线性代数与概率论课程教学大纲
- 格式:doc
- 大小:34.00 KB
- 文档页数:6
《线性代数》课程教学大纲课程编号:课程类别:学分数:学时数:适用专业:应修基础课程:一、本课程的地位和作用《线性代数》在高等学校的教学计划中是一门必修的基础理论课,是计算机专业的重要基础课之一,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。
所以该课程的地位与作用也更为重要。
通过该课程的学习,使学生掌握该课程的理论与方法,可以培养和提高学生的抽象思维能力、创新能力和解决实际问题的能力,并为为后续课程的学习及进一步扩大数学知识面奠定必要的数学基础。
二、本课程的教学目标通过该课程的学习,要求学生把握线性代数的基本内容。
如:行列式、矩阵、线性方程组、线性空间等。
把握线性代数的体系结构。
从知识的扩充层面上,发展自身的创新思维。
并且要求学生掌握线性代数的基本计算方法,较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。
三、课程内容和基本要求按教学顺序提出课程各部分教学内容,并具体到知识点,用“*”明确难点内容,用“Δ”明确重点。
“*”或“Δ”一律写在课程内容的前面。
“*”与“Δ”可以并用,表明此内容既是重点又是难点。
在各部分课程内容的前面,首先写明该部分内容须要了解、理解、熟练掌握、应用等层次的教学基本要求。
其格式为:第一章预备知识1、教学基本要求(1)了解集合与映射的基本概念及有理系数多项系的有理根的求法(2)理解数域的概念及排列与对换2、教学内容(1)集合与映射(2)数域(3)Δ排列与对换(4)*有理系数多项系的有理根第二章n阶行列式1、教学基本要求(1)了解全排列、行列式、代数余子式概念(2)理解n阶行列式的定义;(3)掌握行列式性质,会应用行列式的性质计算行列式;(4)理解行列式按行(列)展开定理并应用于行列式计算与证明;(5)掌握克莱姆法则。
高等数学的教学大纲(最新完整版)高等数学的教学大纲高等数学是大学本科公共基础课程,内容主要包括极限与连续、微积分、线性代数、概率论和数理统计等方面。
具体的教学大纲可能会因学校、地区或教师而有所不同,以下是一般高等数学的大致内容:1.极限与连续:包括极限的定义、性质和计算,以及连续的概念和应用。
2.导数与微分:包括导数的定义、性质和计算,以及微分的概念和应用。
3.积分学:包括不定积分、定积分的定义、性质和计算,以及积分的应用。
4.线性代数:包括行列式、矩阵、向量空间、线性方程组等概念和应用。
5.概率论:包括概率、条件概率、随机变量、期望和方差等概念和应用。
6.数理统计:包括基本概念、参数估计、假设检验、回归分析等应用。
除了以上内容,高等数学的教学大纲还包括数学建模、数学软件应用等方面的内容,以培养学生的数学思维和应用能力。
教育部大学数学教学大纲教育部大学数学教学大纲是指教育部制定的大学数学课程的教学大纲,包括高等数学、线性代数、概率论与数理统计等。
这些大纲规定了大学数学课程的教学内容、教学要求、教学时数等方面的内容,是大学数学教师进行教学的重要依据。
教育部大学数学教学大纲的内容包括:高等数学:一、函数与极限;二、导数与微分;三、导数的应用;四、不定积分;五、定积分;六、定积分的应用;七、微分方程;八、向量代数与空间解析几何;九、多元函数微分学;十、重积分;十一、曲线积分与曲面积分;十二、无穷级数。
线性代数:一、行列式;二、矩阵;三、向量;四、线性方程组;五、矩阵的特征值和特征向量;六、二次型。
概率论与数理统计:一、概率论的基本概念;二、随机变量及其分布;三、多维随机变量及其分布;四、随机变量的数字特征;五、大数定律和中心极限定理;六、样本及抽样分布;七、参数估计;八、假设检验。
高等数学实验教学大纲高等数学实验教学大纲是指为了更好地指导学生进行实验,所编写的指导性文件。
