组的解中,x与y的值相等,那么m+n的值等于_________ .三.解答题(共10小题)15.解方程组.16.解方程(组):(1).(2).17.解方程组:(1);(2).18.解方程组:.19.解方程组:.20.解方程组.21.解方程组.22.解方程组:.23.解方程组:.24.解下列方程组:.7。
最新七年级初一下学期数学二元一次方程组试卷及答案百度文库一、选择题1.下列方程组中是二元一次方程组的是()A.12xyx y=⎧⎨+=⎩B.52313x yyx-=⎧⎪⎨+=⎪⎩C.20135x zx y+=⎧⎪⎨-=⎪⎩D.5723zz y=⎧⎪⎨+=⎪⎩2.已知∠A、∠B互余,∠A比∠B大30°,设∠A、∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.18030x yx y+=⎧⎨=-⎩B.180+30x yx y+=⎧⎨=⎩C.9030x yx y+=⎧⎨=-⎩D.90+30x yx y+=⎧⎨=⎩3.在关于x、y的二元一次方程组321x y ax y+=⎧⎨-=⎩中,若232x y+=,则a的值为()A.1 B.-3 C.3 D.44.已知方程组32453x y ax y-=⎧⎨+=⎩的解x与y互为相反数,则a等于()A.3 B.﹣3 C.﹣15 D.155.某小区准备新建 50 个停车位,已知新建 1 个地上停车位和 1 个地下停车位共需 0.6万元;新建 3 个地上停车位和 2 个地下停车位共需 1.3 万元,求该小区新建 1 个地上停车位和1个地下停车位各需多少万元?设新建 1 个地上停车位需要x 万元,新建 1 个地下停车位需y 万元,列二元一次方程组得()A.632 1.3x yx y+=⎧⎨+=⎩B.623 1.3x yx y+=⎧⎨+=⎩C.0.632 1.3x yx y+=⎧⎨+=⎩D.63213x yx y+=⎧⎨+=⎩6.二元一次方程组2213x yax y+=⎧⎪⎨+=⎪⎩的解也是方程36x y-=-的解,则a等于()A.-3 B.13-C.3 D.137.某次数学竞赛共出了25题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小杰不答的题比答错的题多2道,总分是74分,则他答对了()A.16题B.17题C.18题D.19题8.已知22xy=-⎧⎨=⎩是方程kx+2y=﹣2的解,则k的值为()A.﹣3 B.3 C.5 D.﹣59.小敏和小捷两人玩“打弹珠”游戏,小敏对小捷说:“把你珠子的一半给我,我就有30颗珠子”.小捷却说:“只要把你的12给我,我就有30 颗”,如果设小捷的弹珠数为x 颗,小敏的弹珠数为y 颗,则列出的方程组正确的是()A .230260x y x y +=⎧⎨+=⎩B .230230x y x y +=⎧⎨+=⎩C .260230x y x y +=⎧⎨+=⎩D .260260x y x y +=⎧⎨+=⎩10.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( )A .﹣1B .1C .﹣5D .511.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只 雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为( ) A .56156x y x y y x +=⎧⎨-=-⎩ B .65156x y x y y x +=⎧⎨+=+⎩ C .56145x y x y y x +=⎧⎨+=+⎩ D .65145x y x y y x+=⎧⎨-=-⎩12.关于x 、y 的方程组53x ay x y +=⎧⎨-=⎩的解是1•x y =⎧⎨=⎩,其中y 的值被盖住了,不过仍能求出a ,则a 的值是( ) A .2B .-2C .1D .-1二、填空题13.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的橫、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′,则a =_____,m =_____,n =_____.若正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,则点F 的坐标为_____.14.方程组251036238x y z x z ⎧+-=⎪⎨⎪-=⎩__________________三元一次方程组(填“是”或“不是”).15.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.16.某“欣欣”奶茶店开业大酬宾推出...A B C D 四款饮料.1千克A 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元17.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.18.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒19.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.20.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人. 21.从﹣2,﹣1,0,1,2,3这六个数中,任取一个数作为a 的值,恰好使得关于x 、y的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax+1=0有实数根的概率是_____.22.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______.23.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 24.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.三、解答题25.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.26.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0Bb 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.27.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a=2,则三角形AOB的面积为;(2)若点B到y轴的距离是点C到y轴距离的2倍,求a的值;(3)连接AB、AC、BC,若三角形ABC的面积小于等于9,求m的取值范围.28.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.29.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y,的值并在图3中填出剩余的数字.30.在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD.(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由. 31.如图,已知()0,A a ,(),0Bb ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.32.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共50台,其中A 型电脑的进货量不少于14台,B 型电的进货量不少于A 型电脑的2倍,那么该商店有几种进货方案?该商场购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m (0<m<100)元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这50台电脑销售总利润最大的进货方案.33.(1)阅读下列材料并填空:对于二元一次方程组4354{336x yx y+=+=,我们可以将x,y的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b==,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x yx y+=+=的过程.34.计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.()1若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;()2若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案;()3若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.35.在今年“六•一”期间,扬州市某中学计划组织初一学生到上海研学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该学校初一年级参加研学活动的师生共有303名,旅行社承诺每辆车安排一名导游,导游也需一个座位.旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保证所租的每辆车均有一名导游,租车方案调整为:同时租65座、甲种客车和乙种客车的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案应如何安排?36.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】含有两个未知数,并且所含未知数的项的次数是1的整式方程组是二元一次方程组,根据定义解答.【详解】A、B、C都不是二元一次方程组,D符合二元一次方程组的定义,故选:D.【点睛】此题考查二元一次方程组的定义,正确理解定义并运用解题是关键.2.D解析:D【解析】试题解析:∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选D.3.C解析:C【解析】分析:上面方程减去下面方程得到2x+3y=a﹣1,由2x+3y=2得出a﹣1=2,即a=3.详解:3{21x y ax y+=-=①②,①﹣②,得:2x+3y=a﹣1.∵2x +3y =2,∴a ﹣1=2,解得:a =3. 故选C .点睛:本题主要考查解二元一次方程组,观察到两方程的系数特点和等式的基本性质是解题的关键.4.C解析:C 【分析】x 与y 互为相反数,得y=-x ,带入到方程组32453x y ax y -=⎧⎨+=⎩消去y ,得到关于x 、a 的二元一次方程组即可. 【详解】由x 与y 互为相反数,得y=-x ,代入方程组32453x y ax y -=⎧⎨+=⎩,得32453x x a x x +=⎧⎨-=⎩,解得:315x a =-⎧⎨=-⎩,故选:C . 【点睛】本题主要考查二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.5.C解析:C 【分析】根据“新建1个地上停车位和1个地下停车位共需0.6万元”以及“新建3个地上停车位和2个地下停车位共需1.3万元”分别列出等式,由此进一步即可得出相应的方程组. 【详解】由题意得:新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元, ∵新建1个地上停车位和1个地下停车位共需0.6万元, ∴0.6xy,又∵新建3个地上停车位和2个地下停车位共需1.3万元, ∴32 1.3x y +=, ∴可列方程组为:0.632 1.3x y x y +=⎧⎨+=⎩,故选:C . 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.6.C解析:C 【分析】把2x y +=与36x y -=-组成方程组,求出x ,y 的值,再代入方程213ax y +=,即可解答. 【详解】由题意得:236x y x y +=⎧⎨-=-⎩,解得:13x y =-⎧⎨=⎩,把13x y =-⎧⎨=⎩代入方程213ax y +=,得:()21313a⨯-+⨯=,解得:3a =. 故选:C . 【点睛】本题考查了二元一次方程组的解,方程组的解为能使方程组中两方程都成立的未知数的值.7.D解析:D 【分析】设答对了x 道题,答错了y 道题,则不答的题有()25?–x y +,根据“不答的题比答错的题多2道”以及“总分是74分”,列出方程组解出即可. 【详解】设答对了x 道题,答错了y 道题,则不答的题有()25?–x y +, 根据题意得:()25?–2474x y y x y ⎧+=+⎨-=⎩,解得:192x y =⎧⎨=⎩,故小杰他答对了19题, 故选:D . 【点睛】本题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.8.B解析:B 【分析】把22x y =-⎧⎨=⎩代入是方程kx +2y =﹣2得到关于k 的方程求解即可.【详解】解:把22x y =-⎧⎨=⎩代入方程得:﹣2k +4=﹣2,解得:k =3, 故选B . 【点睛】本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.9.D解析:D 【解析】 【分析】根据题中的等量关系:①把小捷的珠子的一半给小敏,小敏就有30颗珠子; ②把小敏的12给小捷,小捷就有30颗.列出二元一次方程组即可. 【详解】解:根据把小捷的珠子的一半给小敏,小敏就有30颗珠子,可表示为y+2x=30,化简得2y+x=60;根据把小敏的12给小捷,小捷就有30颗.可表示为x+y2=30,化简得2x+y=60. 故方程组为:260260x y x y +=⎧⎨+=⎩故选:D. 【点睛】本题首先要能够根据题意中的等量关系直接表示出方程,再结合答案中的系数都是整数,运用等式的性质进行整理化简.10.A解析:A 【分析】把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案. 【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-, 故选A . 【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.11.C解析:C 【分析】根据题意,可以列出相应的方程组,从而可以解答本题. 【详解】根据题目条件找出等量关系并列出方程:(1)五只雀和六只燕共重一斤,列出方程:5x+6y =1(2) 互换其中一只,恰好一样重,即四只雀和一只燕的重量等于五只燕一只雀的重量,列出方程:4x+y =5y+x, 故选C. 【点睛】此题考查二元一次方程组应用,解题关键在于列出方程组12.B解析:B 【分析】把1x =代入②,得到y 的值,再将x 和y 的值代入①即可求解. 【详解】解:53x ay x y +=⎧⎨-=⎩①②,把1x =代入②,得2y =-,把12x y =⎧⎨=-⎩代入①可得:125a -=,解得2a =-,故选:B . 【点睛】本题考查二元一次方程组的解,把1x =代入②得到y 的值是解题的关键.二、填空题13.(1,4) 【分析】首先根据点A 到A′,B 到B′的点的坐标可得方程组 , ,解可得a 、m 、n 的值,设F点的坐标为(x,y),点F′点F重合可列出方程组,再解可得F点坐标.【详解】由点A解析:1212(1,4)【分析】首先根据点A到A′,B到B′的点的坐标可得方程组312a mn-+=-⎧⎨=⎩,322a mn+=⎧⎨=⎩,解可得a、m、n的值,设F点的坐标为(x,y),点F′点F重合可列出方程组,再解可得F点坐标.【详解】由点A到A′,可得方程组312a mn-+=-⎧⎨=⎩;由B到B′,可得方程组322a mn+=⎧⎨=⎩,解得12122amn⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,设F点的坐标为(x,y),点F′点F重合得到方程组1122122x xy y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14 xy=⎧⎨=⎩,即F(1,4),故答案为:12,12,2,(1,4).【点睛】本题主要考查了坐标与图形变化-平移以及二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组.14.是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可. 【详解】解:如果方程组中含有三解析:是 【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可. 