23.2.1 中心对称(教案)
- 格式:doc
- 大小:96.00 KB
- 文档页数:5
23.2.1中心对称一、教学内容:23.2.1中心对称二、学情分析:1、学生是乡镇普通初中九年级的学生,班级学生学习方面存在一定的差异;但学生对数学抱有浓厚的兴趣。
2、学生在前面已学习了图形的旋转变换,基本上掌握了旋转变换的性质;运用知识解决实际问题的能力和数学建模的能力还不强。
3、对中心对称概念不易理解;归纳和运用性质也存在困难。
三、教材分析:1、本节课选自人教社九年级数学上册23.2.1中心对称。
2、中心对称是在学生已掌握旋转变换的基础上,由一般到特殊的方法归纳引出中心对称是特殊的旋转变换。
在探索中心对称的概念、性质及应用上,让学生经历动手操作、观察、猜想、归纳等方法,进一步培养学生的自主学习能力以及合作、探究的精神,并在这个过程中增加一定的审美体验。
3、中心对称承接平移、轴对称、反比例函数等知识,同时是下节学习中心对称图形的基础,又是后续学习几何的桥梁纽带。
四、教学目标:(一)、知识技能:1、通过62页思考中图形旋转的演示理解中心对称、对称中心、关于中心的对称点的概念。
2、结合探究掌握中心对称的性质,会依据中心对称的性质画出与已知图形成中心对称的图形。
(二)、过程与方法:1、通过思考的观察培养学生的观察能力,经历探究性质的过程使学生获得基本的数学活动经验。
2、通过画出与已知图形成中心对称的图形,进一步培养学生的尺规作图能力。
(三)、情感、态度与价值观:让学生经历观察、操作等过程,理解中心对称的概念,从中心对称基本性质的探索活动,进一步发展学生空间观察能力.让学生通过独立思考,自主探究和合作交流,进一步体会中心对称的数学内涵,获得知识,体验成功。
五、教学重点:中心对称的概念与性质。
六、教学难点:中心对称的概念的导入与性质的探究。
七、教学过程:(一)、创设情境、引入新课:引语:我们生活在多姿多彩的图形世界中,小时候我们就对多姿多彩的图形充满兴趣与好奇,尤其是对运动变换的图形越加的好奇,学完本节课你将对图形的变换有一个全面深入的了解。
23.2.1 中心对称教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十三章“旋转”23.2.1 中心对称,内容包括:中心对称的概念、性质.2.内容解析本节课我们学习中心对称的概念及性质,先让学生从旋转的角度观察两个图形之间的关系,类比旋转得出中心对称的概念,渗透了从一般到特殊的数学思想方法. 通过操作、观察、归纳得出中心对称的性质,体会由具体到抽象认识问题的过程,并能运用中心对称的性质画出一个图形关于某一点的对称图形.基于以上分析,确定本节课的教学重点是:掌握中心对称的性质,并能运用中心对称的性质画出一个图形关于某一点的对称图形二、目标和目标解析1.目标1)理解中心对称的概念及性质.2)通过操作、观察、归纳得出中心对称的性质,体会由具体到抽象认识问题的过程,会画一个简单几何图形关于某一点对称的图形,提高学生的画图能力.2.目标解析达成目标1)的标志是:学生理解中心对称的概念,明白中心对称是一种特殊的旋转.达成目标2)的标志是:通过操作、观察、归纳出中心对称的性质,体会由具体到抽象认识问题的过程,会画一个简单几何图形关于某一点对称的图形,提高学生的画图能力.三、教学问题诊断分析学生在已学旋转性质基础上得出中心对称的两个图形是全等图形及对称中心到两个对称点的距离相等的性质不难,但中心对称的旋转角度必须是180°,从而对称点和对称中心三点共线.学生在“对称点所连线段都经过对称中心,并且被对称中心所平分.”这条性质的得出和规范表达上会有一定的困难.基于以上分析,本节课的教学难点是:探索中心对称的性质.四、教学过程设计(一)复习旧知,引入新课【问题一】什么是轴对称呢?【问题二】关于轴对称的两个图形有哪些性质?【问题三】简述旋转的性质?师生活动:教师提出问题,学生回答.【设计意图】先回顾轴对称和旋转的相关知识,为本节课学生学习中心对称做好铺垫.(二)探究新知【问题】如图,把其中一个图案绕点O旋转180°,你有什么发现?师生活动:教师通过多媒体展示两组图案的旋转过程,学生通过观察回答问题.【问题】如图,线段AC,BD相交于点O,OA=OC,OB=OD.把△OAB绕点O旋转180°,你有什么发现?师生活动:教师通过多媒体展示△OAB的旋转过程,学生通过观察回答问题.【设计意图】让学生通过观察图形,感知中心对称的特征,为得出中心对称的概念做铺垫.师:上述两个旋转过程有什么共同点?师生活动:学生积极发言,教师负责引导学生归纳:把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.1)这个点叫做对称中心.2)这两个图形中的对应点叫做关于中心的对称点.[提问]1)你能指出图中的对称点吗?2)点C、点A、点O的位置关系怎样?3)线段AO、OC的大小关系呢?师生活动:学生思考并回答.【设计意图】学生通过观察,概括归纳得出中心对称的概念.【问题】旋转和中心对称的联系和区别是什么?师生活动:学生积极发言,教师负责引导学生归纳:因此,中心对称是特殊的旋转.【设计意图】让学生理解中心对称是特殊的旋转.为探索中心对称的性质作铺垫.【问题】轴对称和中心对称的联系和区别是什么?师生活动:学生积极发言,教师负责引导学生归纳:【设计意图】让学生理解轴对称和中心对称的联系和区别.(三)典例分析和针对训练例1 下面说法正确的是()A.全等的两个图形成中心对称B.能够完全重合的两个图形成中心对称C.旋转后能重合的两个图形成中心对称D.旋转180°后能重合的两个图形成中心对称【针对训练】1.若两个图形成中心对称,则下列说法:△对应点的连线必经过对称中心;△这两个图形的形状和大小完全相同;△这两个图形的对应线段一定相等;△将一个图形绕对称中心旋转180°后必与另一个图形重合.其中正确的有()A.1个B.2个C.3个D.4个2.小明想用图形1通过作图变换得到图形2,下列这些变化中不可行的是()A.轴对称变换B.平移变换C.旋转变换D.中心对称变换3.图中的两个梯形成中心对称,点P的对称点是()A.点A B.点B C.点C D.点D【设计意图】通过配套练习,加深理解中心对称的概念.(四)探究新知[探究]通过旋转三角尺,尝试画出关于点O对称的两个三角形.师生活动:教师引导学生动手操作,画关于点O对称的两个三角形.【设计意图】通过动手操作,探索中心对称的性质.[探究]如图,△A′B′C′与△ABC关于点O是成中心对称的,你能从图中找到哪些等量关系?