以下是部分高等数学实验的教学大纲:1.极限与连续__极限的定义与计算__极限存在性定理__无穷小与无穷大的性质__连续函数的定义与性质__极限与连续的应用2.导数与微分__导数的定义与计算__导数的应用__微分的定义与计算__微分的应用3.积分学__不定积分与定积分的定义与计算__积分的应用__微积分基本定理__积分学的学习方法4.微分方程__微分方程的定义与计算__微分方程的应用__常微分方程的解法__微分方程的学习方法5.向量代数与空间解析几何__向量代数的基础知识__向量代数在几何中的应用__空间解析几何的基础知识__空间解析几何在几何中的应用6.多重积分与曲线积分__多重积分的基础知识__多重积分的计算与应用__曲线积分的基础知识__曲线积分的计算与应用高等数学教学大纲撰写意见根据《大学数学教学基本要求》,结合《高等数学》课程特点,对教学大纲的撰写提出以下意见:1.课程概述:简要介绍高等数学的基本内容、课程目标、学习方法等,突出高等数学在自然科学、工程技术和经济生活中的重要地位,强调数学素质的培养对学生全面发展的重要性。
《线性代数》课程教学大纲课程编号:课程类别:学分数:学时数:适用专业:应修基础课程:一、本课程的地位和作用《线性代数》在高等学校的教学计划中是一门必修的基础理论课,是计算机专业的重要基础课之一,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。
所以该课程的地位与作用也更为重要。
通过该课程的学习,使学生掌握该课程的理论与方法,可以培养和提高学生的抽象思维能力、创新能力和解决实际问题的能力,并为为后续课程的学习及进一步扩大数学知识面奠定必要的数学基础。
二、本课程的教学目标通过该课程的学习,要求学生把握线性代数的基本内容。
如:行列式、矩阵、线性方程组、线性空间等。
把握线性代数的体系结构。
从知识的扩充层面上,发展自身的创新思维。
并且要求学生掌握线性代数的基本计算方法,较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。
三、课程内容和基本要求按教学顺序提出课程各部分教学内容,并具体到知识点,用“*”明确难点内容,用“Δ”明确重点。
“*”或“Δ”一律写在课程内容的前面。
“*”与“Δ”可以并用,表明此内容既是重点又是难点。
在各部分课程内容的前面,首先写明该部分内容须要了解、理解、熟练掌握、应用等层次的教学基本要求。
其格式为:第一章预备知识1、教学基本要求(1)了解集合与映射的基本概念及有理系数多项系的有理根的求法(2)理解数域的概念及排列与对换2、教学内容(1)集合与映射(2)数域(3)Δ排列与对换(4)*有理系数多项系的有理根第二章n阶行列式1、教学基本要求(1)了解全排列、行列式、代数余子式概念(2)理解n阶行列式的定义;(3)掌握行列式性质,会应用行列式的性质计算行列式;(4)理解行列式按行(列)展开定理并应用于行列式计算与证明;(5)掌握克莱姆法则。
《高等数学》课程教学大纲一、课程基本信息课程编码:课程名称:《高等数学》总学时:112学时适用专业:长春大学旅游学院商学院、旅游管理学院、工学院相关专业开课单位:基础部计算机与数学教研室课程类别:公共基础课课程性质:必修课二、课程性质、目的与任务高等数学课程的教学内容由3个数学分支的内容组成,即《微积分》(52学时)、《线性代数》(30学时)、《概率论及数理统计》(30学时)。
本课程是一门培养学生具有一定的抽象概括问题能力、逻辑推理能力、熟练的运算能力,综合运用所学知识去分析问题,解决问题能力的公共基础课,是商学院、旅游管理学院、工学院相关专业一门必修的课程。
通过本课程的学习,使学生掌握高等数学的基本知识、基本理论和基本方法,为学生解决实际问题提供有效的数学方法,以及将高等数学的知识在自然科学和工程技术中的广泛应用奠定良好的数学基础。
本课程的主要任务是为专业课提供必不可少的数学基础知识,在传授知识的同时,努力培养学生进行抽象思维和逻辑推理的理性思维能力,综合运用所学的知识分析问题和解决问题的能力,以及较强的自主学习能力,逐步培养学生的创新精神和创新能力。
