北京市海淀区2017届高三下学期期中考试数学(理)试题
- 格式:pdf
- 大小:540.45 KB
- 文档页数:11
北京市2017届高三综合练习数学(理)本试卷分第I 卷和第II 卷两部分,共150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试题卷上作答无效.考试结束后,将本试题卷和答题卡一并交回.第I 卷 (选择题 共40分)一、本大题共8个小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数11iz i+=-等于 A .iB .2iC .1+iD .1-i2.参数方程cos ,sin 3x y θθ==-⎧⎨⎩(θ为参数)化为普通方程是A .()2231x y +-=B .()2231y x ++= C .30x y ++=D .2213y x +=3.如图,程序框图所进行的求和运算是 A .1+2+22+23+24+25 B .2+22+23+24+25 C .1+2+22+23+24 D .2+22+23+244.已知在△ABC 中,D 是BC 的中点,那么下列各式中正确的是 A .AB AC BC +=u u u r u u u r u u u rB .12AB BC DA =+u u u ru u ur u u u rC .AD DC AC -=u u u r u u u r u u u rD .2CD BA CA +=u u u r u u ru u r5.已知一个空间几何体的三视图如图所示,其中正 视图为等腰直角三角形,侧视图与俯视图均为正 方形,那么该几何体的表面积是 A .16 B .20 C .1242+D .1642+开始 是输出S 否 n =1,S = 0 n <5 S = S +2 n n = n +1结束ODCBA6.有1位老师与2名女生2名男生站成一排合影,两名女生之间只有这位老师,这样的不同排法共有 A .48种B .24种C .12种D .6种7.某汽车销售公司在A ,B 两地销售同一种品牌车,在A 地的销售利润(单位:万元)是1913.5y x =-,在B 地的销售利润(单位:万元)是216.24y x =+,其中x 为销售量(单位:辆).若该公司在这两地共销售11辆这种品牌车,则能获得的最大利润是A .19.45万元B .22.45万元C .25.45万元D .28.45万元8.定义集合{x |a ≤x ≤b }的“长度”是b -a . 已知m ,n ∈R ,集合23M x m x m =+⎧⎫⎨⎬⎩⎭≤≤,34N x n x n =-⎧⎫⎨⎬⎩⎭≤≤,且集合M ,N 都是集合{x |1≤x ≤2}的子集,那么集合M ∩N 的“长度”的最小值是 A .23B .12C .512D .13第II 卷 (共110分)二、填空题:本大题共6个小题,每小题5分,共30分.9.已知等差数列{a n }中,a 2=-2,公差d =-2,那么数列{a n }的前5项和S 5= . 10.某班有50名学生,在一次百米测试中,成绩全部在13秒与18秒之间,将测试成绩分成五组:第一 组[13,14),第二组[14,15),…,第五组[]17,18. 如图是按上述分组方法得到的频率分布直方图,若 成绩大于或等于15秒,且小于17秒认为良好,则 该班在这次百米测试中成绩良好的人数是_________.11.已知x ,y 满足不等式组50,10,1,x y x y x +---⎧⎪⎨⎪⎩≤≤≥ 那么z =x +2y 的最大值是_____________.12.如图,圆O 是△ABC 的外接圆,过点C 的切线交AB 的延长线于点D ,AB =BC =3,210CD = 则cos D = .13.已知函数()12log 2f x x kx k =-+,且方程f (x )=0有且只有一个实数根,那么实数k 的取值范围是__________________.14.在直角坐标系中,点O 为坐标原点,已知11,04OA =-⎛⎫ ⎪⎝⎭u u u r,()121,0i i A A i +=-u u u u ur()1,2,,,i n =L L , ()11,2,,,i i i A B A i n +∆=L L 是等边三角形,且点12,,,,n B B B L L 在同一条曲线C 上,那么曲线C 的方程是____________;设点()1,2,,,n B i n =L L 的横坐标是n (n ∈N *)的函数f (n ),那么f (n )= ____________.三、解答题:本大题共6个小题,共80分.解答题写出文字说明,演算步骤或证明过程. 15.(本题13分)已知函数f (x )=2sin x cos x +2cos 2x +1. (I )求f (x )的最小正周期; (II )求f (x )在区间,02π-⎡⎤⎢⎥⎣⎦上的最大值和最小值.16.(本题14分)如图,在四棱锥P -ABCD 中,底面ABCD 是梯形,AD ∥BC ,∠DAB =90°,PA⊥平面ABCD ,PA =AB =BC =2,AD =1. (I )求证:BC ⊥平面PAB ;(II )求异面直线PC 与AB 所成角的余弦值;(III )在侧棱PA 上是否存在一点E ,使得平面CDE 与平面ADC 所成角的余弦值是23,若存在,求出AE 的长;若不存在,说明理由.17.(本题13分)有甲、乙、丙三人到某公司面试,甲、乙通过面试的概率分别为25,12,丙通过面试的概率为p ,且三人能否通过面试相互独立. 记X 为通过面试的人数,其分布列为X 012 3 P940abc(I )求p 的值;(II )求至少有两人通过面试的概率; (III )求数学期望EX .18.(本题13分)已知函数f (x )=ln x -a 2x 2+ax . (I )若a =1,求函数f (x )的最大值;(II )若函数f (x )在区间(1,+∞)上是减函数,求实数a 的取值范围.19.(本题13分)已知椭圆C 的焦点在y 轴上,离心率为2,且短轴的一个端点到下焦点F.(I )求椭圆C 的标准方程;(II )设直线y =-2与y 轴交于点P ,过点F 的直线l 交椭圆C 于A ,B 两点,求△PAB 面积的最大值.20.(本题14分)对于数列{a n },从第二项起,每一项与它前一项的差依次组成等比数列,称该等比数列为数列{a n }的“差等比数列”,记为数列{b n }. 设数列{b n }的首项b 1=2,公比为q (q 为常数).(I )若q =2,写出一个数列{a n }的前4项;(II )(ⅰ)判断数列{a n }是否为等差数列,并说明你的理由;(ⅱ)a 1与q 满足什么条件,数列{a n }是等比数列,并证明你的结论;(III )若a 1=1,1<q <2,数列{a n +c n }是公差为q 的等差数列(n ∈N *),且c 1=q ,求使得c n <0成立的n 的取值范围.(考生务必将答案答在答题卡上,在试题卷上作答无效)参考答案(理科)一、选择题:1.A 2.B 3.D 4.D 5.C 6.C 7.A 8.C 二、填空题:9.20- 10.35 11.912 13.[)0,+∞ 14. 23y x =;212n ⎛⎫- ⎪⎝⎭三、解答题:15. 解:(Ⅰ)()sin 2cos 22f x x x =++ …………………………3分)24x π=++.所以)(x f 的最小正周期为π. …………………………6分(Ⅱ) 因为,02x π⎡⎤∈-⎢⎥⎣⎦时, 所以32[,]444x πππ+∈-,所以当244x ππ+=,即0x =时,sin(2)42x π+=, 所以()f x 取得最大值3; 当242x ππ+=-,即38x π=-时,sin()16x π+=-,所以()f x取得最小值2 …………………………13分 16.解;(Ⅰ)证明:∵底面ABCD 是梯形,//AD BC ,90DAB ∠=︒, ∴.BC AB ⊥∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,∴PA ⊥ BC , ∵PA AB A =I ,∴BC ⊥平面PAB . ………………………… 3分 (Ⅱ)以A 为原点,分别以AD ,AB ,AP 所在直线x ,y ,z 轴建立空间直角坐标系. ∴()0,0,0A ,()1,0,0D ,()0,2,0B ,()2,2,0C ,()0,0,2P .∴()2,2,2PC =-u u u r ,()0,2,0AB =u u u r.∴cos ,3PC AB PC AB PC AB ===⋅u u u u r u u u ru u u u r u u u r g u u u r u u u r ∴异面直线PC 与AB…………………………8分 (Ⅲ)假设在侧棱PA 上存在一点E ,使得平面CDE 与平面ADC 所成角的余弦值是23, 设()()0,0,0.E m m > ∴()1,2,0DC =u u u r ,()1,0,DE m =-u u u r. ∴设平面CDE 的法向量为(),,n x y z =r,∴0n DC =u u r u u u r g ,0n DE =u u r u u u rg ,∴20,0.x y x mz +=⎧⎨-+=⎩令2x =,所以1y =-,2z m =. ∴22,1,n m ⎛⎫=- ⎪⎝⎭r .又∵平面ACD 的法向量为()0,0,2AP =u u u r,∴2cos ,3n AP =u u r u u u r,即42.3n AP n AP==⋅r u u u rg r u u u r 解得 1.m =∴点E 的坐标是()0,0,1.∴在侧棱PA 上存在一点E ,使得平面CDE 与平面ADC 所成角的余弦值是23. ………………………… 14分17. 解:设 “甲通过面试”为事件1A , “乙通过面试”为事件2A ,设 “丙通过面试”为事件3A , ………………………… 1分 所以()125P A =,()212P A = ,()3P A p = . (Ⅰ)由已知得()9040P X ==,即()219111.5240p ⎛⎫⎛⎫---= ⎪⎪⎝⎭⎝⎭所以14p =. ………………………… 4分 (Ⅱ)设“至少有两人通过面试”为事件B ,由题意知()()()()1231231232b P X P A A A P A A A P A A A ===++21123131111.54254254240=⨯⨯+⨯⨯+⨯⨯= ()()1233c P X P A A A ===2111.52420=⨯⨯=所以 ()()()1323.40P B P X P X ==+==………………………… 10分 (Ⅲ)由题意得 ()()()()911023.20a P X P X P X P X ===-=-=-==所以99111230123.4020402020EX =⨯+⨯+⨯+⨯= ………………………… 13分18.解:(I )当1a =时,()2ln f x x x x =-+,定义域为()0,+∞,………………………… 1分所以()212121x x f x x x x -++'=-+=, 令()0f x '=,解得12x =-,或1x =.因为0x >,所以 1.x = ………………………… 3分 所以当01x <<时,()0f x '>;当1x >时,()0f x '<.所以函数()f x 在区间()0,1上单调递增,在区间()1,+∞上单调递减, ………………………… 4分 所以当1x =时,函数()f x 取得最大值,即()f x 的最大值是()10.f = ………………………… 5分 (II )因为()22ln f x x a x ax =-+,定义域为()0,+∞,所以()()()221112.ax ax f x a x a x x-+-'=-+= ………………………… 7分 ①当0a =时,()10f x x'=>, 所以()f x 在区间()0,+∞上为增函数,不符合题意. ………………………… 8分 ②当0a >时,由 ()0f x '<,即(21)(1)0ax ax +->,又0x >,所以1.x a >所以()f x 的单调减区间为(1a,+∞), 所以11,0,a a ⎧≤⎪⎨⎪>⎩ 解得 1.a ≥ ………………………… 10分③当0a <时,()0f x '<,即(21)(1)0ax ax +->,又0x >,所以12x a >-,所以()f x 的单调减区间为1,2a ⎛⎫-+∞ ⎪⎝⎭, 所以11,20,a a ⎧-≤⎪⎨⎪<⎩解得1.2a ≤- ………………………… 12分综上所述,实数a 的取值范围是[)1,1,.2⎛⎤-∞-+∞ ⎥⎝⎦U………………………… 13分 19.解:(Ⅰ)因为椭圆C 的焦点在y 轴上,所以设椭圆C 的方程是()222210y x a b a b+=>>. ………………………… 1分因为短轴的一个端点到下焦点F,离心率为2所以a = 1.c = 所以2 1.b =所以椭圆C 的标准方程是22 1.2y x += ………………………… 4分 (Ⅱ)由(Ⅰ)知()0,1F -,()0,2P -,且直线l 的斜率存在,设其方程为: 1.y kx =-,由 221,1,2y kx y x =-⎧⎪⎨+=⎪⎩ 得()222210.k x kx +--= ………………………… 6分设11(,)A x y ,22(,)B x y ,所以12222kx x k +=+,12212x x k -=+. ………………………… 7分 所以PAB ∆面积1212PAB S PF x x ∆=⋅-(1x ,2x 异号).所以PAB S ∆===………………………… 9分=≤2= ………………………… 12分 当且仅当22111k k+=+,即0k=时,PAB S ∆有最大值是2 所以当0k=时,PAB ∆ ………………………… 13分20. 解:(Ⅰ)因为数列{}n b 是等比数列,且12b =,2q =, 所以 24b =,38b =,所以11a =,23a =,37a =,1515a =. (写出满足条件的一组即可) ………………………… 2分 (Ⅱ)(ⅰ)因为12b =,所以212a a -=,322a a q -=, 2432a a q -=,…,212n n n a a q ---=()2n ≥.所以()22121n n a a q q q --=++++L . ①若1q =,所以12n n a a --=,所以数列{}n a 是等差数列. ………………………… 3分 ②若1q ≠,所以()1121.1n n q a a q --=+-所以1n n a a +-=()()1212111n n q q qq------1221n n q q q--=-12n q -=.因为1q ≠, 所以12n q-不是常数.所以数列{}n a 不是等差数列. ………………………… 5分 (ⅱ)因为数列{}n b 是等比数列,首项12b =,公比为q ,所以22b q =,232b q =. 所以212a a =+,3122a a q =++.因为数列{}n a 是等比数列,所以2213a a a =⋅,即()()2211222.a a a q +=⋅++ 所以112a q a +=. 所以当112a q a +=时,数列{}n a 是等比数列. ………………………… 7分 (Ⅲ)因为{}n n a c +是公差为q 的等差数列,所以()()11.n n n n a c a c q --+-+= 又212n n n a a q ---=,所以212.n n n c c q q ---=-所以3122n n n c c q q ----=-,…,322c c q q -=-,21 2.c c q -=-所以()2321n n n c nq q q q --=-++++L ()121.1n q nq q--=-- ………………………… 9分所以10c q =>,()2210c q =->,320c q =-<,4c =()2213212022q q q ⎛⎫--+=---< ⎪⎝⎭,…猜想:当3n ≥时,0n c <. 用数学归纳法证明:①当3n =时,30c <显然成立, ②假设当()3n k k =≥时,0k c <,那么当1n k =+时,()11212212.k k k n n c c q q q q q q ---+=+-<-=- 因为12q <<,3k ≥, 所以2120.k q--<所以10.n c +<所以当1n k =+时,10n c +<成立.由①、②所述,当3n ≥时,恒有0n c <. ………………………… 14分。