师生活动:学生积极发言,教师负责引导学生归纳:点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同理,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.所以△ABC△△A'B'C'【设计意图】探索中心对称的性质.【问题】简述中心对称的性质?师生活动:学生积极发言,教师负责引导学生归纳:1)中心对称的两个图形,对称点所连线段经过对称中心,而且被对称中心所平分.2)中心对称的两个图形是全等形.【设计意图】理解与掌握中心对称的性质.(五)典例分析和针对训练例2 已知A点和O点,画出点A关于点O的对称点A'例3 已知线段AB和O点,画出线段AB关于点O的对称线段A' B'例4 如图.选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.例5 已知四边形ABCD和点O,画四边形A′B′C′D′,使它与已知四边形关于这一点对称.【设计意图】通过练习,考查学生利用中心对称的性质作图.【问题】简述利用中心对称的性质作图的基本步骤?师生活动:学生积极发言,教师负责引导学生归纳:1.作点的中心对称:先连接点和对称中心,然后延长一倍;2.做图形的中心对称:先确定好图形的特殊点(如多边形的顶点、线段的端点,圆的圆心等),再作特殊点的对称点,然后顺次连接.典例6 如图是一个以O为对称中心的中心对称图形,若△A=30°,△C=90°,OC=1,则AB的长为()A.2B.4C.6D.8【针对训练】1.如图,已知△AOB与△DOC成中心对称,△AOB的面积是6,AB=3,则△DOC中CD边上的高是______.2.如图,已知长方形的长为10cm,宽为4cm,则图中阴影部分的面积为()A.20cm2B.15cm2C.10cm2D.25cm23.如图,已知点A与点C关于点O对称,点B与点D也关于点O对称,若BC=3,OD=4.则AB 的长可能是()A.3B.4C.7D.114.如图,已知△ABC与△A´B´C´中心对称,求出它们的对称中心O的位置.5.如图,四边形ABCD与四边形EFGH成中心对称,试画出它们的对称中心.【设计意图】通过练习,考查学生利用中心对称的性质求解.(六)归纳小结1.简述中心对称的性质?2.简述利用中心对称的性质作图的基本步骤?(七)布置作业P66:练习:第1题,第2题.五、教学反思。
23.2 中心对称23.2.1 中心对称1.理解中心对称的定义,掌握中心对称的性质.2.培养观察、分析和归纳能力,感受中心对称美,发掘作图能力.一、情境导入剪纸,又叫刻纸,是中国汉族最古老的民间艺术之一,它的历史可追溯到公元6世纪.如图剪纸中两个金鱼之间有什么关系呢?二、合作探究探究点一:中心对称【类型一】中心对称的识别如下图所示的四组图形中,左边图形与右边图形成中心对称的有( )A.1组 B.2组C.3组 D.4组解析:将选项中左边图形沿着某一点旋转180°能与右边图形重合的是(1)(2)(3),所以(1)(2)(3)中左边图形与右边图形成中心对称.共3组,故选 C.探究点二:中心对称的性质【类型一】确定对称中心如图中,已知△ABC和△A′B′C′成中心对称,画出它们的对称中心.解析:由于△ABC和△A′B′C′成中心对称,即从整体上看,此图是一幅中心对称图案,所以本题有两种解法.相交于点O,则O为对称中心.如图.解法二:B、B′是一对对应点,连接BB′,找出BB′的中点O,则点O即为对称中心.如图.方法总结:利用中心对称的特征,找正确对应点.当两个图形成中心对称时,通过直接观察的方法找对应点;如果直观体现不明显,可采用测量方法找对应点.【类型二】确定中心对称的对应元素如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形成中心对称吗?如果是,对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点?解:作法:①延长AD,并且使得DA′=AD;②同样可得:BD=B′D,CD=C′D;③连接A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图所示.(1)这两个图形成中心对称,对称中心是点D;(2)A、B、C、D关于中心的对称点为A′、B′、C′和D.【类型三】利用中心对称性质的应用求线段如图,已知△AOB与△DOC成中心对称,△AOB的面积是12,AB=3,则△DOC中CD边上的高是( )A.3B.6相交于点O,则O为对称中心.如图.解法二:B、B′是一对对应点,连接BB′,找出BB′的中点O,则点O即为对称中心.如图.方法总结:利用中心对称的特征,找正确对应点.当两个图形成中心对称时,通过直接观察的方法找对应点;如果直观体现不明显,可采用测量方法找对应点.【类型二】确定中心对称的对应元素如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形成中心对称吗?如果是,对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点?解:作法:①延长AD,并且使得DA′=AD;②同样可得:BD=B′D,CD=C′D;③连接A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图所示.(1)这两个图形成中心对称,对称中心是点D;(2)A、B、C、D关于中心的对称点为A′、B′、C′和D.【类型三】利用中心对称性质的应用求线段如图,已知△AOB与△DOC成中心对称,△AOB的面积是12,AB=3,则△DOC中CD边上的高是( )A.3B.6。
人教版九年级数学上册23.2.2.1《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何相关知识的基础上,进一步引导学生探索中心对称的性质和运用。
本节内容通过具体的实例,让学生了解中心对称的定义,掌握中心对称图形的性质,并能够运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生动手操作和观察分析的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习和操作来巩固。
此外,学生对实际问题的解决能力有待提高,需要通过具体的例子来引导和培养。
三. 教学目标1.了解中心对称的定义,掌握中心对称图形的性质。
2.能够运用中心对称解决实际问题,提高学生的应用能力。