三、课程的内容及要求、教学重点与难点(一)函数、极限、连续1.主要教学内容函数的概念;数列的极限;函数的极限;无穷小量与无穷大量;极限运算法则;极限存在准则、两个重要极限;函数的连续性与间断点;连续函数的运算、初等函数的连续性;闭区间上的连续函数的性质。
2.知识点与能力点(1)知识点:加深对函数概念的理解,了解函数性质(奇偶性、单调性、周期性和有界性);理解复合函数的概念,了解反函数的概念;理解极限的概念,了解极限的,Nεεδ--定义、理解左、右极限的定义;掌握极限的四则运算法则;了解极限的性质(唯一性、有界性、保号性)和两个存在准则(夹逼准则与单调有界准则);掌握两个重要极限;了解无穷小、无穷大,理解高阶无穷小和等价无穷小的概念;理解函数在一点连续和在区间上连续的概念;了解函数间断点的概念;了解初等函数的连续性和闭区间上连续函数的介值定理,最大值、最小值定理。
《线性代数》教学大纲课程编号:010课程名称:线性代数英文名称:Linear algebra学时:48+4 学分:3课程类型:必修课程性质:学科基础课适用专业:工科各专业先修课程:无开课学期:第2学期开课院系:数学与统计学院一、课程的教学目标与任务线性代数是高等学校理工科和经管金融等学科大学生的一门重要基础课程,是学习后继课程的工具。
随着计算机技术的飞速发展与广泛应用,大量工程与科研中的问题通过离散化的数值计算得到定量的解决,这就使得以处理离散量为主的线性代数课程占有越来越重要的地位。
通过本课程的学习,使学生掌握该课程的基本理论与方法;理解具体与抽象、特殊与一般、有限与无限等辨证关系;培养创新意识及能力,培养解决实际问题的能力和科学计算能力,并为学习后继相关课程及进一步扩大数学知识面奠定必要的数学基础。
二、本课程与其它课程的联系和分工该课程是中学代数的继续与提高,是学习概率论与数理统计、复变函数、大学物理等课程的基本必修课,而且为学习工科专业课程奠定必要的数学基础。
三、课程内容及基本要求(一) 矩阵( 10学时)内容:矩阵的概念;矩阵的运算;可逆矩阵及性质;矩阵的分块;高斯消元法;初等变换概念及性质;初等矩阵。
1.基本要求(1)了解矩阵概念产生的背景。
(2)熟练掌握矩阵的加法、数乘、乘法、转置、方幂、多项式等运算及其运算规律。
(3)正确理解和掌握逆矩阵的概念与性质。
(4)了解分块矩阵的意义,会分块矩阵的加法、乘法的运算。
(5)理解一般线性方程组的解,系数矩阵,增广矩阵,同解方程组等概念。
(6)正确理解初等矩阵、初等变换等概念及其它们之间的关系。
(7)掌握用初等变换方法求方阵的逆矩阵。
2. 重点、难点重点:矩阵的运算;逆矩阵及其性质;初等变换、初等矩阵的概念与性质;用初等变换化矩阵为阶梯形与最简形;用初等变换和定义法求逆矩阵的方法。
难点:矩阵的乘积;逆矩阵及其性质;分块矩阵的意义及运算。
(二)行列式(8学时)内容:二、三阶行列式;排列;n阶行列式的概念;n阶行列式的性质;行列式的计算;行列式按一行(列)展开;矩阵可逆的充要条件;克兰姆法则。
“线性代数”课程教学大纲一、课程基本信息开课单位:管理学院课程名称:线性代数课程编号:英文名称:Linear Algebra课程类型:学科基础课(请按我校教学计划安排表中的课程类型进行规范填写,即填写公共基础课、学科基础课、专业基础课、专业方向限选课、专业任选课、公共选修课等)总学时:60 理论学时: 60 实验学时: 0学分:3开设专业:先修课程:无二、课程任务目标(一)课程任务(本项编写要求:写明该课程的性质和任务)本课程是高等学校理工科本科学生一门必修的重要学科基础理论课,是讨论代数学中线性关系的一门经典理论课程。
它具有较强的抽象性与逻辑性,可以广泛应用于科学技术的各个领域。
本课程的任务是通过教学的各个环节,运用各种教学手段与方法,使学生掌握该课程的基本理论与计算方法。
培养学生分析问题、解决问题的能力。
提高学生的抽象思维能力、逻辑思维能力以及运用计算机解决与线性代数相关的实际问题的能力,为学生学习后继课程奠定坚实的数学基础。