【详解】解:如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组.所以251036238x y z x z ⎧+-=⎪⎨⎪-=⎩是三元一次方程组; 故填:是. 【点睛】本题主要考查三元一次方程组的定义.15.【分析】根据方程组解的定义,把x =5,y =10代入即可得出a1,a2,c1,c2的关系,再代入计算即可. 【详解】 解:∵方程组∵解为:x =5,y =10, ∴, ∴ ∵, ∴, ①−②,得3a解析:25x y ⎧⎨⎩== 【分析】根据方程组解的定义,把x =5,y =10代入即可得出a 1,a 2,c 1,c 2的关系,再代入计算即可. 【详解】解:∵方程组1122==a x y c a x y c +⎧⎨+⎩∵解为:x =5,y =10,∴1122510=510=a c a c +⎧⎨+⎩,∴()12125a a c c -=-∵11122232=32=a x y a c a x y a c ++⎧⎨++⎩,∴112232=61032=610a x y a a x y a ++⎧⎨++⎩①②,①−②,得3a 1x−3a 2x =6a 1−6a 2, ∴x =2,把x =2代入①得,y =5, ∴方程组11122232=32a x y a c a x y a c ++⎧⎨+=+⎩的解是=2=5x y ⎧⎨⎩,故答案为:=2=5x y ⎧⎨⎩.【点睛】本题考查了解二元一次方程组,掌握方程组的解法是解题的关键.16.5 【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案. 【详解】 解:设A解析:5 【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案. 【详解】解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩,整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩,解得:153220a b c d +=⎧⎨+=⎩,∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=, 故答案为:192.5. 【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.17.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系. 【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x xx -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=,设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255ax bx a x b x +-=+, 化简得:2a b =∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12.【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值.18.98【解析】【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE列出三元一次方程组,再利用加减消元法即可求得y的值.【解析:98【解析】【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE 列出三元一次方程组,再利用加减消元法即可求得y的值.【详解】设未知的三块面积分别为x,y,z(如图),则x+y+76=24+87+55+19+z,z+y+87=55+x+24+19+76,即x+y-z=109①,z+y-x=87②由①+②得,y=98.即图中阴影部分的面积是98﹒故答案为:98.【点睛】本题主要考查了矩形的性质,解决本题的关键是理清三角形与矩形间的面积关系,列出三元一次方程组,再通过加减消元,得到阴影部分的面积.19.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x和y关于a的解,根据方程组的解是正整数,得到5-a与a+4都要能被3整除,即可得到答案.,①-②得:3y=5-a ,解析:2或-1 【解析】 【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案. 【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a-,把y=53a -代入①得:x+53a -=3,解得:x=+43a ,∵方程组的解为正整数, ∴5-a 与a+4都要能被3整除, ∴a=2或-1, 故答案为2或-1. 【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.20.48 【分析】设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列出4个方程,然后整理得到不含c 的两个方程,再分情况讨论整数倍x 的值,得到符合题意的解即可解析:48 【分析】设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列出4个方程,然后整理得到不含c 的两个方程,再分情况讨论整数倍x 的值,得到符合题意的解即可. 【详解】解:设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的根据题意可列方程: c=d ﹣8,a=xd (x >1,且为整数), d+a=5(b+c ), b+a=c+d+24, 整理可得:283727d ba b =-⎧⎨=-⎩, 当x=2时,解得b=16,d=﹣20,不符合题意,舍去;当x=3时,解得b=6,d=10,a=30,c=2,则旅行团共有6+10+30+2=48人; 当x >3时,求得的b 均为负数,不符合题意. 故答案为48. 【点睛】本题主要考查列方程,解多元一次方程,解此题的关键在于根据题意准确列出方程.21.【分析】从6个数中找到使得关于x 、y 的二元一次方程组有整数解,且方程ax2+ax+1=0有实数根的a 的个数后利用概率公式求解即可. 【详解】解:能使得使得关于x 、y 的二元一次方程组有整数解的解析:16 【分析】从6个数中找到使得关于x 、y 的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的个数后利用概率公式求解即可. 【详解】解:能使得使得关于x 、y 的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解的a 的值有﹣2,0,2共3个数.当a =0时,方程ax 2+ax +1=0无实数根,∴a ≠0.∵方程ax 2+ax +1=0有实数根,∴b 2﹣4ac =a 2﹣4a ≥0且a ≠0,解得:a <0或a ≥4,∴使得关于x 、y 的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的值只有﹣2,共1个,∴P (使得关于x 、y 的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根)=16.故答案为16. 【点睛】本题考查了概率公式的应用,二元一次方程组的解以及根的判别式.用到的知识点为:概率=所求情况数与总情况数之比.22.7或3 【解析】 【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可. 【详解】 由题意得, 解得:或,当a=2,b=-2时,=7; 当a=-2,b=2时,=3, 故答案为:7或解析:7或3 【解析】 【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可. 【详解】由题意得04a b a b +=⎧⎨-=⎩, 解得:22a b =⎧⎨=-⎩或22a b =-⎧⎨=⎩, 当a=2,b=-2时,2a ab 1a ab 1-+++=7;当a=-2,b=2时,2a ab 1a ab 1-+++=3, 故答案为:7或3. 【点睛】本题考查了解二元一次方程组以及代数式求值,正确求出a 、b 的值是解题的关键.23.【解析】 由题意得:, 解得:a=,b=, 则※b=a+b²+=, 故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393 a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值. 24.520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1解析:520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1)、规律型:(2)、数字的变化类.三、解答题。
七年级下学期数学《 二元一次方程组考试试题》含答案word 版一、选择题1.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,0x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩2.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( )A .23-B .23C .16-D .163.二元一次方程2x+3y=15的正整数解的个数是( )A .1个B .2个C .3个D .4个4.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( ) A .329557230x y x y +=⎧⎨+=⎩ B .239557230x y x y +=⎧⎨+=⎩ C .329575230x y x y +=⎧⎨+=⎩ D .239575230x y x y +=⎧⎨+=⎩5.把方程23x y -=改写成用含x 的式子表示y 的形式( ) A .23y x =-B .23y x =+C .1322x y =+ D .132x y =+ 6.在平面直角坐标系中有三个点()1,1A -()1,1B --()0,1C ,点()0,2P 关于A 的对称点为1P ,1P 关于B 的对称点2P ,2P 关于C 的对称点为3P ,按此规律继续以A ,B ,C为对称中心重复前面操作,依次得到4P ,5P ,6P ……则点2022P 的坐标为( ) A .(0,0) B .(0,2)C .(2,-4)D .(-4,2)7.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( )A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁8.小兰:“小红,你上周买的笔和笔记本的价格是多少啊?”小红:“哦,…,我忘了!只记得先后买了两次,第一次买了 5 支笔和 10 本笔记本共花了 42 元钱,第二次买了 10 文笔和 5 本笔记本共花了 30 元钱.”请根据小红与小兰的对话,求得小红所买的笔和笔 记本的价格分别是( ) A .0.8 元/支,2.6 元/本 B .0.8 元/支,3.6 元/本 C .1.2 元/支,2.6 元/本 D .1.2 元/支,3.6 元/本9.方程组22{?23x y mx y +=++=中,若未知数x 、y 满足x-y>0,则m 的取值范围是( )A .m >1B .m <1C .m >-1D .m <-110.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( )A .6(1)5(211)y x x y =-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y x x y =⎧⎨+-=⎩D .65(21)y x x y =⎧⎨+=⎩11.下列方程中是二元一次方程的是( ) A .(2)(3)0x y +-= B .-1x y = C .132x y=+D .5xy =12.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .9二、填空题13.方程组251036238x y z x z ⎧+-=⎪⎨⎪-=⎩__________________三元一次方程组(填“是”或“不是”).14.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.15.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____. 16.某餐厅以A 、B 两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A 、200克B ;乙产品每份含200克A 、100克B .甲、乙两种产品每份的成本价分别为A 、B 两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A 、B 两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元. 17.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A、B水果的总费用比第一次购买A、B水果的总费用少10%(两次购买中A、B两种水果的单价不变),则B种水果的单价与A种水果的单价的比值是______.18.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A、B、C类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B类组合含有40件棉衣,40件防寒服;一个C类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了_____件.19.若m1,m2,…,m2019是从0,1,2,这三个数中取值的一列数,m1+m2+…+m2019=1525,( m1-1)2+(m2-1)2+…+(m2019-1)2=1510,则在m1,m2,…,m2019中,取值为2的个数为___________.20.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.21.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.22.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.23.如图,长方形ABCD被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒24.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A、B两种文学书籍若干本,用去6138元.其中A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本.三、解答题25.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y p q x y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.26.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a =2,则三角形AOB 的面积为 ;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围. 27.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?28.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”; (2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值. 29.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫=⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭. ①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.30.