二上第八单元测试
- 格式:doc
- 大小:73.50 KB
- 文档页数:4
第八单元知识点测试卷(包含答案)一、填一填1.用4、6和7组成两位数,每个两位数的十位数和个位数不能一样,能组成()个两位数,它们分别是()。
2.用4、0和7可以组成()个不同的三位数,其中最大的数是(),最小的数是()。
3.3位小朋友每两个人通一次电话,一共要通()次话。
4.一辆客车往返于合肥、南京、上海三地载客,要准备()种不同的车票。
5. 34、35、43、45、53、54这些数是用()、()和()这三个数字组成的。
考查目的:通过操作、观察等活动,巩固学生对于简单事物排列和组合的规律的知识,进一步渗透排列和组合的思想方法,培养学生有序,全面地思考问题的意识。
答案:1. 6 ;46、47、64、67、74、76 2.4 ;740 ;407 3. 3 4. 6 5. 3、4、5解析:第1题,学生在组数时一定要做到有序,不漏、不重复。
可以灵活运用交换数字的位置、固定十位数或固定个位数等排列的方法。
第2题,学生组数时要注意“0”不能放在十位上,因此只能组成4个不同的两位数。
第3题,可以用画一画的方法解决问题,如下图。
第4题,要准备6种不同的车票。
客车需要往返于三地,往:合肥→南京,合肥→上海,南京→上海,3种车票;返:上海→南京,上海→合肥,南京→合肥,3种车票。
共6种车票。
也可以合肥南京,往返2种车票;合肥上海,2种车票;南京上海,2种车票,共6种车票。
第5题,学生能用三个不同数字组成6个不同两位数,现在通过给出的6两位数判断出用哪三个数字来组成,可以根据34、35得出用了3,43、45得出用了4,53、54得出用了5,因此是用3、4、5这三个数字组成的。
二、选一选1.用5、0、2可以组成()个不同的两位数。
A.4 B.5 C.62.我和爸爸、妈妈坐成一排合影,有()种坐法。
A.2 B.4 C.63.莉莉和她的3个好朋友,每两人握一次手,一共要握()次手。
A.3 B.4 C.64.可以有( )种早餐搭配方法?A.2 B.4 C.65.有一些1元、5角和1角的钱币,要买一支1元5角的笔,有()种不同的付钱方法。
二年级上册语文第八单元测试试卷1一、看拼音写词语。
(22分yǔ zhîu fēi chuán zāi hài dào yǐng bì xū lì shǐ( ) ( ) ( ) ( ) ( )fǎng zhī shì qing nïng mín kē jì piāo fú( ) ( ) ( ) ( ) ( )二、选择正确的音节填在( )里。
(8分)bēn bân zhōng zhîng mî mãi juã jiào1、嫦(cháng)娥(ã)奔( )月是个神话故事。
同学们在操场上奔( )跑。
2、祖国永远在我们心中( )。
小鸟被猎(liâ)人打中( )了。
3、河水没( )过小腿(tuǐ),我没( )有办法过河。
4、我觉( )得我该(gāi)上床睡(shuì)觉( )了。
三、给下面的字加偏旁,再组成词语写下来。
(12分)方 ( ) ( ) 不 ( ) ( )也 ( ) ( ) 力 ( ) ( )主 ( ) ( ) 火 ( ) ( )四、给下面的句子填上标点符号。
(5分)1、这道题(tí)真难(nán) 该(gāi)怎么做呢2、我有一位好妈妈她很疼(tãng)我3、我们的祖国多么广大4、南极真的特(tâ)别冷吗5、妹妹多想有一个漂亮的布娃娃五、把下面的词语连成句子,再加上标点。
(4分)1、活动课间丰富多彩真是2、吹得小草头春风探(tàn)出了六、在括号里填上合适的词语。
(12分)一圈(quān)圈(quān)( ) 一条( ) ( )的图画一片片( ) 一只( ) ( )的人们一把把( ) 一座( ) ( )的校园一个个( ) 一首( ) ( )的树苗七、把排列错乱的句子整理成通顺的一段话。
第⑧单元测试卷一、单选题(共8题;共16分)1.5、0、3这三个数字组成的不同的三位数共有()个。
A. 4B. 6C. 32.有4个同学排成一排照合照,小丽只能站在左边的第一个位置上。
有()种不同的排法。
A. 8B. 7C. 63.用能摆成()个两位数。
A. 6B. 8C. 124.用下面的3枚硬币可以组成()种不同的币值。
A. 3B. 4C. 55.小丽和父母到影楼照全家福,站成一排,他们有()种排列方法。
A. 3B. 1C. 66.有三个队参加足球比赛,每两个队进行一场比赛,一共要比赛()场。
A. 4B. 6C. 8D. 37.3个人比赛打乒乓球,每两个人打一场,3个人共打了()场。
A. 2B. 3C. 68.四年级8个班级举行拔河比赛,每2个班级之间进行1场比赛,一共要进行几场比赛,以下那种算法是正确的()。
A. 8×7÷2B. 8×7C. 8+7+6+5+4+3+2D. (7+6+5+4+3+2+1)÷2二、判断题(共5题;共10分)9.有三个同学,每两人握一次手,一共要握6次手。
()10.某学校要从4名女同学和3名男同学中各选出1人代表学校参加演讲比赛。
一共有7种不同的组队方案。
()11.从四个人选2人参加比赛有6种不同选法。
()12.2件上衣和3条裤子搭配成一件衣服,一共有5种搭配方法()13.从5、2、7、0这4个数中选出两个组成两位数,可以组成9个两位数。
()三、填空题(共8题;共16分)14.丽丽有3件上衣,4条裙子,一件上衣和一条裙子任意搭配,有________种不同穿法。
15.从2、0、8、5中选三个数组成不同的三位数,最大的是________,最小的是________,它们相差________。
16.用6、7、8组成的最大的三位数与最小的三位数的差是________,和是________。
17.小亮有两件不同的上衣,两条不同的裤子,已知一件上衣和一条裤子搭成一身,他有________种搭法。
人教版数学二年级上学期第八单元测试一、单选题(共8题;共16分)1.明明有3件不同的衬衣,2条颜色不一样的裙子,一共有( )种穿法.A. 5B. 6C. 32.有3张卡片,上面分别写着2,3,7这三个数字,东东和芳芳各抽一张,如果两人卡片上的数字的积是奇数,芳芳赢;若是偶数,东东赢.这个游戏规则( ).A. 公平B. 不公平C. 无法确定3.在下面的图中,从A到B有( )种不同走法.(只向上,向右)A. 20B. 25C. 30D. 354.有16支球队采用单循环赛制,一共要赛( )A. 16场B. 240场C. 120场D. 136场5.联欢会上,墙上挂着两串礼物:A、B、C、D、E(如图),每次从某一串的最下端摘下一个礼物,这样摘了五次可将五件礼物全部摘下,那么共有几种不同的摘法( )A. 20种B. 10种C. 6种D. 5种6.由0、1、2、3可以组成个四位数的数字不重复密码号.( )A. 24B. 64C. 128D. 2127.小玲和小巧玩猜数游戏,每人每次出1到5中的一个数字.如果两人出的数字相加,和是奇数就算小玲赢,和是偶数就算小巧赢,那么小玲赢的可能性( ).A. 比小巧小B. 比小巧大C. 与小巧一样大D. 无法确定8.有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于( )A. 21B. 25C. 29D. 58二、填空题(共8题;共8分)9.小明、小强、小文、小刚、小亮5名同学中选出2人代表学校参加乒乓球比赛,共有________种不同的组队方案.10.学校组织秋季运动会,为活跃会场气氛,某班级欲购买两种不同颜色的彩纸制作成彩带,若商店有红、黄、蓝、绿四种颜色的彩纸,则共有________种不同的购买方案.11.从班内3名男生和4名女生中选出2人参加羽毛球混合双打比赛,共有________种组队方案.12.16支球队进行单循环比赛,需要进行________场;若采用淘汰赛,决出冠军要进行________场比赛;若在决出四强前采用淘汰制,决出四强后采用单循环赛制,共要进行________场比赛.13.30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试________次.14.奥运会男篮比赛共有12支球队参加,第一阶段把12支球队分成两个小组采用小组单循环赛(1)第一阶段共赛________场.(2)每个小组的前四名各进入下一轮,第二阶段采用淘汰制,第二轮共赛________场.(3)一共要赛________场能决出冠、亚、季军.15.从北京经南京到上海,其中北京到南京有三种不同的线路火车,从南京到上海有四种不同的线路火车.那么我们可以有________条线路从北京到上海.16.区教育局要举行第十届教职工排球赛,这届比赛共有32支球队参加,平均分成4个小组,在小组内采用单循环制,小组前2名共8支球队再进行淘汰赛,一共要进行________场比赛.三、解答题(共10题;共51分)17.小丽有2件上衣,3条裤子,又买了2顶帽子.现在有多少种搭配方法?18.有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?19.画一画,填一填.20.某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有多少人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同?21.甲、乙、丙、丁、戊、己、庚、辛八个人站队,要求:甲不能站在队伍最靠左的三个位置,乙不能站在队伍最靠右的三个位置,丙不能站在队伍两端,问一共有多少种站法?22.某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是 ,那么确保打开保险柜至少要试几次?23.,,三种图形有多少不同的排法?把这几种排法写出来.24.四名同学参加区里围棋比赛,每两名选手都要比赛一局,规则规定胜一局得分,平一局得分,负一局得分.如果每个人最后得的总分都不相同,且第一名不是全胜,那么最多有几局平局?25.用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?26.用红、橙、黄、绿、蓝5种颜色给下面长方格子涂颜色,一个格子里涂一种颜色,一种颜色只可以使用一次,有几种不同的涂法?请把你设计的方案用图示法表示出来.答案与解析一、单选题1.【答案】 B【解析】【解答】解:衬衣①、裙子①,衬衣①、裙子②;衬衣②、裙子①;衬衣②、裙子②;衬衣③、裙子①;衬衣③、裙子②.共6种穿法.故答案为:B.【分析】每件衬衣都会有2条裙子与之搭配,共有3件衬衣,这样列举出所有穿法即可.2.【答案】 B【解析】【解答】解:积有:2×3=6,2×7=12,3×7=21,3×2=6,7×2=14,7×3=21,奇数有2个,偶数有4个,这个游戏规则不公平.故答案为:B.【分析】如果积是奇数、偶数的个数相同,这个游戏规则就公平.由此判断出所有的积即可判断是否公平.3.【答案】 A【解析】【解答】A先向右走有10种,A先向上有10种,共10+10=20(种)故答案为:A【分析】弄清楚行走的规则,先判断出向右走的路线有10种,向上走的路线也有10种,这样计算出总的种数即可.4.【答案】 C【解析】【解答】解:16×(16-1)÷2=16×15÷2=120(场)故答案为:120.【分析】每支球队在进行单循环比赛时,都要与其他球队进行一次比赛,所以用16乘15求出比赛的场次,因为有一半重复的场次,所以再除以2即可.5.【答案】 B【解析】【解答】解:(1)从A开始摘,A﹣B﹣C﹣D﹣E,A﹣B﹣D﹣C﹣E,A﹣B﹣D﹣E﹣C,A﹣D﹣B﹣C﹣E,A﹣D﹣B﹣E﹣C,A﹣D﹣E﹣B﹣C,共6种方法,(2)从D开始摘,D﹣E﹣A﹣B﹣C,D﹣A﹣E﹣B﹣C,D﹣A﹣B﹣E﹣C,D﹣A﹣B﹣C﹣E,共4种方法,共有:6+4=10(个),故选:B.【分析】根据题意,每次从某一串的最下端摘下一个礼物,摘了五次可将五件礼物全部摘下,那就从A开始摘,看看有几种方法,再从D开始摘,看看有几种方法,那问题即可解决.6.