(本参考编写样式为“微机原理与应用”课程)(二)课程目标(本项编写要求:写明学生在知识和能力方面应达到的目标要求)在学完本课程之后,学生能够:1.能较好地掌握行列式、矩阵特有的分析概念;2. 能够用行列式、矩阵的方法解决与线性代数相关的实际问题;三、教学内容和要求(一)理论教学的内容及要求(本项编写要求:以基本内容为主线,对各知识点分按“了解”、“理解”、“掌握”三个层次提出要求,并说明教学重点及难点)第一章行列式第一节行列式的概念1.了解行列式的概念;2.会求二阶与三阶行列式。
第二节行列式的性质1.了解余子式与代数余子式的概念;2.掌握行列式的性质。
第三节行列式的计算1.了解三角形行列式与对角形行列式的概念;2.掌握范德蒙(Vandermonde)行列式;3.掌握行列式的计算方法。
第四节行列式的应用1.了解线性方程组的概念;2.掌握克拉默法则。
第二章矩阵第一节矩阵的概念1.了解矩阵的概念;2.理解几类特殊的矩阵。
工程数学知识点以及教学大纲第一篇线性代数第1章行列式1.二阶、三阶行列式的计算P22.行列式的性质(转置,换行,数乘,求和,数乘求和)P3,P4,P52——3(2)3.行列式展开(代数余子式)P74.利用性质及行列式展开法则计算行列式(造零降阶法)5.字母型行列式计算(爪型)P53——5(2)6.矩阵的定义、矩阵的行列式的定义及矩阵与行列式的区别7.矩阵的运算(加减P20、数乘P21、乘法P22、转置P26、方阵的幂、乘法不满足交换律和消去律)()8.特殊的矩阵(对角、数量、单位矩阵(E)、三角形矩阵)9.矩阵的初等变换(三种)、行阶梯形、行最简形10.逆矩阵的定义、运算性质11.伴随矩阵P3812.利用初等变换求逆矩阵——P44例31(两阶更简单)13.矩阵的秩的概念及利用初等变换求矩阵的秩第2章线性方程组1.线性方程组的求解(分非齐次的和齐次的)P65例3、例4第3章特征值的求解(特征向量不作要求)P89例1第二篇概率论第4章概率的基本概念及计算1、基本概念:必然现象、随机现象、随机试验、样本空间、样本点、随机事件(事件)、基本事件(样本点)、不可能事件、必然事件、事件的包含与相等、和(并)事件、积(交)事件、互不相容(互斥)的事件、逆事件、频率、概率、概率的可加性(互不相容)、概率的加法公式(相容)、古典(等可能)概型P130、放回抽样方式、不放回抽样方式P132——例13、事件相互独立、条件概率P135引例2、基本公式:概率的可加性(互不相容)概率的加法公式(相容)击落飞机问题概率的乘法公式逆事件的概率事件A和B独立,则有3、基本结论:当事件A和B相互独立时,我们可以证明,事件亦相互独立。
第5章随机变量1、基本概念:随机变量、离散型和连续型随机变量、离散型随机变量的概率分布律、概率分布函数()、连续型随机变量的概率密度函数(密度函数或密度)、分布函数(,)P158、P161——例20、随机变量的独立、随机变量的函数及其分布(P192定理)2、基本公式:六种分布的分布律或概率密度函数服从正态分布的随机变量的概率计算P165——例23、例253、基本结论:连续型随机变量在某一点的概率为0,即第6章随机变量的数字特征、几个极限定理1、基本概念:离散型和连续型随机变量的数学期望P190、方差P198及其性质、随机变量函数的数学期望P195——例12、k阶(原点)矩、k阶中心矩2、基本公式:(1)数学期望(平均值、期望值、均值):1),2)(2)方差:1)2)(3)标准差(均方差):(与随机变量有相同的量纲)3、基本结论:(1)0-1(p)分布:(P151表格形式),(2)n重贝努里试验、二项分布(b(n,p)):P153——例10,(3)泊松公布(Poisson):,***在实际计算中,当时,我们有如下的泊松近似公式(4)指数分布():,,(5)均匀分布():,,(6)正态分布():,(7)标准正态分布():,(8)n个相互独立的正态随机变量的线性函数还是服从正态分布(P202)第三篇数理统计第7章数理统计的