海淀区高三年级第一学期期中练习数 学(理科) 2016.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{2}A x x =>,{(1)(3)0}B x x x =--<,则AB =A. {1}x x >B. {23}x x <<C. {13}x x <<D. {2x x >或1}x < 2. 已知向量(1,2),(2,4)=-=-a b ,则a 与b A. 垂直B. 不垂直也不平行C. 平行且同向D. 平行且反向3. 函数222x x y =+的最小值为 A. 1B. 2C. D. 44. 已知命题:p 0c ∃>,方程20x x c -+= 有解,则p ⌝为 A. 0c ∀>,方程20x x c -+=无解 B. c ∀≤0,方程20x x c -+=有解 C. 0c ∃>,方程20x x c -+=无解 D. c ∃≤0,方程20x x c -+=有解5. 已知函数,,log x b c y a y x y x ===的图象如图所示,则 A. a b c >> B. a c b >> C. c a b >> D. c b a >>6. 设,a b 是两个向量,则“+>-a b a b ”是“0⋅>a b ”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件7. 已知函数42()cos sin f x x x =+,下列结论中错误..的是A. ()f x 是偶函数B. 函数()f x 最小值为34C. π2是函数()f x 的一个周期D. 函数()f x 在π0,2()内是减函数8.如图所示,A 是函数()2x f x =的图象上的动点,过点A 作直线平行于x 轴,交函数2()2x g x +=的图象于点B ,若函数()2xf x =的图象上存在点C 使得ABC ∆为等边三角形,则称A 为函数()2x f x =上的好位置点. 函数()2x f x =上的好位置点的个数为A. 0B. 1C. 2D. 大于2第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市2017届高三综合练习数学(理)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中, 有且只有一项是符合题目要求的.1.已知全集U={一l ,0,1,2},集合A={一l ,2},B={0,2},则=⋂B A C U )(A .{0}B .{2}C .{0,l ,2}D .φ2.已知i 为虚数单位,2=iz,则复数=zA .i -1B .i +1C .2iD .-2i 3.“a=2”是“直线ax 十2y=0与直线x+y=l 平行”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.一个四棱锥的三视图如图所示,其中主 视图是腰长为1的等腰直角三角形,则 这个几何体的体积是 A .21B .1C .23D .2 5.函数2(sin cos )1y x x =+-是A .最小正周期为π2的奇函数B .最小正周期为π2的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数6.过点π4,2A ⎛⎫- ⎪⎝⎭引圆4sin ρθ=的一条切线,则切线长为A .33B .36C .22D .24 7.将图中的正方体标上字母, 使其成为正方体1111ABCD A B C D -, 不 同的标字母方式共有A .24种B .48种C .72种D .144种11主视图左视图俯视图8.若函数()() y f x x R =∈满足()()2f x f x +=,且[]1,1x ∈-时,()21f x x =-, 函数()()()lg 01 0x x g x x x ⎧>⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[]5,5-内的零点的个数为A .5B .7C .8D .10 二、填空题:本大题共6小题,每小题5分,满分30分.9.二项式521⎪⎭⎫ ⎝⎛-x x 的展开式中含4x 的项的系数是 (用数字作答). 10.如图给出的是计算2011151311+⋅⋅⋅+++的值 的一个程序框图,其中判断框内应填入的条件 是 . 11.如图,PA 是圆的切线,A 为切点,PBC 是圆 的割线,且PB PA 3=则=BCPB. 12. 当(1,2)x ∈时,不等式2(1)log a x x -<恒成立,则实数a 的取值范围为 .13.已知不等式组⎪⎩⎪⎨⎧>-≥-≤+122y y x y x 表示的平面区域为,M 若直线13+-=k kx y 与平面区域M 有公共点,则k 的取值范围是 .14.手表的表面在一平面上.整点1,2,…,12这12个数字等间隔地分布在半径为22的圆周上.从整点i 到整点(i +1)的向量记作1+i i t t ,则2111243323221t t t t t t t t t t t t ⋅+⋅⋅⋅+⋅+⋅= .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分13分)在ABC ∆中,a b c 、、分别为角A B C 、、的对边,且满足222b c a bc +-=. (Ⅰ)求角A 的值;P(Ⅱ)若a =B 的大小为x ,ABC ∆的周长为y ,求()y f x =的最大值.16.(本小题满分14分)如图,在四棱锥S ABCD -中,底面ABCD 是正方形,其他四个侧面都是等边三角形,AC 与BD 的交点为O ,E 为侧棱SC 上一点. (Ⅰ)当E 为侧棱SC 的中点时,求证:SA ∥平面BDE ;(Ⅱ)求证:平面BDE ⊥平面SAC ; (Ⅲ)当二面角E BD C --的大小为45︒ 时,试判断点E 在SC 上的位置,并说明理由.17.(本小题满分13分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产 品作为样本称出它们的重量(单位:克),重量的分组区间为(]495,490,(]500,495,…,(]515,510.由此得到样本的频率分布直方图,如图所示:(Ⅰ)根据频率分布直方图,求重量超过505克的产品数量;(Ⅱ)在上述抽取的40个产品中任职2件,设ξ为重量超过505克的产品数量,求ξ的分布列;(Ⅲ)从流水线上任取5件产品,估计其中恰 有2件产品的重量超过505克的概率.18.(本小题满分13分)已知xxx g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,R a ∈. (Ⅰ)讨论1=a 时,()f x 的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,1()()2f xg x >+; (Ⅲ)是否存在实数a ,使()f x 的最小值是3,若存在,求出a 的值;若不存在,说明理由.19.(本小题满分14分)已知:椭圆12222=+b y a x (0>>b a ),过点)0,(a A -,),0(b B 的直线倾斜角为6π,原点到该直线的距离为23. (Ⅰ)求椭圆的方程;(Ⅱ)斜率大于零的直线过)0,1(-D 与椭圆交于E ,F 两点,若2=,求直线EF的方程;(Ⅲ)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点)0,1(-D ?若存在,求出k 的值;若不存在,请说明理由.20.(本小题满分13分 )定义:对于任意*n ∈N ,满足条件212n n n a a a +++≤且n a M ≤(M 是与n 无关的常数)的无穷数列{}n a 称为T 数列.(Ⅰ)若29n a n n =-+(*n ∈N ),证明:数列{}n a 是T 数列;(Ⅱ)设数列{}n b 的通项为3502nn b n ⎛⎫=- ⎪⎝⎭,且数列{}n b 是T 数列,求常数M 的取值范围;(Ⅲ)设数列1n pc n=-(*n ∈N ,1p >),问数列{}n c 是否是T 数列?请说明理由.参考答案及评分标准一、选择题:本大题共8个小题;每小题5分,共40分.9.10 10.2011≤i 11.2112.]2,1( 13.)0,31[- 14.936-三、解答题:本大题共6小题,满分80分.15.(本小题满分13分)在ABC ∆中,a b c 、、分别为角A B C 、、的对边,且满足222b c a bc +-=. (Ⅰ)求角A 的值;(Ⅱ)若a =B 的大小为x ,ABC ∆的周长为y ,求()y f x =的最大值.解:(Ⅰ)∵222b c a bc +-=,∴2221cos 22b c a A bc +-==又0A π<<, ∴3A π=; -------------------------------------------------------------5分(Ⅱ)∵Aax b sin sin =, ∴x x x a b sin 2sin 233sin 3sin=⋅=⋅=π同理)32sin(sin sin x C A a c -=⋅=π∴3)6sin(323)32sin(2sin 2++=+-+=ππx x x y∵320,3ππ<<∴=x A ∴)65,6(6πππ∈+x , ∴62x ππ+=即3x π=时,max y =分16.(本小题满分14分)如图,在四棱锥S ABCD -中,底面ABCD 是正方形,其他四个侧面都是等边三角形,AC 与BD 的交点为O ,E 为侧棱SC 上一点. (Ⅰ)当E 为侧棱SC 的中点时,求证:SA ∥平面BDE ;(Ⅱ)求证:平面BDE ⊥平面SAC ; (Ⅲ)当二面角E BD C --的大小为45︒ 时,试判断点E 在SC 上的位置,并说明理由. (Ⅰ)证明:连接OE ,由条件可得SA ∥OE . 因为SA Ë平面BDE ,OE Ì平面BDE ,所以SA ∥平面BDE(Ⅱ)证明:由(Ⅰ)知SO ABCD ⊥面,AC BD ⊥.建立如图所示的空间直角坐标系. 设四棱锥S ABCD -的底面边长为2, 则(0, 0, 0)O ,(0, 0,S ,)0, 0A,()0, 0B ,()0, 0C , ()0, 0D .所以() 0, 0AC =-u u u r ,()0, 0BD =-u u u r.设CE a =(02a <<),由已知可求得45ECO ∠=︒.所以(, 0, )22E a ,(, )22BE a a =-u u u r . 设平面BDE 法向量为(, , )x y z =n ,则0,0BD BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0, ()0.22y a x az =⎧⎪⎨+=⎪⎩ 令1z =,得(, 0, 1)2aa=-n .易知()0, 0BD =-u u u r是平面SAC 的法向量.因为(, 0, 1)(0, 0)02a BD a ⋅=⋅-=-u u u r n ,所以BD ⊥u u u rn ,所以平面BDE ⊥平面SAC .-------------------------------------9分(Ⅲ)解:设CE a =(02a <<),由(Ⅱ)可知,平面BDE 法向量为(, 0, 1)2aa=-n . 因为SO ABCD ⊥底面,所以(0, 0,OS =u u u r是平面SAC 的一个法向量.由已知二面角E BD C --的大小为45︒.所以cos , cos 452OS 〈〉=︒=u u u r n ,2=,解得1a =.[ 所以点E 是SC 的中点.-----------------------------------------------------------------14分 17.(本小题满分13分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产 品作为样本称出它们的重量(单位:克),重量的分组区间为(]495,490,(]500,495,…,(]515,510.由此得到样本的频率分布直方图,如图所示:(Ⅰ)根据频率分布直方图,求重量超过505克的产品数量;(Ⅱ)在上述抽取的40个产品中任职2件,设ξ为重量超过505克的产品数量,求ξ的分布列;(Ⅲ)从流水线上任取5件产品,估计其中恰 有2件产品的重量超过505克的概率.解:(Ⅰ)重量超过505克的产品数量是12)501.0505.0(40=⨯+⨯⨯件------------2分 (Ⅱ)ξ的所有可能取值为0,1,222824063(0)130C P C ξ===,11122824056(1)130C C P C ξ===,21224011(2)130C P C ξ===, ξ的分布列为-------------------------------------------------------9分(Ⅲ)由(Ⅰ)的统计数据知,抽取的40件产品中有12件产品的重量超过505克,其频率为3.0,可见从流水线上任取一件产品,其重量超过505克的概率为3.0,令ξ为任取的5件产品中重量超过505克的产品数,则)3.0,5(~B ξ,故所求的概率为3087.0)7.0()3.0()2(3225===C p ξ-----------------------13分18.(本小题满分13分)已知xxx g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,R a ∈. (Ⅰ)讨论1=a 时, ()f x 的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,1()()2f xg x >+; (Ⅲ)是否存在实数a ,使()f x 的最小值是3,若存在,求出a 的值;若不存在,说明理由. 