【答案】A【解析】【解答】4×3×2×1=24(个)故答案为:A【分析】0可以作为第一个数,所以左起第一位有4种选择,第二位有3种选择,第三位有2种选择,第四位只有一种选择,运用乘法原理计算数字总数.7.【答案】 A【解析】【解答】解:1+1=2,1+2=3,1+3=4,1+4=5,1+5=6,2+1=3,2+2=4,2+3=5,2+4=6,2+5=7,3+1=4,3+2=5,3+3=6,3+4=7,3+5=8,4+ 1=5,4+2=6,4+3=7,4+4=8,4+5=9,4+6=10,5+1=6,5+2=7,5+3=8,5+4=9,5+5=10;和是奇数的12个,和是偶数的13个,所以小玲赢的可能性比小巧小.故答案为:A.【分析】运用排列组合的方法把所有的和都列举出来,然后数出和的奇数和偶数各有几个,哪种数多,相对应的谁赢的可能性就大.8.【答案】 C【解析】【解答】解:方法一:因为在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数的和有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,所以A、B、D是不可能的,方法二:2、5、8被3除,余数都是2,同余.所以取出7张卡片求和,余数变成了14.因为减去14,剩下的数可以被3整除(7张2的情况,和为14,减去14为0).或者14被3除,余数是2,即7张卡片求和,被3除,余数为2,只有29复合题意.故答案为:C.【分析】根据题意知道在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,由此即可做出选择.二、填空题9.【答案】 10【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】根据从5名学生中选出2人代表学校参加比赛,当小明与其他4人进行组队时,则有4种不同的组队方法,所以用5乘4求出的组队方案中一半重复的,所以再除以2即可.10.【答案】6【解析】【解答】解:2×3=6(种)故答案为:6.【分析】根据固定排头法,每种颜色的彩纸排头时,剩下的两种颜色的彩纸都有两种不同的排列方法,所以直接用2乘3即可求出不同的购买方案.11.【答案】 12【解析】【解答】解:3×4=12(种);故答案为:12.【分析】3名男生和4名女生选出一对乒乓球混合双打选手,则每一名男生都可和四名不同的女生搭配,根据乘法原理可知,共有3×4=12种不同的组队方案.12.【答案】120;15;18【解析】【解答】单循环赛:16×(16-1)÷2=16×15=120(场)淘汰塞:8+4+2+1=15(场)决出四强赛:8+4+6=18(场)故答案为:120,15,18.【分析】在进行单循环赛时,则每个球队都要与其他球队进行比赛,所以每个球队要进行15场比赛,这样就会有一半重复的,所以再除以2即可,在进行淘汰赛时,分别求出两队两队比赛的场次,然后再相加,在决出四强后再采用淘汰赛时,先求出16支球队决出四强前的比赛的场次,再求出四强后淘汰赛的场次,然后相加即可.13.【答案】435【解析】【解答】29+28+27+26+25+…+1=(29+1)×29÷2=30×29÷2=435(次)故答案为:435【分析】从最坏的情况考虑,第一把钥匙一直试到第29把还没有配上,那么最后一把锁就不用试了,一定是第30把的钥匙;按照这样的规律,第二把需要试28次……,直到最后一把试1次就可以了,把这些次数相加,根据数列求和的知识计算即可.14.【答案】 (1)30.(2)7.(3)37.【解析】【解析】解:1.6×5÷2=15(场)15×2=30(场)2.8-1=7(场)3.30+7=37(场)故答案为:30,7,37.【分析】1.把12支球队分成两小组时,每组有6个球队,用6乘5除以2即可求出每组单循环赛的场次,乘2即可求出第一阶段比赛的场次;2.每组进行前4名的球队有4支,两组共有8支,所以用8减1即可求出淘汰赛的场次;3.要求一共要赛多少场时,则直接用第一阶段的场次加上第二阶段的场次即可.15.【答案】 12【解析】【解答】3×4=12(种)故答案为:12.【分析】从北京到南京的每条线路去上海时都有4种不同走法,所以用3乘4即可求出从北京到上海的路线走法.16.【答案】119【解析】【解答】解:32÷4=8(支)8×(8-1)÷2=28(场)28×4=112(场)8-1=7(场)112+7=119(场)故答案为:119.【分析】用32除以4求出每个小组球队的支数,根据排列组合的方法求出单循环赛的场次;每个小组取前2名时,4个小组则取了8个小队,所以用8乘8减1的差除以2即可求出淘汰赛的场次,然后再相加即可.三、解答题17.【答案】解:2×3×2=12(种)答:现在有12种搭配你方法.【解析】【分析】每件上衣都会有3条裤子与之搭配,每条裤子会有2顶帽子与之搭配,运用乘法原理计算搭配的总种类即可.18.【答案】解:(种)答:共可以表示60种不同的信号.【解析】【分析】这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置,现在是要从五个不同的元素中取三个,排在三个位置的问题.19.【答案】【解析】20.【答案】解:十项比赛,每位同学可以任报两项,那么有45种不同的报名方法.由鸽巢原理知有45+1=46(人)报名时满足题意.【解析】【分析】9+8+7+6+5+4+3+2+1=45(种),10项比赛共有45种不同的组合,假如每个组合都有1人报名,共有45人报名,那么再有1人报名,不管是报哪个组合,都会保证有两名或两名以上的同学报名参加的比赛项目相同.21.【答案】解:按甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置分四种情况讨论:如果甲在队伍最靠右的位置、乙在队伍最靠左的位置,那么丙还有6种站法,剩下的五个人进行全排列,站法总数有: (种)如果甲在队伍最靠右的位置,而乙不在队伍最靠左的位置,那么乙还有4种站法,丙还有5种站法,剩下的五个人进行全排列,站法总数有: (种)如果甲不在队伍最靠右的位置,而乙在队伍最靠左的位置,分析完全类似于上一种,因此同样有2400种站法如果甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置,那么先对甲、乙整体定位,甲、乙的位置选取一共有 (种)方法.丙还有4种站法,剩下的五个人进行全排列,站法总数有: (种)所以总站法种数为 (种)【解析】【分析】甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置有四种情况:第一种:甲在队伍最靠右的位置、乙在队伍最靠左的位置;第二种:甲在队伍最靠右的位置,而乙不在队伍最靠左的位置;第三种:甲不在队伍最靠右的位置,而乙在队伍最靠左的位置;第四种:甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置.最后把每一种站法加起来即可.22.【答案】解:四个非数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,可以组成多少个密码呢?只要考虑的位置就可以了, 可以任意选择个位置中的一个,其余位置放 ,共有种选择;第二种中,先考虑放 ,有种选择,再考虑的位置,可以有种选择,剩下的位置放 ,共有 (种)选择同样的方法,可以得出第三、四、五种都各有种选择.最后一种,与第一种的情形相似, 的位置有种选择,其余位置放 ,共有种选择.综上所述,由加法原理,一共可以组成 (个)不同的四位数,即确保能打开保险柜至少要试次.【解析】【分析】先把和是9的4个非0的数字组合写出来,然后把每种组合的排列方法加起来即可.23.【答案】解:有六种不同的排法:,,,,,,,, ,,,,【解析】24.【答案】解:四人共赛局,总分为(分),因为总分各不相同,分配得:或.平局最多的应该是、、、的情况.总分是奇数的必有一局平局,当得分是分、分的同学分别与得分是分、分的同学打平后,得分是分、分的同学就还剩下分、分,互相打平就正好.所以平局最多是局.答:最多有3局平局.【解析】【分析】单循环比赛四队比赛总局数:3+2+1=6(局),每局比赛无论胜平负,得分总和都是2分,这样计算出总分是12分.然后把12分进行分配,根据每个人最后得分都不相同推理出最多有几局平局即可.25.【答案】解:如果买0张8元饭票,还剩100元,可以购买4元饭票的张数为0~25张,其余的钱全部购买2元饭票,共有26种买法;如果买l张8元饭票,还剩92元,可购4元饭票0~23张,其余的钱全部购买2元饭票,共有24种不同方法;如果买2张8元饭票,还剩84元,可购4元饭票0~21张,其余的钱全部购买2元饭票,共有22种不同方法;……如果买12张8元饭票,还剩4元饭票,可购4元饭票0~1张,其余的钱全部购买2元饭票,共有2种方法.总结规律,发现各类情况的方法数组成了一个公差为2,项数是13的等差数列.利用分类计数原理及等差数列求和公式求出所有方法:26+24+22+…+2=(26+2)×13÷2=182(种).答:共有182种不同的买法.【解析】【分析】100元里面最多有12个8元,饭票中8元的面值最大,所以第一次买8元,从买0张8元开始,依次买到12张8元,然后分别计算出购买4元和2元的饭票的张数,最后把每一次中的买法加起来即可.26.【答案】解:共10,如图【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】每种颜色与其他4种颜色组合时,都有4种不同的组合方法,所以用5乘4再去掉重复的组合方法即可.。
人教版数学二年级上学期第八单元测试一、单选题1.5、0、3这三个数字组成的不同的三位数共有( )个.A. 4B. 6C. 32.甲、乙、丙、丁四个篮球队打球,每两个队要打一场比赛,一共要进行( )场比赛.A. 4B. 6C. 8D. 103.用4、5、8三个数字中任意两个可以组成( )个不同的两位数.A. 2B. 4C. 64.六(1)班37名同学解答两道题,规定答对一题得3分,不答得1分,答错得0分.至少有( )名同学的得分相同.A. 19B. 13C. 7D. 6二、判断题5.我有2件上衣和3条裤子,配成一套衣服,一共有6种搭配方法.( )6.从四个人选2人参加比赛有6种不同选法.( )7.一个有四位数的密码锁,忘记了首尾两个数字,则需要试验的密码有10种.三、填空题8.老师要从班内4名男生和5名女生中选派二人参加男女生二重唱比赛,有________种不同的组合方案.9.用“2”“5”“8”三个数字组成的三位数一共有________个,其中十位上是5的有________个(同一个数中每个数字只用一次)10.用0、1、3、5、7、9最多可组成________个不同的六位数,最大的是________,最小的是________.11.小明、小强、小文、小刚、小亮5名同学中选出2人代表学校参加乒乓球比赛,共有________种不同的组队方案.12.现有3名男生和3名女生,欲从中各选派一个人参加羽毛球混合双打比赛,共有________种不同的组队方案.四、解答题13.从1~8中每次取两个不同的数相加,和大于10的共有多少种取法?14.学校教学楼共16级台阶,规定每次只能跨上1级或2级,要登上第16级,共有多少种不同的走法?五、应用题15.在1~20共20个整数中,取两个数相加,使其和为偶数不同取法共有多少种?答案与解析一、单选题1.【答案】A【解析】【解答】组成的不同的三位数有503、530、305、350,共4个.故答案为:A.【分析】百位上的数字不能是0,所以只能是5和3,是5的三位数有2个,是3的三位数有2个,共4个三位数.2.【答案】B【解析】【解答】解:3+2+1=6(场)故答案为:B.【分析】甲先比赛3场,那么乙只需要再与丙、丁比赛2场,丙只需要与剩下的丁比赛1场,由此计算总场次即可.3.【答案】C【解析】【解答】用4、5、8三个数字可组成45,48,54,58,84,85,共6个数.故答案为:C.