基本概念1、基本概念:总体(母体)、个体、样本(子样)、样本观测值(实现)、简单随机样本(随机性、独立同分布性)、统计量的判断P218、统计量的观测值、抽样分布2、基本公式:(1)样本平均值:(2)样本方差:(3)样本标准差:(4)样本k阶原点矩:(5)样本k阶中心矩:3、基本结论:(1)定理2:(2)P221例1(3)(4)(5)定理3:(6)定理4:(7)定理5:(8)定理6:(9)定理7:(10)定理8:(11)定理9:(12)分布:的上侧分位点:的下侧分位点:的双侧分位点,:(13)分布:的上侧分位点:的下侧分位点:的双侧分位点,:当n充分大(>45)时,有(费歇)(14)分布:的上侧分位点:的下侧分位点:的双侧分位点,:当n>30时,分布和标准正态分布就很接近了,由此当n较大时,就可以用标准正态分布的分位点取代分布的分位点。
线性代数Ⅰ课程教学大纲一课程基本情况课程名称:线性代数。
课程名称(英文):Linear Algebra。
课程编号:B11071。
课程总学时:40学时(全部为课堂讲授)。
课程学分:2学分。
课程分类:必修,考试课。
开课学期:第3学期。
开课专业:适合对数学类基础课要求较高的理工类本科专业,包括物理学(S)、计算机科学与技术(S)、农业机械化及其自动化、机械设计制造及其自动化、电气工程与自动化、电子信息工程、土木工程、工程管理等专业。
先修课程:无。
后续课程:大学物理等基础课和各专业相应专业课。
二课程的性质、地位、作用和任务《线性代数》是高等学校上述各专业的重要基础课。
由于线性问题广泛存在于科学技术的各个领域,某些非线性问题在一定条件下可以转化为线性问题,尤其是在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值与特征向量等已成为科学技术人员经常遇到的课题,因此学习和掌握线性代数的理论和方法是掌握现代科学技术以及从事科学研究的重要基础和手段,同时也是实现我院上述各专业培养目标的必备前提。
本课程的主要任务是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法。
使学生具有熟练的矩阵运算能力及用矩阵方法解决一些实际问题的能力。
从而为学生进一步学习后续课程和进一步提高打下必要的数学基础。
三主要内容、重点及深度了解行列式的定义,掌握行列式的性质及其计算。
理解矩阵(包括特殊矩阵)、逆矩阵、矩阵的秩的概念。
熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律。
理解逆矩阵存在的充要条件,掌握矩阵的求逆的方法。
掌握矩阵的初等变换,并会求矩阵的秩。
理解n维向量的概念。
掌握向量组的线性相关和线性无关的定义及有关重要结论。
掌握向量组的极大线性无关组与向量组的秩。
了解n 维向量空间及其子空间、基、维数等概念。
理解克莱姆(Cramer)法则。
理解非齐次线性方程组有解的充要条件及齐次线性方程组有非零解的充要条件。
理解齐次线性方程组解空间、基础解系、通解等概念。
《线性代数》课程教学大纲课程名称:线性代数课程代码:课程性质: 必修总学分:2 总学时: 32* 其中理论教学学时:32*适用专业和对象:理(非数学类专业)、工、经、管各专业**使用教材:注:(1)大部分高校开设本课程的教学学时数约为32—48学时,为兼顾少学时高校开展教学工作,本大纲以最低学时数32学时(约2学分)进行教学安排,有多余学时的学校或专业可对需要加强的内容适当拓展教学学时。
(2)对线性代数课程而言,理工类与经管类专业的教学基本要求几乎一致,所以这里所列教学内容及要求对这两类专业均适合。
一、课程简介《线性代数》是高等学校理(非数学类专业)、工、经、管各专业的一门公共基础课,其研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
该课程具有理论上的抽象性、逻辑推理的严密性和工程应用的广泛性。
