6.3.1实数
- 格式:ppt
- 大小:513.50 KB
- 文档页数:13
人教版义务教育课程标准实验教科书七年级下册6.3.1实数(第1课时)教学设计一、教材分析1、地位作用:本章内容相当于旧教材《数的开方》一章,但编排顺序有所差别,旧教材先学习平方根,再将算术平方根作为其中的一种特例进行学习,而本套教材先联系实际学习认识算术平方根后,再进一步认识平方根。
这样可以引发学生的疑惑,激发学生学习兴趣,从而使学生积极主动地投入到数学活动中去。
本节篇幅不长,内容也不多,但知识比较抽象,而且与学生以前接触的数学知识差异较大,根据以前的教学经验,我感觉学生学习起来不会很顺手,而且它又是以后学习二次根式、一元二次方程的基础,需要老师在教学中精心构思,认真落实。
2、教学目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想。
3、教学重、难点:重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系。
难点:理解实数的概念突破重难点的方法:观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的,从而理解学习实数的必要性。
二、教学准备:多媒体课件、导学案三、教学过程.圆周率及一些含有3、下列结论正确的是( )A.无限小数是无理数B.实数不是正数就是负数合起来就是:数轴上的点。
C.无理数都是带根号的数D.无理数都是无限不循环小数 4、判断:(1).实数不是有理数就是无理数。
( ) (2).无理数都是无限不循环小数。
( ) (3).无理数都是无限小数。
( ) (4).带根号的数都是无理数。
( ) 2、下列说法中,正确的是()、都是无理数234、、A 、B 、无理数都是带根号的数C 、实数分为正实数和负实数D 、实数和数轴上的点是一一对应的D。
人教版数学七年级下册6.3《实数》教学设计1一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数和无理数的概念之后,进一步对实数进行系统学习的开始。
本节内容主要包括实数的定义、实数与数轴的关系、实数的运算等。
通过本节课的学习,使学生对实数有一个清晰的认识,为后续的代数学习和解决实际问题打下基础。
二. 学情分析学生在之前的学习中已经掌握了有理数和无理数的概念,对数轴也有了一定的了解。
但实数作为介于有理数和无理数之间的一个整体,其定义和性质还需要进一步引导和探究。
此外,实数与数轴的关系以及实数的运算对学生来说也是一个新的挑战。
三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。
2.掌握实数的运算规则,能进行实数的基本运算。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的定义和性质。
2.实数与数轴的关系。
3.实数的运算规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题引导学生思考,通过案例让学生理解实数的定义和性质,通过小组合作学习法让学生在讨论中掌握实数与数轴的关系和实数的运算规则。
六. 教学准备1.PPT课件。
2.数轴教具。
3.练习题。
七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引导学生思考实数的定义。
同时,提出问题:“实数与数轴有什么关系?”激发学生的学习兴趣。
2.呈现(10分钟)通过PPT课件呈现实数的定义和性质,实数与数轴的关系,实数的运算规则。
结合案例,让学生直观地理解实数的内涵。
3.操练(10分钟)让学生在小组内进行实数的运算练习,如加、减、乘、除等。
教师巡回指导,解答学生疑问。
4.巩固(5分钟)选取一些典型练习题,让学生独立完成,检验对实数知识的掌握程度。
教师及时点评,指出错误并讲解。
5.拓展(5分钟)引导学生思考实数在实际生活中的应用,如面积、体积计算等。
让学生举例说明,培养解决实际问题的能力。
人教版七年级数学下册6.3.1《实数的概念》说课稿一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习的开始。
本节内容从实际问题出发,引导学生认识实数的必要性,进而引入实数的概念,使学生感受数学与现实生活的密切联系。
教材通过丰富的例题和练习题,帮助学生理解和掌握实数的概念,培养学生的抽象思维能力。
二. 学情分析七年级的学生已经学习了有理数和无理数,对数学运算和逻辑推理有一定的基础。