【分析】此题主要考查了排列和组合的知识,先确定十位上的数,再确定个位上的数,当十位是4,个位可能是5或8,可以组成两个不同的两位数,同样的方法,当十位是5,个位可能是4或8,当十位是8,个位可能是4或5,据此解答.4.【答案】C【解析】【解答】解:答题情况有:一道也没有答对、答对第一道和答错第二道、答对第二道和答错第一道、一道也没答;答对第一道和不答第二道、答对第二道和不答第一道、答错第一道和不答第二道、答错第二道和不答第一道、答对两道,一共有5种不同的得分情况,37÷5=7(组)……2(名),所以至少有7名同学的得分相同.故答案为:C.【分析】计算此类型的题目时,可以先算出一共有多少种情况,然后再用总人数除以情况的种数,所得的商就是至少相同的人数.二、判断题5.【答案】正确【解析】【解答】解:2×3=6,所以2件上衣和3条裤子一共有6种搭配方法.原题说法正确.故答案为:正确.【分析】一件上衣有3条裤子与之搭配,那么2件上衣就是2个3种搭配方法.6.【答案】正确【解析】【解答】解:从四个人选2人参加比赛有6种不同选法.故答案为:正确.【分析】从四个人选2人参加比赛,可以先从这四个人中选1个人参加比赛,一共有4种可能,然后再从剩下的3个人中选出1个人,一共有3种可能,所以一共有4×3÷2=6种不同的选法.7.【答案】错误【解析】【解答】解:10×10=100种,因此需要试验的密码有100种,原题说法错误.故答案为:错误【分析】因为每一位上的数字都有10种可以选择,一共有两位数字不知道,因此根据乘法原理用10×10可以求出需要实验的密码的种类.三、填空题8.【答案】20【解析】【解答】4×5=20(种)故答案为:20.【分析】根据排列组合的规律列出乘法算式进行分析.9.【答案】6;2【解析】【解答】解:组成的三位数有258、285、582、528、825、852,共6个,其中十位上是5的有2个. 故答案为:6;2.【分析】每个数字都可以做百位数字,然后确定十位和个位数字,这样列举出所有的三位数即可填空.10.【答案】600;975310;103579【解析】【解答】解:六位数的个数:5×5×4×3×2=600(个);最大的是975310,最小的是103579.故答案为:600;975310;103579.【分析】这样的六位数中,十万位有5个数可以选择(0除外),万位也有5个数可以选择,千位剩下4个数可以选择,百位剩下3个数可以选择,十位剩下2个数可以选择,个位只有剩下1个数,把这些可以选择的个数相乘即可求出组成六位数的个数.其中最大的六位数的最高位是最大的数字9,其它数字从大到小依次列在后面的数位上;最小的六位数的最高位数字是1.11.【答案】10【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】根据从5名学生中选出2人代表学校参加比赛,当小明与其他4人进行组队时,则有4种不同的组队方法,所以用5乘4求出的组队方案中一半重复的,所以再除以2即可.12.【答案】9【解析】【解答】解:3×3=9(种)故答案为:9.【分析】用3名男生的人数乘3名女生的人数即可求出组队方案的方法.四、解答题13.【答案】解:两个数和为11的一共有3种取法;两个数和为12的一共有2种取法;两个数和为13的一共有2种取法;两个数和为14的一共有1种取法;两个数和为15的一共有1种取法;一共有3+2+2+1+1=9种取法.【解析】【分析】1~8中最大的两个数的和是7+8=15,所以从两个数和为11开始,依次到和为15的每一个和的取法,最后把每一个和的取法加起来即可.14.【答案】解:第一台阶有1种走法,第二台阶有2种走法,第三台阶有1+2=3种走法,第四台阶有2+3=5种方法,…即斐波那契数列依次有:1、2、3、5、8、13、21、34、55、89、144、233、377、610、987、1597;共有1597种不再的走法答:共有1597种不同的走法.【解析】【分析】上第1级有1种方法,上第2级有1、1,和2这2种方法,上第3级,可以从第1级上1、1或2,或第2级上1这3种方法,3=1+2,同理,上第4级2+3=5种方法,上第5级3+5=8种方法,上第6级5+8=13种方法,上第7级8+13=21种方法,上第8级13+21=34种方法,上第9级21+34=55种方法上第10级34+55=89种方法.这个走法随着台阶的增多,依次为:1、2、3、5、8、13、21、34、55、89由此得出:从第三项开始,每项=他之前的两项的和.五、应用题15.【答案】90种【解析】【解答】9×10÷2×2=90(种)答:和为偶数不同取法共有90种.【分析】从1~20种共有10个偶数,10个奇数,如果偶数与偶数相加,则有9×10÷2=45种,同样奇数与奇数相加也有45种不同的取法,所以再用45乘2即可求出一共的取法.。
一、选择题1.用9、6和3组成两位数,每个两位数的十位数和个位数不能一样,能组成()个两位数。
A. 3B. 5C. 6D. 9C解析: C【解析】【解答】用9、6和3组成两位数,每个两位数的十位数和个位数不能一样,能组成6个两位数。
故答案为:C。
【分析】此题主要考查了排列和组合的知识,当十位是3时,个位可以是6或9,可以组成2个两位数;同样的方法,当十位是6时,可以组成2个两位数;当十位是9时,可以组成2个两位数,一共可以组成2×3=6个两位数,据此解答。
2.有三个队参加足球比赛,每两个队进行一场比赛,一共要比赛()场。
A. 4B. 6C. 8D. 3D解析: D【解析】【解答】3×2÷2=3(场)故答案为:D。
【分析】每一个队与其他两队要比2场,共有3个队,比赛场数的计算是组合,所以求出它们的积再除以2即可。
3.把同样的黑、红、白三种颜色的花片各2个混在一起.闭上眼睛取出2个花片,可能出现的结果有()种.A. 3B. 5C. 6C解析: C【解析】【解答】可能出现的结果有6种。
故答案为:C。
【分析】出现的结果可能是两黑、两红、两百、黑红、黑白、红白,共六种情况。
4.学校在为联欢会选送节目,要从3个小品节目中选出一个,从2个舞蹈节目中选出一个,一共有( )种选送方案。
A. 5B. 6C. 7B解析: B【解析】【解答】3×2=6(种).故答案为:B.【分析】根据题意可知,从3个小品节目中选出一个,有3种不同的选法,从2个舞蹈节目中选出一个,有2种不同的选法,要求一共有几种选送方案,用乘法计算,据此列式解答.5.4个同学照相,每两人照一张,一共照了()张。
A. 4B. 5C. 6C解析: C【解析】【解答】(4-1)×4÷2=12÷2=6(张)故答案为:C。
【分析】根据题意可知,每两人照一张,也就是每个人都要和除自己以外的其他3人照一次,一共是4个人,也就是3×4,但在这里是重复了的,比如我和你照一张,你和我照一张,所以,要除以2,据此解答。
人教版数学二年级上学期第八单元测试一、单选题1.芳芳的爸爸、妈妈陪她去看电影.电影院一排有20个座位,他们要一起坐在同一排,共有()种不同的坐法.A. 18B. 54C. 1082.一种变速自行车,有2个前齿轮,6个后齿轮,它能变出( )种速度.A. 2B. 8C. 12D. 63.用0、2、4、6可以组成没有重复数字的两位数( )个.A. 12B. 9C. 64.在一次射箭比赛中,规定每位运动员只能射3支箭,射中了哪一环就得到哪一环上相应的分数,没有射中就不得分.一位运动员用3支箭刚好射得50分的方式一共有()种.(注意:0+0+50和0+50+O是不一样的方式.)A. 15B. 13C. 165.有14个篮球队进行比赛,若采用淘汰制,最后产生一名冠军,则至少要进行( )场比赛.A. 15B. 14C. 13D. 12二、判断题6.在一条线段上共有9个点,则这9个点可以构成38条线段.7.如果A是奇数,那么1093+89+A+25的结果还是奇数.8.我有2件上衣和3条裤子,配成一套衣服,一共有6种搭配方法.三、填空题9.梅子有2元和5元两种人民币若干张,她要拿出20元钱,有________ 种不同的拿法.10.用3、5、9三张卡片,每次拿两张组成一个两位数,可以组成________个不同的两位数,其中最大的数是________,最小的数是________.11.在7、5、1、0这四个数字中,任选三个数字组成一个三位数,这个三位数是2、3、5的公倍数,这个三位数最小是________,最大是________.12.从班内3名男生和4名女生中选出2人参加羽毛球混合双打比赛,共有________种组队方案.13.从2名男生和5名女生中选出一对羽毛球混合双打选手,有________种不同的组队方案.14.用2、5、9三张卡片中任选两张组成的数中,最大的是多少?最小的是多少?(1)最大的数是________.(2)最小的数是________.四、解答题15.用5 1 6 三张数字卡片摆一摆,能组成几个三位数,这些三位数是2,3,5的倍数吗?请照样子在表格里填一填.16.甲、乙、丙、丁、戊、己六个人站队,要求:甲不能站在队伍左半边,乙不能站在队伍右半边,丙不能站在队伍两端,问一共有多少种站法?五、应用题17.A、B、C、D、E五名运动员进行乒乓球比赛,每两名运动员都要进行一场比赛,一共要进行多少场比赛?答案与解析一、单选题1.【答案】C【解析】【解答】解:×(3+2+1)=18×6=108(种)答:要让他们坐在一起,在同一排有108种不同的坐法.故选:C.【分析】把一家人看做一个整体,这样还剩20﹣3+1=18个座位,因此有18种选择,又因为一家3人的位置可以交换,又有3+2+1=6种选择,所以共有18×6=108(种);据此解答.2.【答案】C【解析】【解答】解:这个变速自行车能变出2×6=12种速度.故答案为:C.【分析】因为这个变速自行车有2个前齿轮和6个后齿轮,所以1个前齿轮能搭配6种后齿轮,2个前齿轮能搭配2×6=12种后齿轮.3.【答案】B【解析】【解答】解:可以组成的两位数有20、24、26、40、42、46、60、62、64,共9个.故答案为:B.【分析】0不能作为最高位数字,2、4、6都可以作为十位数字,先确定十位数字,再确定个位数字,写出所有数字再确定个数即可.4.【答案】A【解析】【解答】解:①射中0、0、50环:有3种,②射中20、20、10环:有3种,③射中10、10、30环:有3种,④射中30、0、20环:有6种,共有:3+3+3+6=15(种);答:一共有15种.故选:A.【分析】因为50=0+0+50=20+20+10=10+10+20=30+20+0,所以分4种情况排列即可.5.【答案】C【解析】【解答】解:14-1=13(场)故答案为:C.【分析】此题可以直接用14-1算出,因为每场都要淘汰一个队,到最后一场一定有一个胜出,没有淘汰的队,所以可以直接算出.二、判断题6.【答案】错误【解析】【解答】解:8+7+6+5+4+3+2+1=36(条),原题说法错误.故答案为:错误.【分析】从第一个点可以引出8条线段,第二个点可以引出7条不重复的线段,……,倒数第二个点可以引出1条不重复的线段,把这些线段条数相加就是构成线段的总条数.7.【答案】错误【解析】【解答】解:如果A是奇数,1093+89+A+25为求四个奇数数相加的和,偶数个奇数相加的和为偶数,所以其和一定为偶数.故答案为:错误.【分析】根据数和的奇偶性可知,奇数个奇数相加的和为奇数,偶数个奇数相加的和为偶数.式中1093、89、25均为奇数,如果A也为奇数的话,则为四个奇数相加,其和一定为偶数.8.【答案】正确【解析】【解答】解:2×3=6,所以2件上衣和3条裤子一共有6种搭配方法.原题说法正确.故答案为:正确.【分析】一件上衣有3条裤子与之搭配,那么2件上衣就是2个3种搭配方法.三、填空题9.【答案】3【解析】【解答】解:①10张2元②4张5元③2张5元和5张2元共3种拿法.故答案为:3.【分析】因为5是奇数,2是偶数,所以只能先把5元的凑成整十,才能再放2元的,故此只有3种方法.10.【答案】6;95;35【解析】【解答】解:组成的两位数有35、39、53、59、93、95,共6个不同的两位数,其中最大的数是95,最小的数是35.故答案为:6;95;35.