解:(Ⅰ)Θx x x f ln )(-=,xx x x f 111)(-=-=' ∴当10<<x 时,/()0f x <,此时()f x 单调递减 当e x <<1时,/()0f x >,此时()f x 单调递增∴()f x 的极小值为1)1(=f -----------------------------------------------------------4分 (Ⅱ)Θ()f x 的极小值为1,即()f x 在],0(e 上的最小值为1,∴ 0)(>x f ,min ()1f x =……5分 令21ln 21)()(+=+=x x x g x h ,xxx h ln 1)(-=', 当e x <<0时,0)(>'x h ,()h x 在],0(e 上单调递增 ∴min max |)(|12121211)()(x f e e h x h ==+<+== ∴在(1)的条件下,1()()2f xg x >+------------------------------------------------8分(Ⅲ)假设存在实数a ,使x ax x f ln )(-=(],0(e x ∈)有最小值3,/1()f x a x =-x ax 1-=① 当0≤a 时,)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,ea 4=(舍去),所以,此时)(x f 无最小值. ② 当e a <<10时,)(x f 在)1,0(a 上单调递减,在],1(e a上单调递增 3ln 1)1()(min =+==a af x f ,2e a =,满足条件.③ 当e a ≥1时,)(xf 在],0(e 上单调递减,31)()(min =-==ae e f x f ,ea 4=(舍去),所以,此时)(x f 无最小值.综上,存在实数2e a =,使得当],0(e x ∈时()f x 有最小值3.---------------------13分 19.(本小题满分14分)已知:椭圆12222=+b y a x (0>>b a ),过点)0,(a A -,),0(b B 的直线倾斜角为6π,原点到该直线的距离为23. (Ⅰ)求椭圆的方程;(Ⅱ)斜率大于零的直线过)0,1(-D 与椭圆交于E ,F 两点,若2=,求直线EF的方程;(Ⅲ)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点)0,1(-D ?若存在,求出k 的值;若不存在,请说明理由.解:(Ⅰ)由33=a b ,22232121b a b a +⋅⋅=⋅ ,得3=a ,1=b , 所以椭圆方程是:1322=+y x ---------------------------------------------------------4分 (Ⅱ)设EF :1-=my x (0>m )代入1322=+y x ,得022)3(22=--+my y m , 设),(11y x E ,),(22y x F ,由2=,得212y y -=.由322221+=-=+m m y y y ,32222221+-=-=m y y y ----------------------------6分 得31)32(222+=+-m m m ,1=∴m ,1-=m (舍去),(没舍去扣1分)直线EF 的方程为:1-=y x 即01=+-y x ----------------------------------------9分(Ⅲ)将2+=kx y 代入1322=+y x ,得0912)13(22=+++kx x k (*) 记),(11y x P ,),(22y x Q ,PQ 为直径的圆过)0,1(-D ,则QD PD ⊥,即0)1)(1(),1(),1(21212211=+++=+⋅+y y x x y x y x ,又211+=kx y ,222+=kx y ,得01314125))(12()1(221212=++-=+++++k k x x k x x k . 解得67=k ,此时(*)方程0>∆, ∴存在67=k ,满足题设条件.------------------------------------------------------14分 20.(本小题满分13分 )定义:对于任意*n ∈N ,满足条件212n n n a a a +++≤且n a M ≤(M 是与n 无关的常数)的无穷数列{}n a 称为T 数列.(Ⅰ)若29n a n n =-+(*n ∈N ),证明:数列{}n a 是T 数列;(Ⅱ)设数列{}n b 的通项为3502nn b n ⎛⎫=- ⎪⎝⎭,且数列{}n b 是T 数列,求常数M 的取值范围;(Ⅲ)设数列1n pc n=-(*n ∈N ,1p >),问数列{}n c 是否是T 数列?请说明理由. 解:(Ⅰ) 由29n a n n =-+,得2)1(18)1(2)2(9)2(9222212-=+-+++++-+-=-+++n n n n n n a a a n n n所以数列{}n a 满足212n n n a a a +++≤. 又298124n a n ⎛⎫=--+ ⎪⎝⎭,当n =4或5时,n a 取得最大值20,即n a ≤20.综上,数列{}n a 是T 数列.------------------------------------------------------------4分(Ⅱ)因为11331350(1)50502222n n nn n b b n n ++⎛⎫⎛⎫⎛⎫-=+--+=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以当1350022n⎛⎫-≥ ⎪⎝⎭即11n ≤时,10n n b b +->,此时数列{}n b 单调递增当12n ≥时,10n n b b +-<,此时数列{}n b 单调递减;故数列{}n b 的最大项是12b ,所以,M 的取值范围是 1236002M ⎛⎫≥- ⎪⎝⎭----------------------------------------9分(Ⅲ)①当12p <≤时, 当1n =时1231,1,1,23p p c p c c =-=-=- 由13252203p c c c +-=-≤得65p ≤,即当615p <≤时符合122++≤+n n nc c c 条件. 若2n ≥,则1≤n p ,此时1n pc n=- 于是 2122(1)(1)2(1)021(1)(2)n n n p p p pc c c n n n n n n ++-+-=-+---=<++++ 又对于*n ∈N 有11n p c n =-<,所以当615p <≤时数列{}n c 是T 数列; ②当23p <≤时, 取1n =则:1231,1,1,23p pc p c c =-=-=- 由0322231>-=-+pc c c ,所以23p <≤时数列{}n c 不是T 数列 ③当3p >时, 取1n =则1231,1,1,23p p c p c c =-=-=- 由1325206pc c c +-=>,所以3p >时数列{}n c 不是T 数列. 综上:当615p <≤时数列{}n c 是T 数列;当65p >时数列{}n c 不是T 数列 -----------------------------------------------------------------------------13分。
北京市海淀区高三二模数学(理科)2017.5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.若集合{2,0,1}A =-,{|1B x x =<-或0}x >,则A B =A. {2}-B. {1}C. {2,1}-D. {2,0,1}-2.二项式62)x x-(的展开式的第二项是A.46xB.46x -C.412xD. 412x -3.已知实数,x y 满足10,30,3,x y x y y --≥⎧⎪+-≥⎨⎪≤⎩则2x y +的最小值为A. 11B.5C.4D. 24.圆2220x y y +-=与曲线=1y x -的公共点个数为 A .4 B .3C .2D.05.已知{}n a 为无穷等比数列,且公比1q >,记n S 为{}n a 的前n 项和,则下面结论正确的是 A. 32a a > B. 12+0a a > C.2{}n a 是递增数列 D. n S 存在最小值6.已知()f x 是R 上的奇函数,则“120x x +=”是“12()()0f x f x +=”的 A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 现有编号为①、②、③的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在....一个侧面与此底面互相垂直的三棱锥的所有编号是A. ①B.①②C.②③D.①②③8.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分1图 2图3图别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如图所示.将小圆盘逆时针旋转(1,2,3,4)i i =次,每次转动90︒,记(1,2,3,4)i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++. 若1234++0x x x x +<,1234+++0y y y y <,则以下结论正确的是A.1234,,,T T T T 中至少有一个为正数B.1234,,,T T T T 中至少有一个为负数C.1234,,,T T T T 中至多有一个为正数D.1234,,,T T T T 中至多有一个为负数二、填空题共6小题,每小题5分,共30分。
北京市2017届高三综合练习数学(理)(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)注意事项:1.答第一部分前,考生务必将自己的姓名、考试科目涂写在答题卡上.考试结束时,将试题卷和答题卡一并交回。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题卷上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.若集合2{|, }M y y x x ==∈R ,{|2, }N y y x x ==+∈R ,则MN 等于(A )[)0,+∞ (B)(,)-∞+∞ (C )∅ (D ){(2, 4),(1, 1)-} 2.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是 (A )8,8 (B )10,6(C )9,7(D )12,43.极坐标方程4cos ρθ=化为直角坐标方程是(A )22(2)4x y -+= (B )224xy +=(C)22(2)4xy +-= (D)22(1)(1)4x y -+-=4.已知{}na 是由正数组成的等比数列,nS 表示{}na 的前n 项的和.若13a =,24144a a =,则10S 的值是(A )511 (B ) 1023 (C )1533 (D )30695.函数)2(cos2π+=x y 的单调增区间是(A )π(π, π)2k k +k ∈Z(B )π(π, ππ)2k k ++k ∈Z(C )(2π, π2π)k k +k ∈Z (D )(2ππ, 2π2π)k k ++k ∈Z6.已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于 (A(B(C(7.如图,双曲线的中心在坐标原点O ,, A C分别是双曲线虚轴的上、下顶点,B 是双曲线的左顶点,F 为双曲线的左焦点,直线AB 与FC 相交于点D 。
北京市海淀区2017届高三数学下学期期中试题 文第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|13A x x =<<,集合{}2|4B x x =>,则集合A B 等于( )A .{}|23x x <<B .{}|1x x >C .{}|12x x <<D .{}|2x x >2.圆心为(0,1)且与直线2y =相切的圆的方程为( )A .22(1)1x y -+=B .22(1)1x y ++=C .22(1)1x y +-=D .22(1)1x y ++=3.执行如图所示的程序框图,输出的x 的值为( )A .4B .3C .2D .14.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为( )ABC.D .36.在ABC ∆上,点D 满足2AD AB AC =-,则( )A .点D 不在直线BC 上B .点D 在BC 的延长线上 C .点D 在线段BC 上 D .点D 在CB 的延长线上7.若函数cos ,,()1,x x a f x x a x≤⎧⎪=⎨>⎪⎩ 的值域为[]1,1-,则实数a 的取值范围是( ) A .[1,)+∞ B .(,1]-∞- C .(0,1] D .(1,0)-8.如图,在公路MN 两侧分别有1A ,2A ,…,7A 七个工厂,各工厂与公路MN (图中粗线)之间有小公路连接.现在需要在公路MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( )①车站的位置设在C 点好于B 点;②车站的位置设在B 点与C 点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数(1)2z a i =+-为纯虚数,则实数a = .10.已知等比数列{}n a 中,245a a a =,48a =,则公比q = ,其前4项和4S = . 11.若抛物线22y px =的准线经过双曲线2213y x -=的左焦点,则实数p = . 12.若x ,y 满足240,20,1,x y x y x +-=⎧⎪-≤⎨⎪≥⎩则y x 的最大值是 . 13.已知函数()sin f x x ω=(0ω>),若函数()y f x a =+(0a >)的部分图象如图所示,则ω= ,a 的最小值是 .14.