但是,对于实数的定义和性质,学生可能还比较陌生。
因此,在教学过程中,需要结合学生的认知水平,循序渐进地引导学生理解和掌握实数的概念。
三. 说教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,能够运用实数解决一些实际问题。
2.过程与方法:通过观察、分析、归纳等方法,让学生体验实数概念的形成过程,培养学生的抽象思维能力。
3.情感态度与价值观:让学生感受数学与现实生活的密切联系,激发学生学习数学的兴趣。
四. 说教学重难点1.教学重点:实数的概念和性质。
2.教学难点:实数的抽象性质和实数在实际问题中的应用。
五. 说教学方法与手段本节课采用讲授法、引导发现法、实践操作法等多种教学方法,结合多媒体课件、实物模型等教学手段,引导学生主动探究、合作交流,提高学生的学习效果。
六. 说教学过程1.导入新课:从实际问题出发,引导学生认识实数的必要性,激发学生的学习兴趣。
2.自主探究:让学生通过观察、分析、归纳等方法,自主发现实数的性质,体会实数概念的形成过程。
3.教师讲解:对实数的性质进行详细讲解,引导学生理解实数的概念。
4.例题讲解:通过典型例题,让学生了解实数在实际问题中的应用,巩固所学知识。
5.练习与巩固:让学生进行课堂练习,及时巩固所学知识,提高学生的实际应用能力。
6.课堂小结:对本节课的主要内容进行总结,帮助学生形成知识体系。
七. 说板书设计板书设计要简洁明了,突出实数的概念和性质。
1.教学环境:多媒体录播教室。
2.资源准备:教学所用的PPT 课件,课本。
六、教学媒体选择分析表知识点 学习 目标 媒体 类型媒体内容要点 教学 作用 使用 方式所得结论占用 时间媒体 来源 知识回 顾 感知 图片文字 提出问题,学生回答B B 有理数的分类方法 2分钟自制探究新知 了解图片 将给出的数写成小数的形式 I C 感知无理数与有理数的区别 3分钟 自制学以致用 掌握PPT课件出示问题GF理解概念,掌握方法 3分钟自制再探新知 知道 PPT 课件 在数轴上表示π, A F 无理数也可以在数轴上表示 8分钟 下载应用新知 应用 PPT 课件 出示问题,学生独立完成。
H I 通过练习,进一步理解并握掌所学知识。
6分钟 自制归纳总结了解 PPT 归纳本节课所学数学知识与思想方法。
H J 知识梳理,进一步落实相关概念。
2分钟自制①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。
②媒体的使用方式包括:A.设疑—播放—讲解;B.设疑—播放—讨论;C.讲解—播放—概括;D.讲解—播放—举例;E.播放—提问—讲解;F.播放—讨论—总结;G.边播放、边讲解;H.设疑_播放_概括;I. 讨论_交流_总结;J 其他七、教学过程一、知识回顾请你把下列各数进行分类:二、探究新知问题1: 把下列有理数写成小数的形式,你有什么发现? (可以使用计算器) 3 , 35-,478 ,911 ,119 ,5923300.11655--7,,, ,,,,27119104911-,,,.22-和0.81,111.29=,50.59=体会有理数都可以写成有限小数或无限循环小数的形式。
任何一个有理数都可以写成有限小数或无限循环小数的形式。
6.3.1 实数 无理数概念【教学目标】 知识与技能:① 了解无理数和实数的概念; ② 会对实数按照一定的标准进行分类;③ 知道实数与数轴上的点具有一一对应的关系。
过程与方法:在按不同标准给实数分类的过程中,培养学生的分类的能力;知道实数与数轴上的点是一一对应的关系,进一步掌握“数形结合”的思想方法。
情感态度与价值观:① 通过了解数系扩充体会数系扩充的意义与作用;② 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
教学重点:① 了解无理数和实数的概念;② 知道实数与数轴上的点是一一对应的关系; ③ 对实数进行分类。
教学难点:对无理数的认识。
【教学过程】 复习引入:问题:请给下列各数分类,并说明分类标准:(设计意图:自然引入有理数,让学生回忆有理数的分类,为引入实数的分类做好铺垫,从而建立新旧知识的联系。
)探究新知:问题1:有理数包括整数和分数,如果将下列分数119,911,427,53,25-写成小数的形式,你有什么发现?发现上面的有理数都可以写成有限小数或无限循环小数的形式即:18.01192.191175.64276.0535.225. ===-=-=,,,,归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,反过来,任何有限小数或者无限循环小数也都是有理数。