【分析】每个数字都可以作为十位数字,然后确定个位数字,列举出所有能组成的两位数,然后判断最大的数和最小的数即可.11.【答案】150;750【解析】【解答】在7、5、1、0这四个数字中,任选三个数字组成一个三位数,这个三位数是2、3、5的公倍数,这个三位数最小是150,最大是750.故答案为:150;750.【分析】此题主要考查了2、3、5的倍数的特征,同时是2、3、5的倍数的最小的三位数,只要个位是0,百位是最小的自然数1,十位满足和百位、个位上的数加起来是3的倍数即可;要求最大是多少,只要个位是0,十位和百位的数加起来是3的倍数即可,据此解答.12.【答案】12【解析】【解答】解:3×4=12(种);故答案为:12.【分析】3名男生和4名女生选出一对乒乓球混合双打选手,则每一名男生都可和四名不同的女生搭配,根据乘法原理可知,共有3×4=12种不同的组队方案.13.【答案】10【解析】【解答】解:2×5=10(种)故答案为:10.【分析】每名男生与女生组队时,都有5种不同的组队方案,所以直接用2乘5即可求出组队的总方案. 14.【答案】(1)95(2)25【解析】【解答】2、5、9三张数字卡片,任选两张,可组成的数字为25、29、52、59、92、95,共6种.其中,最大的数是95,最小的数是25.四、解答题15.【答案】【解析】【解答】解:用5、1、6组成的三位数有:156、165、516、561、615、651【分析】根据排列组合的方法,找出5、1、6所组成的所有三位数,再根据2、3、5的倍数特征进行解答即可.16.【答案】解:先对丙定位,有4种站法,无论丙站在哪里,甲和乙一定有一个人有两种站法,一个人有三种站法,剩下三个人进行全排列,所以站法总数有:(种).【解析】【解答】解:4×3×2×=144(种)答:一共有144种站法.【分析】丙不能站在队伍两端,那么丙有4种站法,故甲和乙一定有一个人有两种站法,一个人有三种站法,剩下三个人进行全排列即可.五、应用题17.【答案】10场【解析】【解答】解:4+3+2+1=10(场)答:一共要进行10场比赛.【分析】A与B、C、D、E各进行一场,共4场;B与剩下的C、D、E共进行3场;C与剩下的D、E共进行2场;D与剩下的E进行1场,把所有的场次相加就是比赛总场次.。
2019-2020年度部编小学语文二年级上册第8八单元测试卷一、基础达标。
(51分)1.用“√”给加点的字选择正确的读音。
(4分)神.气(shén shéng) 活.力(hó huó) 小猪.(zhū zū) 替.代(tì tī) 奶.奶(nǎi lǎi) 折.纸(shé zhé) 张.开(zhāng zhān) 吵.架(chǎo cǎo) 2.加偏旁,成新字,再组词。
(6分) 申⎩⎪⎨⎪⎧ ( ) ( ) 乃⎩⎪⎨⎪⎧ ( ) ( ) 韦⎩⎪⎨⎪⎧ ( ) ( ) 3.形近字组词。
(5分)⎩⎪⎨⎪⎧食( )浪( ) ⎩⎪⎨⎪⎧仔( )孙( ) ⎩⎪⎨⎪⎧刚( )钢( ) ⎩⎪⎨⎪⎧吵( )沙( ) ⎩⎪⎨⎪⎧咬( )校( )4.写出带有下面偏旁的字。
(6分)氵______ ______ ______ 扌______ ______ ______ 亻______ ______ ______ 讠______ ______ ______5.正确书写词语。
(10分)y ǎn zh ū j í m án ɡ ɡōn ɡ p ín ɡz ǐ x ì k āi sh ǐ g ōng ɡòn ɡzh é zh ǐ zhu ā zh ù d àn sh ìk ū q ì6.照样子写词语。
(8分)(1)大摇大摆(ABAC):____________ ____________(2)喜滋滋(ABB):________________________(3)安安静静(AABB):____________________(4)东.张西.望(含反义词):____________________7.巧填动物名,补充词语。
(4分)惊弓之()胆小如()漏网之()如()添翼害群之()如()得水力大如() ()到成功8.用“\”划去每组词中不是同一类的词语。
人教版数学二年级上册第八单元综合能力测试一、单选题1.“0,1,2,3”四个数字组成三位数,可以组成( )个不同的三位数.A. 16B. 18C. 62.用4,2,6,9四个数可以组成()个数字不重复的四位数。
A. 12B. 18C. 243.在下图中,根据变化规律空白处应填( )。
A. B. C.4.联欢会上,墙上挂着两串礼物:A、B、C、D、E(如图),每次从某一串的最下端摘下一个礼物,这样摘了五次可将五件礼物全部摘下,那么共有几种不同的摘法()A. 20种B. 10种C. 6种D. 5种5.要从10名候选人中选出一人当班长,一人当团支书,则共有多少种不同的方案?()A. 90种B. 45种C. 110种D. 55种二、判断题6.从四个人选2人参加比赛有6种不同选法。
7.4件上衣和3条裤子搭配成一套衣服,共有12种搭配方法。
8.…第25个应该是。
9.如果A是奇数,那么1093+89+A+25的结果还是奇数.10.4支足球队进行踢足球比赛,每两个队都要赛一场,一共要赛3场.三、填空题11.用0、2、5、9能组成________个没有重复数字的两位数,其中最大的是________。
12.5个足球队进行比赛,每两个队都要进行一场,一共要比赛________场。
13.有12支球队要进行单循环比赛:共需比赛________场.14.将4张不同的新年贺卡投入3个不同的信箱,则3个信箱都不空的投法有________ 种.15.用2、5、9三张卡片中任选两张组成的数中,最大的是多少?最小的是多少?(1)最大的数是________。
(2)最小的数是________。
四、解答题16.一列往返于北京和上海方向的列车全程停靠个车站(包括北京和上海),这条铁路线共需要多少种不同的车票.17.国庆节,星星要去芳芳家,街道路线如图,共有多少种走法?五、应用题18.40把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试多少次?答案与解析一、单选题1.【答案】B【解析】【解答】组成的三位数有:120、102、210、201、310、130、301、103、230、203、320、302、123、132、213、231、321、312,一共有18个.故答案为:B.【分析】第一位上有:1、2、3三种,第二位上有剩下的包括0的三种,第三位上有剩下的二个数取其中一个,据此列举即可解答.2.【答案】C【解析】【解答】解:4×3×2×1=24(个)故答案为:C。
人教版数学二年级上学期第八单元测试一、单选题1.图中共有( )条不同的线段.A. 4B. 16C. 8D. 102.一个密码锁由五个数字组成,每一位数字都是0~9之中的一个,小春只记得其中的三个,则他最多试( )次就能打开锁.A. 5B. 2C. 20D. 1003.12个点,一共可以连成()条线段.A. 12B. 32C. 664.国庆期间,甲商场以“打九折”的措施优惠,乙商场以“每满100元送10元购物券”的形式促销.李阿姨准备购物200元,去哪个商场合算一些?()A. 甲B. 乙C. 甲、乙都一样5.三个人并排站成一个横排照相,他们有几种站法?( )A. 6B. 8C. 3D. 16.一列火车从A站行驶到B站的途中经过五个车站,则A、B这条线路上需准备()种火车票.A. 15B. 21C. 30D. 427.小明要烧壶水给妈妈沏杯茶,已知烧水需要8分钟,洗水壶需要1分钟,洗茶杯需要2分钟,接水需要1分钟,找茶叶需要1分钟,沏茶需要1分钟,那么妈妈至少( )分钟才能喝上茶.A. 10B. 11C. 128.一种洗衣粉在甲、乙、丙三个商店售价都是每袋12元,现在三个商店分别以不同方式促销,甲商店优惠15%;乙商店满100元优惠25%;丙商店买4送1.学校要买10袋这种洗衣粉,想花钱最少.应该到()购买.A. 甲商店B. 乙商店C. 丙商店D. 无法确定9.芳芳的爸爸、妈妈陪她去看电影.电影院一排有20个座位,他们要一起坐在同一排,共有()种不同的坐法.A. 18B. 54C. 10810.六年级6个班级进行篮球比赛,如果每两个班之间进行一场比赛,一共要比赛( )A. 9场B. 10场C. 15场D. 21场二、填空题11.一次排球淘汰比赛,共有13个队参加,有________个队轮空.12.0,5,10,15,20,________,________.13.从4个不同的故事书中任意选2个借给一位同学,一共有________种不同的借法.14.小明给客人沏茶,接水1分钟,烧水6分钟,洗茶杯2分钟,拿茶叶1分钟,沏茶1分钟.小明合理安排以上事情,最少要________ 分钟使客人尽快喝茶.15.用0、1、2、3、4可以组成________个没有重复数字的三位数.16.________ ________ ________17.现有3名男生和3名女生,欲从中各选派一个人参加羽毛球混合双打比赛,共有________种不同的组队方案.18.奥运会男篮比赛共有12支球队参加,第一阶段把12支球队分成两个小组采用小组单循环赛(1)第一阶段共赛________场.(2)每个小组的前四名各进入下一轮,第二阶段采用淘汰制,第二轮共赛________场.(3)一共要赛________场能决出冠、亚、季军.19.五年一班要从甲、乙、丙、丁四名同学中选出升旗手和护旗手各一名,共有________种不同选法.20.小文进行篮球投篮练习,连续投篮4次,把每次命中与否按顺序记录下来,可能有________种不同的顺序.三、解答题21.三位老师带50名学生去参观植物园.(团体票:10人以上每人10元)怎样买票合算?22.后面一个应该是什么?请你画出来.23.有200枚围棋子放在盒子里,甲、乙两个轮流各取1枚或2枚,取到最后一枚为胜者,必胜的对策是什么?四、综合题24.“奔向未来”少儿科技夏令营共有团员32人,其中男生l7人,女生l5人.请你帮他们设计一下,怎样租房.3人间:50元2人间:40元(1)男生l7人3人间数/间 2人间数/间可住人数/条钱数/元方案一方案二方案三……(2)女生l5人(3)从以上两个表可以知道租房最合算的方案是:男生租3人间________间,2人间________间最省钱.女生租3人间________间,2人间________问最省钱.五、应用题25.某工程队买了90吨石子要运往建筑工地,司机张师傅和李师傅都想承运这些石子.谁来运送这些石子更便宜26.巧租游船.三(1)班两名老师带领48位同学到某景区游玩,景区内有下面两种船. 豪华游船普通游船每条船坐15人, 租金45元.每条船坐10人. 租金30元.怎样租船最省钱用表格来试试吧!豪华游船/条 普通游船/条 可座人数/条 租金/元方案一 方案二 方案三 ……答案与解析一、单选题1.【答案】D【解析】【解答】解:4+3+2+1=10(条)故答案为:10.【分析】先一段一段地找出基本线段的条数,再数出组合线段的条数,然后再相加即可.2.【答案】D【解析】【解答】解:10×10=100,最多试100次就能打开锁.故答案为:D【分析】因为只记得3个,还有2个数字不知道,因此需要把这两个数字都试完,每个数字都有10个数字可以选择,共10×10=100种情况,因此需要把这100种情况都试完才能保证打开锁.3.【答案】C【解析】【解答】解:1+2+3+…+11=66(条);答:12个点,一共可以连成66条线段.故选:C.【分析】3个点连成线段的条数:1+2=3(条),4个点连成线段的条数:1+2+3=6(条),5个点连成线段的条数:1+2+3+4=10(条),…;由此得出规律:总线段数就是从1依次连加到点数减1的那个数的自然数之和.因此,我们只要知道点数是几,就从1开始,一次加到几减1,所得的和就是总线段数.据此规律解答即可.4.【答案】A【解析】【解答】解:李阿姨打算花掉200元,所以在甲商场购物情况:200÷0.9≈222.22(元),相当于花200元得到222.22元的商品;在乙商场购物情况:李阿姨花200元会得到10×2=20元购物券,相当于花200元得到220元商品,所以去甲商场合算.