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m 根小木棍摆出了p 个小正方形,请你用等式表示,m p 之间的关系: ; (2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s 排,共t 个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t 之间的关系,并写出所有,s t 可能的取值.31.如图,已知()0,A a ,(),0Bb ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标. 32.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.33.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载) 车型甲乙丙(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)34.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共50台,其中A 型电脑的进货量不少于14台,B 型电的进货量不少于A 型电脑的2倍,那么该商店有几种进货方案?该商场购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这50台电脑销售总利润最大的进货方案.35.计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.()1若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;()2若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案;()3若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.36.善于思考的小军在解方程组2534115x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4105x y y ++=,即()2255x y y ③++=把方程①代入③,得2351y y ⨯+=∴=-,把1y =-代入①,得4x =,∴原方程组的解为41x y =⎧⎨=-⎩请你解决以下问题:模仿小军的“整体代换法”解方程组3259419x y x y ;-=⎧⎨-=⎩(2)已知x y 、满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩①,②求224x y +与xy 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将x 、y 的值分别代入x-2y 中,看结果是否等于1,判断x 、y 的值是否为方程x-2y=1的解. 【详解】 A 项,当0x =,12y 时,1202()12x y -=-⨯-=,所以0,12x y =⎧⎪⎨=-⎪⎩是方程21x y -=的解;B 项,当1x =,1y =时,21211y =-⨯=-,所以1,1x y =⎧⎨=⎩不是方程21x y -=的解;C 项,当1x =,0y =时,21201x y -=-⨯=,所以1,0x y =⎧⎨=⎩是方程21x y -=的解;D 项,当1x =-,1y =-时,212(1)1x y -=--⨯-=,所以1,1x y =-⎧⎨=-⎩是方程21x y -=的解, 故选B. 【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.2.A解析:A 【分析】根据方程的解满足方程,课的关于k 的方程,根据解方程,可得答案. 【详解】 解:由题意,得 6×(-3)k-2×2=8,解得k=-23, 故选A . 【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k 方程是解题关键.3.B解析:B 【详解】 解:2x+3y=15, 解得:x=3152y -+, 当y=1时,x=6;当y=3时,x=3, 则方程的正整数解有2对. 故选:B4.B解析:B 【解析】分析:根据题意,确定等量关系为:若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,根据所设未知数列方程,构成方程组即可. 详解:设每个排球x 元,每个实心球y 元, 则根据题意列二元一次方程组得:239557230x y x y +=⎧⎨+=⎩,故选B .点睛:此题主要考查了二元一次方程组的应用,关键是确定问题中的等量关系,列方程组.5.A解析:A 【分析】把x 看做已知数求出y 即可. 【详解】方程2x−y =3,解得:y =2x−3, 故选:A . 【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.6.B解析:B 【分析】设1(,)P x y ,再根据中点的坐标特点求出x 、y 的值,找出循环的规律即可得出点2022P 的坐标. 【详解】 解:设1(,)P x y ,点(1,1)A -、(1,1)B --、(0,1)C ,点(0,2)P 关于A 的对称点为1P ,1P 关于B 的对称点2P ,∴12x =,212y +=-, 解得2x =,4y =-,1(2,4)P .同理可得,2(4,2)P ,3(4,0)P ,4(2,2)P ,5(0,0)P ,6(0,2)P ,7(2,4)P ,⋯,∴每6个操作循环一次.20226337,∴点2022P 的坐标与6P 相同,即:(0,2).故选:B . 【点睛】题考查的是点的坐标,根据题意找出规律是解答此题的关键.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.7.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.8.D解析:D 【分析】首先设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,根据关键语句“第一次买了5支笔和10本笔记本共花了42元钱,”可得方程5x+10y=42,“第二次买了10支笔和5本笔记本共花了30元钱”可得方程10x+5y=30,联立两个方程,再解方程组即可. 【详解】解:设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,由题意得:5104210530x y x y +=⎧⎨+=⎩ 解得: 1.23.6x y =⎧⎨=⎩ 故答案为D. 【点睛】本题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的等量关系,再列出方程组即可.9.B解析:B 【解析】解方程组22{23x y m x y +=++=得43{123mx my -=+=, ∵x 、y 满足x-y>0,∴412330333m m m-+--=>, ∴3-3m>0, ∴m<1. 故选B.10.A解析:A 【分析】设原有树苗x 棵,公路长为y 米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可. 【详解】设原有树苗x 棵,公路长为y 米,由题意,得6(1)5(211)y x x y =-⎧⎨+-=⎩,故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.11.B解析:B 【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误;-1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误; 5xy =最高次是2次,故D 选项错误.故选:B 【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键.12.C解析:C 【分析】利用加减消元法解方程组即可. 【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③, ①+②+③得: 3x+3y+3z=90. ∴x+y+z=30 ④ ②-①得: y+z-2x=0 ⑤ ④-⑤得: 3x=30 ∴x=10 故答案选:C . 【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.二、填空题 13.是 【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可. 【详解】解:如果方程组中含有三解析:是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组.所以251036238x y zx z⎧+-=⎪⎨⎪-=⎩是三元一次方程组;故填:是.【点睛】本题主要考查三元一次方程组的定义.14..【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入中即可求出结论.【详解】设每个进水口每小时进解析:38 17.【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入124%32x y--中即可求出结论.【详解】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,依题意,得:()() 534115% 243115%x yx y⎧-=-⎪⎨-=-⎪⎩,解得:0.170.085 xy=⎧⎨=⎩,∴124%38 3217x y-=-.故答案为:38 17.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.15.15% 【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可. 【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻解析:15% 【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可. 【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩, 化简得30(1)2(2)501542(3)a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b =6a (4),把(2)和(4)都代入(3)得,300ax =15a +24a +6a , ∴x =15%, 故答案为15%. 【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.16.824 【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为元,生产甲产品x 份,乙产品y 份,根据题意列方程求出 【详解】 解:∵甲产品每解析:824 【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意列方程求出 【详解】解:∵甲产品每份含200克A 、200克B ,甲产品每份成本价为16元 ∴100克A 原料和100克B 原料的成本为8元设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意可得出:[]4312016(28)162(8)688x y x m m y x m m y +≤⎧⎨++-=+-++⎩整理得出:4344my y =+∴餐厅每天实际成本16(8)1612344W x m y x y =++=++ ∵43120x y +≤ ∴1612480x y +≤∴餐厅每天实际成本的最大值为:480344824+=(元). 故答案为:824. 【点睛】本题考查的知识点是二元一次方程组的应用,读懂题意,理清题目中的各关系量是解此题的关键.17.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系. 【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x xx -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=,设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255ax bx a x b x +-=+, 化简得:2a b =∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值.18.14600 【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决. 【详解析:14600 【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决. 【详解】解:设A 类组合x 个,B 类组合y 个,C 类组合z 个,6040401160050507500x y z x ++=⎧⎨+=⎩, 化简,得 28022130x yz y =-⎧⎨=-⎩, ∴需要的防寒服为:80x +40y +60z =80(280﹣2y )+40y +60(2y ﹣130)=22400﹣160y +40y +120y ﹣7800=14600, 故答案为:14600. 【点睛】本题考查三元一次方程组的应用,解答本题的关键是明确题意,列出相应的三元一次方程组,利用方程的知识解答.19.508【分析】先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.【详解】解:设0有a个,1有b个,2有c个,由题意得:解得:故取值为2的个数为508个,故答案为:508解析:508【分析】先设0有a个,1有b个,2有c个,根据据题意列出方程组2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩求解即可.【详解】解:设0有a个,1有b个,2有c个,由题意得:2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩解得:1002509508 abc=⎧⎪=⎨⎪=⎩故取值为2的个数为508个,故答案为:508.【点睛】此题主要考查了三元一次方程组的应用,会根据题意设未知数列方程并正确求解是解题的关键.20.30【分析】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整数),然后根据整除的性质解答即可.【详解】设每框解析:30【分析】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整数),然后根据整除的性质解答即可.【详解】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得:k=9a+7=7b+4=5c+2(k,a,b,c都是正整数)∴9a+7=5c+2,∴9a=5(c-1),∴a是5的倍数.不妨设a=5m(m为正整数),∴k=45m+7=7b+4,∴b=4533(1)677m mm++=+,∵b和m都是正整数,∴m的最小值为6.∴a=5m=30.故答案为:30.【点睛】本题考查了三元一次方程的应用,解答本题的关键是明确题意,列出相应的者方程,会根据整除性进一步设未知数.21.5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由题意可得:5x+15y+40z=10(x﹣3)+20(y﹣2)+30(z﹣1)①,z=y﹣7 ②;由①得:x+y﹣2z=20 ③,将②代入③得:x+y﹣2(y﹣7)=20,解得:x﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x﹣3)﹣(y﹣2)=(x﹣y)﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5. 【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.22.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道. 【详解】设x 道难题,y 道中档题,z 道容易题。