(设计意图:让学生从探究活动开始,体会有理数都可以写成有限小数或者无限循环小数的形式。
)问题2:你认为小数除了上述类型外,还会有什么类型?通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,它们不同于有限小数或者无限循环小数,是一类不同于有理数的数。
于是,把无限不循环小数叫做无理数。
比如。
, 7099759.15442249.13,7320508.13,414213.1233==-=-=等都是无理数。
14159265.3=π…也是无理数。
实数的概念:有理数和无理数统称为实数。
6.3实数(1)教学过程设计知识探究1.探究:1.使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 ,35-,,911,119,592.归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式。
反过来,任何有限小数或无限循环小数也都是有理数3.观察:通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数, 3.14159265π=也是无理数结论:有理数和无理数统称为实数4.试一试:把实数分类⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数像有理数一样,无理数也有正负之分。
例如2,33,π是正无理数,2-,33-,π-是负无理数。
由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:5.探究实数与数轴上的点一一对应关系。
我们知道,每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点来表示呢?如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?总结:1.事实上,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
因为实数包括有理数和无理数,在教学中引导学生自己归纳实数的分类⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数领会按定义和按正负两种分类方法,领会分类思想。
学生通过探究实践,作图得出实数与数轴上的点一一对应通过具体操作让学生掌握实数与数轴上的点一一对应的关系不应忽略学生分组讨论,老师提示知识探究怎样表示无理数2?方法:(教师示范)6.课本思考,归纳相反数.倒数和绝对值的意义。
领会在实数范围内,相反数、倒数和绝对值的含义不变。
应用迁移1.把下列各数分别填入相应的集合里:332278,3, 3.141,,,,2,0.1010010001,1.414,0.020202,7378π-----正有理数{ }负有理数{ }正无理数{ }负无理数{ }2. 下列实数中是无理数的为()A. 0B. 3.5- C.2 D.9;3.下列各数中,是无理数的是()A. 1.732- B. 1.414 C. 3 D. 3.144.已知四个命题,正确的有()⑴有理数与无理数之和是无理数⑵有理数与无理数之积是无理数⑶无理数与无理数之积是无理数⑷无理数与无理数之积是无理数A. 1个B. 2个C. 3个D.4个5.若实数a满足1aa=-,则()A. 0a> B. 0a< C. 0a≥ D. 0a≤6.下列说法正确的有()⑴不存在绝对值最小的无理数⑵不存在绝对值最小的实数⑶不存在与本身的算术平方根相等的数学生自主探索完成,巩固新知,提高能力.学生完成交流反馈学习情况。
人教版初中数学七年级下册6.3.1 实数的相关概念及分类同步练习夯实基础篇一、单选题:1.在实数,,3.14,0,,,,0.1616616661……(两个1之间依次多一个6)中,无理数的个数是( )A.5B.4C.3D.2【答案】C【分析】根据无理数的定义解答即可.【详解】,3.14,0,,是有理数;,,0.1616616661……(两个1之间依次多一个6)是无理数.故选C.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有:①π类,如2π,等;②开方开不尽的数,如,等;③具有特殊结构的数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1).2.下列说法正确的是( )A.