答:去甲商场合算.故选:A【分析】要想知道在哪家商场购物更加合算,必须让李阿姨花最少的钱,买更多的商品.5.【答案】A【解析】【解答】解:2×3=6(种)故答案为:6.【分析】根据固定排头法,每人排在第1时,剩下的2人都有两种不同的站法,所以直接用2乘3即可求出所有的站法.6.【答案】B【解析】【解答】解:6+5+4+3+2+1=21(种);答:A、B这条线路上需准备21种不同的火车票.故选:B.【分析】中途要经过5个站,加上起点和终点,一共7个站,则从起点站的要准备7﹣1=6(种),从第二站要准备7﹣2=5(张)…倒数第二站只准备7﹣6=1(种),则有6+5+4+3+2+1=21(种).7.【答案】B【解析】【解答】1+8+1+1=11分【分析】这道题主要考查了最优化问题.解答此题是要考虑先要洗水壶、接水然后烧水,水开后再沏茶,在烧水时做其他事情,所以妈妈至少11分钟才能喝上茶.8.【答案】B【解析】【解答】解:如按售价购买10袋洗衣粉需要:12×10=120(元);甲店优惠15%需花:120×(1﹣15%)=120×85%=102(元);由于乙商店满100元优惠25%,120元优惠25元,所以乙店需要:120﹣25=95(元)丙店丙商店买4送1.由于8÷2=2(袋),8+2=10(袋).所以只需买8袋即可获得10洗衣粉;8×12=96(元).95元<96元<102元.所以在乙店购买花钱最少,因此应到乙店去购买.故选:B.【分析】本根据学校要购买的洗衣粉的袋数及每个商店的优惠方案分别计算在各个商店购买洗粉需要的钱数,然后选择花钱最少的一家去购买.9.【答案】C【解析】【解答】解:(20﹣3+1)×(3+2+1)=18×6=108(种)答:要让他们坐在一起,在同一排有108种不同的坐法.故选:C.【分析】把一家人看做一个整体,这样还剩20﹣3+1=18个座位,因此有18种选择,又因为一家3人的位置可以交换,又有3+2+1=6种选择,所以共有18×6=108(种);据此解答.10.【答案】C【解析】【解答】解:(6﹣1)×6÷2 =30÷2=15(场)答:一共要比赛15场.故选:C.【分析】6个班级,如果每两个班级比赛一场,每个班要和另外的5个班各赛一场,即每个班要赛5场,一共赛5×6=30(场);由于两个班只赛一场,重复计算了一次,实际一共赛:30÷2=15(场),问题得解.二、填空题11.【答案】2【解析】【解答】解:第一场1支队伍轮空,比赛6场淘汰6队,剩下7队第二场1支队伍轮空,比赛3场淘汰3队,剩下4队第三场淘汰比赛2场淘汰2队,剩下2队第四场,比赛一场淘汰1队,得出冠军.故答案为:2.【分析】在进行淘汰赛时,是两队两队进行淘汰,现在共有13支球队,两两组合时,则有一支球队轮空,再根据剩下球队的队数求出轮空的队数即可.12.【答案】25;30【解析】13.【答案】6【解析】【解答】解:4×(4-1)=6(种)故答案为:6.【分析】用其中一本与另外三本书搭配在一起时,则有三种不同的搭配方法,用4乘3求搭配方法时,有一半重复的,所以再除以2即可.14.【答案】8【解析】【解答】解:1+6+1=8(分钟)答:最少要8分钟使客人尽快喝茶.【分析】由题意可知,洗茶杯拿茶叶共需2+1=3分钟,烧水的过程需要6分钟,因此可在等待烧水的过程中完成洗茶杯与拿茶叶这两项任务,由此可知,最少要1+6+1=8分钟使客人尽快喝茶.15.【答案】48【解析】【解答】解:4×4×3=48(个)故答案为:48【分析】由于最高位数字不能为0,所以百位数字有4个数字可以选择;那么十位数字从剩下的4个数字中选择,有4个选择;个位数字从剩下的3个数字中选择,有3种;根据乘法原理把这几种选择相乘即可.16.【答案】;;【解析】17.【答案】9【解析】【解答】解:3×3=9(种)故答案为:9.【分析】用3名男生的人数乘3名女生的人数即可求出组队方案的方法.18.【答案】(1)30.(2)7.(3)37.【解析】【解析】解:1.6×5÷2=15(场)15×2=30(场)2.8-1=7(场)3.30+7=37(场)故答案为:30,7,37.【分析】1.把12支球队分成两小组时,每组有6个球队,用6乘5除以2即可求出每组单循环赛的场次,乘2即可求出第一阶段比赛的场次;2.每组进行前4名的球队有4支,两组共有8支,所以用8减1即可求出淘汰赛的场次;3.要求一共要赛多少场时,则直接用第一阶段的场次加上第二阶段的场次即可.19.【答案】12【解析】【解答】解:4×3=12(种)故答案为:12.【分析】如果甲是升旗手时,则护旗手的选法则有4种不同的选法,所以每位同学做升旗手时,护旗手都有4种不同的选法,据此解答即可.20.【答案】16【解析】【解答】解:2×2×2×2=16(种)故答案为:16.【分析】每次投篮都有投中和没有投中两种可能,所以4次就有4个2种可能,据此解答即可.三、解答题21.【答案】解:方案一,分别购成人票和学生票:5×50+3×10=280(元)方案二,统一购团体票:6×(50+3)=318(元);方案三,7名学生和3名老师购团体票,剩下的学生购学生票:(3+7)×6+(50﹣7)×5=10×6+43×5=60+215=275(元)275元<280元<318元.所以方案三最合算.答:7名学生和3名老师购团体票,剩下的学生购学生票最合算.【解析】【分析】由图表可知,成人票每人10元,学生票每人5元,团体票每人6元.因此有三种购票方案:方案一,分别购成人票和学生票.方案二,统一购团体票.方案三,7名学生和3名老师购团体票,剩下的学生购学生票.由此进行分析计算即要可.22.【答案】【解析】23.【答案】由于每人可取1枚或2枚,当甲取1枚时,乙可以取2枚,当甲取2枚时,乙可以取1枚,所以不妨将3枚棋子作为一组.由200÷3=66(组)……2(枚),为了确保拿到这堆棋子的最后一枚或2枚,甲应争取先拿,且拿走2枚,然后乙随便取1枚或2枚,甲就相应地取2枚或1枚,以使得两人各取一次后一共取走3枚,这样甲就必是胜方.【解析】【分析】200÷(2+1)=66(组)……2(枚),所以为了确保获胜,甲应先拿,且拿走2格,这时无论乙取1格还是取2格,甲就取2格或1格,使两人每次取的和刚好是3格,这样甲就一定获胜.四、综合题24.【答案】(1)3人间数/间2人间数/间可住人数/条钱数/元方案一0 9 18 360方案二 1 7 17 330方案三 2 6 18 340方案四 3 4 17 310方案五 4 3 18 320方案六 5 1 17 290(2)(3)5;1;5;0【解析】【解答】(1)男生:分别按照租0间3人间,1间3人间,2间3人间,3间3人间,4间3人间,其他人数由2人间满足组成6种方案,通过比较具体价格知5间3人间,1间2人间价格最低.(2)女生:分别按照租0间3人间,1间3人间,2间3人间,3间3人间,4间3人间,其他人数由2人间满足组成6种方案,通过比较具体价格知5间3人间,0间2人间价格最低.【分析】分别按照租0间3人间,1间3人间,2间3人间,3间3人间,4间3人间组成5种方案,然后比较具体价格.本题考查了学生在现实生活中,用最佳方案解决问题的能力.五、应用题25.【答案】90÷5×100×90%=1620(元)90÷3×65×80%=1560(元)1620>1560答:李师傅来运送这些石子更便宜.【解析】【解答】张师傅运石子的车数:90÷5=18(车)总钱数:100×18=1800(元)收运费:1800×90%=1620(元)李师傅运石子的车数:90÷3=30(车)总钱数:65×30=1950(元)收运费:1950×80%=1560(元)答:选择李师傅运送这些石子更便宜.【分析】本题考点:最优化问题.此题做题时应认真分析,理清几个数量之间的关系,进而进行计算,得出结论.分别求出张师傅和李师傅运个90吨石子各运多少车,乘运一车的钱数,然后乘折价率90%或80%,最后比较两个结果的大小,即可得解.26.【答案】答:方案一和方案三最省钱【解析】【分析】分别按照租0条豪华游船,1条豪华游船,2条豪华游船,3条豪华游船,4条豪华游船组成5种方案,然后比较具体价格.本题考查了学生在现实生活中,用最佳方案解决问题的能力.。
人教版数学二年级上学期第八单元测试一、单选题1.用5,0,6三个数字摆三位数,能摆成()个不同的三位数。
A. 2B. 4C. 62.(2020二上·石碣镇期末)把下边的3本书送给3位小朋友,每人1本,一共有()种送法。
A. 6B. 4C. 33.(2020二上·即墨期末)同学们用红色、黄色、蓝色三种不同的气球扎在一起装扮教室,至少用一种,最多用三种,一共有多少种不同的搭配方法?()A. 3种B. 6种C. 7种4.(2020二上·嘉陵期末)有3件上衣和4条裤子,一共有()中不同的穿法。
A. 7B. 10C. 125.我和爸爸、妈妈坐成两排合影,第一排1人,第二排2人,有()种坐法。
A. 2B. 4C. 66.明明有3件不同的衬衣,2条颜色不一样的裙子,一共有()种穿法。
A. 5B. 6C. 37.三个同学坐在一起拍照,一共有多少种不同的坐法?()A. 4B. 6C. 88.用三张数字卡片、、摆数,能摆出()个不同的三位数。
A. 6B. 5C. 49.从中任意选两个数相加,有()种不同的和。
A. 3B. 4C. 5二、判断题10.3件不同的上衣,3条不同的裤子,有9种不同的穿法。
()三、填空题11.(2020二上·嘉陵期末)4个小朋友比赛打羽毛球,每2个人要打一场比赛,4个人一共要打________场比赛。
12.(2020二上·通榆期末)有三个班进行乒乓球比赛,每两个班进行一场,一共要比赛________场。
13.有六个数字“1、1、2、2、3、3”,要组成一个六位数且两个1之间有一个数字,两个2之间有两个数字,两个3之间有三个数字。
这样的六位数最大是________。
14.有3个人,每2人要跳一次舞,一共需要跳________次。
15.用7、2、9能组成________个不同的两位数。
其中最大的是________,最小的是________,它们的和________。
第⑧单元测试卷一、单选题1.图中共有()条不同的线段。
A. 4B. 16C. 8D. 102.一个密码锁由五个数字组成,每一位数字都是0~9之中的一个,小春只记得其中的三个,则他最多试()次就能打开锁。
A. 5B. 2C. 20D. 1003.12个点,一共可以连成()条线段.A. 12B. 32C. 664.国庆期间,甲商场以“打九折”的措施优惠,乙商场以“每满100元送10元购物券”的形式促销.李阿姨准备购物200元,去哪个商场合算一些?()A. 甲B. 乙C. 甲、乙都一样5.三个人并排站成一个横排照相,他们有几种站法?()A. 6B. 8C. 3D. 16.一列火车从A站行驶到B站的途中经过五个车站,则A、B这条线路上需准备()种火车票.A. 15B. 21C. 30D. 427.小明要烧壶水给妈妈沏杯茶,已知烧水需要8分钟,洗水壶需要1分钟,洗茶杯需要2分钟,接水需要1分钟,找茶叶需要1分钟,沏茶需要1分钟,那么妈妈至少()分钟才能喝上茶。
A. 10B. 11C. 128.一种洗衣粉在甲、乙、丙三个商店售价都是每袋12元,现在三个商店分别以不同方式促销,甲商店优惠15%;乙商店满100元优惠25%;丙商店买4送1.学校要买10袋这种洗衣粉,想花钱最少.应该到()购买.A. 甲商店B. 乙商店C. 丙商店D. 无法确定9.芳芳的爸爸、妈妈陪她去看电影.电影院一排有20个座位,他们要一起坐在同一排,共有()种不同的坐法.A. 18B. 54C. 10810.六年级6个班级进行篮球比赛,如果每两个班之间进行一场比赛,一共要比赛()A. 9场B. 10场C. 15场D. 21场二、填空题11.一次排球淘汰比赛,共有13个队参加,有________个队轮空。
12.0,5,10,15,20,________,________。
13.从4个不同的故事书中任意选2个借给一位同学,一共有________种不同的借法.14.小明给客人沏茶,接水1分钟,烧水6分钟,洗茶杯2分钟,拿茶叶1分钟,沏茶1分钟.小明合理安排以上事情,最少要________ 分钟使客人尽快喝茶.15.用0、1、2、3、4可以组成________个没有重复数字的三位数。