最新七年级数学下学期二元一次方程组考试试题及答案百度文库一、选择题1.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=-1 B.m=-1,n=1 C.14m,n33==-D.14,33m n=-=2.已知方程组43235x y kx y-=⎧⎨+=⎩的解满足x y=,则k的值为()A.1 B.2 C.3 D.43.已知559375a ba b+=⎧⎨+=⎩,则-a b等于()A.8 B.83C.2 D.14.已知方程组2x yx y a-=⎧⎨+=⎩,且5x y=,则a等于()A.5 B.4 C.3 D.25.某次数学竞赛共出了25题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小杰不答的题比答错的题多2道,总分是74分,则他答对了()A.16题B.17题C.18题D.19题6.方程组2x yx y3+=⎧+=⎨⎩的解为{x2y==,则被遮盖的两个数分别为( )A.2,1 B.5,1 C.2,3 D.2,47.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④8.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么()A.甲比乙大5岁B.甲比乙大10岁C.乙比甲大10岁D.乙比甲大5岁9.满足方程组35223x y mx y m+=+⎧⎨+=⎩的x,y的值的和等于2,则m的值为().A.2B.3C.4D.510.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x y x y =⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A .2+164322x y x y =⎧⎨+=⎩B .2+164327x y x y =⎧⎨+=⎩C .2+114322x y x y =⎧⎨+=⎩D .2+114327x y x y =⎧⎨+=⎩11.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x 只鸡,y 只兔,则列出的方程组为( )A .30284x y x y +=⎧⎨+=⎩B .302484x y x y +=⎧⎨+=⎩C .304284x y x y +=⎧⎨+=⎩D .30284x y x y +=⎧⎨+=⎩12.方程组125x y x y +=⎧⎨+=⎩的解为( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩二、填空题13. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 14.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 15.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________16.在平面直角坐标系中,当点M (x,y )不在坐标轴上时,定义点M 的影子点为M /(,)y x x y -.已知点P 的坐标为(a,b ),且a 、b 满足方程组3401416a cbc ⎧++-=⎪-=-(c 为常数).若点P 的影子点是点P /,则点P /的坐标为___.17.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满. 18.从﹣2,﹣1,0,1,2,3这六个数中,任取一个数作为a 的值,恰好使得关于x 、y的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax+1=0有实数根的概率是_____.19.若方程组2232x y k x y k+=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____.20.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干. 21.两位同学在解方程组时,甲同学正确地解出,乙同学因把c 写错而解得,则a=_____,b=_____,c=_____.22.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组3()()162()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__.23.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.24.若(x ﹣y +3)2+=0,则x +y 的值为______.三、解答题25.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?26.阅读材料并回答下列问题:当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,2 2n+)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点A(a,﹣4)是“爱心点”,请求出a的值;(3)已知p,q为有理数,且关于x,y的方程组333x y p qx y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点B(x,y)是“爱心点”,求p,q的值.27.在平面直角坐标系中,点A、B在坐标轴上,其中()0,A a、(),0B b满足|21|280a b a b--++-=.(1)求A、B两点的坐标;(2)将线段AB平移到CD,点A的对应点为()2,C t-,如图1所示,若三角形ABC的面积为9,求点D的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图2所示.P为线段AB上的一动点(不与A、B重合),连接OP、PE平分OPB∠,2BCE ECD∠=∠.求证:3()BCD CEP OPE∠=∠-∠.28.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.29.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”;(2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值.30.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(a,a ),点B 的坐标(b,c ),且a 、b 、c 满足34624a b c a b c +-=⎧⎨-+=-⎩.(1)若a 没有平方根,判断点A 在第几象限并说明理由.(2)连AB 、OA 、OB ,若△OAB 的面积大于5而小于8,求a 的取值范围;(3)若两个动点M (2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M 、N 为端点的线段MN ∥AB ,且MN=AB .若存在,求出M 、N 两点的坐标;若不存在,请说明理由. 31.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨? (2)请你帮个体商贩张杰设计共有多少种租车方案?32.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)33.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元:(1)求x y、的值;(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件、乙2件、丙1件,共需315元;如果购买甲1件,乙2件,丙3件,共需285元,某顾客想购买甲、乙、丙各一件共需多少元?34.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.35.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).()1A、B两种花草每棵的价格分别是多少元?()2若再次购买A、B两种花草共12棵(A、B两种花草价格不变),且A种花草的数量不少于B种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.36.(1)阅读下列材料并填空:对于二元一次方程组4354{336x yx y+=+=,我们可以将x,y的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b==,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据二元一次方程的概念列出关于m 、n 的方程组,解之即可. 【详解】∵关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,∴22111m n m n --=⎧⎨++=⎩即230m n m n -=⎧⎨+=⎩,解得:11m n =⎧⎨=-⎩, 故选:A . 【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.2.A解析:A 【分析】把x y =代入方程组43235x y kx y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1, 故选:A【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.3.C解析:C 【分析】把两个方程的左右两边分别相减,求出a-b 的值是多少即可. 【详解】 解:559375a b a b +⎧⎨+⎩=①=②①-②,可得 2(a-b )=4, ∴a-b=2. 故选:C . 【点睛】此题主要考查了解二元一次方程组,关键是注意观察,找出解决问题的简便方法.4.C解析:C 【分析】把x=5y 代入到方程组中,得到关于y 、a 的二元一次方程组,解方程组即可. 【详解】将5x y =代入方程组2x y x y a -=⎧⎨+=⎩,得525y y y y a -=⎧⎨+=⎩,解得123y a ⎧=⎪⎨⎪=⎩.故选C . 【点睛】此题考查了二元一次方程组,掌握加减消元法是解答此题的关键.5.D解析:D 【分析】设答对了x 道题,答错了y 道题,则不答的题有()25?–x y +,根据“不答的题比答错的题多2道”以及“总分是74分”,列出方程组解出即可. 【详解】设答对了x 道题,答错了y 道题,则不答的题有()25?–x y +, 根据题意得:()25?–2474x y y x y ⎧+=+⎨-=⎩,解得:192xy=⎧⎨=⎩,故小杰他答对了19题,故选:D.【点睛】本题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.6.B解析:B【解析】把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选B.7.D解析:D【分析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.8.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.9.C解析:C 【解析】根据题意35223x y m x y m +=+⎧⎨+=⎩①②,由加减消元法把①-②,得22x y +=③;然后由x 与y的和等于2,得到2x y +=④,再根据③-④,得0x =,最后把0x =代入④得2y =,因此可解得234m x y =+=. 故选:C.10.D【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【详解】第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:2114327x y x y +=⎧⎨+=⎩. 故选D .【点睛】 此题主要考查了由实际问题列二元一次方程组,关键是读懂图意,得到所给未知数的系数及相加结果.11.B解析:B【分析】设这个笼中的鸡有x 只,兔有y 只,根据“从上面数,有30个头;从下面数,有84条腿”列出方程组即可.【详解】解:若设笼中有x 只鸡,y 只兔,根据题意可得:302484x y x y +=⎧⎨+=⎩, 故选:B .【点睛】此题考查了二元一次方程组的应用;根据题意列出方程组是解决问题的关键.12.C解析:C【分析】根据解二元一次方程组的方法可以解答本题.【详解】解:125x y x y +=⎧⎨+=⎩①②②﹣①,得x =4,将x =4代入①,得y =﹣3,故原方程组的解为43x y =⎧⎨=-⎩,【点睛】本题考查了解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法.二、填空题13.±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.14.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x 本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.15.【解析】【分析】题中涉及两个未知数:共有x 人,所分银子共有y 两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y +=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x 人,所分银子共有y 两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y +=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键. 16.()【解析】由方程组变形可得,由非负数性质可求c=4,a=-3,b=1,再依据影子点定义即可求出点P/的坐标.【详解】解:∵方程组(c 为常数),∴,∵,,∴,∴c=4,∴解析:(1,33-)【解析】【分析】由方程组变形可得3=-(4)4(4)a c c ⎧+-⎪=-,由非负数性质可求c =4,a =-3,b =1,再依据影子点定义即可求出点P /的坐标.【详解】解:∵方程组340416a c c ⎧++-=⎪=-(c 为常数),∴3=-(4)4(4)a c c ⎧+-⎪=-, ∵30a +≥0,∴-(4)04(4)0c c -≥⎧⎨-≥⎩, ∴c =4,∴31a b =-⎧⎨=⎩, ∴P 坐标为(-3,1), 根据定义可知点P 的影子点P /为(13(,)31--- ,即为P /(1,33-). 故答案为(1,33-).【点睛】本题考查了非负数性质和新定义运算.解题关键是利用方程变形和非负数性质得出c -4=0. 17.【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 解析:3215【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 、y ,进一步代入求得答案即可.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得: 82375%23275%x y a x y a ()()-=⎧⎨-=⎩ 解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩. 则60%a ÷(2x -y )=60%a ÷(316a ×2332-a )=3215(小时). 故答案为3215. 【点睛】 本题考查了二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.18.【分析】从6个数中找到使得关于x 、y 的二元一次方程组有整数解,且方程ax2+ax+1=0有实数根的a 的个数后利用概率公式求解即可.【详解】解:能使得使得关于x 、y 的二元一次方程组有整数解的 解析:16【分析】 从6个数中找到使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的个数后利用概率公式求解即可.【详解】解:能使得使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解的a 的值有﹣2,0,2共3个数.当a =0时,方程ax 2+ax +1=0无实数根,∴a ≠0.∵方程ax 2+ax +1=0有实数根,∴b 2﹣4ac =a 2﹣4a ≥0且a ≠0,解得:a <0或a ≥4,∴使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的值只有﹣2,共1个,∴P (使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根)=16. 故答案为16. 【点睛】本题考查了概率公式的应用,二元一次方程组的解以及根的判别式.用到的知识点为:概率=所求情况数与总情况数之比.19.3【解析】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.20.5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组解析:5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组进行求解即可得.