3.培养学生的动手操作和观察分析能力,激发学生学习几何的兴趣。
四. 教学重难点1.中心对称的定义和性质。
2.中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过具体的实例和问题,引导学生探索中心对称的性质,培养学生的动手操作和观察分析能力。
同时,学生进行小组合作学习,鼓励学生发表自己的观点和思考,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于引导学生探索中心对称的性质。
2.准备一些实际问题,用于巩固学生对中心对称的应用。
3.准备黑板和粉笔,用于板书重要的概念和性质。
七. 教学过程1.导入(5分钟)通过展示一些图片,如天安门、蝴蝶等,引导学生观察这些图片的共同特点,引发学生对中心对称的思考。
让学生发表自己的观点,教师总结并引入中心对称的概念。
2.呈现(10分钟)教师通过展示一些实例,如将一张纸折叠后,对折线两侧的图形完全重合,引导学生探索中心对称的性质。
教师引导学生动手操作,观察分析中心对称图形的性质,如对称轴的性质、对称点的性质等。
人教版数学九年级上23.2.1中心对称教学设计课题23.2.1中心对称单元第二十三章学科数学年级九年级上学习目标情感态度和价值观目标通过对中心对称的学习,感受对称、匀称、均衡的美感体验图形变化的规律,感受图形变换和图形的美丽,感受生活中的数学,热爱数学。
能力目标经历中心对称的探索过程,通过观察、操作、发现、探究中心对称的有关概念和基本性质,培养学生的观察能力和动手操作能力。
知识目标1.知道中心对称的概念,能正确表述中心对称的性质;2.会画一个图形关于某一点中心对称的对称图形。
重点中心对称的概念和性质。
难点中心对称性质的推导及理解。
学法讨论、交流教法观察、动手操作教学过程教学环节教师活动学生活动设计意图导入新课一、新课导入:上节课我们学习了图形的旋转的有关概念和性质,这节课我们来研究当旋转角是180°时会有什么新发现.如图,把其中一个图案绕点 O 旋转180°,你有什么发现?观看屏幕图片,观察图形的旋转.根据旋转180°后的结果思考问题.通过通过显示图形变化导入课题,创设情境使学生自然进入到新课程中来。
讲授新课二、探究中心对称的概念活动1:做一做拿两个一样的三角板,分别标注如图两个三角形,线段AC,BD 相交于点 O,OA=OC,OB=OD.请你把三角板△OCD 绕点 O 旋转 180°,有什么发现?活动2:讨论总结你能说说上述两个旋转的共同点吗?归纳总结:像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.分析:①两个图形;②围绕一点旋转180°;③重合.注意:全等的图形不一定是中心对称的,二中心对称的两个图形一定是全等的.活动3:对比思考中心对称与一般的旋转有什么联系和区别?联系:中心对称和一般的旋转都是绕着某一点进行旋转;区别:中心对称的旋转角度都是180°,一般的旋转的旋转角度不固定,中心对称是特殊的旋转.活动4:自主练习请你描述下图中两个三角形的关系,并指出对称中心和对称点。
《23.2.1中心对称》教学设计一、内容和内容解析(一)内容23.2.1中心对称(第1课时)(二)内容解析中心对称是在学生已掌握旋转变换的基础上,由一般到特殊的方法归纳引出中心对称是特殊的旋转变换.在探索中心对称的概念、性质及应用上,让学生经历动手操作、观察、猜想、归纳等方法,进一步培养学生的自主学习能力以及合作、探究的精神,并在这个过程中增加一定的审美体验.中心对称承接平移、轴对称、旋转等知识,同时是下节学习中心对称图形的基础,又是后续学习几何的桥梁纽带.二、目标和目标解析(一)目标1.通过具体实例了解中心对称的概念;2.掌握成中心对称的两个图形的性质;3.探究作一个图形关于某点的中心对称图形的方法,利用中心对称的性质确定对称中心的位置;4.对日常生活中与中心对称有关的图形进行观察、分析、欣赏并动手操作、画图,感受生活中的对称美.(二)目标解析1.先欣赏图片,让学生形成对中心对称的初步认识,再借助电脑演示,帮助学生形成中心对称的概念;2.利用三角板画图,通过实际操作让学生感受中心对称的性质,促进形象思维向抽象思维的转化;3.通过图案设计的环节,让学生体会生活中的对称美.4.通过游戏,学生感受到中心对称在生活中的应用,也体会了“数学来源于生活又服务于生活”的数学理念.三、教学问题诊断分析在经历了动画演示,动手操作、观察实验的过程后,发现在运用精准的数学语言概括中心对称及其性质的过程中,学生概括能力不足;另一方面,在利用性质作一个图形关于某点的对称图形的过程中,学生存在动手操作能力不足及作法表述不够准确的问题.四、教学支持条件分析本节课采取直观演示法和自主探究法,借助多媒体,动态演示中心对称的形成过程,帮助学生掌握中心对称的概念,并通过学生自主操作、探究,掌握中心对称的性质以及作一个图形关于某点的对称图形.利用多媒体呈现练习题,以节省板书时间,提高课堂教学效率.五、教学过程设计(一)创设情境,导入新课问题1:观察下面每副图片中的两个图形,你有什么发现?它们具有怎样的位置关系?问题2:下面每副图片中的两个图形还成轴对称吗?若不能,它们通过怎样的变换能相互重合呢?说明:教师提问,学生观察图片,发现共同点,形成对中心对称的初步认识.【设计意图】通过欣赏图片,对比轴对称、旋转,发现特殊的旋转,形成对中心对称的初步认识(即中心对称是特殊的旋转变换),从而导入课题.(二)操作观察探究新知活动1:研究问题,形成概念(1)如图1,把其中一个图案绕点O旋转180°,你有什么发现?(2)如图2,线段AC与BD相交于点O,OA=OC,OB=OD,把△O AB绕点O旋转180º,你有什么发现?图1 图2思考:你能说说这两个旋转的共同点吗?①旋转中心是哪一点?②旋转角是多少?③涉及几个图形?④旋转前后两个图形能重合吗?说明:学生观察动画演示,初步认识什么是中心对称.【设计意图】通过动画演示,让学生发现两个图形间的特殊关系,为归纳中心对称的定义做好准备.(3)归纳:中心对称的定义:把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;这个点叫做对称中心(简称中心).这两个图形在旋转后能重合的对应点叫做关于中心的对称点.活动2:实践操作,探究性质1.如图,旋转三角板,画关于点O对称的两个三角形;第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';第三步,移开三角板.这样画出的△ABC与△A'B'C',关于点O对称.思考1:连接OA和OA',则∠AOA'=180°.说明点O、A、A'有何位置关系?线段OA、OA'有什么关系? 说明了点O在线段AA'的什么位置?思考2:△ABC与△A'B'C'有什么关系?图3 图4 图5我们可以发现:(1)点O、A、A'三点共线,且 OA=OA',∴点O是AA′的中点;同理,点O也是线段BB',CC'的中点。