阅读下列材料,回答后面问题:在2014年12月30日13CCTV 播出的“新闻直播间”节目中,主持人说:“……加入此次亚航失联航班8501QZ 被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为 ,你的理由是 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{}n a 满足126a a +=,2310a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列{}1n n a a ++的前n 项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a ,b 两种“共享单车”(以下简称a 型车,b 型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a 型车,3人租到b 型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a 型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a 型车的用户中,在第4个月有60%的用户仍租a 型车.第3个月第4个月租用a 型车 租用b 型车 租用a 型车60% 50% 租用b 型车 40% 50%若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a ,b 两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.17.在ABC ∆中,2A B =.(Ⅰ)求证:2cos a b B =;(Ⅱ)若2b =,4c =,求B 的值.18.在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2PA AB ==,E ,F 分别是PB ,PD 的中点.(Ⅰ)求证://PB 平面FAC ;(Ⅱ)求三棱锥P EAD -的体积;(Ⅲ)求证:平面EAD ⊥平面FAC .19.已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设点(4,0)Q ,若点P 在直线4x =上,直线BP 与椭圆交于另一点M .判断是否存在点P ,使得四边形APQM 为梯形?若存在,求出点P 的坐标;若不存在,说明理由.20.已知函数2()x f x e x ax =-+,曲线()y f x =在点(0,(0))f 处的切线与x 轴平行.(Ⅰ)求a 的值;(Ⅱ)若()21x g x e x =--,求函数()g x 的最小值;(Ⅲ)求证:存在0c <,当x c >时,()0f x > .高三年级第二学期期中练习数学(文科)答案一、选择题1-5:ACCCB 6-8:DAC二、填空题 9.2 10.2,15 11.4 12.32 13.2,12π 14.选①,数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系; 选②,数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;不选②,数据②两个数据虽表面不是同一类数据,但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x ,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.三、解答题15.解:(Ⅰ)设数列{}n a 的公差为d ,因为126a a +=,2310a a +=,所以314a a -=,所以24d =,2d =.又116a a d ++=,所以12a =,所以1(1)2n a a n d n =+-=.(Ⅱ)记1n n n b a a +=+,所以22(1)42n b n n n =++=+,又14(1)2424n n b b n n +-=++--=,所以{}n b 是首项为6,公差为4的等差数列,其前n 项和21()(642)2422n n n b b n n S n n +++===+. 16.解:(Ⅰ)依题意租到a 型车的4人为1A ,2A ,3A ,4A ;租到b 型车的3人为1B ,2B ,3B ; 设事件A 为“7人中抽到2人,至少有一人租到a 型车”, 则事件A 为“7人中抽到2人都租到b 型车”.如表格所示:从7人中抽出2人共有21种情况,事件A 发生共有3种情况, 所以事件A 概率36()1()1217P A P A =-=-=.(Ⅱ)依题意,市场4月份租用a 型车的比例为50%60%50%50%55%+=, 租用b 型车的比例为50%40%50%50%45%+=,所以市场4月租用a ,b 型车的用户比例为55%1145%9=. 17.解:(Ⅰ)因为2A B =, 所以由正弦定理sin sin a b A B =,得sin sin 2a a A B=,得2sin cos sin abB B B =,所以2cos a b B =.(Ⅱ)由余弦定理,2222cos a b c bc A =+-,因为2b =,4c =,2A B =,所以216cos 41616cos 2B B =+-, 所以23cos 4B =,因为2A B B B π+=+<,所以3B π<,所以cos B =,所以6B π=.18.(Ⅰ)证明:连接BD ,与AC 交于点O ,连接OF ,在PBD ∆中,O ,F 分别是BD ,PD 的中点,所以//OF PB ,又因为OF ⊂平面FAC ,PB ⊄平面FAC ,所以//PB 平面FAC .(Ⅱ)解:因为PA ⊥平面ABCD ,所以PA 为棱锥P ABD -的高.因为2PA AB ==,底面ABCD 是正方形, 所以13P ABD ABD V S PA -∆=⨯⨯114222323=⨯⨯⨯⨯=,因为E 为PB 中点,所以PAE ABE S S ∆∆=, 所以1223P EAD P ABD V V --=⨯=.(Ⅲ)证明:因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,在等腰直角PAB ∆中,AE PB ⊥,又AE AD A =,AE ⊂平面EAD ,AD ⊂平面EAD ,所以PB ⊥平面EAD ,又//OF PB ,所以OF ⊥平面EAD ,又OF ⊂平面FAC ,所以平面EAD ⊥平面FAC .19.解:(Ⅰ)由||4AB =,得2a =. 又因为12ce a ==,所以1c =,所以2223b a c =-=,所以椭圆C 的方程为22143x y +=.(Ⅱ)假设存在点P ,使得四边形APQM 为梯形.由题意知,显然AM ,PQ 不平行,所以//AP MQ ,所以||||||||BQ BMAB BP =,所以||1||2BM BP =.设点11(,)M x y ,(4,)P t ,过点M 作MH AB ⊥于H ,则有||||1||||2BH BM BQ BP ==,所以||1BH =,所以(1,0)H ,所以11x =, 代入椭圆方程,求得132y =±,所以(4,3)P ±.20.解:(Ⅰ)'()2x f x e x a =-+,由已知可得'(0)0f =,所以10a +=,得1a =-.(Ⅱ)'()2x g x e =-,令'()0g x =,得ln 2x =,所以x ,'()g x ,()g x 的变化情况如表所示:x (,ln 2)-∞ ln 2 (ln 2,)+∞ '()g x - 0 + ()g x 极小值所以()g x 的最小值为ln2(ln 2)2ln 2112ln 2g e =--=-. (Ⅲ)证明:显然()'()g x f x =,且(0)0g =,由(Ⅱ)知,()g x 在(,ln 2)-∞上单调递减,在(ln 2,)+∞上单调递增. 又(ln 2)0g <,2(2)50g e =->,由零点存在性定理,存在唯一实数0(ln 2,)x ∈+∞,满足0()0g x =, 即00210x e x --=,0021xe x =+,综上,()'()g x f x =存在两个零点,分别为0,0x .所以0x <时,()0g x >,即'()0f x >,()f x 在(,0)-∞上单调递增; 00x x <<时,()0g x <,即'()0f x <,()f x 在0(0,)x 上单调递减; 0x x >时,()0g x >,即'()0f x >,()f x 在0(,)x +∞上单调递增, 所以(0)f 是极大值,0()f x 是极小值,0222200000000015()211()24xf x e x x x x x x x x =--=+--=-++=--+,因为(1)30g e =-<,323()402g e =->,所以03(1,)2x ∈,所以0()0f x >,因此0x ≥时,()0f x >.因为(0)1f =且()f x 在(,0)-∞上单调递增,所以一定存在0c <满足()0f c >,所以存在0c <,当x c >时,()0f x >.。
2017海淀区高二(下)期中数学(理科)一.选择题:本大题共8小题,每小题4分,共32分.1.(4分)复数1﹣i的虚部为()A.i B.1 C.D.﹣2.(4分)xdx=()A.0 B.C.1 D.﹣3.(4分)若复数z1,z2在复平面内的对应点关于虚轴对称,且z1=1+i,则z1•z2=()A.﹣2 B.2 C.﹣2i D.2i4.(4分)若a,b,c均为正实数,则三个数a+,b+,c+这三个数中不小于2的数()A.可以不存在 B.至少有1个C.至少有2个D.至多有2个5.(4分)定义在R上的函数f(x)和g(x),其各自导函数f′(x)f和g′(x)的图象如图所示,则函数F(x)=f(x)﹣g(x)极值点的情况是()A.只有三个极大值点,无极小值点B.有两个极大值点,一个极小值点C.有一个极大值点,两个极小值点D.无极大值点,只有三个极小值点6.(4分)函数f(x)=lnx与函数g(x)=ax2﹣a的图象在点(1,0)的切线相同,则实数a的值为()A.1 B.﹣ C.D.或﹣7.(4分)函数y=e x(2x﹣1)的大致图象是()A.B.C.D.8.(4分)为弘扬中国传统文化,某校在高中三个年级中抽取甲、乙、丙三名同学进行问卷调查.调查结果显示这三名同学来自不同的年级,加入了不同的三个社团:“楹联社”、“书法社”、“汉服社”,还满足如下条件:(1)甲同学没有加入“楹联社”;(2)乙同学没有加入“汉服社”;(3)加入“楹联社”的那名同学不在高二年级;(4)加入“汉服社”的那名同学在高一年级;(5)乙同学不在高三年级.试问:丙同学所在的社团是()A.楹联社 B.书法社C.汉服社D.条件不足无法判断二.填空题:本大题共6小题,每小题4分,共24分.9.(4分)在复平面内,复数对应的点的坐标为.10.(4分)设函数f(x),g(x)在区间(0,5)内导数存在,且有以下数据:x 1 2 3 4f(x) 2 3 4 1f′(x) 3 4 2 1g(x) 3 1 4 2g′(x) 2 4 1 3则曲线f(x)在点(1,f(1))处的切线方程是;函数f(g(x))在x=2处的导数值是.11.(4分)如图,f(x)=1+sinx,则阴影部分面积是.12.(4分)如图,函数f(x)的图象经过(0,0),(4,8),(8,0),(12,8)四个点,试用“>,=,<”填空:(1);(2)f′(6)f′(10).13.(4分)已知平面向量=(x1,y1),=(x2,y2),那么•=x1x2+y1y2;空间向量=(x1,y1,z1),=(x2,y2.z2),那么•=x1x2+y1y2+z1z2.由此推广到n维向量:=(a1,a2,…,a n),=(b1,b2,…,b n),那么•= .14.(4分)函数f(x)=e x﹣alnx(其中a∈R,e为自然常数)①∃a∈R,使得直线y=ex为函数f(x)的一条切线;②对∀a<0,函数f(x)的导函数f′(x)无零点;③对∀a<0,函数f(x)总存在零点;则上述结论正确的是.(写出所有正确的结论的序号)三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(10分)已知函数f(x)=x3﹣3x2﹣9x+2(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数f(x)在区间[﹣2,2]上的最小值.16.(10分)已知数列{a n}满足a1=1,a n+1+a n=﹣,n∈N*.(Ⅰ)求a2,a3,a4;(Ⅱ)猜想数列{a n}的通项公式,并用数学归纳法证明.17.(12分)已知函数f(x)=x﹣(a+1)lnx﹣,其中a∈R.(Ⅰ)求证:当a=1时,函数y=f(x)没有极值点;(Ⅱ)求函数y=f(x)的单调增区间.18.(12分)设f(x)=e t(x﹣1)﹣tlnx,(t>0)(Ⅰ)若t=1,证明x=1是函数f(x)的极小值点;(Ⅱ)求证:f(x)≥0.2017海淀区高二(下)期中数学(理科)参考答案一.选择题:本大题共8小题,每小题4分,共32分.1.【解答】复数1﹣i的虚部为﹣.故选:D.2.【解答】xdx=x2|=,故选:B3.【解答】∵复数z1、z2在复平面内的对应点关于虚轴对称,z1=1+i,∴z2=﹣1+i.∴z1•z2=﹣(1+i)(1﹣i)=﹣2.故选:A4.【解答】假设a+,b+,c+这三个数都小于2,∴a++b++c+<6∵a++b++c+=(a+)+(b+)+(c+)≥2+2+2=6,这与假设矛盾,故至少有一个不小于2故选:B5.【解答】F′(x)=f′(x)﹣g′(x),由图象得f′(x)和g′(x)有3个交点,从左到右分分别令为a,b,c,故x∈(﹣∞,a)时,F′(x)<0,F(x)递减,x∈(a,b)时,F′(x)>0,F(x)递增,x∈(b,c)时,F′(x)<0,F(x)递减,x∈(c,+∞)时,F′(x)>0,F(x)递增,故函数F(x)有一个极大值点,两个极小值点,故选:C.6.【解答】由题意,f′(x)=,g′(x)=2ax,∵函数f(x)=lnx与函数g(x)=ax2﹣a的图象在点(1,0)的切线相同,∴1=2a,∴a=,故选C.7.【解答】y′=e x(2x﹣1)+2e x=e x(2x+1),令y′=0得x=﹣,∴当x<﹣时,y′<0,当x时,y′>0,∴y=e x(2x﹣1)在(﹣∞,﹣)上单调递减,在(﹣,+∞)上单调递增,当x=0时,y=e0(0﹣1)=﹣1,∴函数图象与y轴交于点(0,﹣1);令y=e x(2x﹣1)=0得x=,∴f(x)只有1个零点x=,当x时,y=e x(2x﹣1)<0,当x时,y=e x(2x﹣1)>0,综上,函数图象为A.故选A.8.【解答】假设乙在高一,则加入“汉服社”,与(2)矛盾,所以乙在高二,根据(3),可得乙加入“书法社”,根据(1)甲同学没有加入“楹联社”,可得丙同学所在的社团是楹联社,故选A.二.填空题:本大题共6小题,每小题4分,共24分.9.【解答】复数==﹣1﹣i在复平面内对应的点的坐标(﹣1,﹣1).故答案为:(﹣1,﹣1).10.【解答】f′(1)=3,f(1)=2,∴曲线f(x)在点(1,f(1))处的切线方程是y=3x﹣1,[f(g(x))]′=f′(g(x))g′(x),x=2时,f′(g(2))g′(2)=3×4=12,故答案为y=3x﹣1;1211.【解答】由图象可得S=(1+sinx)dx=(x﹣cosx)|=π﹣cosπ﹣(0﹣cos0)=2+π,故答案为:π+212.【解答】(1)由函数图象可知=,==2,∴.(2)∵f(x)在(4,8)上是减函数,在(8,12)上是增函数,∴f′(6)<0,f′(10)>0,∴f′(6)<f′(10).