主要内容是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法,使学生具有熟练的矩阵运算能力并能用矩阵方法解决一些实际问题。
通过本课程的学习,使学生理解和掌握行列式、矩阵的基本概念、主要性质和基本运算,理解向量空间的概念、向量的线性关系、线性变换、了解欧氏空间的线性结构,掌握线性方程组的求解方法和理论,掌握二次型的标准化和正定性判定。
线性代数的数学思想和数学方法深刻地体现辩证唯物主义的世界观和方法论,线性代数的发展历史也充分展示数学家们开拓创新、追求真理的科学精神,展现古今中外数学家们忠诚爱国、献身事业的高尚情怀。
思想政治教育元素融入线性代数的教学实践之中,可以培养学生用哲学思辨立场、观点和方法分析解决问题,能够提高学生的创新能力和应用意识,培养学生的爱国主义情怀、爱岗敬业精神和开拓创新精神,帮助学生在人生道路上形成良好的人格,树立正确的世界观、人生观、价值观。
线性代数理论不仅渗透到了数学的许多分支中,而且在物理、化学、生物、航天、经济、工程等领域中都有着广泛的应用。
同时,线性代数课程注重培养学生逻辑思维和抽象思维能力、空间直观和想象能力,提高学生分析问题解决问题的能力。
微积分课程教学大纲
格式要求:正文宋体小四
一、模块基本信息
课程名称微积分课程英文名称Calculus
课程代码SL331101 学分 3
总学时75 课程归属部门数理化学科部
先修课程高中数学后续课程线性代数,概率论
学期总学时学期共
同学习
学时
学期自
主学习
学时
师生共同学习周学时
授课总周
数
讲课习题课讨论、练习合计
75 48 27 1 3 16
三、课程简介
该课程是财务管理和国际贸易专业的基础课;它为后继课程及科学研究提供必要的数学工具;本课程包括的主要内容有:导数与微分、一元积分学、偏微分和微分方程;该课程是培养学生掌握基础的数学知识和方法并用于解决实际问题的重要基础课程;该课程所论及的科学思想和方法论,在经济和社会科学等领域中具有广泛的应用;
四、课程目标
通过本课程的学习,要使学生系统地获得一元函数微积分及其应用、多元函数微分及其应用、常微分方程等方面的基本概念、基本理论、基本方法;通过本课程的学习,逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和较强的自主学习能力,同时注意培养学生学会建立数学模型,具备用微积分的方法解决经济问题的能力,为学习后继课程和进一步获得数学知识奠定必要的数学基础;
五、教学方法
学院倡导研究型教学,不主张照本宣科,提倡围绕问题和典型案例组织研究导向教学research-led teaching教学过程需从“学习知识”转向“学会学习”;教学互动的核心是教师如何引导学生利用各种工具和方法解释现象和解决问题,课堂上教师主要是引导或指导,学生主要的学习发生在课前的阅读和准备、课后的学习和研究、小组讨论和交流、实验室或深入实际的验证和总结等过程中;。
线性代数Ⅰ课程教学大纲一课程基本情况课程名称:线性代数。
课程名称(英文):Linear Algebra。
课程编号:B11071。
课程总学时:40学时(全部为课堂讲授)。
课程学分:2学分。
课程分类:必修,考试课。
开课学期:第3学期。
开课专业:适合对数学类基础课要求较高的理工类本科专业,包括物理学(S)、计算机科学与技术(S)、农业机械化及其自动化、机械设计制造及其自动化、电气工程与自动化、电子信息工程、土木工程、工程管理等专业。
先修课程:无。
后续课程:大学物理等基础课和各专业相应专业课。
二课程的性质、地位、作用和任务《线性代数》是高等学校上述各专业的重要基础课。
由于线性问题广泛存在于科学技术的各个领域,某些非线性问题在一定条件下可以转化为线性问题,尤其是在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值与特征向量等已成为科学技术人员经常遇到的课题,因此学习和掌握线性代数的理论和方法是掌握现代科学技术以及从事科学研究的重要基础和手段,同时也是实现我院上述各专业培养目标的必备前提。