人教版数学九年级上册23.2.1《中心对称》教案一. 教材分析人教版数学九年级上册第23章《中心对称》是学生在学习了平面几何基本概念和性质的基础上进行的一节内容。
本节内容主要让学生了解中心对称的定义,掌握中心对称的性质和运用,能运用中心对称解决一些简单的几何问题。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的认识。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:让学生理解中心对称的概念,掌握中心对称的性质,能运用中心对称解决一些简单的几何问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结协作、积极探究的精神。
四. 教学重难点1.重点:中心对称的概念和性质。
2.难点:中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生主动探究,合作交流,培养学生的几何思维能力。
六. 教学准备1.教具准备:多媒体课件、几何画板、黑板、粉笔。
2.学具准备:学生自带直尺、圆规、三角板。
七. 教学过程1. 导入(5分钟)利用多媒体课件展示一些生活中的中心对称图形,如天安门、蝴蝶、脸谱等,引导学生观察并思考:这些图形有什么共同特点?你想到了什么几何概念?2. 呈现(10分钟)教师通过讲解和示范,给出中心对称的定义,并用几何画板展示中心对称的性质。
同时,让学生尝试解释中心对称的概念,并找出生活中的中心对称现象。
3. 操练(15分钟)学生分组进行练习,运用中心对称的性质解决一些简单的几何问题。
教师巡回指导,及时纠正错误,帮助学生巩固知识。
4. 巩固(10分钟)教师选取一些典型的练习题,让学生在课堂上独立完成,检验学生对中心对称知识的掌握程度。
同时,教师对学生的解答进行点评,指出不足之处,巩固所学知识。
5. 拓展(10分钟)教师提出一些拓展问题,如中心对称与轴对称的关系,让学生进行思考和讨论。
23.2.1 中心对称教学设计学习目标:1. 了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.2. 通过操作、观察、归纳出中心对称的性质并解决一些问题(重点).3. 从一般旋转中导入中心对称(难点)一、新课导入思考:这些美丽的图案是怎样得到的?二、新知探究问题1:如图,把其中一个图案绕点O旋转180°,你有什么发现?两个图案能够完全重合.问题2:如图,线段AC、BD相交于点O,OA = OC,OB = OD. 把△OCD 绕点O 旋转 180°,你有什么发现?两个图案能够完全重合.你能说说上述旋转变换的共同点吗?(1) 图形中旋转中心是哪个点?点O(2) 旋转角度是多少?180°(3) 两个图形的关系是什么?完全重合类比旋转的定义,归纳总结这类特殊的旋转?把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心 (简称中心) . 这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点.填一填:如图,△OCD 与△OAB 关于点O 中心对称,则_O 是对称中心,点A 与_C__是对称点,点B 与_D__是对称点.议一议:两个图形成中心对称需要具备什么条件?两个图形成中心对称须具备三个条件:①能找到一个对称中心;②旋转角为180°;③这两个图形旋转后能完全重合.思考:已知中心对称是一种特殊的旋转,旋转的性质符合中心对称的性质,那么和一般旋转有没有区别?问题3 如图,旋转三角尺,画出△ABC关于点O中心对称的△A′B′C′ .你能从图中找到哪些等量关系?你能归纳出中心对称的性质吗?1. 中心对称的两个图形,对称点所连线段都经过对称中心,并且被对称中心所平分(即每组对称点与对称中心三点共线);2. 中心对称的两个图形是全等图形.三、典例精讲如图,已知△AOB 与△DOC 成中心对称,△AOB 的面积是 24,AB=8,则△DOC 中CD 边上的高为__6___.例3 如图,已知△ABC 与△A′B′C′成中心对称,找出它们的对称中心O.四、小试牛刀1. 下列四组图形中,左边的图形与右边的图形成中心对称的有( C )(1)(2)(3)(4)A.1 组 B.2 组 C.3 组 D.4 组1.中心对称是一种特殊的旋转,其旋转角是180°;2. 中心对称是两个图形之间一种特殊的位置关系;3. 成中心对称的两个图形只有一个对称中心,对称中心可能在图形的外部、内部或图形上,对称点一定在对称中心两侧或与对称中心重合.2. 如图,已知四边形ABCD 和点O,试画出四边形ABCD 关于点O 成中心对称的图形A'B'C'D'.五、课堂小结六、布置作业见精准作业单七、板书设计。
《中心对称》学历案(第一课时)一、学习主题本节课的学习主题是“初中数学课程《中心对称》”。
中心对称是初中数学中关于图形变换的重要概念,是理解几何图形性质和规律的基础。
本节课将通过学习中心对称的定义、性质和实例,培养学生的空间想象能力和几何思维。
二、学习目标1. 理解中心对称的定义,掌握中心对称图形的特点。
2. 能够判断给定的图形是否为中心对称图形,并找出其对称中心。
3. 通过实例分析,培养学生的空间想象能力和几何思维。
4. 提高学生的数学学习兴趣和自主学习能力。
三、评价任务1. 口头回答问题:学生能够准确阐述中心对称的定义和特点,以及如何判断一个图形是否为中心对称。
2. 书面作业:学生能够独立完成一系列关于中心对称的判断题和简答题,并能够准确找出给定图形的对称中心。
3. 小组讨论:学生能够与小组成员合作,通过讨论和交流,加深对中心对称概念的理解和应用。
四、学习过程1. 导入新课:通过展示一些中心对称的实例,引导学生感受中心对称的概念,并激发学生的学习兴趣。
2. 讲解定义:教师讲解中心对称的定义,让学生明确概念,理解其含义。
3. 探究性质:通过具体的图形,让学生探究中心对称图形的性质,如对称点的性质、对称轴的性质等。
4. 实例分析:教师给出一些中心对称的图形,让学生判断是否为中心对称,并找出其对称中心。