故答案为(1)>,(2)<.13.【解答】由题意可知•=a1b1+a2b2+a3b3+…+a n b n.故答案为:a1b1+a2b2+a3b3+…+a n b n.14.【解答】对于①,函数f(x)=e x﹣alnx的导数为f′(x)=e x﹣,设切点为(m,f(m)),则e=e m﹣,em=e m﹣alnm,可取m=1,a=0,则∃a∈R,使得直线y=ex为函数f(x)的一条切线,故①正确;对于②,∀a<0,函数f(x)的导函数f′(x)=e x﹣,由x>0,可得f′(x)>0,则导函数无零点,故②正确;对于③,对∀a<0,函数f(x)=e x﹣alnx,由f(x)=0,可得e x=alnx,分别画出y=e x和y=alnx,(a<0)的图象,可得它们存在交点,故f(x)总存在零点,故③正确.故答案为:①②③.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.【解答】(Ⅰ)f′(x)=3x2﹣6x﹣9=3(x+1)(x﹣3),令f′(x)=0,得x=﹣1或x=3,当x变化时,f′(x),f(x)在区间R上的变化状态如下:x (﹣∞﹣﹣1 (﹣1,3) 3 (3,+∞)1)f′(x)+ 0 ﹣0 +f(x)↗极大↘极小↗所以f(x)的单调递增区间是(﹣∞,﹣1),(3,+∞);单调递减区间是(﹣1,3);(Ⅱ)因为f(﹣2)=0,f(2)=﹣20,再结合f(x)的单调性可知,函数f(x)在区间[﹣2,2]上的最小值为﹣20.16.【解答】(Ⅰ)由题意a1=1,a2+a1=,a3+a2=﹣1,a4+a3=2﹣解得:a2=﹣1,a3=﹣,a4=2﹣(Ⅱ)猜想:对任意的n∈N*,a n =﹣,①当n=1时,由a1=1=﹣,猜想成立.②假设当n=k (k∈N*)时,猜想成立,即a k =﹣则由a k+1+a k =﹣,得a k+1=﹣,即当n=k+1时,猜想成立,由①、②可知,对任意的n∈N*,猜想成立,即数列{a n}的通项公式为a n =﹣.17.【解答】(Ⅰ)证明:函数f(x)的定义域是(0,+∞).当a=1时,f(x)=x﹣2lnx ﹣,函数f′(x)=≥0,所以函数f(x)在定义域(0,+∞)上单调递增,所以当a=1时,函数y=f(x)没有极值点;(Ⅱ)f′(x)=1﹣+=,x∈(0,+∞)令f′(x)=0,得x1=1,x2=a,①a≤0时,由f′(x)>0可得x>1,所以函数f(x)的增区间是(1,+∞);②当0<a<1时,由f′(x)>0,可得0<x<a,或x>1,所以函数f(x)的增区间是(0,a),(1,+∞);③当a>1时,由f′(x)>0可得0<x<1,或x>a,所以函数f(x)的增区间是(0,1),(a,+∞);④当a=1时,由(Ⅰ)可知函数f(x)在定义域(0,+∞)上单调递增.综上所述,当a≤0时,函数y=f(x)的增区间是(1,+∞);当0<a<1时,所以函数f(x)的增区间是(0,a),(1,+∞);当a=1时,函数f(x)在定义域(0,+∞)上单调递增;当a>1时,所以函数f(x)的增区间是(0,1),(a,+∞).18.【解答】证明:(Ⅰ)函数f(x)的定义域为(0,+∞),…( 1分)若t=1,则f(x)=e x﹣1﹣lnx,.…(2分)因为f′(1)=0,…(3分)且0<x<1时,,即f′(x)<0,所以f(x)在(0,1)上单调递减;…(4分)x>1时,,即f′(x)>0,所以f(x)在(1,+∞)上单调递增;…(5分)所以x=1是函数f(x)的极小值点;…(6分)(Ⅱ)函数f(x)的定义域为(0,+∞),t>0.;…(7分)令,则,故g(x)单调递增.…(8分)又g(1)=0,…(9分)当x>1时,g(x)>0,因而f′(x)>0,f(x)单增,即f(x)的单调递增区间为(1,+∞);当0<x<1时,g(x)<0,因而f′(x)<0,f(x)单减,即f(x)的单调递减区间为(0,1).…(11分)所以x∈(0,+∞)时,f(x)≥f(1)=1≥0成立.…(12分)。
北京市2017届高三综合练习数学(理)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|4A x x=∈<N ,{}2|230B x xx =∈--<R ,则AB =( )、A .{}101-,,B .{}01,C .{}|12x x -<<D .{}|23x x -<< 2.已知复数z 满足()12z i ⋅-=,其中i 为虚数单位,则z =( ) A .1i + B .1i - C .1i -+ D .1i --3.一个几何体的三视图如下,其中主视图和俯视图都是边长为2的正方形,则该几何体的体积是( )A .4B .8C .43D .834.已知向量a b ,满足1a b a b ==+=,则向量a b ,夹角的余弦值为( )A .12B .12- C 3D .35.已知数列{}na 是等差数列,38a=,44a=,则前n 项和nS 中最大的是( )A .3S B .4S 或5S C .5S 或6S D .6S6.已知双曲线()2222100x y a b a b -=>>,的渐近线方程为2y x =±,则其离心率为( )A .5B .52C .5或3D .5或527.已知x y ,满足()2221x y x y y a x ⎧-⎪+⎨⎪-⎩≥≤≥,且z x y =+能取到最小值,则实数a 的取值范围是( )A .1a <-B .2a ≥C .12a -<≤D .1a <-或2a ≥8.已知函数:①()12f x x =,②()πsin 2x f x =,③()1ln 12f x x =+.则以下四个命题对已知的三个函数都能成立的是( )命题():1p f x +是偶函数; 命题():1q f x +在()01,上是增函数;命题():r f x 恒过定点()11,; 命题11:22s f ⎛⎫> ⎪⎝⎭.A .命题p 、qB .命题q 、rC .命题r 、sD .命题s 、p第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分,把答案填写在题中横线上.9. 51x x ⎛⎫- ⎪⎝⎭的二项展开式中x 项的系数为 .10.已知直线():12l y k x =++,圆2cos 1:2sin x C y θθ=+⎧⎨=⎩,则圆心C 的坐标是 ;若直线l 与圆C 有公共点,则实数k 的取值范围是 .11.如图,已知PAB 是O ⊙的割线,点C 是PB 的中点,且PA AC =,PT 是O ⊙的切线,TC 交O ⊙于点D ,8TC =,7CD =,则PT 的长为 .12.如图所示程序图运行的结果是 .13.一艘轮船在江中向正东方向航行,在点P 观测到灯塔A B ,在一直线上,并与航线成30︒角.轮船沿航线前进1000米到达C 处,此时观测到灯塔A 在北偏西45︒方向,灯塔B 在北偏东15︒方向.则此时轮船到灯塔B 的距离CB 为 米.14.若()f x 是定义在R 上的奇函数,且对0x ∀≥,总存在正常数T ,使得()T f x +()Tf x =+成立,则称()f x 满足“性质P ".已知函数()g x 满足“性质P",且()g x 在[]0T ,上的解析式为()2g x x =,则常数T = ;若当[]3T 3T x ∈-,时,函数()y g x kx =-恰有9个零点,则k = .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数()22sin cos 23sin 3444x xxf x =-⑴ 求函数()f x 的最大值,并写出相应的x 取值集合;⑵ 令π1035f a ⎛⎫+=⎪⎝⎭,且()0πα∈,,求tan 2α的值.16.如图所示,在四棱锥P ABCD -中,四边形ABCD 为菱形,PAD △为等边三角形,平面PAD ⊥平面ABCD ,且602DAB AB ∠=︒=,,E 为AD 的中点.⑴ 求证:AD PB ⊥;⑵ 求二面角A PD C --的余弦值;⑶ 在棱PB 上是否存在点F ,使EF ∥平面PDC ?并说明理由.17.(本小题满分13分)如图,某工厂2011年生产的A B C D ,,,四种型号的产品产量用条形图表示,现用分层抽样的方法从中抽取50件样品参加今年五月份的一个展销会.⑴ 问A B C D ,,,型号的产品各抽取了多少件?⑵ 从50件样品中随机抽取2件,求这2件产品恰好是不同型 号的产品的概率;⑶ 在50件样品中,从A C ,两种型号的产品中随机抽取3件,其中A 种型号的产品有X 件,求随机变量X 的分布列和数学期望()E X .18.(本小题满分13分) 已知函数()()2121ln 12f x mxx x =-+++.⑴ 当32m =-时,求函数()f x 的极值点;⑵ 当1m ≤时,曲线():C y f x =在点()01P ,处的切线l 与C 有且只有一个公共点,求实数m 的范围.19.(本小题满分14分) 已知椭圆()22122:10x y C a b a b +=>>经过点312M ⎛⎫⎪⎝⎭,,且其右焦点与抛物线22:4C y x=的焦点F 重合.⑴ 求椭圆1C 的方程;⑵ 直线l 经过点F 与椭圆1C 相交于A B ,两点,与抛物线2C 相交于C D,两点.求ABCD 的最大值.20.(本小题满分13分) 已知集合{}12320112012S =,,,,,,设A 是S 的至少含有两个元素的子集,对于A 中任意两个不同的元素()x y x y >,,若x y -都不能...整除x y +,则称集合A 是S 的“好子集".⑴ 分别判断数集{}2468P =,,,与{}147Q =,,是否是集合S 的“好子集",并说明理由;⑵ 求集合S 的“好子集"A 所含元素个数的最大值; ⑶ 设123mA A A A ,,,,是集合S 的m 个“好子集”,且两两互不包含,记集合iA 的元素个数为()12ik i m =,,,,求证:()1!2012!2012!miii k k =⋅-∑≤数学参考答案(理科)一、选择题二、填空题三、解答题15、(I )()f x 的最大值为2,相应的x 取值集合为π|4π,3x x k k ⎧⎫=+∈⎨⎬⎩⎭Z ;(II)24tan 27α=-.16、(I )略;(II)二面角A PD C --的余弦值为(III )在棱PB 上存在点F ,使EF ∥平面PDC .17、(I)A 型号的产品10件,B 型号的产品20件,C 型号的产品5件,D 型号的产品15件;(II )这两件产品恰好是不同类型的产品的概率为57;(III )随机变量X 的分布列为()2E X =18、(I )()f x 的极大值点为13x =-;(II )m 的取值范围为(]{},01-∞.19、(I)椭圆的方程为22143x y +=;(II )ABCD 的最大值为34.20、(I )P 不是S 的“好子集";Q 是S 的“好子集”; (II )A 的最大值为671; (III)略.提示:(II)考虑1,2a b -≠,作S 的模3同余类,可构造{}1,4,7,,2011A =即可. (III)12,,,mA A A 是S 的“好子集"的条件多余,可直接改为“子集”;考虑2012个数的全排列即可.。
海淀区高三年级第一学期期中练习数 学(理科) 2016.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{2}A x x =>,{(1)(3)0}B x x x =--<,则AB =A. {1}x x >B. {23}x x <<C. {13}x x <<D. {2x x >或1}x < 2. 已知向量(1,2),(2,4)=-=-a b ,则a 与b A. 垂直B. 不垂直也不平行C. 平行且同向D. 平行且反向3. 函数222x xy =+的最小值为 A. 1B. 2C. 22D. 44. 已知命题:p 0c ∃>,方程20x x c -+= 有解,则p ⌝为 A. 0c ∀>,方程20x x c -+=无解 B. c ∀≤0,方程20x x c -+=有解 C. 0c ∃>,方程20x x c -+=无解 D. c ∃≤0,方程20x x c -+=有解5. 已知函数,,log x b c y a y x y x ===的图象如图所示,则A. a b c >>B. a c b >>C. c a b >>D. c b a >> 6. 设,a b 是两个向量,则“+>-a b a b ”是“0⋅>a b ”的 A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 已知函数42()cos sin f x x x =+,下列结论中错误..的是 A. ()f x 是偶函数 B. 函数()f x 最小值为34C.π2是函数()f x 的一个周期 D. 函数()f x 在π0,2()内是减函数 8.如图所示,A 是函数()2x f x =的图象上的动点,过点A 作直线平行于x 轴,交函数2()2x g x +=的图象于点B ,若函数()2x f x =的图象上存在点C 使得ABC ∆为等边三角形,则称A 为函数()2x f x =上的好位置点. 函数()2x f x =上的好位置点的个数为A. 0B. 1C. 2D. 大于2第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