【详解】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,由题意得201020101510y x y x +=⨯⎧⎨+=⨯⎩, 解得:5100x y =⎧⎨=⎩, 所以,用25台这样的抽水机去抽水时,泉水每小时涌出量用5台抽水机去抽,剩下的就抽原有的泉水了,100÷(25-5)=5(小时),故答案为:5.【点睛】本题考查了二元一次方程组的应用,弄清题意,找到等量关系列出方程组是解题的关键,这里要注意的是泉水是不断涌出的.21.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】 分析:先把代入得 ,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案. 解答:解:把代入, 得,解得,c=-2. 再把代入ax+by=-2, 得, 解得: , 所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.22.【解析】分析:令x+y=a ,x-y=b ,根据已知,比较后得出a ,b 的值,从而得出结论. .详解:令x+y=a ,x-y=b ,则关于x 、y 的二元一次方程组变为:.∵二元一次方程组的解是,解析:52x y =⎧⎨=⎩【解析】分析:令x +y =a ,x -y =b ,根据已知,比较后得出a ,b 的值,从而得出结论. .详解:令x +y =a ,x -y =b ,则关于x 、y 的二元一次方程组316215x y m x y x y n x y ++-=⎧⎨++-=⎩()()()()变为:316215a mb a nb +=⎧⎨+=⎩.∵二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,∴73a b =⎧⎨=⎩,∴73x y x y +=⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 点睛:本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法,本题要注意整体思想的运用.23.5【解析】根据小强搭的积木的高度=A 的高度×2+B 的高度×3,小红搭的积木的高度=A 的高度×3+B 的高度×2,依两个等量关系列出方程组,再求解. 故答案为4和5.点睛:本题考查了二元一解析:5【解析】根据小强搭的积木的高度=A 的高度×2+B 的高度×3,小红搭的积木的高度=A 的高度×3+B的高度×2,依两个等量关系列出方程组23233222x y x y +=⎧⎨+=⎩,再求解45x y =⎧⎨=⎩. 故答案为4和5.点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.24.1【解析】试题分析:根据非负数的性质,可得二元一次方程组,解方程组可得,故x+y=-1+2=1.故答案为:1.解析:1【解析】试题分析:根据非负数的性质,可得二元一次方程组30{20x y x y -+=+=,解方程组可得12x y =-⎧⎨=⎩,故x+y=-1+2=1. 故答案为:1.三、解答题25.1【分析】利用AM:AN=8:9,设通道的宽为xm ,AM=8ym ,则AN=9ym ,进而利用AD 为18m ,AB 为13m ,得出等式求出即可.【详解】设通道的宽是xm ,AM =8ym.因为AM ∶AN =8∶9,所以AN =9ym.所以22418,1813.x y x y +=⎧⎨+=⎩解得1,2.3x y =⎧⎪⎨=⎪⎩答:通道的宽是1m.故答案为1.【点睛】本题考查了二元一次方程组的应用.26.(1)A 是爱心点,B 不是,理由见解析;(2)-2;(3)20,3p q ==-【分析】(1)根据“爱心点”的定义,列出方程组计算即可求解; (2)根据“爱心点”的定义,可得方程组1242m a n -=⎧⎪⎨+=-⎪⎩,先求得n ,再求得m ,进一步得到a 的值;(3)解方程组用q 和p 表示x 和y ,代入2m =8+n ,得到关于p 和q 的等式,再根据p ,q 为有理数,求出p ,q 的值.【详解】(1)∵15232m n -=⎧⎪⎨+=⎪⎩,∴64m n =⎧⎨=⎩, ∵2×6=8+4,∴点A 是爱心点; ∵14282m n -=⎧⎪⎨+=⎪⎩, ∴514m n =⎧⎨=⎩, ∵2×5≠8+14,∴点B 不是爱心点;(2)∵1242m a n -=⎧⎪⎨+=-⎪⎩, ∴n =﹣10,又∵2m =8+n ,∴2m =8+(﹣10),解得m =﹣1,∴﹣1﹣1=a ,即a =﹣2;(3)解方程组3x y q x y q ⎧+=+⎪⎨-=-⎪⎩得2x q y q ⎧=-⎪⎨=⎪⎩, 又∵点B 是“爱心点”满足:1222m q n q ⎧-=-⎪⎨+=⎪⎩,∴142m q n q ⎧=-+⎪⎨=-⎪⎩, ∵2m =8+n ,∴22842q q -+=+-,整理得:64q -=,∵p ,q 是有理数,p =0,﹣6q =4,∴ p =0, q =23-. 【点睛】本题主要考查了解二元一次方程组的应用、点的坐标,同时考查了阅读理解能力及迁移运用能力.27.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【分析】(1)根据非负数的性质得出二元一次方程组,求解即可; (2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0, |21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,∴点D的坐标是14 1,3⎛⎫-⎪⎝⎭;(3)证明:过点E作//EF CD,交y轴于点F,如图所示,则ECD CEF∠=∠,2BCE ECD∠=∠,33BCD ECD CEF∴∠=∠=∠,过点O作//OG AB,交PE于点G,如图所示,则OGP BPE∠=∠,PE平分OPB∠,OPE BPE∴∠=∠,OGP OPE∴∠=∠,由平移得//CD AB,//OG FE∴,FEP OGP∴∠=∠,FEP OPE∴∠=∠,CEP CEF FEP∠=∠+∠,CEP CEF OPE∴∠=∠+∠,CEF CEP OPE∴∠=∠-∠,3()BCD CEP OPE∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.。
新七年级下学期数学 二元一次方程组试卷及答案全百度文库一、选择题1.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g2.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( ) A .2B .2-C .1D .1-3.下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .5723z z y =⎧⎪⎨+=⎪⎩4.已知方程组2x y x y a-=⎧⎨+=⎩,且5x y =,则a 等于( )A .5B .4C .3D .25.下列判断中,正确的是( ) A .方程x y =不是二元一次方程 B .任何一个二元一次方程都只有一个解C .方程25x y -=有无数个解,任何一对x 、y 都是该方程的解D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解6.小敏和小捷两人玩“打弹珠”游戏,小敏对小捷说:“把你珠子的一半给我,我就有30颗珠子”.小捷却说:“只要把你的12给我,我就有 30 颗”,如果设小捷的弹珠数为 x 颗,小敏的弹珠数为 y 颗,则列出的方程组正确的是( )A .230260x y x y +=⎧⎨+=⎩B .230230x y x y +=⎧⎨+=⎩C .260230x y x y +=⎧⎨+=⎩D .260260x y x y +=⎧⎨+=⎩7.某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x 人,生产螺母的有y 人,则可以列方程组( )A .351624x y x y +=⎧⎨=⎩B .352416x y x y +=⎧⎨=⎩ C .35 16224x y x y +=⎧⎨=⨯⎩ D .3521624x y x y +=⎧⎨⨯=⎩8.若关于x 、y 的方程组2{44x y ax y a+=-=的解是方程3x 2y 10+=的一个解,则a 的值为( ) A .2 B .-2C .1D .-19.由方程组 可得出x 与y 的关系式是( )A .x+y=9B .x+y=3C .x+y=-3D .x+y=-910.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩11.下列方程中是二元一次方程的是( ) A .(2)(3)0x y +-= B .-1x y = C .132x y=+D .5xy =12.关于x 、y 的方程组53x ay x y +=⎧⎨-=⎩的解是1•x y =⎧⎨=⎩,其中y 的值被盖住了,不过仍能求出a ,则a 的值是( ) A .2B .-2C .1D .-1二、填空题13.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.14.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____.15.若m 35223x y m x y m +--+-199199x y x y =---+m =________.16.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.17. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.18.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y+的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)19.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________20.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元. 21.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍.22.已知三个方程构成的方程组230xy y x --=,350yz z y --=,520xz x z --=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________.23.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .24.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.三、解答题25.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路: 甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值; 丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.26.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.27.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0Bb 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.28.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.29.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?30.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示:运行区间大人票价学生票出发站终点站一等座二等座二等座泉州福州65(元)54(元)40(元)根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m人,请直接用含m的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x张,且学生全部按表中的“学生票二等座”购买,其余的买一等座动车票,且买票的总费用不低于9000元,求x的最大值.31.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)a b产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.32.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?33.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案..已知该厂家生产三种不同型号的电视机,出34.计划拨款9万元从厂家购进50台电视机厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.()1若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;()2若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售.在同时购进两种不同型号电视机的方案中,为使销售时获一台丙种电视机可获利250元利最多,你选择哪种进货方案;()3若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.35.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求 a 、 b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下a0.80超过17吨但不超过30吨部分b0.80超过30吨的部分 6.000.8036.下图是小欣在“A超市”买了一些食品的发票.后来不小心发票被弄烂了,有几个数据看不清.(1)根据发票中的信息,请求出小欣在这次采购中,“雀巢巧克力”与“趣多多小饼干”各买了多少包;(2)“五一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.请问:①“五一”期间,小欣去哪家超市购物更划算?②“五一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A【分析】设每块巧克力的质量为x克,每块果冻的质量为y克,根据每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,列出方程组即可解答【详解】设每块巧克力的质量为x克,每块果冻的质量为y克,由题意得3250x yx y=+=⎧⎨⎩,解得2030xy==⎧⎨⎩,即一块巧克力的质量是20g.故选A.【点睛】此题考查二元一次方程组的应用,列出方程组是解题关键2.C解析:C【分析】把x与y的值代入方程计算即可求出a的值.【详解】把1,2xy=⎧⎨=⎩代入方程24x ay+=,得224a+=,解得1a=.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.D解析:D【分析】含有两个未知数,并且所含未知数的项的次数是1的整式方程组是二元一次方程组,根据定义解答.【详解】A、B、C都不是二元一次方程组,D符合二元一次方程组的定义,故选:D.【点睛】此题考查二元一次方程组的定义,正确理解定义并运用解题是关键.4.C解析:C【分析】把x=5y代入到方程组中,得到关于y、a的二元一次方程组,解方程组即可.将5x y =代入方程组2x y x y a -=⎧⎨+=⎩,得525y y y y a-=⎧⎨+=⎩,解得123y a ⎧=⎪⎨⎪=⎩.故选C . 【点睛】此题考查了二元一次方程组,掌握加减消元法是解答此题的关键.5.D解析:D 【分析】根据二元一次方程的概念和二元一次方程的解逐项进行判断即可. 【详解】A .方程x y =是二元一次方程,故错误;B .任何一个二元一次方程都有无数个解,故错误;C .方程25x y -=有无数个解,但并不是任何一对x 、y 都是该方程的解,故错误;D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解,故正确;故选:D . 