人教版数学二年级上学期第八单元测试一、单选题1.一片钥匙只能开一把锁,现有8片钥匙和8把锁,最多要试验()次能使全部的锁匹配.A. 36B. 18C. 28D. 72.小丽、小梅、小雪三人排成一排照相,有()种不同的排法.A. 3B. 6C. 93.小明、小英、小华一起照相,他们的位置有()种不同的排列方法.A. 6B. 10C. 34.有14个篮球队进行比赛,若采用淘汰制,最后产生一名冠军,则至少要进行( )场比赛.A. 15B. 14C. 13D. 12二、判断题5.有三个同学,每两人握一次手,一共要握6次手.( )6.一个有四位数的密码锁,忘记了首尾两个数字,则需要试验的密码有10种.三、填空题7.老师要从班内4名男生和5名女生中选派二人参加男女生二重唱比赛,有________种不同的组合方案.8.28,24,20,16,12,________,________.9.在1,2,3,…,7,8的任意排列中,使得相邻两数互质的排列方式共有________种.10.有16支球队采用淘汰赛,若要赛出亚军,共要赛________场.11.小明在阅读时发现这样一个问题,在某次聚会中,共有6人参加,如果每两人都握一次手,共握几次手?小明设计下表进行探究.参加人数握手次数2 13 2+1=34 3+2+7=65 4+3+2+1=101N ?请你归纳几个人,每两人都握一次手,共握________次手.四、解答题12.根据规律画出被挡住部分的珠子.(1)(2)13.沿格线从A走到B,行走的方向只能是向右(→)、向右上(↗)或向右下(↘).那么,从A走到B共有多少种不同的路线?五、应用题14.下面是一个田字格,在这个田字格中任意选取两个小格分别涂上红色和蓝色,共有多少种涂法?答案与解析一、单选题1.【答案】C【解析】【解答】解:7+6+5+4+3+2+1=28(次),答:最多试验28次才能配好全部的钥匙和锁;故选:C.【分析】把8把锁看成8类,分类完成,第一把锁最多试验7次,最后的一把钥匙不用再试验了,前7个都不是,它一定可以开这把锁了;以此类推,第二把锁试验6次;第三把锁试验5次;第四把锁试验4次;第五把锁试验3次,第六把锁试验2次,第七把锁试验1次,最后的一把锁和一把钥匙,就不用试验了;用加法原理,即可得解.2.【答案】B【解析】【解答】解:令小丽、小梅、小雪3个人分别是甲乙丙,可能的排列有:甲、乙、丙;甲、丙、乙;乙、甲、丙;乙,丙,甲;丙、甲、乙;丙、乙、甲;答:一共有6种不同的排法.故选:B.【分析】给这三个人编号:甲乙丙,写出所有可能的排列,进而求解.3.【答案】A【解析】【解答】解:3×2×1=6(种)答:他们的位置有6种不同的排列方法.故选:A.【分析】首先根据题意,判断出排在第一的有3种排法,排在第二的有2种排法,排在第三的有1种排法;然后根据乘法原理,求出他们的位置有多少种不同的排列方法即可.4.【答案】C【解析】【解答】解:14-1=13(场)故答案为:C.【分析】此题可以直接用14-1算出,因为每场都要淘汰一个队,到最后一场一定有一个胜出,没有淘汰的队,所以可以直接算出.二、判断题5.【答案】错误【解析】【解答】3×2÷2=3(次)故答案为:错误.【分析】握手的次数=人数×(人数-1)÷2.6.【答案】错误【解析】【解答】解:10×10=100种,因此需要试验的密码有100种,原题说法错误.故答案为:错误【分析】因为每一位上的数字都有10种可以选择,一共有两位数字不知道,因此根据乘法原理用10×10可以求出需要实验的密码的种类.三、填空题7.【答案】20【解析】【解答】4×5=20(种)故答案为:20.【分析】根据排列组合的规律列出乘法算式进行分析.8.【答案】8;4【解析】9.【答案】1728【解析】【解答】解:这8个数之间如果有公因数,那么无非是2或3.8个数中的4个偶数一定不能相邻,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有:4!=24(种),对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24(种),综上所述,一共有:24×3×24=1728(种).答:使得相邻两数互质的排列方式共有1728种.故答案为:1728.【分析】这8个数之间如果有公因数,那么无非是2或3.8个数中的4个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有4!=24种,对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24种,一共有24×3×24=1728种.10.【答案】15【解析】【解答】解:16÷2=8(场)8÷2=4(场)4÷2=2(场)2÷2=1(场)8+4+2+1=15(场)故答案为:15.【分析】用球队的总支数依次除以2求出淘汰赛每次比赛的场次,然后再相加即可.11.【答案】【解析】【解答】解:故答案为:.【分析】通过前几次的计算可知,用人数乘人数与1的差除以2即可求出握手的总次数.四、解答题12.【答案】(1)解:●(2)解:○【解析】【分析】根据珠子的排列顺序,找出所缺的部分求解13.【答案】解:因为不能走回头路,不需要每个点都经过,标数如下:答:从A走到B共有多少种不同的路线.【解析】【分析】利用标数法完成这个问题即可.五、应用题14.【答案】解:4×3=12(种)答:共有12种.【解析】【分析】每个小方格可以选择红色、蓝色、不涂色,所以每个小方格有3种选择,共有4个小方格,根据乘法原理用3×4即可求出涂色的方法.。
第八单元测试卷(二)1.想一想,填一填。
(1)用2、3、4三张卡片能摆成( )个两位数,它们分别是( )。
(2)三个人排成一排照相,有( )种不同的排法。
(3)用3个数6、8、9任意选取2个求积,得数有( )种可能。
(4)用红、黄、蓝三种颜色给地图上的两个城市涂上不同的颜色,一共有( )种不同的涂法。
(5)二年级三个班进行跳绳比赛,每两个班进行一场比赛,一共要赛( )场。
(6)李老师有《趣味童话故事》、《趣味谜语故事》和《趣味数学故事》三本书,她把书送给小明、小刚和小亮各一本,一共有( )种不同的送法。
(7)有2顶帽子和2条围巾,一顶帽子配一条围巾,有( )种不同的搭配方法。
主食:馒头米饭菜:炒茄子鱼香肉丝西红柿炒鸡蛋(9)4个好朋友见面了,每两个人之间握一次手,一共要握( )次手。
5个小朋友,每两个人之间握一次手,一共要握( )次手2.连一连。
有4件上衣,2件裙子,有几种不同的搭配方法?请连一连。
一共有( )种不同的搭配方法。
3.小兔子从家经过树林去找小公鸡,有多少种不同的走法?写出来。
4.4名学生和2位老师进行乒乓球比赛,如果每名学生和每位老师各打一局,一共要打几局?5.明明、小小、皮皮三人一起到理发店理发,理发师只有一位,三个小朋友的理发顺序有几种?请用序号表示出来。
6。
妈妈带了100元钱到商店买上衣和裤子,下面是三件上衣和三条裤子的标价。
(导学号44712089)(1)在钱够的情况下,妈妈选了一件上衣和一条裤子,她有几种不同的选法? (分别用序号表示出来)(2)她可能付了多少元?找回多少元?上衣和裤子搭应付的钱找回的钱配参考答案1.(1)6 23、24、32、34、42、43(2)6(3)3(4)6 (5)3(6)6(7)4(8)6(9)6 102.83.9种①—④①—⑤①—⑥②—④②—⑤②—⑥③—④③—⑤③—⑥4.一共要打8局。
5.6种①②③①③②②①③②③①③①②③②①6.(1)有6种不同的选法:①⑥、②④、②⑥、③④、③⑤、③⑥。
二年级上册英语第八单元达标测试卷(含答案)一、选出不同类的单词1. A. orange B. apple C. deer2. A. banana B. grape C. bird3. A. dog B. tiger C. car4. A. pencil B. ruler C. teacher5. A. milk B. bread C. rabbit二、选择正确的单词填空1. My father is a ____.A. farmerB. teacherC. doctor2. My mother loves ____.A. playing soccerB. cookingC. painting3. I don't like ____.A. ice creamB. pizzaC. vegetables4. Look at the monkey. It has a long ____.A. noseB. earC. tail5. We go to school ____ the morning.A. atB. inC. on三、根据图片选择正确的单词1. ![picture of a flower](flower.jpg)A. roseB. bookC. skirt2. ![picture of a cow](cow.jpg)A. catB. cowC. dog3. ![picture of a fish](fish.jpg)A. birdB. fishC. bear4. ![picture of a pencil](pencil.jpg)A. pencilB. rulerC. eraser5. ![picture of a car](car.jpg)A. bikeB. carC. bus四、阅读理解Look at the picture. This is a family. The father, mother and child are happy. They like to eat pizza and ice cream. The father is a doctor, and the mother is a teacher. The child is a boy. He likes to play soccer.选择正确的答案:1. Who likes to eat pizza and ice cream?A. The fatherB. The motherC. The child2. What does the father do?A. He is a doctorB. He is a teacherC. He is a soccer player3. How many people are there in the family?A. OneB. TwoC. Three4. What does the boy like to do?A. He likes to eatB. He likes to readC. He likes to play soccer 答案:一、1.C 2.C 3.C 4.C 5.C二、1.A 2.B 3.C 4.C 5.A三、1.A 2.B 3.B 4.A 5.B四、1.C 2.A 3.C 4.C希望你做好了这份测试卷,继续加油!。