海淀区高三年级2015-2016 学年度第二学期期中练习数学试卷(理科) 2016.4本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.函数()f x =A .[0,+∞)B .[1,+∞)C .(-∞,0] D .(-∞,1] 2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为 A .-1 B .1 C .-i D .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为A .52 B .3 C .72D .44.某三棱锥的三视图如图所示,则其体积为A.3 B.2 C.3 D.35.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |= A .1 BCD . 27.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是A .,44a b ππ==-B .2,36a b ππ== C .,36a b ππ== D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则 下列叙述正确的是A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知矢量(1,),(,9)a t b t ==,若a b ,则t = _______. 10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b -=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离,则C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个. (ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得|()()|f x f t -≤2,则记a +b 的最大值为H (t ). (ⅰ)当 ()f x =2x 时,H (0)= _______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β.(Ⅰ)求证:sin 3sin AC BC βα=;(Ⅱ)若,,62AB ππαβ===BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推 广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法 上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中 分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4 株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据, 试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求 随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证: BC ⊥平面PAB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内; (Ⅲ)当PA =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分)已知函数f (x ) =ln x +1x-1,1()ln x g x x -=(Ⅰ)求函数 f (x )的最小值;(Ⅱ)求函数g (x )的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g (x )的切线。
北京市海淀区2017届高三数学下学期期中试题 理第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|(1)0A x x x =+≤,集合{}|0B x x =>,则A B = ( ) A .{}|1x x ≥-B .{}|1x x >-C .{}|0x x ≥D .{}|0x x >2.已知复数()z i a bi =+(a ,b R ∈),则“z 为纯虚数”的充分必要条件为( ) A .220a b +≠B .0ab =C .0a =,0b ≠D .0a ≠,0b =3.执行如图所示的程序框图,输出的x 值为( )A .0B .3C .6D .84.设a ,b R ∈,若a b >,则( ) A .11a b< B .22a b>C .lg lg a b >D .sin sin a b >5.已知1a xdx =⎰,12b x dx =⎰,0c =⎰,则a ,b ,c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<6.已知曲线C:2x y a ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),(1,0)A -,(1,0)B ,若曲线C 上存在点P 满足0AP BP ⋅=,则实数a 的取值范围为( )A.⎡⎢⎣⎦B .[]1,1-C.⎡⎣D .[]2,2-7.甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为( ) A .12B .40C .60D .808.某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等;项目②:打开过程中(如图2),检查''''OM ON O M O N ===; 项目③:打开过程中(如图2),检查''''OK OL O K O L ===; 项目④:打开后(如图3),检查123490∠=∠=∠=∠=︒; 项目⑤:打开后(如图3),检查''''AB A B C D CD ===.在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”( ) A .①②③B .②③④C .②④⑤D .③④⑤第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.若等比数列{}n a 满足245a a a =,48a =,则公比q = ,前n 项和n S = .10.已知1(2,0)F -,2(2,0)F ,满足12||||||2PF PF -=的动点P 的轨迹方程为 .11.在ABC ∆中,cos c a B =.①A = ;②若1sin 3C =,则cos()B π+= . 12.若非零向量a ,b 满足()0a a b ⋅+= ,2||||a b =,则向量a ,b 夹角的大小为 .13.已知函数21,0,()cos ,0.x x f x x x π⎧-≥=⎨<⎩若关于x 的方程()0f x a +=在(0,)+∞内有唯一实根,则实数a 的最小值是 .14.已知实数u ,v ,x ,y 满足221u v +=,10,220,2,x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩则z ux vy =+的最大值是 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.已知3π是函数2()2cos sin 21f x x a x =++的一个零点. (Ⅰ)求实数a 的值;(Ⅱ)求()f x 的单调递增区间.16.据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠8 10万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):1月2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 天津 24 22 26 23 24 26 27 25 28 24 25 26 上海 322733313031323330323030(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率; (Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设X 为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出X 的数学期望(不需要计算过程). 17.如图,由直三棱柱111ABC A B C -和四棱锥11D BB C C -构成的几何体中,90BAC ∠=︒,1AB =,12BC BB ==,1C D CD ==1CC D ⊥平面11ACC A .(Ⅰ)求证:1AC DC ⊥;(Ⅱ)若M 为1DC 的中点,求证://AM 平面1DBB ;(Ⅲ)在线段BC 上是否存在点P ,使直线DP 与平面1BB D 所成的角为3π?若存在,求BPBC 的值,若不存在,说明理由.18.已知函数2()24(1)ln(1)f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由;(Ⅱ)若()0f x ≤在区间[]0,1上恒成立,求a 的取值范围.19.已知椭圆G :2212x y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A ,B 两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C ,D 两点. (Ⅰ)若直线l 的斜率为1,求直线OM 的斜率;(Ⅱ)是否存在直线l ,使得2||||||AM CM DM =⋅成立?若存在,求出直线l 的方程;若不存在,请说明理由.20.已知含有n 个元素的正整数集{}12,,,n A a a a =…(12n a a a <<<…,3n ≥)具有性质P :对任意不大于()S A (其中12()n S A a a a =+++…)的正整数k ,存在数集A 的一个子集,使得该子集所有元素的和等于k . (Ⅰ)写出1a ,2a 的值;(Ⅱ)证明:“1a ,2a ,…,n a 成等差数列”的充要条件是“(1)()2n n S A +=”; (Ⅲ)若()2017S A =,求当n 取最小值时n a 的最大值.海淀区高三年级第二学期期中练习数学(理科)答案一、选择题1-5:ADBBC 6-8:CDB 二、填空题9.2,21n- 10.2213y x -= 11.90,13- 12.120 13.12- 14. 三、解答题15.解:(Ⅰ)由题意可知()03f π=,即22()2cossin10333f a πππ=++=,即21()2()1032f π=++=,解得a =(Ⅱ)由(Ⅰ)可得2()2cos 21f x x x =+cos222x x =+52sin(2)26x π=++, 函数sin y x =的递增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.由5222262k x k πππππ-<+<+,k Z ∈, 得236k x k ππππ-<<-,k Z ∈, 所以,()f x 的单调递增区间为2,36k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈. 16.解:(Ⅰ)本次协议的投资重点为能源,因为能源投资为340亿,占总投资460亿的50%以上,所占比重大. (Ⅱ)设事件A :从12个月中任选一个月,该月超过55百万吨. 根据提供的数据信息,可以得到天津、上海两港口的月吞吐量之和分别是:56,49,58,54,54,57,59,58,58,56,54,56, 其中超过55百万吨的月份有8个, 所以,82()123P A ==. (Ⅲ)X 的数学期望8EX =.17.(Ⅰ)证明:在直三棱柱111ABC A B C -中,1CC ⊥平面ABC , 故1AC CC ⊥,由平面1CC D ⊥平面11ACC A ,且平面1CC D 平面111ACC A CC =, 所以AC ⊥平面1CC D ,又1C D ⊂平面1CC D , 所以1AC DC ⊥.(Ⅱ)证明:在直三棱柱111ABC A B C -中,1AA ⊥平面ABC , 所以1AA AB ⊥,1AA AC ⊥, 又90BAC ∠=︒,所以,如图建立空间直角坐标系A xyz -,依据已知条件可得(0,0,0)A,C,1C ,(0,0,1)B ,1(2,0,1)B,D ,所以1(2,0,0)BB =,(1BD =, 设平面1DBB 的法向量为(,,)n x y z =,由10,0,n BB n BD ⎧⋅=⎪⎨⋅=⎪⎩即20,0,x x z =⎧⎪⎨+=⎪⎩ 令1y =,则z =0x =,于是(0,1,n =,因为M 为1DC中点,所以3(2M,所以3(2AM = ,由3((0,1,02AM n ⋅=⋅= ,可得AM n ⊥ ,所以AM 与平面1DBB 所成角为0, 即//AM 平面1DBB .(Ⅲ)解:由(Ⅱ)可知平面1BB D的法向量为(0,1,n =.设BP BC λ=,[]0,1λ∈,则,1)P λ-,(11)DP λ=---.若直线DP 与平面1DBB 成角为3π,则|||cos ,|2||||n DP n DP n DP ⋅<>===⋅, 解得[]50,14λ=∉, 故不存在这样的点.18.解:(Ⅰ)由2()24(1)ln(1)f x x ax a x =-+-+可得函数()f x 定义域为(1,)-+∞.4(1)'()221a f x x a x -=-++22(1)(2)1x a x a x ⎡⎤+-+-⎣⎦=+, 令2()(1)(2)g x x a x a =+-+-,经验证(1)0g =,因为3a <,所以()0g x =的判别式222(1)4(2)69(3)0a a a a a ∆=---=-+=->, 由二次函数性质可得,1是函数()g x 的异号零点, 所以1是'()f x 的异号零点, 所以1x =是函数()f x 的极值点. (Ⅱ)已知(0)0f =,因为[]2(1)(2)'()1x x a f x x ---=+,又因为3a <,所以21a -<,所以当2a ≤时,在区间[]0,1上'()0f x <,所以函数()f x 单调递减,所以有()0f x ≤恒成立; 当23a <<时,在区间[]0,2a -上'()0f x >,所以函数()f x 单调递增, 所以(2)(0)0f a f ->=,所以不等式不能恒成立; 所以2a ≤时,有()0f x ≤在区间[]0,1恒成立.19.解:(Ⅰ)由已知可知1(1,0)F -,又直线l 的斜率为1,所以直线l 的方程为1y x =+, 设11(,)A x y ,22(,)B x y ,由221,1,2y x x y =+⎧⎪⎨+=⎪⎩解得110,1,x y =⎧⎨=⎩224,31.3x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以AB 中点21(,)33M -, 于是直线OM 的斜率为113223=--.(Ⅱ)假设存在直线l ,使得2||||||AM CM DM =⋅成立. 当直线l 的斜率不存在时,AB 的中点(1,0)M -,所以||2AM =,||||1)1CM DM ⋅==,矛盾; 故可设直线l 的方程为(1)(0)y k x k =+≠,联立椭圆G 的方程, 得2222(21)42(1)0k x k x k +++-=,设11(,)A x y ,22(,)B x y ,则2122421k x x k +=-+,21222(1)21k x x k -=+, 于是21212222(1)(1)222121y y x x k kk k k k ++=⋅+=⋅-+=++, 点M 的坐标为2222(,)2121k kk k -++,22(1)||21k AB k +==+. 直线CD 的方程为12y x k =-⋅,联立椭圆G 的方程,得222421k x k =+, 设00(,)C x y ,则2222200022141||(1)421k OC x y x k k +=+=+=+, 由题知,222||4||||4(||||)(||||)4(||||)AB CM DM CO OM CO OM CO OM =⋅=+-=-,即22222222228(1)41(41)4()(21)21(21)k k k k k k k +++=-+++,化简,得212k =,故2k =±,所以直线l 的方程为(1)2y x =+,1)2y x =-+. 20.