【点睛】本题主要考查了二元一次方程的概念和二元一次方程的解,熟练掌握二元一次方程的概念和解法是解题的关键.6.D解析:D 【解析】 【分析】根据题中的等量关系:①把小捷的珠子的一半给小敏,小敏就有30颗珠子; ②把小敏的12给小捷,小捷就有30颗.列出二元一次方程组即可. 【详解】解:根据把小捷的珠子的一半给小敏,小敏就有30颗珠子,可表示为y+2x=30,化简得2y+x=60;根据把小敏的12给小捷,小捷就有30颗.可表示为x+y2=30,化简得2x+y=60. 故方程组为:260260x y x y +=⎧⎨+=⎩故选:D.本题首先要能够根据题意中的等量关系直接表示出方程,再结合答案中的系数都是整数,运用等式的性质进行整理化简.7.D解析:D【解析】【分析】首先设x 人生产螺栓,y 人生产螺母刚好配套,利用工厂有工人35人,每人每天生产螺栓16个或螺母24个,进而得出等式求出答案.【详解】设x 人生产螺栓,y 人生产螺母刚好配套,据题意可得,3521624x y x y +=⎧⎨⨯=⎩. 故选:D.【点睛】此题主要考查了二元一次方程组的应用,根据题意正确得出等量关系是解题关键. 8.A解析:A【解析】(1)−(2)得:6y=−3a ,∴y=−2a , 代入(1)得:x=2a ,把y=−2a ,x=2a 代入方程3x+2y=10, 得:6a −a=10,即a=2.故选A. 9.A解析:A【解析】分析:由①得m=6-x ,代入方程②,即可消去m 得到关于x ,y 的关系式.解答:解:由①得:m=6-x∴6-x=y-3∴x+y=9.故选A . 10.A【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组.【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.11.B解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误; -1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误; 5xy =最高次是2次,故D 选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键.12.B解析:B【分析】把1x =代入②,得到y 的值,再将x 和y 的值代入①即可求解.【详解】解:53x ay x y +=⎧⎨-=⎩①②,把1x =代入②,得2y =-,把12xy=⎧⎨=-⎩代入①可得:125a-=,解得2a=-,故选:B.【点睛】本题考查二元一次方程组的解,把1x=代入②得到y的值是解题的关键.二、填空题13.6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得3202x y=-,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,解得3202x y =-,∵x、y都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 14.【分析】由题意设已购进京式月饼价格2m,剩余资金为n,根据题意列出方程进行解答即可.【详解】解:设已购进京式月饼价格2m,剩余资金为n,由题意可得:可得:①,解得:n=6m ,②,可得:解析:3:5【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可.【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①()1429315m n m n +=+,解得:n=6m , ②23a b n +=,可得:a+b=4m , ③1349(2)113m a m b m n m n m +++=+-+=, ④(3m+a ):(4m+b )=9:13,93135342222m a m a m m b m b m +==+==,,,, ∴a :b=3:5,答:该商场还需购买的广式月饼总价与苏式月饼的总价之比是3:5.故答案为:3:5.【点睛】本题考查多次方程问题,解题的关键是根据题意列出多个方程得出其关系式解答. 15.201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201【分析】根据能开平方的数一定是非负数,得199-x-y ≥0,x-199+y ≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m 的值.【详解】解:由题意可得,199-x-y ≥0,x-199+y ≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520230x y x y m x y m +=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m ,将y=4-m 代入③,解得x=2m-6,将x=2m-6,y=4-m 代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.16.51【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积.【详解】解:设小长方形的长、宽分别为、,依题意得:,即,解得:,,,解析:51【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y ,依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩, 解得:81x y =⎧⎨=⎩, 818S ∴=⨯=小长方形,729DC DE EC ∴=+=+=,11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.17.±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②, ①×2-②得:5m =15,解得:m =3,把m =3代入①得:n =2,则m +3n =3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.18.①③④根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得: ,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩, 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a =+⎧⎨=--⎩, 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤, 即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④. 【点睛】本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.19.【解析】题中涉及两个未知数:共有x 人,所分银子共有y 两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y +=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x 人,所分银子共有y 两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y +=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键. 20.105【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设甲每件x 元,乙每件y 元,丙每件z 元,依题意得:3×(1)-2×(2)得:x+y+z=105解析:105【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设甲每件x 元,乙每件y 元,丙每件z 元,依题意得:37315(1)410420(2)x y z x y z ++=⎧⎨++=⎩3×(1)-2×(2)得:x+y+z=105,∴购买甲、乙、丙各1件,共需105元.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 21.5【解析】设水流速度是a ,快船的静水速度是x ,快艇的静水速度是y ,依题意可得轮船的静水速度为2x ,则:0.5(x+a )+(2x-a )=0.5(y-a ),解得:y=5x即快艇静水速度是快船的解析:5【解析】设水流速度是a ,快船的静水速度是x ,快艇的静水速度是y ,依题意可得轮船的静水速度为2x ,则:0.5(x+a )+(2x-a )=0.5(y-a ),解得:y=5x即快艇静水速度是快船的静水速度的5倍,故答案为:5.【点睛】本题考查了一次方程组的应用,找准等量关系是做本题的关键,借助图例可以帮助我们理解题意.题中虽然有三个未知数,但在计算过程中可以抵消一个.22.152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y , 把z=53y 代入②得:253y -5y-5y=0, 解得:y 1=0 (舍去),y 2=6,∴z=53×6=10,x=2663⨯-=4,又∵x=a,y=b,z=c,∴a2+b2+c2=x2+y2+z2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.23.48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得3124x yx y+=⎧⎨-=⎩,①,②①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=482cm.故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 24.8【解析】试题分析:设小矩形的长为x,宽为y,则,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y)=6.8.解析:8【解析】试题分析:设小矩形的长为x,宽为y,则2 5.7{2 4.5x yx y+=+=,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y)=6.8.三、解答题25.(1)见解析;(2)a和b的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,3274232m n k m n +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:5m =21k ﹣8,解得:m =2185k -, ②×3﹣①×2得:5n =2﹣14k ,解得:n =2145k -, 代入m+n =3得:21821455k k --+=3, 去分母得:21k ﹣8+2﹣14k =15,移项合并得:7k =21,解得:k =3;选择乙,3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩,检验符合题意,则a和b的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.26.(1)C(a+h,b-1),D(m+h,n-1);(2)①见解析;②相等,理由见解析【分析】(1)根据平移规律解决问题即可..(2)①证明A,D的纵坐标相等即可解决问题;②如图,设AD交直线l于J,首先证明BJ=DJ=1,推出D(m+1,n-1),再证明p=q,即可解决问题.【详解】解:(1)由题意,C(a+h,b-1),D(m+h,n-1);(2)①∵b=n-1,∴A(a,b),D(m+h,n-1),∴点A,D的纵坐标相等,∴AD∥x轴,∵直线l⊥AD,∴直线l⊥x轴;②相等,理由是:如图,设AD交直线l于J,∵DE的最小值为1,∴DJ=1,∵BJ=1,∴D(m+1,n-1),∴二元一次方程px+qy=k(pq≠0)的图象经过点B,D,∴mp+nq=k,(m+1)p+(n-1)q=k,∴p-q=0,∴p=q,∴m+n=kp,∵tp+sp=k,∴t+s=kp,∴m+n=t+s.【点睛】本题考查坐标与图形的变化-平移,二元一次方程等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.27.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明见解析【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)21280a b a b --+-=, 又∵|21|0a b --≥280a b +-, |21|0a b ∴--=280a b +-=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),。
最新七年级初一下学期数学 二元一次方程组考试卷及答案百度文库一、选择题1.下列各方程中,是二元一次方程的是( )A .253x y x y-=+B .x+y=1C .2115x y =+ D .3x+1=2xy2.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b)(a ﹣b)的值为( ) A .15B .﹣15C .16D .﹣163.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( )A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩4.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是() A .8374y x y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374y x y x -=-⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩5.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-46.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为( ). A .7384x y x y-=⎧⎨+=⎩B .7384x yx y +=⎧⎨-=⎩C .8374x y x y-=⎧⎨+=⎩D .8374x yx y +=⎧⎨-=⎩7.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( )A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C.3624601680x yx y+=⎧⎨+=⎩D.2436601680x yx y+=⎧⎨+=⎩8.甲、乙两人同求方程ax-by=7的整数解,甲正确地求出一个解为11xy=⎧⎨=-⎩,乙把ax-by=7看成ax-by=1,求得一个解为12xy=⎧⎨=⎩,则a,b的值分别为( )A.25ab=⎧⎨=⎩B.52ab=⎧⎨=⎩C.35ab=⎧⎨=⎩D.53ab=⎧⎨=⎩9.为了节省空间,食堂里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm,9只饭碗摆起来的高度为21cm,食堂的碗橱每格的高度为35cm,则一摞碗最多只能放( )只.A.20B.18C.16D.1510.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.; B.; C.; D.11.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知5 个大桶加上1 个小桶可以盛酒3 斛,1个大桶加上5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是()A.5253x yx y+=⎧⎨+=⎩B.5352x yx y+=⎧⎨+=⎩C.5352x yx y+=⎧⎨=+⎩D.5=+352x yx y⎧⎨+=⎩12.下列方程组的解为31xy=⎧⎨=⎩的是()A.224x yx y-=⎧⎨+=⎩B.253x yx y-=⎧⎨+=⎩C.32x yx y+=⎧⎨-=⎩D.2536x yx y-=⎧⎨+=⎩二、填空题13.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生C购买的商品数量是________.14.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg,500kg,400kg,总平均亩产量为450kg,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____. 