5. 小组合作:学生分组进行讨论,加深对中心对称概念的理解和应用,教师巡视指导,及时解答学生的疑问。
6. 总结归纳:教师总结本节课的学习内容,强调中心对称的概念和性质,让学生形成完整的知识体系。
五、检测与作业1. 课堂检测:通过一系列关于中心对称的判断题和简答题,检测学生对中心对称概念的理解和应用能力。
2. 课后作业:布置一些关于中心对称的练习题,让学生巩固所学知识,并提高解题能力。
六、学后反思1. 学生反思:学生应反思自己在本次学习中的收获和不足,如何改进自己的学习方法,提高学习效率。
2. 教师反思:教师应对本次教学进行反思,总结教学经验,找出教学中存在的问题和不足,为今后的教学提供参考。
23.2 中心对称23.2.1 中心对称【知识与技能】理解中心对称的有关定义,掌握中心对称的性质,能利用中心对称性质画出与已知图形成中心对称的图形.【过程与方法】经历在操作活动过程中探索出中心对称的性质,进一步增强学生的观察、分析、抽象概括的能力.【情感态度】在操作活动中积累数学活动的经验,培养学生的空间想象能力,增强审美意识,体验几何美,提高学习兴趣.【教学重点】利用中心对称的有关定义和性质解决具体问题.【教学难点】中心对称与图形旋转的关系.一、情境导入,初步认识问题1 如图,将△ABC绕点O旋转,使点A旋转到D处,你能画出旋转后的图形吗?说说你的理由.问题2 如图,将△ABC绕点O旋转180°,你能画出旋转后的图形吗?说说你的做法,并指出这两个图形之间有什么关系?从中你有何发现?【教学说明】设置上述问题的目的一方面对前面所学过知识进行回顾,另一方面又为新知的探索作好铺垫.教学时,应给出时间让学生自主画图,并进行思考,初步认识图形的旋转与中心对称之间的关系.二、思考探究,获取新知探究1 (1)如图(1),把其中一个图案绕点O旋转180°,你有什么发现?(2)如图(2),线段AC、BD相交于点O,OA=OC,OB=OD,把△OCD 绕点O旋转180°,你有什么发现?【教学说明】让学生通过在问题情境中画图的初步认识,并在观察图(1)、(2)所获得的感性认识基础上,认真分析图形特征,相互交流体会,感受图形之间的对称美,从而总结出中心对称的有关概念,必要时,教师可给予适当引导.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.这个点称为对称中心,这两个图形中的对应点叫做关于中心的对称点.【教学说明】师生共同总结出中心对称定义后,教师应强调定义的三个特征:(1)反映了两个图形之间的位置关系;(2)关于旋转中心旋转180°;(3)互相重合.加深学生对定义的理解.探究2旋转三角尺,画关于点O对称的两个三角形.第一步:画出△ABC如图(1);第二步:以三角尺的一个顶点O为中心,把三角尺旋转180°,画出△A′B′C′如图(2);第三步:移开三角尺如图(3).这样,画出的△ABC与△A′B′C′关于点O对称.试问:(1)在图(3)中,点O在线段AA′上吗?如果在,在什么位置?对于线段BB′、CC′呢?(2)△ABC与△A′B′C′有什么关系?【教学说明】让学生通过观察,可获得结论为:点O在线段AA′,BB′,CC′上,且OA=OA′,OB=OB′,OC=OC′;△ABC≌△A′B′C′.然后让学生相互交流,说说理由.教师边巡视,边听取学生间的交流,对于描述不准确的应给予提醒,帮助学生完善认知.【归纳结论】(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.(2)关于中心对称的两个图形全等.三、典例精析,掌握新知例(1)选择点O为对称中心,画出点A关于点O的对称点A′,如图(1);(2)选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′,如图(2).分析:在(1)中,可利用“对称点所连线段都经过对称中心,并且被对称中心平分”这一性质,画出点A关于O点的对称点A′(即延长AO,并在AO 延长线上截取OA′=AO,则A′点即是A关于点O的对称点);在(2)中,可仿(1)分别得到点A、B、C关于点O的对称点A′、B′、C′,连A′B′、A′C′、B′C′,则△A′B′C′是△ABC关于点O的对称三角形.解:略.【教学说明】让学生经历画图过程,进一步加深对中心对称的性质的理解和掌握.教学时,教师提出问题并师生共同分析后,可由学生自己画图,完成解答.四、运用新知,深化理解1.下列说法正确的个数是()①旋转后能够重合的两个图形是中心对称的;②成中心对称的两个图形形状一样、大小相同;③全等的两个三角形一定是中心对称的;④关于中心对称的两个图形,对称点所连线段都经过对称中心.A.1个B.2个C.3个D.4个2.如图,已知四边形ABCD,请以点O为中心,画一个四边形,使之与四边形ABCD关于点O成中心对称.【教学说明】由学生自主探究,相互交流获得结论,教师巡视,关注学生的作图是否准确规范,对作图出现较大偏差的同学给予帮助,让每个学生都能得到发展.【答案】1.B2.略五、师生互动,课堂小结教师让学生围绕以下问题展开:(1)本节知识要点归纳回顾;(2)中心对称的性质及其应用;(3)中心对称和轴对称的区别和联系;(4)相互交流本节课的学习体会和收获,谈谈学习中有哪些困惑.【教学说明】教师提出问题,让学生进行回顾思考,相互交流.1.布置作业:从教材“习题23.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.1.本课设计通过问题导入,遵循从感性到理性的渐进认识规律、发展学生直观想象能力,分析、归纳、抽象概括的思维能力.2.教师要以更为丰富的教学语言激励学生,以便更好地关注学生的情感、态度等方面的发展.。