本课程的主要任务是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法。
使学生具有熟练的矩阵运算能力及用矩阵方法解决一些实际问题的能力。
从而为学生进一步学习后续课程和进一步提高打下必要的数学基础。
三主要内容、重点及深度了解行列式的定义,掌握行列式的性质及其计算。
理解矩阵(包括特殊矩阵)、逆矩阵、矩阵的秩的概念。
熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律。
理解逆矩阵存在的充要条件,掌握矩阵的求逆的方法。
掌握矩阵的初等变换,并会求矩阵的秩。
理解n维向量的概念。
掌握向量组的线性相关和线性无关的定义及有关重要结论。
掌握向量组的极大线性无关组与向量组的秩。
了解n 维向量空间及其子空间、基、维数等概念。
理解克莱姆(Cramer)法则。
理解非齐次线性方程组有解的充要条件及齐次线性方程组有非零解的充要条件。
理解齐次线性方程组解空间、基础解系、通解等概念。
线性代数与概率论课程教学大纲
一、课程说明
(一)课程名称、所属专业、课程性质、学分;
课程名称:线性代数与概率论
所属专业:材料物理与材料化学
课程属性:必修
学分:4
(二)课程简介、目标与任务;
本课程将对线性代数和概率论里的一些常见概念和基础知识进行讲解。
线性代数里所涉及到的对向量和矩阵的分析和操作,在科学研究和工程技术中均有着广泛的应用。
从向量和矩阵中抽象出来的线性空间和线性变换的概念,将为学生以后更深入的学习和实践提供必要的背景和知识准备。
概率论是统计方向的理论基础,对于将来实际工作中的数据分析和处理有着指导性作用。
这门72学时的课把线性代数和概率论放在一起讲实际上强度是比较大的。
线性代数部分先从行列式讲起,接着介绍关于向量组和矩阵的一些基本概念和运算。
有了这些知识储备后,在第三章对于线性方程组问题给出了一个完整的解答。
第四章对向量和矩阵的数学抽象引入了线性空间与线性变换,并对空间的代数结构和变换性质作了讨论。
最后两章是关于矩阵的比较实用部分,包括特征值与特征向量,矩阵对角化与二次型。
概率论部分先定义了样本空间与随机事件,接着引入概率的概念,列举了一些计算简单概率的方法和例子。
随后对随机事件的量化导致了随机变量的引入。
从第四章到第七章均是关于随机变量和随机变量函数的内容,我们讨论了一些常见分布及其数字特征,包括期望值,方差和关联函数(协方差)等。
对于独立的随机变量序列,我们运用切比雪夫不等式证明了大数律,最后介绍了中心极限定理。
希望学生通过本课程的学习,能够熟悉线性代数里的一些基本概念和思考问题的方法,培养数学抽象思维的能力,理解和熟练掌握向量和矩阵的一些性质和相关运算,对于随机过程和随机变量亦有一个初步的具体认识。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;
所需要的先修知识储备为基本的微积分,代数方程和一些矢量分析。
线性代数的知识,包括向量,矩阵和二次型,在以后的学习中都会用到。
线性空间和线性变换的概念在后继的理论课例如量子力学和群论的学习中将扮演重要角色。
概率论是后继数理统计
课的基础和前奏。
(四)教材与主要参考书:
[1]罗彦锋,《线性代数(高等数学第三册)》,兰州大学出版社,2009(教材);
[2]同济大学应用数学系主编,《概率统计简明教程》,高等教育出版社,2003(教材);
[3]丘维声,《简明线性代数》,北京大学出版社,2002;
[4]盛骤,谢式千,潘承毅编,《概率论与数理统计》,高等教育出版社,2008。
二、课程内容与安排
A. 线性代数部分
第一章行列式
第一节数域和矩阵
第二节二阶与三阶行列式
第三节 n阶排列
第四节 n阶行列式的定义
第五节行列式的性质
第六节行列式按行(列)展开
第七节行列式的计算
第八节克莱姆法则
第二章矩阵代数
第一节 n维向量