无理数是无限不循环小数B.一个数的平方根等于它本身的数是0,1C.绝对值等于本身的数是0D.倒数等于本身的数是0,1,【答案】A【分析】根据无理数定义判定A;根据平方根的定义判定B;根据绝对值意义判定C;根据倒数的意义判定D.【详解】解:A、无理数是无限不循环小数,故此选项符合题意;B、一个数的平方根等于它本身的数是0,故此选项不符合题意;C、绝对值等于本身的数是0和正数,故此选项不符合题意;D、倒数等于本身的数是1,,故此选项不符合题意;故选:A.【点睛】本题主要考查无理数,平方根,绝对值,倒数,熟练掌握无限不循环小数是无理数;一个正数的平方根有两个,零的平方根是零;一个正数的绝对值等于本身,零的绝对值是零,一个负数的绝对值等于它的相反数;乘积等于1的两个数互为倒数是解决本题的关键.3.下列四个实数中,为负实数的是( )A.B.C.D.【答案】A【分析】根据负实数的定义逐项判断即可得答案.【详解】A.,故A符合题意B.,故B不符合题意C.,故C不符合题意D.,故D不符合题意故选:A.【点睛】本题考查了负实数的定义,相反数的定义,乘方的定义,二次根号的化简,绝对值性质.4.下列说法:①任意一个数都有两个平方根;②是3的平方根;③的立方根是;④是一个分数;⑤负数没有立方根.其中正确的有()A.0个B.1个C.2个D.3个【答案】B【分析】根据立方根,平方根和分数的定义进行逐一判断即可.【详解】解:①任意一个正数都有两个平方根,原说法错误;②是3的一个平方根,原说法正确;③的立方根是,原说法错误;④不是一个分数,原说法错误;⑤负数有立方根,原说法错误;∴正确的只有1个,故选B.【点睛】本题主要考查了立方根,平方根和实数的分类,熟知相关知识是解题的关键.5.下列说法正确的有()①无限小数都是无理数;②无理数都是无限小数;③带根号的数都是无理数;④两个无理数的和还是无理数;⑤数轴上的点与实数一一对应.A.个B.个C.个D.个【答案】A【分析】利用有理数,无理数,数轴的相关概念对每个选项进行逐一判断即可得出结论.【详解】解:无限的不循环小数是无理数,的结论不正确;无理数是无限的不循环小数,都是无限小数,的结论正确;带根号且开不尽放方的数都是无理数,的结论不正确;,两个无理数的和不一定是无理数,的结论不正确;数轴上的点与实数一一对应,的结论正确;综上,正确的结论有:,故选:A.【点睛】本题主要考查了实数的概念,实数的运算,数轴的相关性质,利用有理数,无理数,数轴的相关概念对每个选项进行逐一判断是解题的关键.6.下列说法中错误的是()A.是整数B.是有理数C.是分数D.的立方根是无理数【答案】C【分析】根据实数分类,无理数的概念,进行辨别即可.【详解】解:A、是整数,故本选项正确,不符合题意;B、是有理数,故本选项正确,不符合题意;C、是无理数,故本选项错误,符合题意;D、,则的立方根是是无理数,故本选项正确,不符合题意;故选:C【点睛】此题考查了实数的分类能力,关键是能准确理解实数分类知识,无限不循环小数是无理数.7.下列各数互为相反的是()A.5和B.-5和C.和D.和【答案】D【分析】根据相反数的性质,算术平方根,立方根和实数的性质逐一判断即可.【详解】解:A、5和不是相反数,不符合题意;B、-5和不是相反数,不符合题意;C、和不是相反数,不符合题意;D、和互为相反数,符合题意;故选D【点睛】本题主要考查了相反数的定义,实数的性质,算术平方根和立方根,熟知相关知识是解题的关键.二、填空题:8.下列各数:①,②0.1,③④⑤⑥(相邻两个1 之间依次增加1 个0)是无理数的是________(填序号).【答案】⑤⑥##⑥⑤【分析】根据无理数的定义解答即可.【详解】解:由题意可知:无理数有:⑤⑥.故答案为:⑤⑥【点睛】本题考查无理数的定义,解题的关键是掌握无理数的定义:无限不循环的小数.9.下列有理数:,,,,其中负数有_______个.【答案】2【分析】运用偶次方、去括号、绝对值以及幂的知识进行化简,即可确定负数的个数.【详解】解:∵=9,=0.2,=-4,=-1∴负数有两个,即答案为2.【点睛】本题考查了偶次方、去括号、绝对值以及幂的知识,灵活运用所学知识是解答本题的关键. 10.将下列各数填入相应的括号里:,,0,,,,,,,.负数集合___________;分数集合___________;正整数集合___________;无理数集合___________.【答案】,,;,,,,;;【分析】实数分为有理数和无理数,分数分为正分数和负分数,负数分为负分数和负整数,对各数依次判断分类即可.【详解】解:负数集合,,;分数集合,,,,;正整数集合;无理数集合;故答案为:,,;,,,,;;.