23.2 中心对称23.2.1 中心对称课题23.2.1 中心对称授课人知识技能1.通过本节内容的学习,使学生明确中心对称的概念和性质;2.能画出和已知图形成中心对称的图形.数学思考1.通过对轴对称知识与中心对称知识的比较,培养学生类比的思想;2.在操作、观察、归纳等探索活动中,培养学生的发散思维及自主创新意识.问题解决通过对中心对称和旋转的类比,发展学生从一般到特殊的思维能力,并培养他们分析问题、解决问题的能力.教学目标情感态度利用图形探索中心对称的性质,让学生体验到数学与生活是紧密联系的,体会到生活中的对称美,培养学生的美感.教学重点理解中心对称的定义,掌握中心对称的性质,并利用中心对称的性质作图.教学难点中心对称的性质及利用性质作图.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾1.什么是图形的旋转?试举几个例子进行说明.2.图形的旋转有哪些性质?3.简单概括图形旋转的作图方法.师生活动:教师引导学生回忆知识,学生进行解答,教师做好点评.中心对称是旋转的一种特殊形式,复习旋转为学习新知识做好铺垫.活动一:创设情境导入新课【课堂引入】图23-2-6(1)如图23-2-6①所示,把其中一个图案绕点O旋转180°,你有什么发现?(2)如图②所示,线段AC,BD相交于点O,其OA=OC,OB=OD,把△OCD绕点O旋转180°,你有什么发现?师生活动:学生自主发言,教师演示课件,最后总结结论.通过创设情境,引发学生进行思考,由想象得到问题的结论,从而引出中心对称的概念.活动二:1.探究新知活动一:1.从旋转变换的角度引入中心对称的概念,让学生体会到知识间实践探究交流新知教师提出问题:根据刚才的问题和发现,你能总结出中心对称的定义吗?师生活动:学生自主归纳,并相互交流、讨论,用自己的语言进行描述.教师做好总结:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点.活动二:如图23-2-7,旋转三角尺,画出关于点O对称的两个三角形:(1)画出△ABC;(2)以三角尺的一个顶点O为中心,把三角尺旋转180°,画出△A′B′C′.图23-2-7让学生在作图的基础上思考:(1)分别连接对应点AA′,BB′,CC′,点O在线段AA′上吗?如果在,在什么位置?(2)△ABC与△A′B′C′全等吗?为什么?(3)△ABC与△A′B′C′有什么关系?的内在联系,渗透了从一般到特殊的数学思想方法.2.通过学生的动手操作和教师适时的引导下自主探索中心对称的性质,培养了学生的探究精神.3.对比轴对称和中心对称,完成知识内化,完善原有的认知结构.(4)你能得到什么结论?师生活动:让每名学生都参与到作图中,从而体会到旋转180°的实际意义,让学生尝试自己证明△ABC 与△A′B′C′全等.师生合作,归纳出中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形.2.形成对比,总结规律教师提出问题:中心对称和轴对称的区别与联系.学生小组内进行讨论,派代表发言,教师进行总结.轴对称:有一条对称轴;一个图形沿对称轴折叠后能够与另一个图形重合;对称点的连线被对称轴垂直平分.中心对称:有一个对称中心;一个图形绕对称中心旋转180°后能与另一个图形重合;对称点连线经过对称中心且被对称中心平分.活动三:开放训练体现【应用举例】例1 如图23-2-8所示,在下列四组图形中,右边图形与左边图形成中心对称的有 (填序号).1.通过例1及变式练习,可以让学生进一步理解和认识中心对称.2.通过例2及变式练习,可培养学生运用中心对称性质作中心对称图形的能力,同应用图23-2-8师生活动:学生思考抢答,说明理由,师生共同评析.变式练习:如图23-2-9所示,两个五角星关于某一点成中心对称,指出哪一点是对称中心,并指出图中点A,B,C,D的对称点.图23-2-9例2 (1)如图23-2-10①,选取点O为对称中心,画出点A关于点O的对称点A′;(2)如图②,选取点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.图23-2-10提出下列问题,学生思考并解答问题:1.怎样画点A关于点O的对称点A′?2.画图的依据是什么?3.类比画出与△ABC关于点O对称的△A′B′C′.师生活动:学生独立完成,教师指派两名学生在黑板上进行演示并做好总结.时通过寻找对称中心,发展学生的逆向思维.作图步骤:连接,延长,截取.变式练习:如图23-2-11,已知△ABC与△A′B′C′成中心对称,怎样找出它们的对称中心点O呢?图23-2-11【拓展提升】例3 如图23-2-12,△ABO与△CDO关于点O中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.图23-2-12师生活动:学生思考,提出求证方法,教师作点评和如下总结:灵活利用中心对称的性质证明有关线段相等、平行及三角形全等问题,或者求线段、三角形顶点的坐标.通过例3的练习,使学生灵活应用中心对称的性质进行几何的计算和证明,提高应用知识的能力.活动四:课堂【达标测评】1.下列命题中,正确的命题有( D )①在成中心对称的两个图形中,连接对称点的线段都被对称中心平分;针对本课时的主要问题,从多个角度、分层次进行检测,达到学有所成、了解课堂学习效果的目的.总结反思②关于某一点成中心对称的两个三角形能重合;③两个能重合的图形一定关于某点中心对称;④如果两个三角形的对应点连线都经过同一点,那么这两个三角形成中心对称;⑤在成中心对称的两个图形中,对应线段互相平行或共线.A.1个B.2个C.3个D.4个2.如图23-2-13,已知△ABC和△DEF关于点O中心对称,则AO= DO ,BO= EO ,CO= FO ,点A关于对称中心点O的对称点是 点D ,点B关于对称中心点O的对称点是 点E ,点C关于对称中心点O的对称点是 点F .图23-2-133.如图23-2-14,△ABC和△AB′C′成中心对称,点A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长为(D)图23-2-14A.4B.33 C.2 33 D.4 334.如图23-2-15,在正方形网格上有△ABC和点O.图23-2-15(1)作出△ABC关于点O中心对称的△A′B′C′(不写作法,但要标出字母);(2)若网格中小正方形的边长均为1,求出△ABC 的面积.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.1.课堂总结:(1)你在本节课的学习中有哪些收获?哪些进步?(2)学习完本节课后,你还存在哪些困惑?教师强调:中心对称是旋转的一种特殊情况,指的是两个图形之间的位置关系.2.布置作业:教材第69页习题23.2第1,6,10题.小结环节的设置能够让学生养成自主归纳课堂重点的习惯,提高学生的学习能力.【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]学生在探究新知的过程中,教师给予学生更多的互动时间,联系生活中的例子,让学生对知识易于理解、易于接受.②[讲授效果反思]教师需强调:(1)中心对称的性质;(2)利用中心对称的性质作图的方法.③[师生互动反思]从课堂发言和练习来看,学生积极动手动脑,教师适当引导,学生成为课堂的主人.