15.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵. 16. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 17.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 18.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 19.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.20.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x 斤,燕每只重y 斤,则可列方程组为________________ 21.从﹣2,﹣1,0,1,2,3这六个数中,任取一个数作为a 的值,恰好使得关于x 、y的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax+1=0有实数根的概率是_____.22.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.23.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 24.若(x ﹣y +3)2+=0,则x +y 的值为______.三、解答题25.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.26.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0Bb 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.27.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.28.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P ++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y ,的值并在图3中填出剩余的数字.29.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫= ⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭. ①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.30.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数。
新七年级初一下册第二学期数学 二元一次方程组试卷及答案全百度文库一、选择题1.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g2.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( ) A .23-B .23 C .16-D .163.若关于x y ,的二元一次方程组232320x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( ) A .34-B .34C .43D .43-4.下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .5723z z y =⎧⎪⎨+=⎪⎩5.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( )A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩6.已知()11n a a n d +-=(n 为自然数),且25a =,514a =,则15a 的值为( ). A .23B .29C .44D .537.用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;用一块B 型钢板可制成1块C 型钢板、4块D 型钢板.某工厂现需14块C 型钢板、36块D 型钢板,设恰好用A 型钢板x 块,B 型钢板y 块,根据题意,则下列方程组正确的是( )A .2143436x y x y +=⎧⎨+=⎩B .3214436x y x y +=⎧⎨+=⎩C .2314436x y x y +=⎧⎨+=⎩D .2144336x y x y +=⎧⎨+=⎩8.下列方程组是三元一次方程组的是( )A .123x y y z z x +=⎧⎪+=⎨⎪-=⎩B .02310x y z x yz y z ++=⎧⎪-=⎨⎪-=⎩C .22154x y y z x z ⎧+=⎪+=⎨⎪-=⎩D .563x y w z z x +=⎧⎪+=⎨⎪+=⎩9.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( ) A .3B .5C .4或5D .3或4或510.两位同学在解方程组时,甲同学由278ax by xcx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为A .452a b c ===-,,B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,,11.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只 雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为( ) A .56156x y x y y x +=⎧⎨-=-⎩ B .65156x y x y y x +=⎧⎨+=+⎩ C .56145x y x y y x +=⎧⎨+=+⎩ D .65145x y x y y x +=⎧⎨-=-⎩12.若二元一次方程组45ax by bx ay +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则a +b 的值是( )A .9B .6C .3D .1二、填空题13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.14.某公园的门票价格如表:现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a 和b (a ≥b ).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a =_____;b =_____.15.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____.16.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A、B两种文学书籍若干本,用去6138元,已知A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.17.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a+b﹣m =_____.18.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.19.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____.20.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题.21.若3x-5y-z=8,请用含x,y的代数式表示z,则z=________.22.如图,在长方形ABCD中,放入六个形状,大小相同的长方形(即空白的长方形),AD=12cm,FG=4cm,则图中阴影部分的总面积是 __________2cm.23.已知|x ﹣z+4|+|z ﹣2y+1|+|x+y ﹣z+1|=0,则x+y+z=________. 24.若是满足二元一次方程的非负整数,则的值为___________.三、解答题25.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足100.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 26.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?27.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.28.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示); (2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示); 乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少? 29.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解;(3)已知,m n 是实数, 27n =,若)P n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.30.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数. 31.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.32. 学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种魔方多少个时,两种活动费用相同?33.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元:、的值;(1)求x y(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件、乙2件、丙1件,共需315元;如果购买甲1件,乙2件,丙3件,共需285元,某顾客想购买甲、乙、丙各一件共需多少元?34.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.35.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.36.“一带一路”是对古丝绸之路的传承和提升,让中国和世界的联系更紧密,电气设备是“一带一路”沿线国家受青睐的商品。
最新初一下学期数学 二元一次方程组考试试卷及答案百度文库一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩2.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩3.已知559375a b a b +=⎧⎨+=⎩,则-a b 等于( )A .8B .83C .2D .14.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如,323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为x y D x DD y D⎧=⎪⎪⎨⎪=⎪⎩,其中1122a D a b b =,1122x b a D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组3137x y x y -=⎧⎨+=⎩时,下面的说法错误..的是( ). A .311013D -==B .10x D =C .方程组的解为12x y =⎧⎨=⎩D .20y D =-5.方程()()218235m nm xn y ---++=是二元一次方程,则( )A .23m n =⎧⎨=⎩B .23m n =-⎧⎨=-⎩C .23m n =⎧⎨=-⎩D .23m n =-⎧⎨=⎩6.二元一次方程组2 213xyax y+=⎧⎪⎨+=⎪⎩的解也是方程36x y-=-的解,则a等于()A.-3 B.13-C.3 D.137.下列方程组是三元一次方程组的是()A.123x yy zz x+=⎧⎪+=⎨⎪-=⎩B.2310x y zx yzy z++=⎧⎪-=⎨⎪-=⎩C.22154x yy zx z⎧+=⎪+=⎨⎪-=⎩D.563x yw zz x+=⎧⎪+=⎨⎪+=⎩8.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有()A.4种B.5种C.6种D.7种9.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律, A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(2,-506)10.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km.一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.()()45126456x yx y⎧+=⎪⎨-=⎪⎩B.()312646x yx y⎧+=⎪⎨⎪-=⎩C.()()31264456x yx y⎧+=⎪⎨⎪-=⎩D.()()31264364x yx y⎧+=⎪⎪⎨⎪-=⎪⎩11.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x yx y=⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A .2+164322x y x y =⎧⎨+=⎩B .2+164327x y x y =⎧⎨+=⎩C .2+114322x y x y =⎧⎨+=⎩D .2+114327x y x y =⎧⎨+=⎩12.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩二、填空题13.为了应对疫情对经济的冲击,增加就业岗位,某区在5月份的时候开设了一个夜市,分为餐饮区、百货区和杂项区三个区域,三者摊位数量之比5:4:3,市场管理处对每个摊位收取50元/月的管理费,到了6月份,市场管理处扩大夜市规模,并将新增摊位数量的12用于餐饮,结果餐饮区的摊位数量占到了夜市总摊位数量的920,同时将餐饮区、百货区和杂项区每个摊位每月的管理费分别下调了10元、20元和30元,结果市场管理处6月份收到的管理费比5月份增加了112,则百货区新增的摊位数量与该夜市总摊位数量之比是______.14.某餐厅以A 、B 两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A 、200克B ;乙产品每份含200克A 、100克B .甲、乙两种产品每份的成本价分别为A 、B 两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A 、B 两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元. 15.若m 35223x y m x y m +--+-199199x y x y =---+m =________.16.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A 型、B 型、C 型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C 型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A 型产品进行升级,升级后A 产品的成本提高了25%,销量提高了20%;B 、C 产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______.17.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____.18.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.19.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒20.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.21.