【点睛】本题考查了实数的概念与分类、有理数的分类、无理数的概念,掌握实数的概念与分类是解题关键.11.判断正误,在后面的括号里对的填写“正确”,错的填写“错误”,并说明理由.(1)无理数都是开方开不尽的数.( )(2)无理数都是无限小数.( )(3)无限小数都是无理数.( )(4)无理数包括正无理数、零、负无理数.( )(5)不带根号的数都是有理数.( )(6)带根号的数都是无理数.( )(7)有理数都是有限小数.( )(8)实数包括有限小数和无限小数.( )【答案】错误正确错误错误错误错误错误正确【分析】根据有理数,无理数,实数的概念逐项判断即可【详解】(1)( 错误)无理数不只是开方开不尽的数,还有,1.020 020 002…这类的数也是无理数;故答案为:错误.(2)( 正确)无理数是无限不循环小数,是属于无限小数范围内的数;故答案为:正确.(3)( 错误)无限小数包括无限循环小数和无限不循环小数两类数,其中无限不循环小数才是无理数;故答案为:错误.(4)( 错误)0是有理数;故答案为:错误.(5)( 错误)如,虽然不带根号,但它是无限不循环小数,所以是无理数;故答案为:错误.(6)( 错误)如,虽然带根号,但=9,这是有理数;故答案为:错误.(7)( 错误)有理数还包括无限循环小数;故答案为:错误.(8)( 正确)有理数可以用有限小数和无限循环小数表示,无理数是无限不循环小数,所以实数可以用有限小数和无限小数表示;故答案为:正确.【点睛】本题考查了有理数,无理数,实数的概念,理解概念是解题的关键.12.的相反数是______________.【答案】##【分析】根据只有符号不同的两个数是互为相反数,即可得到正确的答案.【详解】解:无理数的相反数是,故答案为:.【点睛】此题考查了求一个实数的相反数的能力,关键是能准确理解、运用相反数的概念.13.比较大小.(用、、号连接)______;______.【答案】【分析】第一组根据约等于即可得出答案;第二组对进行变形即可得到答案.【详解】解:第一组:∵,,∵,∴;第二组:∵,∴,∴,∴.故答案为:①,②.【点睛】本题考查的是实数的大小比较,熟知实数比较大小的法则和各种方法是解题的关键.14.给出下列说法:①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的点表示的数互为相反数;④实数在数轴上有唯一的点与之对应;⑤分数可能是有理数,也可能是无理数.其中正确的有______.(填序号)【答案】①④##④①【分析】根据绝对值的意义;无理数的定义:即为无线不循环小数;相反数的几何意义;实数和数轴的关系,有理数的定义:整数和分数统称为有理数;进行判断即可.【详解】解:①0是绝对值最小的有理数,正确;②无限不循环小数是无理数,原来的说法错误;③只有符号不同的两个数叫做互为相反数,原来的说法错误;④实数在数轴上有唯一的点与之对应,正确;⑤分数是有理数,原来的说法错误.故其中正确的有①④.故答案为:①④.【点睛】本题考查了对值的意义、无理数的定义、相反数的几何意义、实数和数轴的关系、有理数的定义,熟练掌握相关定义与性质是解本题的关键.三、解答题:15.将下列各数的序号填在相应的集合里.①,②,③,④,⑤,⑥,⑦,⑧.整数集合:;分数集合:;负数集合:;有理数集合:;无理数集合:.【答案】故答案为:,,,,【分析】根据实数的分类解答即可.【详解】解:整数集合:;分数集合:;负数集合:;有理数集合:;无理数集合:.故答案为:,,,,.【点睛】此题考查实数,关键是根据实数的分类解答.16.求下列各数的绝对值:,,,,.【答案】,,,,【分析】根据正数及零的绝对值是本身,负数的绝对值是相反数,可得答案.【详解】解:,,,..【点睛】本题考查了实数的绝对值,理解绝对值的意义是解题的关键.17.把,,,表示在数轴上(无理数近似表示在数轴上),并比较它们的大小,用“<”号连接.【答案】数轴见解析,.【分析】利用绝对值和无理数的近似值化简再用数轴上的点表示各数,利用数轴上的数右边的总比左边的大用“<”号将个连接即可.【详解】解:∵,∴将各数在数轴上表示出来如下:将各数用“<”号连接如下:.【点睛】本题主要考查了数轴,绝对值,实数大小的比较,利用数轴上的数右边的总比左边的大解答是解题的关键.18.求下列各式中的实数:(1);(2);(3);(4).【答案】(1);(2)0;(3);(4).【分析】分别根据绝对值的性质解答.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴;(4)∵,∴.【点睛】本题考查了实数的性质,主要利用了绝对值的性质,熟记性质是解题的关键.19.