④[习题反思]好题题号 错题题号 反思教学过程和教师表现,进一步优化操作流程和提升自身素质.教学目标:1、通过观察、分析、对比、探究中心对称的概念和特征2、能够掌握画已知图形成中心对称的图形3、培养学生动手、动脑、团结协作的精神教学重点:中心对称的定义和特征教学难点:中心对称的特征教学准备:写有特征的小黑板、鼓励学生回答问题的千纸鹤、学案、透明白芷教学过程:一、自主探究(享受探究的快乐)1、手的游戏:师:同学们,今天吃饭前你洗过手吗?请像我一样出示你的手(手指并拢,拇指水平接触)如果你洗过,就能像我这样做到的(右手以拇指为一点旋转180度后与左手重合)学生跟着老师做2、描图游戏师:我想同学们一定喜欢描图那就请看到学案自主探究第一题,按照要求去做学生:观察实验,选择最喜欢的一幅图,用透明纸覆盖在图上(课前发的),描出其中的一部分,用笔尖固定O处,旋转180度(通过游戏提高学生学习的兴趣,活跃课堂气氛)师:同学们,通过刚才的游戏,你会有什么发现?生:思考后回答(1)左手和右手的形状是相同的,当绕拇指旋转180度后,双手重合(2)在透明纸描出的鱼绕点O旋转180度后与另一幅图重合(3)在透明纸上的梯形绕点O旋转80度后与另一幅梯形重合(4)每一组图都是这样,将一幅图饶一点旋转180度后与另一幅图重合师:像这样的两个图形我们称为中心对称,这就是今天我们要探讨的问题。
《中心对称》教学设计方案(第一课时)一、教学目标1. 理解中心对称的概念,掌握其定义和性质。
2. 能够识别中心对称图形,并确定其对称中心。
3. 通过观察、分析和讨论,培养学生的观察能力和抽象思维能力。
二、教学重难点1. 教学重点:理解中心对称的概念,掌握其定义和性质。
2. 教学难点:能够识别中心对称图形,并确定其对称中心。
三、教学准备1. 准备教学PPT,包含图片、动画和相关概念的解释。
2. 准备中心对称的实例,如钟表、风扇、旋转门等。
3. 准备小组讨论的材料,以便学生交流和讨论。
4. 准备练习题,用于学生巩固所学知识。
四、教学过程:(一)课前准备1. 学生复习相关知识,为新课学习做好准备。
2. 教师准备教学用具,如黑板、白板、中心对称图形等。
(二)导入新课1. 提问学生:大家还记得我们之前学过的图形对称吗?你能举出一些例子吗?2. 引导学生回顾轴对称图形,并让学生讨论和总结轴对称和中心对称的区别。
3. 教师解释中心对称的概念,并引导学生了解中心对称在实际生活中的应用。
(三)探究学习1. 教师出示一些中心对称图形,如正方形、矩形、平行四边形等,让学生观察它们的特征,并讨论它们如何通过旋转和反射实现中心对称。
2. 教师引导学生探究中心对称图形的性质,如对应点连线交于对称中心,图形沿对称中心翻折180度后能够完全重合等。
3. 学生分组讨论和总结中心对称的性质,教师给予指导和帮助。
(四)课堂活动1. 完成课后习题和相关练习题,巩固学生对中心对称知识的掌握。
2. 进行小组讨论和展示,让学生分享自己的学习成果和经验,教师给予评价和反馈。
3. 引导学生运用中心对称知识解决实际问题,如设计图案、测量实物等。
(五)小结作业1. 教师总结本节课的重点和难点,强调中心对称的性质和应用。
2. 布置与中心对称相关的作业,让学生回家后继续思考和实践。
希望中心对称的性质:1. 中心对称的两个图形,交换对称点,可以重合。
2. 中心对称不改变图形的形状和大小。
23.2.1中心对称
教学目标:
1.经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏,以及动手操作、画图等过程,发展审美能力,增强对图形欣赏的意识。
2.通过具体实例认识两个图形关于某一点成中心对称的本质,就是其中一个图形可以看作为另一个图形绕着该点旋转180°而成。
掌握连结对称点的线段经过对称中心并被对称中心平分的基本特征。
3.在学生认识中心对称的基础上,熟练地画出已知图形关于某一点成中心对称的图形。
4.通过实践体会两次轴对称与中心对称的关系。
重点:
1、识别中心对称图形和成中心对称的两个图形的基本特征。
2、熟练地画出已知图形关于某一点成中心对称的图形。
难点:
1、探索图形之间变换关系,发展图形的分析能力。
2、一个图形经过两次轴对称与中心对称的关系。
23.2.1 中心对称教案一、教学设计思想:本节的内容主要是在旋转的基础上来认识中心对称及其它的性质。
教学时,根据教材编写思路,把教材中不动的问题情景转化为学生互动的问题情景,使学生在互动中去感受。
对于本节中有关的一些知识,都是在教师的引导下,学生要经过充分的思考、讨论,并结合大量特例,由学生自己归纳、总结发现。
教师要根据实际情况,对不同的学生进行有针对性的指导,使不同的学生都有发展,真正把课堂还给了学生,使学生真正地变为课堂学习的主人。
二、教学目标:1、[知识与技能](1)通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成。
(2)掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形。
2、[过程与方法]利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置。
3、[情感、态度与价值观]经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识。
三、教学重点难点[重点] 中心对称的概念、性质及中心对称作图。
[难点] 中心对称与旋转之间的关系,及中心对称性质的理解。
四、[教学方法] 引导发现法,讲练结合法、类比五、[学法]: 独立思考、合作探究六、[教具] 多媒体课件七、教与学互动设计(一)创设情境,导入新课导语一在前一节中我们学习了图形的旋转,那么旋转后的图形有哪些性质?(旋转前后图形全等,对应点到旋转中心的距离相等,旋转角均相等。
) 导语二观察图中三个图形旋转的角度,发现哪个图形与其他二个不同? (二)合作交流解读探究解读信息,引出课题:教师指出在生活中有许许多多的图形都具有以上特征,在各个领域中都有广泛的应用。
它都能给人以一种美的享受。
本节我们就来研究这些图形的形成——中心对称。
[探究]如图,旋转三角板,画关于点O对称的两个三角形;第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';第三步,移开三角板。
23.2 中心对称
23.2.1 中心对称
【知识与技能】
理解中心对称的有关定义,掌握中心对称的性质,能利用中心对称性质画出与已知图形成中心对称的图形.