第二节向量的线性相关与线性无关,向量组的秩
第三节矩阵的运算
第四节矩阵的初等变换及其等价标准形
第五节矩阵的秩
第六节可逆矩阵
第七节分块矩阵及其应用
第八节初等变换与初等矩阵
第三章线性方程组
第一节消元法
第二节线性方程组有解判定定理
第三节线性方程组解的结构
第四章线性空间与线性变换
第一节集合与映射
第二节线性空间的定义及基本性质
第三节维数,基与坐标
第四节线性子空间
第五节线性空间的同构
第六节欧氏空间
第七节标准正交基
第八节线性变换及其运算
第九节线性变换的矩阵
第十节正交变换与对称变换
第五章特征值与特征向量,矩阵的对角化第一节特征值与特征向量
第二节矩阵的对角化
第三节实对称矩阵的对角化
第六章二次型
第一节二次型及其矩阵表示
第二节标准形
第三节规范形
第四节正定二次型与正定矩阵B. 概率论部分
第一章随机事件
第一节样本空间和随机事件
第二节事件关系和运算
第二章事件的概率
第一节概率的概念
第二节古典概型
第三节几何概型
第四节概率的公理化定义
第三章条件概率与事件的独立性
第一节条件概率
第二节全概率公式
第三节贝叶斯公式
第四节事件的独立性
第五节伯努利试验和二项概率
第六节主观概率
第四章随机变量及其分布
第一节随机变量及分布函数
第二节离散型随机变量
第三节连续型随机变量
第五章二维随机变量及其分布
第一节二维随机变量及分布函数
第二节二维离散型随机变量
第三节二维连续型随机变量
第四节边缘分布
第五节随机变量的独立性
第六节条件分布
第六章随机变量的函数及其分布
第一节一维随机变量的函数及其分布
第二节二维随机变量的函数的分布
第七章随机变量的数字特征
第一节数学期望
第二节方差和标准差
第三节协方差和相关系数
第四节切比雪夫不等式及大数律
第五节中心极限定理
(一)教学方法与学时分配
教学方法以讲授为主。
总学时是72个学时,线性代数部分的学时约占总学时的百分之八十,概率论部分约占百分之二十,具体分配如下。
线性代数部分:第一章12学时,第二章12学时,第三章8学时,第四章12学时,第五章8学时,第六章6学时;概率论部分:第一,二章1学时,第三章2学时,第四章2学时,第五章3学时,第六章(二维随机变量选讲)2学时,第七章4学时。
(二)内容及基本要求
主要内容:本课程将讲授一些线性代数和概率论的基础知识。
【重点掌握】:线性代数部分:行列式计算,矩阵运算,包括矩阵与矩阵的乘法,矩阵与向量的乘法以及矩阵的求逆,线性无关与线性相关的概念,解线性方程组,线性空间的维数,基与坐标,基变换对应的过渡矩阵,线性变换的矩阵形式以及在不同基下的表述,矩阵的特征值和特征向量以及矩阵对角化。
概率论部分:随机变量的概念以及一些常见的分布,特别是正态分布,各种分布的参数的意义和数字特征。
【掌握】:子式的概念,初等变换与初等矩阵在分析矩阵与向量组的秩中的应用,线性方程组的解的存在性,解的一般结构与判定条件,欧氏空间中的内积运算,标准正交基及施密特正交化方法,二次型及矩阵表示。
一些常见的矩阵形式,如对角,上(下)三角,正交,(反)对称矩阵等。
概率论中条件概率的计算,大数律和中心极限定理的内容。
【了解】:分块矩阵与行列式的拉普拉斯展开定理,线性(子)空间的定义和基本性质,同构的概念,柯西不等式,线性变换与矩阵语言的对应,相似与合同变换,二次型中的惯性定理,矩阵的正定性。
概率论中随机变量函数及其分布的计算,随机变量的独立性,大数律和中心极限定理的意义。
【一般了解】:数域,欧氏空间的同构,线性变换下的不变量,正定矩阵的判定。
概率论中的公理化定义,多维随机变量的边缘分布,切比雪夫不等式。
【难点】:线性空间与线性变换的引入和数学定义,基矢与坐标,线性变换的表出对基矢选择的依赖,以及对一些常见代数术语与概念的理解与掌握。
概率论中随机变量和随机变量函数及其分布的计算,对中心极限定理的把握。
(重点掌握、掌握、了解、一般了解四个层次可根据教学内容和对学生的具体要求适当减少,但不得少于两个层次)
制定人:陆汉涛
审定人:
批准人:
日期:2016年6月24日。