如图,一只蚂蚁从点沿数轴向右爬了个单位长度到达点,点表示,设点所表示的数为.(1)实数的值是______;(2)求的值;(3)在数轴上还有、两点分别表示实数和,且有与互为相反数,求的平方根.【答案】(1);(2)0(3)【分析】(1)根据两点间的距离公式可得答案;(2)根据点B在数轴上的位置可知,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出、的值,再代入,进而求其平方根.(1)解:∵蚂蚁从点沿数轴向右爬了个单位长度到达点,点表示∴点表示∴.故答案为:;(2)解:由数轴可知:,,,原式;(3)解:与互为相反数,,,,,,,,,∵8的平方根为,∴的平方根为.【点睛】本题考查了实数与数轴、实数的性质、相反数的定义、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.能力提升篇一、单选题:1.如图,数轴上有A,B,C,D四点,则所表示的数与最接近的是()A.点A B.点B C.点C D.点D【答案】D【分析】根据二次根式的性质和无理数的估算方法求出的范围即可得到答案.【详解】解:由题意可得,∵,∴,∴,∴D点离得近一些,故选D.【点睛】本题考查实数在数轴上的位置及无理数的估算,解题的关键是根据根式的性质求出其取值范围.2.若0<x<1,则下列关系式成立的是()A.B.C.D.【答案】B【分析】可以采用取特殊值法,逐一求解,然后进行比较即可.【详解】解:∵∴令∴,,∵∴.故选B.【点睛】本题主要考查了实数的大小比较、负整数指数幂、整数指数幂等知识点,灵活利用相关运算法则以及掌握特殊值法是解答本题的关键.3.已知表示取三个数中最小的那个数.例如:当时,,当时,则的值为()A.B.C.D.【答案】C【分析】本题分别计算的x值,找到满足条件的x值即可.【详解】解:当时,,,不合题意;当时,,当时,,不合题意;当时,,,符合题意;当时,,,不合题意,故选:C.【点睛】本题主要考查了实数大小比较,算术平方根及其最值问题,解决此题时,注意分类思想的运用.二、填空题:4.已知的整数,小数部分,则_________,_________.【答案】 2【分析】根据可知,得到,从而得到和的值,即可得到答案.【详解】,,,,,,故答案为2;.【点睛】本题考查了估算无理数大小,利用有理数逼近无理数,求无理数近似值是解题关键.5.如图,数轴上点到点的距离与点到点的距离相等,若点表示,点表示,则点表示的数是________.【答案】##【分析】先求出、之间的距离,然后根据到点的距离与点到点的距离相等用减、之间的距离可求得答案.【详解】解:∵点表示,点表示,∴,∵到点的距离与点到点的距离相等,∴点表示的数为:,故答案为:.【点睛】本题考查了数与数轴之间的对应关系,解决本题的关键是明确两点之间的距离公式(大减小),体现了数形结合的思想.6.观察下列各式:,,,…,根据你发现的规律,若式子(a、b为正整数)符合以上规律,则=_______.【答案】4【分析】从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,据此求出a、b的值即可求得答案.【详解】∵,,,…,∴用含n的式子来表示为:,∵,∴a=8-1=7,b=a+2=9,∴==4,故答案为4.【点睛】本题考查了本题考查了规律型——数字的变化类,找到变化的规律是解题的关键.三、解答题:7.观察下列等式,并回答问题:①;②;③;④;……(1)请写出第⑤个等式:______,化简:______;(2)写出你猜想的第n个等式:______;(用含n的式子表示)(3)比较与1的大小.【答案】(1);(2)(3)【分析】(1)根据已知等式的规律可以得到第⑤个等式,由于,可以根据规律得到结果;(2)由前4个等式可以猜想第n个等式为;(3)利用作差法比较大小.(1)解:根据前4个式子可得第⑤个等式为:,,故答案为:;.(2)解:由前4个等式可以猜想第n个等式为,故答案为:.(3)解:∵,∴.【点睛】本题属于探究规律类试题,主要考查绝对值的性质、实数大小比较,熟练掌握相关知识并灵活运用是解题的关键.。