解:(Ⅰ)11a =,22a =. (Ⅱ)先证必要性:因为11a =,22a =,又1a ,2a ,…,n a 成等差数列,故n a n =,所以(1)()2n n S A +=; 再证充分性:因为12n a a a <<<…,1a ,2a ,…,n a 为正整数数列,故有11a =,22a =,33a ≥ ,44a ≥,…,n a n ≥,所以12(1)()122n n n S A a a a n +=+++≥+++=……, 又(1)()2n n S A +=,故m a m =(1m =,2,…,n ),故1a ,2a ,…,n a 为等差数列. (Ⅲ)先证明12m m a -∀≤(1m =,2,…,n ). 假设存在12p p a ->,且p 为最小的正整数.依题意3p ≥,则121p a a a -+++ (2)112221p p --≤+++=-…,,又因为12n a a a <<<…,故当1(21,)p p k a -∈-时,k 不能等于集合A 的任何一个子集所有元素的和.故假设不成立,即12m m a -∀≤(1m =,2,…,n )成立. 因此112201712221n n n a a a -=+++≤+++=-……, 即22018n≥,所以11n ≥.因为2017S =,则1212017n n a a a a -+++=-…,若20171n n a a -<-时,则当(2017,)n n k a a ∈-时,集合A 中不可能存在若干不同元素的和为k , 故20171n n a a -≥-,即1009n a ≤.此时可构造集合{}1,2,4,8,16,32,64,128,256,497,1009A =. 因为当{}2,21k ∈+时,k 可以等于集合{}1,2中若干个元素的和;故当{}22222,21,22,23k ∈+++时,k 可以等于集合{}21,2,2中若干不同元素的和; ……故当{}88882,21,22,,2255k ∈+++…时,k 可以等于集合{}81,2,,2…中若干不同元素的和; 故当{}4973,4974,,497511k ∈+++…时,k 可以等于集合{}81,2,,2,497…中若干不同元素的和;故当{}1009,10091,10092,,10091008k ∈+++…时,k 可以等于集合{}81,2,,2,497,1009…中若干不同元素的和,所以集合{}1,2,4,8,16,32,64,128,256,497,1009A =满足题设,所以当n 取最小值11时,n a 的最大值为1009.。
北京市2017届高三综合练习数学(理)第I 卷 选择题(共40分)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知复数1z i =+,则2z=( ) A . i 2- B .i 2 C .i +1 D .i -12.已知函数()f x =的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M∩N=( )A.{|1}x x >- B.{|1}x x < C.{|11}x x -<< D.∅3 ABC ∆中,3A π∠=,3BC =,AB ,则C ∠=( )6πB .4π C .34π D .4π或34π4. 如右图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为( ) A.12π B .2C.4D .4π5.设向量→a 与→b 的夹角为θ,→a =(2,1),3→b +→a =(5,4),则θcos =( )A.54B .31C .1010 D .10103 6. 若变量x y ,满足24025000x y x y x y ⎧+⎪+⎪⎨⎪⎪⎩,,,,≤≤≥≥则32z x y =+的最大值是( )A .90B .80C .70D .400.0005300035000.00030.0004200015000.00020.0001400025001000月收入(元)频率/组距7.如图,过抛物线)0(22>=p px y 的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若3,2==AF BF BC 且,则此抛物线的方程为( ) A .x y 32= B .x y 32= C .x y 62=D . x y 92=8.设奇函数]1,1[)(-在x f 上是增函数,且12)(,1)1(2+-≤-=-at t x f f 若函数对所有的]1,1[-∈x 都成立,当]1,1[-∈a 时,则t 的取值范围是( )A .22≤≤-tB .2121≤≤-t C .022=-≤≥t t t 或或 D .02121=-≤≥t t t 或或第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.6(x 的展开式中的常数项是 (用数字作答) 10. 如图,平行四边形ABCD 中,2:1:=EB AE ,若AEF ∆的面积等于1cm 2,则CDF ∆的面积等于 cm 2. 11.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)/月收入段应抽出 人.12.右面框图表示的程序所输出的结果是_______ .AFE D CB13. 在平面直角坐标系xOy 中,直线l 的参数方程为33x t y t =+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为cos 2sin 2x y θθ=⎧⎨=+⎩(参数[0,2]θπ∈),则圆C 的圆心坐标为_______,圆心到直线l 的距离为______.14.给出以下几个命题: ①由曲线y=x 2与直线y=2x 围成的封闭区域的面积为34.②已知点A 是定圆C 上的一个定点,线段AB 为圆的动弦,若)(21+=, O 为坐标原点,则动点P 的轨迹为圆;③把5本不同的书分给4个人,每人至少1本,则不同的分法种数为A 54·A 41=480种. ④若直线l //平面α,直线l ⊥直线m ,直线l ⊂平面β,则β⊥α,其中,正确的命题有 . (将所有正确命题的序号都填在横线上)三、解答题:本大题共6小题,共计80分,解答应写出文字说明、证明过程或推演步骤. 15. (本题满分12分)已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域.16(本题满分13分)如图,棱锥P —ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =2,BD =22. (Ⅰ)求证:BD PAC ⊥平面; (Ⅱ)求二面角B PD C --的余弦值;(III )在线段PD 上是否存在一点Q ,使CQ 与平面PBD 所成的角的正弦值为962,若存在,指出点Q 的位置,若不存在,说明理由.DPAC17. (本小题满分13分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为32,乙队中3人答对的概率分别为21,32,32且各人正确与否相互之间没有影响.用ξ表示甲队的总得分.(Ⅰ)求随机变量ξ分布列和数学期望; (Ⅱ)用A 表示“甲、乙两个队总得分之和等于3”这一事件,用B 表示“甲队总得分大于乙队总得分”这一事件,求P (AB ). 18.(本小题满分14分)已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点.(Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.19. (本题满分14分)在直角坐标系xOy 中,椭圆C 1:22221(0)x y a b a b+=>>的左、右焦点分别为F 1、F 2.其中F 2也是抛物线C 2:24y x =的焦点,点M 为C 1与C 2在第一象限的交点,且25||3MF =.(1)求C 1的方程;(2)平面上的点N 满足12MN MF MF =+,直线l ∥MN ,且与C 1交于A 、B 两点,若OA ·OB =0,求直线l 的方程.20. (本题满分14分)已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(1)求数列{}n a 的通项公式; (2)设14(1)2(na n n nb λλ-=+-⋅为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有n n b b >+1成立.数学(理科)模拟答案及评分标准一.选择题(共40分)9.15 10. 9 11. 25 12. 1320 13.(0,2); 14. ①② 三.解答题 15.解:(I )()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )2x x x x x x =+-+ 221cos 22sin cos 2x x x x =+- 1cos 22cos 222x x x =+- s i n (2)6x π=- ………………………………………… 4分2T 2ππ==周期∴.……………………………………………6分 由2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈.…………… 8分(II )5[,],2[,]122636x x πππππ∈-∴-∈- ………………………………… 9分 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1.又1()()1222f f ππ-=<=,当12x π=-时,()f x 取得最小值所以 函数 ()f x 在区间[,]122ππ-上的值域为[.16.(Ⅰ)在R t △BAD 中,AD =2,BD =22,∴AB =2,ABCD 为正方形,因此BD ⊥AC . ∵PA ⊥平面ABCD, ∴BD ⊥PA .∵,,AC PAC PA PAC AC PA A ⊂⊂⋂=平面平面, ∴BD PAC ⊥平面.………………………… 4分得332=d . ……………………………………………………………5分 (Ⅱ)如图建立空间直角坐标系,则(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P(2,2,0)BD =-u u u r ,(0,2,2)PD =-u u u r ,(2,0,0)CD =u u u r易求平面D P C 的法向量为()1,1,0=,平面PBD 的法向量为()1,1,1= …………………………………………… 7分cos ,m n <>==r r , 二面角B PD C --的余弦值3. …………………………………………… 9分 (III )因为Q 在DP 上,所以可设()10<<=λλ,又()2,2,0-= ,()()()λλλλλ2,22,02,2,00,2,0-=-+=+=+=∴()λλ2,22,0-∴Q ,()()λλλλ,,122,2,2--=--=∴CQ .……………………… 10分由(Ⅱ)可知平面PBD 的法向量为()1,1,1=n , 所以设CQ 与平面PBD 所成的角为θ,则有:22131cos sin λθ+===…………………………………… 11分所以有69221312=+λ,1612=λ,10<<λ , 41=∴λ ………12分所以存在且DP DQ 41=. ……………………………………………………………13分 17.(I )由题意知,ξ的可能取值为0,1,2,3,且03312322333321(0)(1),327222(1)(1),339224(2)()(1),33928(3)(),327P C P C P C P C ξξξξ==⨯-===⨯⨯-===⨯-===⨯=所以ξ的分布列为………………………………………………… 5分ξ的数学期望为12480123 2.279927E ξ=⨯+⨯+⨯+⨯=…………………………7分 (II )用C 表示“甲得2分乙得1分”这一事件,用D 表示“甲得3分乙得0分”这一事件,,AB C D =⋃,C D 互斥.22342221112111110()()(1),333323323323P C C ⎡⎤=⨯⨯-⨯⨯⨯+⨯⨯+⨯⨯=⎢⎥⎣⎦…………9分54(),3P D =………………………………………………………………………… 11分 4551043434()()().333243P AB P C P D =+=+== ………………………… 13分18.解:(Ⅰ)因为()'2101a f x x x =+-+………………………………………… 2分 所以()'361004a f =+-=因此16a =. ………………………………………………………………… 4分 (Ⅱ)由(Ⅰ)知, ()()()216l n 110,1,fx x x x x =++-∈-+∞()()2'2431x x f x x-+=+.………………………………………………………… 6分当()()1,13,x ∈-+∞时,()'0f x >;当()1,3x ∈时,()'0f x <.所以()f x 的单调增区间是()()1,1,3,-+∞;()f x 的单调减区间是.()1,3……………………………………………………… 9分(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0fx =.……………………………………………… 10分所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =-.……………12分 所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<.因此,b 的取值范围为()32ln 221,16ln 29--.……………………………………… 14分19.解:(Ⅰ)由2C :24y x =知2(10)F ,.……………………………………………1分 设11()M x y ,,M 在2C 上,因为253MF =,所以1513x +=, 得123x =,1y =.………………………………………………………………… 3分 M 在1C 上,且椭圆1C 的半焦距1c =,于是222248193 1.a bb a ⎧+=⎪⎨⎪=-⎩,………………………5分 消去2b 并整理得 4293740a a -+=, 解得2a =(13a =不合题意,舍去). 故椭圆1C 的方程为22143x y +=. ………………………………………………… 7分 (Ⅱ)由12MF MF MN +=知四边形12MFNF 是平行四边形,其中心为坐标原点O , 因为l MN ∥,所以l 与OM 的斜率相同,故l的斜率323k ==.设l的方程为)y x m =-.……………………………………………………… 8分由223412)x y y x m ⎧+=⎪⎨=-⎪⎩,,………………………………………………………………… 9分消去y 并化简得 22916840x mx m -+-=.…………………………………… 10分设11()A x y ,,22()B x y ,,12169mx x +=,212849m x x -=.……………………11分因为OA OB ⊥,所以12120x x y y +=.121212126()()x x y y x x x m x m +=+--2121276()6x x m x x m =-++22841676699m m m m -=⋅-⋅+21(1428)09m =-=.……………… 12分所以m =.此时22(16)49(84)0m m ∆=-⨯->,故所求直线l 的方程为y -y + …………………… 14分 20.解:(I )由已知,()()111n n n n S S S S +----=(2n ≥,*n ∈N ), ………………2分即11n n a a +-=(2n ≥,*n ∈N ),且211a a -=. ∴数列{}n a 是以12a =为首项,公差为1的等差数列.∴1n a n =+.……………………………………………………………………………4分 (II )∵1n a n =+,∴114(1)2n n n n b λ-+=+-⋅,要使n n b b >+1恒成立,∴()()112114412120nn n n n n n n b b λλ-++++-=-+-⋅--⋅>恒成立,∴()11343120n nn λ-+⋅-⋅->恒成立,∴()1112n n λ---<恒成立.……………………………………………………………6分(ⅰ)当n 为奇数时,即12n λ-<恒成立,…………………………………………7分当且仅当1n =时,12n -有最小值为1,∴1λ<.………………………………………………………………………………9分 (ⅱ)当n 为偶数时,即12n λ->-恒成立,………………………………………10分当且仅当2n =时,12n --有最大值2-,∴2λ>-.……………………………………………………………………………12分 即21λ-<<,又λ为非零整数,则1λ=-.综上所述,存在1λ=-,使得对任意*n ∈N ,都有1n n b b +>.…………………14分。