人教版数学二年级上册第八单元测试及答案一、单选题(共8题;共16分)1.明明有3件不同的衬衣,2条颜色不一样的裙子,一共有()种穿法.A. 5B. 6C. 32.有3张卡片,上面分别写着2,3,7这三个数字,东东和芳芳各抽一张,如果两人卡片上的数字的积是奇数,芳芳赢;若是偶数,东东赢.这个游戏规则().A. 公平B. 不公平C. 无法确定3.在下面的图中,从A到B有( )种不同走法.(只向上,向右)A. 20B. 25C. 30D. 354.有16支球队采用单循环赛制,一共要赛()A. 16场B. 240场C. 120场D. 136场5.联欢会上,墙上挂着两串礼物:A、B、C、D、E(如图),每次从某一串的最下端摘下一个礼物,这样摘了五次可将五件礼物全部摘下,那么共有几种不同的摘法()A. 20种B. 10种C. 6种D. 5种6.由0、1、2、3可以组成个四位数的数字不重复密码号.()A. 24B. 64C. 128D. 2127.小玲和小巧玩猜数游戏,每人每次出1到5中的一个数字.如果两人出的数字相加,和是奇数就算小玲赢,和是偶数就算小巧赢,那么小玲赢的可能性().A. 比小巧小B. 比小巧大C. 与小巧一样大D. 无法确定8.有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于()A. 21B. 25C. 29D. 58二、填空题(共8题;共8分)9.小明、小强、小文、小刚、小亮5名同学中选出2人代表学校参加乒乓球比赛,共有________种不同的组队方案.10.学校组织秋季运动会,为活跃会场气氛,某班级欲购买两种不同颜色的彩纸制作成彩带,若商店有红、黄、蓝、绿四种颜色的彩纸,则共有________种不同的购买方案.11.从班内3名男生和4名女生中选出2人参加羽毛球混合双打比赛,共有________种组队方案.12.16支球队进行单循环比赛,需要进行________场;若采用淘汰赛,决出冠军要进行________场比赛;若在决出四强前采用淘汰制,决出四强后采用单循环赛制,共要进行________场比赛.13.30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试________次.14.奥运会男篮比赛共有12支球队参加,第一阶段把12支球队分成两个小组采用小组单循环赛(1)第一阶段共赛________场.(2)每个小组的前四名各进入下一轮,第二阶段采用淘汰制,第二轮共赛________场.(3)一共要赛________场能决出冠、亚、季军.15.从北京经南京到上海,其中北京到南京有三种不同的线路火车,从南京到上海有四种不同的线路火车.那么我们可以有________条线路从北京到上海.16.区教育局要举行第十届教职工排球赛,这届比赛共有32支球队参加,平均分成4个小组,在小组内采用单循环制,小组前2名共8支球队再进行淘汰赛,一共要进行________场比赛.三、解答题(共10题;共51分)17.小丽有2件上衣,3条裤子,又买了2顶帽子.现在有多少种搭配方法?18.有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?19.画一画,填一填.20.某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有多少人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同?21.甲、乙、丙、丁、戊、己、庚、辛八个人站队,要求:甲不能站在队伍最靠左的三个位置,乙不能站在队伍最靠右的三个位置,丙不能站在队伍两端,问一共有多少种站法?22.某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是,那么确保打开保险柜至少要试几次?23.,,三种图形有多少不同的排法?把这几种排法写出来.24.四名同学参加区里围棋比赛,每两名选手都要比赛一局,规则规定胜一局得分,平一局得分,负一局得分.如果每个人最后得的总分都不相同,且第一名不是全胜,那么最多有几局平局?25.用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?26.用红、橙、黄、绿、蓝5种颜色给下面长方格子涂颜色,一个格子里涂一种颜色,一种颜色只可以使用一次,有几种不同的涂法?请把你设计的方案用图示法表示出来.答案与解析一、单选题1.【答案】 B【解析】【解答】解:衬衣①、裙子①,衬衣①、裙子②;衬衣②、裙子①;衬衣②、裙子②;衬衣③、裙子①;衬衣③、裙子②.共6种穿法.故答案为:B.【分析】每件衬衣都会有2条裙子与之搭配,共有3件衬衣,这样列举出所有穿法即可.2.【答案】 B【解析】【解答】解:积有:2×3=6,2×7=12,3×7=21,3×2=6,7×2=14,7×3=21,奇数有2个,偶数有4个,这个游戏规则不公平.故答案为:B.【分析】如果积是奇数、偶数的个数相同,这个游戏规则就公平.由此判断出所有的积即可判断是否公平.3.【答案】 A【解析】【解答】A先向右走有10种,A先向上有10种,共10+10=20(种)故答案为:A【分析】弄清楚行走的规则,先判断出向右走的路线有10种,向上走的路线也有10种,这样计算出总的种数即可.4.【答案】 C【解析】【解答】解:16×(16-1)÷2=16×15÷2=120(场)故答案为:120.【分析】每支球队在进行单循环比赛时,都要与其他球队进行一次比赛,所以用16乘15求出比赛的场次,因为有一半重复的场次,所以再除以2即可.5.【答案】 B【解析】【解答】解:(1)从A开始摘,A﹣B﹣C﹣D﹣E,A﹣B﹣D﹣C﹣E,A﹣B﹣D﹣E﹣C,A﹣D﹣B﹣C ﹣E,A﹣D﹣B﹣E﹣C,A﹣D﹣E﹣B﹣C,共6种方法,(2)从D开始摘,D﹣E﹣A﹣B﹣C,D﹣A﹣E﹣B﹣C,D﹣A﹣B﹣E﹣C,D﹣A﹣B﹣C﹣E,共4种方法,共有:6+4=10(个),故选:B.【分析】根据题意,每次从某一串的最下端摘下一个礼物,摘了五次可将五件礼物全部摘下,那就从A开始摘,看看有几种方法,再从D开始摘,看看有几种方法,那问题即可解决.6.【答案】A【解析】【解答】4×3×2×1=24(个)故答案为:A【分析】0可以作为第一个数,所以左起第一位有4种选择,第二位有3种选择,第三位有2种选择,第四位只有一种选择,运用乘法原理计算数字总数.7.【答案】 A【解析】【解答】解:1+1=2,1+2=3,1+3=4,1+4=5,1+5=6,2+1=3,2+2=4,2+3=5,2+4=6,2+5=7,3+1=4,3+2=5,3+3=6,3+4=7,3+5=8,4+1=5,4+2=6,4+3=7,4+4=8,4+5=9,4+6=10,5+1=6,5+2=7,5+3=8,5+4=9,5+5=10;和是奇数的12个,和是偶数的13个,所以小玲赢的可能性比小巧小.故答案为:A.【分析】运用排列组合的方法把所有的和都列举出来,然后数出和的奇数和偶数各有几个,哪种数多,相对应的谁赢的可能性就大.8.【答案】 C【解析】【解答】解:方法一:因为在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数的和有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,所以A、B、D是不可能的,方法二:2、5、8被3除,余数都是2,同余.所以取出7张卡片求和,余数变成了14.因为减去14,剩下的数可以被3整除(7张2的情况,和为14,减去14为0).或者14被3除,余数是2,即7张卡片求和,被3除,余数为2,只有29复合题意.故答案为:C.【分析】根据题意知道在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,由此即可做出选择.二、填空题9.【答案】 10【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】根据从5名学生中选出2人代表学校参加比赛,当小明与其他4人进行组队时,则有4种不同的组队方法,所以用5乘4求出的组队方案中一半重复的,所以再除以2即可.10.【答案】6【解析】【解答】解:2×3=6(种)故答案为:6.【分析】根据固定排头法,每种颜色的彩纸排头时,剩下的两种颜色的彩纸都有两种不同的排列方法,所以直接用2乘3即可求出不同的购买方案.11.【答案】 12【解析】【解答】解:3×4=12(种);故答案为:12.【分析】3名男生和4名女生选出一对乒乓球混合双打选手,则每一名男生都可和四名不同的女生搭配,根据乘法原理可知,共有3×4=12种不同的组队方案.12.【答案】120;15;18【解析】【解答】单循环赛:16×(16-1)÷2=16×15=120(场)淘汰塞:8+4+2+1=15(场)决出四强赛:8+4+6=18(场)故答案为:120,15,18.【分析】在进行单循环赛时,则每个球队都要与其他球队进行比赛,所以每个球队要进行15场比赛,这样就会有一半重复的,所以再除以2即可,在进行淘汰赛时,分别求出两队两队比赛的场次,然后再相加,在决出四强后再采用淘汰赛时,先求出16支球队决出四强前的比赛的场次,再求出四强后淘汰赛的场次,然后相加即可.13.【答案】435【解析】【解答】29+28+27+26+25+…+1=(29+1)×29÷2=30×29÷2=435(次)故答案为:435【分析】从最坏的情况考虑,第一把钥匙一直试到第29把还没有配上,那么最后一把锁就不用试了,一定是第30把的钥匙;按照这样的规律,第二把需要试28次……,直到最后一把试1次就可以了,把这些次数相加,根据数列求和的知识计算即可.14.【答案】(1)30.(2)7.(3)37.【解析】【解析】解:1.6×5÷2=15(场)15×2=30(场)2.8-1=7(场)3.30+7=37(场)故答案为:30,7,37.【分析】1.把12支球队分成两小组时,每组有6个球队,用6乘5除以2即可求出每组单循环赛的场次,乘2即可求出第一阶段比赛的场次;2.每组进行前4名的球队有4支,两组共有8支,所以用8减1即可求出淘汰赛的场次;3.要求一共要赛多少场时,则直接用第一阶段的场次加上第二阶段的场次即可.15.【答案】 12【解析】【解答】3×4=12(种)故答案为:12.【分析】从北京到南京的每条线路去上海时都有4种不同走法,所以用3乘4即可求出从北京到上海的路线走法.16.【答案】119【解析】【解答】解:32÷4=8(支)8×(8-1)÷2=28(场)28×4=112(场)8-1=7(场)112+7=119(场)故答案为:119.【分析】用32除以4求出每个小组球队的支数,根据排列组合的方法求出单循环赛的场次;每个小组取前2名时,4个小组则取了8个小队,所以用8乘8减1的差除以2即可求出淘汰赛的场次,然后再相加即可.三、解答题17.【答案】解:2×3×2=12(种)答:现在有12种搭配你方法.【解析】【分析】每件上衣都会有3条裤子与之搭配,每条裤子会有2顶帽子与之搭配,运用乘法原理计算搭配的总种类即可.18.【答案】解:(种)答:共可以表示60种不同的信号.【解析】【分析】这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置,现在是要从五个不同的元素中取三个,排在三个位置的问题.19.【答案】【解析】20.【答案】解:十项比赛,每位同学可以任报两项,那么有45种不同的报名方法.由鸽巢原理知有45+1=46(人)报名时满足题意.【解析】【分析】9+8+7+6+5+4+3+2+1=45(种),10项比赛共有45种不同的组合,假如每个组合都有1人报名,共有45人报名,那么再有1人报名,不管是报哪个组合,都会保证有两名或两名以上的同学报名参加的比赛项目相同.21.【答案】解:按甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置分四种情况讨论:如果甲在队伍最靠右的位置、乙在队伍最靠左的位置,那么丙还有6种站法,剩下的五个人进行全排列,站法总数有:(种)如果甲在队伍最靠右的位置,而乙不在队伍最靠左的位置,那么乙还有4种站法,丙还有5种站法,剩下的五个人进行全排列,站法总数有:(种)如果甲不在队伍最靠右的位置,而乙在队伍最靠左的位置,分析完全类似于上一种,因此同样有2400种站法如果甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置,那么先对甲、乙整体定位,甲、乙的位置选取一共有(种)方法.丙还有4种站法,剩下的五个人进行全排列,站法总数有:(种)所以总站法种数为(种)【解析】【分析】甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置有四种情况:第一种:甲在队伍最靠右的位置、乙在队伍最靠左的位置;第二种:甲在队伍最靠右的位置,而乙不在队伍最靠左的位置;第三种:甲不在队伍最靠右的位置,而乙在队伍最靠左的位置;第四种:甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置.