第1课时实数的概念教学设计课题实数的概念授课人素养目标1.理解无理数的概念,会判断一个数是否为无理数.2.理解有理数和无理数的概念,会把实数进行分类.3.理解实数与数轴的关系,并进行相关运用.4.理解实数范围内的相反数、绝对值的意义.教学重点 1.理解无理数的概念,会判断一个数是否为无理数.2.理解有理数和无理数的概念,会把实数进行分类.教学难点理解实数与数轴的关系,并进行相关运用.教学活动教学步骤师生活动活动一:复习回顾,问题引入设计意图学生回忆有理数及无限不循环小数的概念,为学习实数做铺垫.【回顾导入】请同学们回顾下面这两个问题:什么是有理数?有理数怎样分类?什么是无限不循环小数?无限不循环小数都有哪些形式?答:小数位数无限,且小数部分不循环的小数叫做无限不循环小数.很多数的平方根和立方根都是无限不循环小数.【教学建议】教师指定学生代表作答.活动二:问题引入,探究新知设计意图通过探究有理数的形式引入无理数的概念,将数系扩充至实数,达到整体认识,形成知识迁移.探究点1实数的概念及分类(教材P53探究)我们知道有理数包括整数和分数,请把下列分数写成小数的形式,你有什么发现?答:我们发现,上面的分数都可以写成有限小数或无限循环小数的形式,即问题1任何有限小数或无限循环小数都可以化为分数吗?为什么?答:可以.因为如果把整数看成小数点后是0的小数,那么任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数,即可以化为分数(整数可以看作分母为1的分数).【教学建议】学生交流讨论,自主探究,教师归纳、订正.先通过复习有理数的概念,再经过类比学习的方法引入无理数的概念,体会两者之间的区别,最后给出实数的概念,层层设问,发展学生的自学意识.教学步骤师生活动设计意图通过具体实例,让学生直观感受无理数可用数轴上的点表示,从而深化扩展到实数与数轴上的点的一一对应关系.问题2我们学过的所有数都能化成这种形式吗?若不能,请举例说明.答:不能.如√2,√3这样的无限不循环小数.概念引入:无限不循环小数又叫做无理数.常见的无理数的形式有:①开方开不尽的数,如√2,-√33等;②π及含π的式子,如π,2+π等;③结构特殊且不循环的小数,如1.01001000100001…(相邻的两个1之间依次多一个0).概念引入:有理数和无理数统称实数.问题3仿照有理数的分类,你能对实数进行分类吗?【对应训练】1.下列说法正确的是(D )A.正实数和负实数统称为实数B.正数、0和负数统称为有理数C.带根号的数和分数统称为实数D.无理数和有理数统称为实数2.把下列各数分别填入相应的大括号中:探究点2 实数与数轴上的点的对应关系我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点表示出来呢?(1)(教材P54探究)如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?注意强调:无限小数既可能是有理数,也可能是无理数,因为无限小数有无限循环和无限不循环两种形式.实数分类时类比有理数的分类,让学生尝试分类,体会无理数的特征.在自主探究的过程中,发展学生的类比思想和分类思想.分类原则是不重不漏,且有时分类的数会同时属于多个集合,此时更应注意不要漏写.【教学建议】学生在讨论合作的基础上动手操作,教师利用多媒体课件进行动态演示,并对学生讨论交流的结果进行总结.教学步骤师生活动设计意图通过具体练习使学生体会到相反数和绝对值的意义同样适合于实数.答:从图中可以看出,OO′的长是这个圆的周长π,所以点O′对应的数是π.(2)如图,以单位长度为边长画一个正方形,以原点为圆心,正方形对角线长为半径画弧,与正半轴的交点就表示√2,与负半轴的交点就表示-√2.为什么?答:在学习算术平方根的估算时,我们知道,用两个面积为1的小正方形剪拼成一个面积为2的大正方形,这个大正方形的边长就是小正方形的对角线长,因此图中正方形的对角线长是√2.所以以原点为圆心,以小正方形的对角线为半径画弧,与数轴的两个交点分别表示数√2,-√2.事实上,每一个无理数都可以用数轴上的一个点表示出来.总结:当数的范围从有理数扩充到实数后,实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.【对应训练】1.教材P56练习第1题.2.如图,面积为5的正方形ABCD的顶点A在数轴上,且点A表示的数为1,若点E在数轴上(点E在点A左侧),且AD=AE,则点E所表示的数为(D )A.√5B.-√5C.-√5-1D.-√5+1探究点3实数的相反数、绝对值思考(教材P54思考)(1)√2的相反数是-√2,-π的相反数是π,0的相反数是0;(2)|√2|=√2,|-π|=π,|0|=0.你能得出实数的相反数和绝对值的意义吗?相反数的意义:数a的相反数是-a,这里a表示任意一个实数.绝对值的意义:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.注意使学生感受在数的范围扩充到实数后,有理数与数轴上的点不是一一对应的,而实数才是.