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 22.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)23.若(x ﹣y +3)2+=0,则x +y 的值为______.24.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.三、解答题25.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?26.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解; (3)已知,m n 是实数, 且27m n +=,若(),P m n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.27.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(a,a ),点B 的坐标(b,c ),且a 、b 、c 满足34624a b c a b c +-=⎧⎨-+=-⎩.(1)若a 没有平方根,判断点A 在第几象限并说明理由.(2)连AB 、OA 、OB ,若△OAB 的面积大于5而小于8,求a 的取值范围;(3)若两个动点M (2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M 、N 为端点的线段MN ∥AB ,且MN=AB .若存在,求出M 、N 两点的坐标;若不存在,请说明理由. 28.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC的面积.(3)如图4,若点P为△ABC的边AB上的中线CF的中点,求S△APE与S△BPF的比值. 29.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)30.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D根据关键语句“若每组7人,余3人”可得方程7y +3−x ;“若每组8人,则缺5人.”可得方程8y−5=x ,联立两个方程可得方程组. 【详解】解:设运动员人数为x 人,组数为y 组,由题意得: 列方程组为7385y x y x -⎧⎨+⎩== 故选D . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.2.A解析:A 【分析】方程组利用加减消元法求出解即可. 【详解】解:7317x y x y +=⎧⎨+=⎩①②,②﹣①得:2x =10, 解得:x =5,把x =5代入①得:y =2, 则方程组的解为52x y =⎧⎨=⎩. 故选:A . 【点睛】本题考查了二元一次方程组的解法以及二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.本题还可以利用代入法求解.3.C解析:C 【分析】把两个方程的左右两边分别相减,求出a-b 的值是多少即可. 【详解】 解:559375a b a b +⎧⎨+⎩=①=②①-②,可得 2(a-b )=4, ∴a-b=2.【点睛】此题主要考查了解二元一次方程组,关键是注意观察,找出解决问题的简便方法.4.D解析:D 【分析】分别根据行列式的定义计算可得结论. 【详解】 A 、3113D -==3×3-(-1)×1=10,计算正确,不符合题意;B 、D x =1×3-(-1)×7=10,计算正确,不符合题意;C 、方程组的解:x=102011010y ==,=2,计算正确,不符合题意. D 、D y =3×7-1×1=20,计算错误,符合题意; 故选:D . 【点睛】此题考查二元一次方程组的解,理解题意,直接运用公式计算是解题的关键.5.D解析:D 【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程. 【详解】由题意得21181m n ⎧-=⎨-=⎩且2030m n -≠⎧⎨+≠⎩,解得2m =-,3n =, 故选D . 【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.6.C解析:C 【分析】把2x y +=与36x y -=-组成方程组,求出x ,y 的值,再代入方程213ax y +=,即可解答. 【详解】由题意得:236x y x y +=⎧⎨-=-⎩,解得:13x y =-⎧⎨=⎩,把13x y =-⎧⎨=⎩代入方程213ax y +=,得:()21313a⨯-+⨯=,解得:3a =. 故选:C . 【点睛】本题考查了二元一次方程组的解,方程组的解为能使方程组中两方程都成立的未知数的值.7.A解析:A 【分析】根据三元一次方程组的定义来求解,对A 、B 、C 、D 四个选项进行一一验证. 【详解】A 、满足三元一次方程组的定义,故A 选项正确;B 、含未知数项的次数为2次,∴不是三元一次方程,故B 选项错误;C 、未知数的次数为2次,∴不是三元一次方程,故C 选项错误;D 、含有四个未知数,不满足三元一次方程组的定义,故D 选项错误; 故选:A . 【点睛】本题主要考查了三元一次方程组的定义,清楚三元一次方程组必须满足“三元”和“一次”两个要素是关键.8.C解析:C 【分析】设可以兑换m 张5元的零钱,n 张2元的零钱,根据零钱的总和为50元,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出结论. 【详解】设可以兑换m 张5元的零钱,n 张2元的零钱, 依题意,得:5m+2n =50, ∴m =10﹣25n . ∵m ,n 均为非负整数, ∴当n =0时,m =10; 当n =5时,m =8; 当n =10时,m =6;当n =15时,m =4; 当n =20时,m =2; 当n =25时,m =0. ∴共有6种兑换方案. 故选:C . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.A解析:A 【分析】用题中已知条件观察所给例子、图形,找出规律,再运用规律解决问题. 【详解】依题意列出前面几个n A 的坐标如下表对于n A ,当n 除以4余1时,n A 的纵坐标为0,横坐标32n +; 当n 除以4余2时,n A 的纵坐标为n2,横坐标1; 当n 除以4余3时,n A 的纵坐标为0,横坐标32n --; 当n 除以4,整除时,n A 的纵坐标为2n,横坐标2. 运用发现规律,当n=2019时,2019除以4,余3,故点2019A 的纵坐标为0,横坐标为2019310082--=-,所以点2019A 的坐标为(-1008,0) . 故选:A . 【点睛】 本题是探索规律题型.探索规律的思维模式是:观察前几例做出猜想,再验证猜想,这个过程反复进行,直到发现规律.本题的解决不仅要观察点的坐标的变化,还要观察图形中点的位置变化.10.D解析:D 【解析】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126; 又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.11.D解析:D【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【详解】第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:2114327x y x y +=⎧⎨+=⎩. 故选D .【点睛】 此题主要考查了由实际问题列二元一次方程组,关键是读懂图意,得到所给未知数的系数及相加结果.12.B解析:B【解析】分析:首先利用②-①和②+③得出关于a 和b 的二元一次方程组,从而求出a 和b 的值,然后将a 和b 代入任何一个式子得出c 的值,从而得出方程组的解.详解:0? 25?34? a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a -2b=-5 ④, ②+③可得:5a -2b=-9 ⑤,④-⑤可得:-4a=4,解得:a=-1, 将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121a b c =-⎧⎪=⎨⎪=-⎩,故选B .点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.二、填空题13.【分析】由题意设月份的餐饮区、百货区和杂项区三者摊位数量分别为,再假设新增摊位数量为,则餐饮区新增摊位数量为,进而根据条件得出n 和m 的关系,利用市场管理处月份收到的管理费比月份增加了建立关系式,解析:3:20【分析】由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n ,再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m ,进而根据条件得出n 和m 的关系,利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析即可得出答案.【详解】 解:由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n , 则5月份的管理费为:(543)50600n n n n ++⨯=(元),6月份的管理费为:1(1)60065012n n +⨯=(元), 再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m , 由餐饮区的摊位数量占到了夜市总摊位数量的920,可得: 91(12)5202n m n m +⨯=+,化简后可得:8m n =, 即有新增摊位数量为8n ,餐饮区新增摊位数量为4n ,且6月份下调后的餐饮区、百货区和杂项区每个摊位每月的管理费分别为:40元、30元、20元,由此可得百货区和杂项区6月份的管理费为:650(54)40290n n n n -+⨯=(元), 百货区和杂项区没新增摊位数量时管理费为:430320180n n n ⨯+⨯=(元), 则百货区和杂项区新增的摊位数量管理费为:290180110n n n -=(元),当百货区新增3n ,杂项区新增n 时,满足条件,所以百货区新增的摊位数量与该夜市总摊位数量之比是3:(128)3:203:20n n n n n +==.故答案为:3:20.【点睛】本题考查不定方程的应用,注意掌握根据条件得出n 和m 的关系以及利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析是解答本题的关键. 14.824【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为元,生产甲产品x 份,乙产品y 份,根据题意列方程求出【详解】解:∵甲产品每解析:824【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意列方程求出【详解】解:∵甲产品每份含200克A 、200克B ,甲产品每份成本价为16元∴100克A 原料和100克B 原料的成本为8元设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意可得出:[]4312016(28)162(8)688x y x m m y x m m y +≤⎧⎨++-=+-++⎩整理得出:4344my y =+∴餐厅每天实际成本16(8)1612344W x m y x y =++=++∵43120x y +≤∴1612480x y +≤∴餐厅每天实际成本的最大值为:480344824+=(元).故答案为:824.【点睛】本题考查的知识点是二元一次方程组的应用,读懂题意,理清题目中的各关系量是解此题的关键.15.201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m的值.【详解】解:由题意可得,199-x-y≥0,x-199+y≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520 230x yx y mx y m+=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m,将y=4-m代入③,解得x=2m-6,将x=2m-6,y=4-m代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.16.34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A 型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意解析:34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B 型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得13x zy z⎧=⎪⎨⎪=⎩;第二个季度A产品成本为(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=34%.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%ax30%ay45%az35%a(x y z)3(x y z)z7++=++⎧⎪⎨++=⎪⎩,解得:13x zy z⎧=⎪⎨⎪=⎩,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=0.30.30.451.5x y zx y z++++=10.30.30.45311.53z z zz z z⨯++⨯++=34%,故答案为:34%.【点睛】本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.17.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得:,①+②得:3m+n=4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x y x y -=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x m y n =⎧⎨=⎩代入方程组得: 20234m n m n -=⎧⎨+=⎩①②, ①+②得:3m +n =4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.18.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
7.2二元一次方程组解法知识检测(A )
一、 选择题:
1、二元一次方程组2x y 2x y 5
+=⎧⎨-+=⎩的解是( ).
A 、x 1y 6=⎧⎨=⎩
B 、x 1y 4=-⎧⎨=⎩
C 、x 3y 2=-⎧⎨=⎩
D 、x 3y 2=⎧⎨=⎩ 2、如果7x y+73a b 和24y 2x -7a b -是同类项,那么x 、y 的值是( )
A 、x=-3y=2⎧⎨⎩
B 、x=-2y=3⎧⎨⎩
C 、x=2y=-3⎧⎨⎩
D 、x=3y=-2⎧⎨⎩
3、用加、减消元法解二元一次方程组时,必须使这两个方程中( )
A 、某个未知数的系数是1
B 、同一个未知数的系数相等
C 、同一个未知数的系数互为相反数
D 、同一个未知数的系数的绝对值相等
4、若方程组⎩
⎨⎧=+=53y 2x k 3y -4x 的解x 和y 的值相等,则k 的值为( ) A 、k=-1 B 、k=1 C 、k=-7 D 、k=7
5、已知方程组⎩
⎨⎧=+=+22y 3x 6y 4x ,则x - y 的值是( ) A 、0 B 、-2 C 、2 D 、4
二、 填空题:
6、把方程2x-3y+5=0写成用含有y 的代数式表示x 的形式为__________________;
7、若方程组⎩
⎨⎧=+=a 2y x a y -2x ,则x:y=______________; 8、若关于x 、y 的二元一次方程组⎩⎨⎧==+4t
y -x 2t y x 的解,也是二元一次方程3x+2y=7的解,则t 的值为________;
9、已知(2x+3y-18)2 +|4x+5y-32|=0,则4x-3y 的值等于_______________.
三、 解答题:
16、解下列方程组:
(1)⎩
⎨⎧=+=-173y 4x 3
y 3x (2)⎩⎨⎧=+=+63y 2x 125y 2x
(3)⎩⎨⎧==+32b -3a -195b 4a (4)⎪⎩⎪⎨⎧=+=63
y 4x -43y -4x
17、已知关于x 、y 的方程组⎩
⎨⎧==+-k 9y -5x 4k 3y 2x 的解x 、y 的和等于5,求k 的值.。