【过程与方法】
经历在操作活动过程中探索出中心对称的性质,进一步增强学生的观察、分析、抽象概括的能力.
【情感态度】
在操作活动中积累数学活动的经验,培养学生的空间想象能力,增强审美意识,体验几何美,提高学习兴趣.
【教学重点】
利用中心对称的有关定义和性质解决具体问题.
【教学难点】
中心对称与图形旋转的关系.
一、情境导入,初步认识
问题1 如图,将△ABC绕点O旋转,使点A旋转到D处,你能画出旋转后的图形吗?说说你的理由.
问题2 如图,将△ABC绕点O旋转180°,你能画出旋转后的图形吗?说说你的做法,并指出这两个图形之间有什么关系?从中你有何发现?
【教学说明】
设置上述问题的目的一方面对前面所学过知识进行回顾,另一方面又为新知的探索作好铺垫.教学时,应给出时间让学生自主画图,并进行思考,初步认识图形的旋转与中心对称之间的关系.
二、思考探究,获取新知
探究1 (1)如图(1),把其中一个图案绕点O旋转180°,你有什么发现?
(2)如图(2),线段AC、BD相交于点O,OA=OC,OB=OD,把△OCD 绕点O旋转180°,你有什么发现?
【教学说明】让学生通过在问题情境中画图的初步认识,并在观察图(1)、(2)所获得的感性认识基础上,认真分析图形特征,相互交流体会,感受图形之间的对称美,从而总结出中心对称的有关概念,必要时,教师可给予适当引导.
中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.这个点称为对称中心,这两个图形中的对应点叫做关于中心的对称点.
【教学说明】
师生共同总结出中心对称定义后,教师应强调定义的三个特征:(1)反映了两个图形之间的位置关系;
(2)关于旋转中心旋转180°;(3)互相重合.加深学生对定义的理解.
探究2旋转三角尺,画关于点O对称的两个三角形.
第一步:画出△ABC如图(1);
第二步:以三角尺的一个顶点O为中心,把三角尺旋转180°,画出△A′B′C′如图(2);
第三步:移开三角尺如图(3).
这样,画出的△ABC与△A′B′C′关于点O对称.试问:
(1)在图(3)中,点O在线段AA′上吗?如果在,在什么位置?对于线段BB′、CC′呢?
(2)△ABC与△A′B′C′有什么关系?
【教学说明】
让学生通过观察,可获得结论为:点O在线段AA′,BB′,CC′上,且OA=OA′,OB=OB′,OC=OC′;△ABC≌△A′B′C′.然后让学生相互交流,说说理由.教师边巡视,边听取学生间的交流,对于描述不准确的应给予提醒,帮助学生完善认知.
【归纳结论】(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.
(2)关于中心对称的两个图形全等.
三、典例精析,掌握新知
例(1)选择点O为对称中心,画出点A关于点O的对称点A′,如图(1);
(2)选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′,如图(2).
分析:在(1)中,可利用“对称点所连线段都经过对称中心,并且被对称中心平分”这一性质,画出点A关于O点的对称点A′(即延长AO,并在AO 延长线上截取OA′=AO,则A′点即是A关于点O的对称点);在(2)中,可仿(1)分别得到点A、B、C关于点O的对称点A′、B′、C′,连A′B′、A′C′、B′C′,则△A′B′C′是△ABC关于点O的对称三角形.
解:略.
【教学说明】让学生经历画图过程,进一步加深对中心对称的性质的理解和掌握.教学时,教师提出问题并师生共同分析后,可由学生自己画图,完成解答.
四、运用新知,深化理解
1.下列说法正确的个数是()
①旋转后能够重合的两个图形是中心对称的;②成中心对称的两个图形形状一样、大小相同;③全等的两个三角形一定是中心对称的;④关于中心对称的两个图形,对称点所连线段都经过对称中心.
A.1个
B.2个
C.3个
D.4个
2.如图,已知四边形ABCD,请以点O为中心,画一个四边形,使之与四边形ABCD关于点O成中心对称.
【教学说明】
由学生自主探究,相互交流获得结论,教师巡视,关注学生的作图是否准确规范,对作图出现较大偏差的同学给予帮助,让每个学生都能得到发展.
【答案】1.B2.略
五、师生互动,课堂小结
教师让学生围绕以下问题展开:
(1)本节知识要点归纳回顾;
(2)中心对称的性质及其应用;
(3)中心对称和轴对称的区别和联系;
(4)相互交流本节课的学习体会和收获,谈谈学习中有哪些困惑.
【教学说明】教师提出问题,让学生进行回顾思考,相互交流.
1.布置作业:从教材“习题23.2”中选取.
2.完成练习册中本课时练习的“课时作业”部分.
1.本课设计通过问题导入,遵循从感性到理性的渐进认识规律、发展学生直观想象能力,分析、归纳、抽象概括的思维能力.
2.教师要以更为丰富的教学语言激励学生,以便更好地关注学生的情感、态度等方面的发展.。