最后把每一种站法加起来即可.22.【答案】解:四个非数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,可以组成多少个密码呢?只要考虑的位置就可以了,可以任意选择个位置中的一个,其余位置放,共有种选择;第二种中,先考虑放,有种选择,再考虑的位置,可以有种选择,剩下的位置放,共有(种)选择同样的方法,可以得出第三、四、五种都各有种选择.最后一种,与第一种的情形相似,的位置有种选择,其余位置放,共有种选择.综上所述,由加法原理,一共可以组成(个)不同的四位数,即确保能打开保险柜至少要试次.【解析】【分析】先把和是9的4个非0的数字组合写出来,然后把每种组合的排列方法加起来即可. 23.【答案】解:有六种不同的排法:,,,,,,,,,,,,【解析】24.【答案】解:四人共赛局,总分为(分),因为总分各不相同,分配得:或.平局最多的应该是、、、的情况.总分是奇数的必有一局平局,当得分是分、分的同学分别与得分是分、分的同学打平后,得分是分、分的同学就还剩下分、分,互相打平就正好.所以平局最多是局.答:最多有3局平局.【解析】【分析】单循环比赛四队比赛总局数:3+2+1=6(局),每局比赛无论胜平负,得分总和都是2分,这样计算出总分是12分.然后把12分进行分配,根据每个人最后得分都不相同推理出最多有几局平局即可.25.【答案】解:如果买0张8元饭票,还剩100元,可以购买4元饭票的张数为0~25张,其余的钱全部购买2元饭票,共有26种买法;如果买l张8元饭票,还剩92元,可购4元饭票0~23张,其余的钱全部购买2元饭票,共有24种不同方法;如果买2张8元饭票,还剩84元,可购4元饭票0~21张,其余的钱全部购买2元饭票,共有22种不同方法;……如果买12张8元饭票,还剩4元饭票,可购4元饭票0~1张,其余的钱全部购买2元饭票,共有2种方法.总结规律,发现各类情况的方法数组成了一个公差为2,项数是13的等差数列.利用分类计数原理及等差数列求和公式求出所有方法:26+24+22+…+2=(26+2)×13÷2=182(种).答:共有182种不同的买法.【解析】【分析】100元里面最多有12个8元,饭票中8元的面值最大,所以第一次买8元,从买0张8元开始,依次买到12张8元,然后分别计算出购买4元和2元的饭票的张数,最后把每一次中的买法加起来即可.26.【答案】解:共10,如图【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】每种颜色与其他4种颜色组合时,都有4种不同的组合方法,所以用5乘4再去掉重复的组合方法即可.。
第⑧单元测试卷一、单选题(共8题;共16分)1.明明有3件不同的衬衣,2条颜色不一样的裙子,一共有()种穿法。
A. 5B. 6C. 32.有3张卡片,上面分别写着2,3,7这三个数字,东东和芳芳各抽一张,如果两人卡片上的数字的积是奇数,芳芳赢;若是偶数,东东赢。
这个游戏规则()。
A. 公平B. 不公平C. 无法确定3.在下面的图中,从A到B有( )种不同走法.(只向上,向右)A. 20B. 25C. 30D. 354.有16支球队采用单循环赛制,一共要赛()A. 16场B. 240场C. 120场D. 136场5.联欢会上,墙上挂着两串礼物:A、B、C、D、E(如图),每次从某一串的最下端摘下一个礼物,这样摘了五次可将五件礼物全部摘下,那么共有几种不同的摘法()A. 20种B. 10种C. 6种D. 5种6.由0、1、2、3可以组成个四位数的数字不重复密码号.()A. 24B. 64C. 128D. 2127.小玲和小巧玩猜数游戏,每人每次出1到5中的一个数字。
如果两人出的数字相加,和是奇数就算小玲赢,和是偶数就算小巧赢,那么小玲赢的可能性()。
A. 比小巧小B. 比小巧大C. 与小巧一样大D. 无法确定8.有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于()A. 21B. 25C. 29D. 58二、填空题(共8题;共8分)9.小明、小强、小文、小刚、小亮5名同学中选出2人代表学校参加乒乓球比赛,共有________种不同的组队方案。
10.学校组织秋季运动会,为活跃会场气氛,某班级欲购买两种不同颜色的彩纸制作成彩带,若商店有红、黄、蓝、绿四种颜色的彩纸,则共有________种不同的购买方案。
11.从班内3名男生和4名女生中选出2人参加羽毛球混合双打比赛,共有________种组队方案。
12.16支球队进行单循环比赛,需要进行________场;若采用淘汰赛,决出冠军要进行________场比赛;若在决出四强前采用淘汰制,决出四强后采用单循环赛制,共要进行________场比赛。
一、选择题1.有三个队参加足球比赛,每两个队进行一场比赛,一共要比赛()场。
A. 4B. 6C. 8D. 3D解析: D【解析】【解答】3×2÷2=3(场)故答案为:D。
【分析】每一个队与其他两队要比2场,共有3个队,比赛场数的计算是组合,所以求出它们的积再除以2即可。
2.用能摆成()个两位数。
A. 6B. 8C. 12C解析: C【解析】【解答】3×4=12(种)故答案为:C。
【分析】把其中一个数放到十位上,与其它3个数可以摆成3个不同的两位数,这4个数都可以放到十位上,因此用乘法解答。
3.把5本书全部分给小明、小芳和小丽,每人至少1本。
有()种分法。
A. 5B. 6C. 7B解析: B【解析】【解答】把5本书全部分给小明、小芳和小丽,每人至少1本。
分发如下:小明小芳小丽第一种分法113第二种分法122第三种分法131第四种分法212第五种分法221第六种分法311故答案为:B【分析】按照一定顺序,先固定分给小明1本书,找到分给小芳和小丽的所有可能的分法;然后,分给小明2本书,找到分给小芳和小丽的所有可能的分法……4.往返于甲、乙两地的某列火车,如果途中要经过4个车站,那么要为这列火车准备()种不同的车票。
A. 10B. 20C. 15D. 30D解析: D【解析】【解答】解:要为这列火车准备(5+4+3+2+1)×2=30种不同的车票。
故答案为:D。
【分析】因为途中要经过4个车站,说明甲乙两地一共有6个站点,最后一个站点是不用准备车票的,所以只需从5加到1,因为有往返程,所以最后再乘2就是需要准备的票数。
5.有可乐、红茶、绿茶三种饮料各1瓶,从中任意拿出2瓶,有()种可能结果。
A. 3 B. 4 C. 5 D. 6A解析: A【解析】【解答】有可乐、红茶、绿茶三种饮料各1瓶,从中任意拿出2瓶,有3种可能情况:可乐和红茶、可乐和绿茶、红茶和绿茶.故答案为:A.【分析】根据题意可知,3种饮料中任意拿出2瓶,任意两种饮料可以进行组合,据此可以利用列举法得到一共有几种可能.6.在0、3、6、5这4个数字中选择3个数字,组成一个同时是2、3、5倍数的最小的三位数是( )A. 305B. 350C. 360D. 630C解析: C【解析】【解答】解:这个数的个位数字一定是0,且另外两个数字一定是3和6,这个数最小是360.故答案为:C.【分析】同时是2、3、5的倍数的个位数字一定是0,且各个数位上数字之和是3的倍数. 7.图中有()个三角形。
小学二年级语文上册第八单元测试题及答案班级姓名学号成绩一、基础。
(46 分)1.我是小小书法家。
(6 分)wúlùn fánɡwūhùxiānɡshǒu pàɡǎn kuàihún shēn2.读一读,连一连。
(6 分)chén jiēshānāi lèitànɡ哎累烫辰街衫3.辨字组词我最棒。
(12 分)纸()园()汽()低()圆()气()情()士()今()晴()土()令()4.词语接龙。
(照样子,写词语)(9 分)5.照样子写句子。
(8 分)例:洗好的衣服被妈妈晒在绳子上。
妈妈把洗好的衣服晒在绳子上。
(1)课本被他放到书包里。
( )把()。
(2)风筝被风娃娃吹上了天。
( )把( )。
例:他们呼呼地笑得喘不过气来。
(3)录录得了小红旗,高兴得( )。
(4)哥哥的手机不见了,急得( )。
6.排列句子。
(5 分)( )它看见一棵小树的叶子黄了。
( )啄木鸟飞来给小树治好了病。
( )小燕子在树林里飞来飞去。
( )小树对小燕子和啄木鸟说:“谢谢你们。
” ( )它赶快去找啄木鸟。
二、综合展示厅。
(10 分)7.猜谜我能行。
(6 分) (1)身体多轻柔,逍遥漫天游。
风来它就躲,雨来它带头。
谜底:( )(2)像云不是云,像烟不是烟。
风吹轻轻飘,日出慢慢散。
谜底:( )8.读句子,带点的词使用得正确吗?对的打“√”,错的打“×”。
(4 分) (1)上午,天上飘起了鹅毛大雪,微.风.习.习.,好冷啊!( ) (2)清晨,我站在云.雾.缭.绕.的山顶上看日出。
( ) 三、课本直通车。
(9分)9.天苍苍,野茫茫,。
10.三九四九,五九六九,。
11 .学完了本组课文后,我最喜欢的课文是,因为。
四、阅读检阅台。
(20 分)小动物过冬秋风刮起来了,天气渐渐凉了。
一天,青蛙、小燕子、小蜜蜂这几个好朋友聚到一起,商量过冬的事。
第八单元测试
一、按音序排列正确的一组是()。
A、堂汪眯剩
B、烂披染轻
C、驳横渠些
D、脖逗雅旅
二、拼音词语对对碰。
chuán fān piāo dànɡ hú miàn jūn zhuānɡ
zán m en xīn nián bànɡ wǎn jí shí
zuî kâ wán shuǎ hū rán zhànɡ hïnɡ
jiã jìnɡ qǐ fúzhì zàoɡuānɡ mánɡ
三、换一换,再组词。
轻→(经)()仙→()()
湖→()()咱→()()
壮→()()阵→()()
四、照样子写词语。
笑眯眯
一点点
叽叽喳喳
五、填上合适的词语。
(找)朋友()杂技()房子()夕阳一()霞光一()池塘一()红领巾()的霞光()的西山()的生活()地下沉()地说话()地开着
六、花落谁家。
1、像象向
我们要()雷锋叔叔学习。
黄山给我留下了深刻的印()。
这孩子长得()他的爸爸。
2、约定决定肯定一定
他是个很讲信用的人,说到就()做到。
他们()明天一起去公园。
哥哥()地说:“这是千真万确的。
”
我()去奶奶家过春节。
3、壮丽美丽秀丽
日出的景象多么()啊!
()的菊花开了。
西湖()的景色吸引了许多游人。
七、把词语补充完整,再选择填空。
火()银()()不胜()
()()通明()者()堵
张灯()()连绵()()
今天是除夕,家家户户(),充满节日的喜庆气氛。
晚上,大街小巷(),()的礼花升上天空,在空中绽放出美丽的花朵。
观赏的人越来越多,里三层外三层,真称得上()哇!人们仰着头,看着,笑着,谈论着,真是()不夜天哪!
八、照样子,把句子补充完整。
例:弯弯的月亮像(小船)。
1、像个(大蘑菇)。
2、像(绿色的大地毯)。
3、像()一样挺立着。
九、连词成句。
1、水乡好处处风光
2、一条条驶进渔船了海湾
3、劳动我们的辛勤幸福换来的生活
十、想课文内容填空。
1、千只船,万只驳,,。
2、不一会儿,云房子了:有的像那样傻
傻地横着,有的像那样开着。
有很高的
,有很宽的大礼堂,也有的,小得
住进一只小麻雀。
3、太阳,收起了。
天空。
连绵的,披着
的余晖,显得。
4、岁寒三友,春风一家。
十一、阅读短文,完成练习。
啊!晚霞,多么绚丽,它一会儿像一匹骏马在奔驰,一会儿像一头雄狮在怒吼,一会儿像朵朵鲜花开放……我看着看着,身体感到轻飘飘的,仿佛自己也变成了一片晚霞。
一会儿,一道霞光射来,晚霞闪耀着绚丽的光彩。
我把眼睛微微睁开,眼前顿时出现了赤、橙、黄、绿、青、蓝、紫七种颜色,我的身体好像也被彩色裹住了。
1、填上合适的词。
一()晚霞一()雄狮一()骏马
一()鲜花一()霞光一()颜色
2、晚霞的形状有、、等。
3、晚霞的颜色有、、、、、、。
4、晚霞一会儿像一匹骏马在奔驰,一会儿像一头雄狮在怒吼,一会儿像朵朵鲜花开放,晚霞还像。
十二、看看图上画的是什么时候?都有谁?他们间发生什么事了?把它写下来吧。