北京市2017届高三综合练习数学(理)第一部分 (选择题 共40分)选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知{1}A x x =>,2{20}B x x x =-<,则A B =U(A) {0x x <或1}x ≥ (B) {12}x x << (C) {0x x <或1}x >(D) {0}x x >2.“a =0”是“复数i z a b =+(a ,b ∈R)为纯虚数”的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件 “复数i z a b =+(a ,b ∈R)为纯虚数”成立的充分不必要条件是(A) a =0,b ≠0 (B) a =0 (C) b =0 (D) a =0,b =2 3.直线4y x =+与曲线21y x x =-+所围成的封闭图形的面积为(A) 223 (B)283 (C) 323(D) 343原题:如图所示,直线1y x =+与曲线321y x x x =--+与x 轴所围成的封闭图形的面积是 . 4.函数1,0,()2cos 1,20x x f x x x ⎧-≥⎪=⎨--π≤<⎪⎩的所有零点的和等于(A) 1-2π (B) 312π- (C) 1-π(D) 12π-5.某三棱锥的正视图和俯视图如图所示,则其左视图面积为(A) 6(B)29 (C) 3(D) 23 6.平面向量a r 与b r 的夹角是3π,且1a =r ,2b =r ,如果AB a b =+u u u r r r ,3AC a b =-u u u r r r ,D 是BC 的中点,那么AD =u u u r俯视图正视图32213(A)(B) (C) 3 (D) 67.某生产厂家根据市场调查分析,决定调整产品生产方案,准备每周(按5天计算)生产A ,B ,C 三种产品共15吨(同一时间段内只能生产一种产品),已知生产这些产品每吨所需则每周最高产值是 (A) 30 (B) 40 (C) 47.5 (D) 52.5某生产厂家根据市场调查分析,决定调整产品生产方案,准备每周(按5天计算)生产A ,B ,C 三种产品共15吨(同一时间段内只能生产一种产品),且C 种产品至少生产5吨,则每周最高产值是(A) 40 (B) 42.5 (C) 45 (D) 50 说明:这两个题没有本质区别,主要差一句话(且C 种产品至少生产5吨),这句话意味着什么?考题希望交给学生遇到问题应如何思考。
2017海淀区高二〔下〕期中数学〔理科〕一.选择题:本大题共8小题,每题4分,共32分.1.〔4分〕复数1﹣i的虚部为〔〕A.i B.1 C.D.﹣2.〔4分〕xdx=〔〕A.0 B.C.1 D.﹣3.〔4分〕假设复数z1,z2在复平面的对应点关于虚轴对称,且z1=1+i,那么z1•z2=〔〕A.﹣2 B.2 C.﹣2i D.2i4.〔4分〕假设a,b,c均为正实数,那么三个数a+,b+,c+这三个数中不小于2的数〔〕A.可以不存在B.至少有1个C.至少有2个D.至多有2个5.〔4分〕定义在R上的函数f〔x〕和g〔x〕,其各自导函数f′〔x〕f和g′〔x〕的图象如下图,那么函数F〔x〕=f〔x〕﹣g〔x〕极值点的情况是〔〕A.只有三个极大值点,无极小值点B.有两个极大值点,一个极小值点C.有一个极大值点,两个极小值点D.无极大值点,只有三个极小值点6.〔4分〕函数f〔x〕=lnx与函数g〔x〕=ax2﹣a的图象在点〔1,0〕的切线一样,那么实数a的值为〔〕A.1 B.﹣ C.D.或﹣7.〔4分〕函数y=e x〔2x﹣1〕的大致图象是〔〕A.B.C.D.8.〔4分〕为弘扬中国传统文化,某校在高中三个年级中抽取甲、乙、丙三名同学进展问卷调查.调查结果显示这三名同学来自不同的年级,参加了不同的三个社团:“楹联社〞、“书法社〞、“汉服社〞,还满足如下条件:〔1〕甲同学没有参加“楹联社〞;〔2〕乙同学没有参加“汉服社〞;〔3〕参加“楹联社〞的那名同学不在高二年级;〔4〕参加“汉服社〞的那名同学在高一年级;〔5〕乙同学不在高三年级.试问:丙同学所在的社团是〔〕A.楹联社B.书法社C.汉服社D.条件不足无法判断二.填空题:本大题共6小题,每题4分,共24分.9.〔4分〕在复平面,复数对应的点的坐标为.10.〔4分〕设函数f〔x〕,g〔x〕在区间〔0,5〕导数存在,且有以下数据:x1234f〔x〕2341f′〔x〕3421g〔x〕3142g′〔x〕2413那么曲线f〔x〕在点〔1,f〔1〕〕处的切线方程是;函数f〔g〔x〕〕在x=2处的导数值是.11.〔4分〕如图,f〔x〕=1+sinx,那么阴影局部面积是.12.〔4分〕如图,函数f〔x〕的图象经过〔0,0〕,〔4,8〕,〔8,0〕,〔12,8〕四个点,试用“>,=,<〞填空:〔1〕;〔2〕f′〔6〕f′〔10〕.13.〔4分〕平面向量=〔x1,y1〕,=〔x2,y2〕,那么•=x1x2+y1y2;空间向量=〔x1,y1,z1〕,=〔x2,y2.z2〕,那么•=x1x2+y1y2+z1z2.由此推广到n维向量:=〔a1,a2,…,a n〕,=〔b1,b2,…,b n〕,那么•=.14.〔4分〕函数f〔x〕=e x﹣alnx〔其中a∈R,e为自然常数〕①∃a∈R,使得直线y=ex为函数f〔x〕的一条切线;②对∀a<0,函数f〔x〕的导函数f′〔x〕无零点;③对∀a<0,函数f〔x〕总存在零点;那么上述结论正确的选项是.〔写出所有正确的结论的序号〕三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.〔10分〕函数f〔x〕=x3﹣3x2﹣9x+2〔Ⅰ〕求函数f〔x〕的单调区间;〔Ⅱ〕求函数f〔x〕在区间[﹣2,2]上的最小值.16.〔10分〕数列{a n}满足a1=1,a n+1+a n=﹣,n∈N*.〔Ⅰ〕求a2,a3,a4;〔Ⅱ〕猜测数列{a n}的通项公式,并用数学归纳法证明.17.〔12分〕函数f〔x〕=x﹣〔a+1〕lnx﹣,其中a∈R.〔Ⅰ〕求证:当a=1时,函数y=f〔x〕没有极值点;〔Ⅱ〕求函数y=f〔x〕的单调增区间.18.〔12分〕设f〔x〕=e t〔x﹣1〕﹣tlnx,〔t>0〕〔Ⅰ〕假设t=1,证明x=1是函数f〔x〕的极小值点;〔Ⅱ〕求证:f〔x〕≥0.参考答案与试题解析一.选择题:本大题共8小题,每题4分,共32分.1.【解答】复数1﹣i的虚部为﹣.应选:D.2.【解答】xdx=x2|=,应选:B3.【解答】∵复数z1、z2在复平面的对应点关于虚轴对称,z1=1+i,∴z2=﹣1+i.∴z1•z2=﹣〔1+i〕〔1﹣i〕=﹣2.应选:A4.【解答】假设a+,b+,c+这三个数都小于2,∴a++b++c+<6∵a++b++c+=〔a+〕+〔b+〕+〔c+〕≥2+2+2=6,这与假设矛盾,故至少有一个不小于2应选:B5.【解答】F′〔x〕=f′〔x〕﹣g′〔x〕,由图象得f′〔x〕和g′〔x〕有3个交点,从左到右分分别令为a,b,c,故x∈〔﹣∞,a〕时,F′〔x〕<0,F〔x〕递减,x∈〔a,b〕时,F′〔x〕>0,F〔x〕递增,x∈〔b,c〕时,F′〔x〕<0,F〔x〕递减,x∈〔c,+∞〕时,F′〔x〕>0,F〔x〕递增,故函数F〔x〕有一个极大值点,两个极小值点,应选:C.6.【解答】由题意,f′〔x〕=,g′〔x〕=2ax,∵函数f〔x〕=lnx与函数g〔x〕=ax2﹣a的图象在点〔1,0〕的切线一样,∴1=2a,∴a=,应选C.7.【解答】y′=e x〔2x﹣1〕+2e x=e x〔2x+1〕,令y′=0得x=﹣,∴当x<﹣时,y′<0,当x时,y′>0,∴y=e x〔2x﹣1〕在〔﹣∞,﹣〕上单调递减,在〔﹣,+∞〕上单调递增,当x=0时,y=e0〔0﹣1〕=﹣1,∴函数图象与y轴交于点〔0,﹣1〕;令y=e x〔2x﹣1〕=0得x=,∴f〔x〕只有1个零点x=,当x时,y=e x〔2x﹣1〕<0,当x时,y=e x〔2x﹣1〕>0,综上,函数图象为A.应选A.8.【解答】假设乙在高一,那么参加“汉服社〞,与〔2〕矛盾,所以乙在高二,根据〔3〕,可得乙参加“书法社〞,根据〔1〕甲同学没有参加“楹联社〞,可得丙同学所在的社团是楹联社,应选A.二.填空题:本大题共6小题,每题4分,共24分.9.【解答】复数==﹣1﹣i在复平面对应的点的坐标〔﹣1,﹣1〕.故答案为:〔﹣1,﹣1〕.10.【解答】f′〔1〕=3,f〔1〕=2,∴曲线f〔x〕在点〔1,f〔1〕〕处的切线方程是y=3x﹣1,[f〔g〔x〕〕]′=f′〔g〔x〕〕g′〔x〕,x=2时,f′〔g〔2〕〕g′〔2〕=3×4=12,故答案为y=3x﹣1;1211.【解答】由图象可得S=〔1+sinx〕dx=〔x﹣cosx〕|=π﹣cosπ﹣〔0﹣cos0〕=2+π,故答案为:π+212.【解答】〔1〕由函数图象可知=,==2,∴.〔2〕∵f〔x〕在〔4,8〕上是减函数,在〔8,12〕上是增函数,∴f′〔6〕<0,f′〔10〕>0,∴f′〔6〕<f′〔10〕.故答案为〔1〕>,〔2〕<.13.【解答】由题意可知•=a1b1+a2b2+a3b3+…+a n b n.故答案为:a1b1+a2b2+a3b3+…+a n b n.14.【解答】对于①,函数f〔x〕=e x﹣alnx的导数为f′〔x〕=e x﹣,设切点为〔m,f〔m〕〕,那么e=e m﹣,em=e m﹣alnm,可取m=1,a=0,那么∃a∈R,使得直线y=ex为函数f〔x〕的一条切线,故①正确;对于②,∀a<0,函数f〔x〕的导函数f′〔x〕=e x﹣,由x>0,可得f′〔x〕>0,那么导函数无零点,故②正确;对于③,对∀a<0,函数f〔x〕=e x﹣alnx,由f〔x〕=0,可得e x=alnx,分别画出y=e x和y=alnx,〔a<0〕的图象,可得它们存在交点,故f〔x〕总存在零点,故③正确.故答案为:①②③.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.【解答】〔Ⅰ〕f′〔x〕=3x2﹣6x﹣9=3〔x+1〕〔x﹣3〕,令f′〔x〕=0,得x=﹣1或x=3,当x变化时,f′〔x〕,f〔x〕在区间R上的变化状态如下:x〔﹣∞﹣﹣1〔﹣1,3〕3〔3,+∞〕1〕f′〔x〕+0﹣0+f〔x〕↗极大↘极小↗所以f〔x〕的单调递增区间是〔﹣∞,﹣1〕,〔3,+∞〕;单调递减区间是〔﹣1,3〕;〔Ⅱ〕因为f〔﹣2〕=0,f〔2〕=﹣20,再结合f〔x〕的单调性可知,函数f〔x〕在区间[﹣2,2]上的最小值为﹣20.16.【解答】〔Ⅰ〕由题意a1=1,a2+a1=,a3+a2=﹣1,a4+a3=2﹣解得:a2=﹣1,a3=﹣,a4=2﹣〔Ⅱ〕猜测:对任意的n∈N*,a n =﹣,①当n=1时,由a1=1=﹣,猜测成立.②假设当n=k 〔k∈N*〕时,猜测成立,即a k=﹣那么由a k+a k=﹣,得a k+1=﹣,+1即当n=k+1时,猜测成立,由①、②可知,对任意的n∈N*,猜测成立,即数列{a n}的通项公式为a n=﹣.17.【解答】〔Ⅰ〕证明:函数f〔x〕的定义域是〔0,+∞〕.当a=1时,f〔x〕=x﹣2lnx﹣,函数f′〔x〕=≥0,所以函数f〔x〕在定义域〔0,+∞〕上单调递增,所以当a=1时,函数y=f〔x〕没有极值点;〔Ⅱ〕f′〔x〕=1﹣+=,x∈〔0,+∞〕令f′〔x〕=0,得x1=1,x2=a,①a≤0时,由f′〔x〕>0可得x>1,所以函数f〔x〕的增区间是〔1,+∞〕;②当0<a<1时,由f′〔x〕>0,可得0<x<a,或x>1,所以函数f〔x〕的增区间是〔0,a〕,〔1,+∞〕;③当a>1时,由f′〔x〕>0可得0<x<1,或x>a,所以函数f〔x〕的增区间是〔0,1〕,〔a,+∞〕;④当a=1时,由〔Ⅰ〕可知函数f〔x〕在定义域〔0,+∞〕上单调递增.综上所述,当a≤0时,函数y=f〔x〕的增区间是〔1,+∞〕;当0<a<1时,所以函数f〔x〕的增区间是〔0,a〕,〔1,+∞〕;当a=1时,函数f〔x〕在定义域〔0,+∞〕上单调递增;当a>1时,所以函数f〔x〕的增区间是〔0,1〕,〔a,+∞〕.18.【解答】证明:〔Ⅰ〕函数f〔x〕的定义域为〔0,+∞〕,…〔1分〕假设t=1,那么f〔x〕=e x﹣1﹣lnx,.…〔2分〕因为f′〔1〕=0,…〔3分〕且0<x<1时,,即f′〔x〕<0,所以f〔x〕在〔0,1〕上单调递减;…〔4分〕x>1时,,即f′〔x〕>0,所以f〔x〕在〔1,+∞〕上单调递增;…〔5分〕所以x=1是函数f〔x〕的极小值点;…〔6分〕〔Ⅱ〕函数f〔x〕的定义域为〔0,+∞〕,t>0.;…〔7分〕令,那么,故g〔x〕单调递增.…〔8分〕又g〔1〕=0,…〔9分〕当x>1时,g〔x〕>0,因而f′〔x〕>0,f〔x〕单增,即f〔x〕的单调递增区间为〔1,+∞〕;当0<x<1时,g〔x〕<0,因而f′〔x〕<0,f〔x〕单减,即f〔x〕的单调递减区间为〔0,1〕.…〔11分〕所以x∈〔0,+∞〕时,f〔x〕≥f〔1〕=1≥0成立.…〔12分〕。