【教学建议】教师可引导学生通过复习有理数的相反数、绝对值,类比得出实数的相反数、绝对值.教师只需引导,以学生为主体,讨论交流,发展学由上可知,有理数关于相反数和绝对值的意义同样适合于实数. 例1(教材P55例1)(1)分别写出-√6,π-3.14的相反数;(2)指出-√5,1-√33各是什么数的相反数;(3)求√−643的绝对值;(4)已知一个数的绝对值是√3,求这个数. 解:(1)因为-(-√6)=√6,-(π-3.14)=3.14-π,所以,-√6,π-3.14的相反数分别为√6,3.14-π.(2)因为-(√5)=-√5,-(√33-1)=1-√33,所以,-√5,1-√33分别是√5,√33-1的相反数.(3)因为√−643=−√64 3= -4,所以|√−643| = |-4| = 4.(4)因为|√3|=√3,|-√3|=√3,所以绝对值为√3的数是3或-√3. 【对应训练】1~2.教材P56练习第2~3题. 3.填表:生认知的类比迁移能力.应使学生明确,在数的范围扩充至实数后,数的绝对值的最小值依然是0,因为绝对值都是非负实数.活动三:重点突破,综合探究 设计意图 强化巩固对于实数与数轴上的点的一一对应关系的理解,并能在实践中灵活运用,解决综合类型题目.例2如图,数轴上A ,B 两点表示的数分别为√2和5.1,则A ,B 两点之间表示整数的点共有( C ) A.6个 B.5个 C.4个 D.3个 【对应训练】如图,在数轴上点A 表示数a ,点B 表示数b ,且a ,b 满足|a +3|+(b -6)2=0.(1)点A 表示的数为 -3,点B 表示的数为6; (2)若点C 表示的数的绝对值为√2,求点C 到点B 的距离.解:若点C 表示的数的绝对值为√2,则点C 表示的数为√2或-2, 当点C 表示的数为√2时,点C 到点B 的距离为6-√2; 当点C 表示的数为-√2时,点C 到点B 的距离为6+√2. 【教学建议】学生分组交流,讨论作答.鼓励学生动手操作,画图描点,有助于厘清思路.此类题目较好地将知识进行了综合,并有一定的拓展,能培养学生大胆尝试、勇于探索的精神,提高学生的思维能力.活动四:随堂训练,课堂总结【随堂训练】随堂训练见《创优作业》“随堂小练”册子相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:什么是无理数?什么是实数?实数怎么分类?数轴上的点与什么数是一一对应的?实数的相反数、绝对值的意义是什么? 【知识结构】1.实数分类的注意事项:对实数分类时,应先对某些数进行化简,然后根据最后结果进行分类.例如,√25=5,它既是整数,也是自然数,更是有理数,应根据其性质将它填入符合的集合里,可能会同属于多个集合,这样才能做到不重不漏.另外,填入集合的数必须是原数,即√25,而不是化简后得到的5.2.数轴上的点与实数的关系:【作业布置】1.教材P57习题6.3第1,2,3,7,9题.2.相应课时训练.教学步骤师生活动板书设计教学反思本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理数的基础上扩充到实数,在此基础上,明确了实数与数轴上的点的一一对应的关系,并指出求相反数和绝对值的方法在实数范围内同样适用.学习中要求学生结合有理数理解实数的有关概念,同时要注意两个地方:一是所有的分数都是有理数,如227;二是形如π2,π3等之类的含有π的数不是分数,而是无理数.解题时注意:①关于数轴原点对称即为求该数的相反数;②数轴上两点之间的距离即为求两点所表示的实数的差的绝对值.例如图,数轴上A,B两点表示的数分别是-1和√3,点B关于点A的对称点为C,求点C所表示的实数.分析:首先结合数轴和已知条件可以求出线段AB的长度,然后利用对称的性质即可求出点C所表示的实数.解:因为数轴上A,B两点表示的数分别为-1和√3,所以点B到点A的距离为1+√3.则点C到点A的距离也为1+√3.设点C表示的实数为x,则点A到点C的距离为-1-x,所以-1-x=1+√3,所以x=-2-√3.所以点C所表示的实数为-2-√3.例1如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示-2,设点B所表示的数为m.(1)实数m的值是2-√2;(2)求|m+1|+|m-1|的值;(3)在数轴上还有C,D两点分别表示实数c和d,且有|2c+d|与√d2−16互为相反数,求2c-3d的平方根.解:(2)因为m=2-√2,则m+1>0,m-1<0,所以|m+1|+|m-1|=m+1+1-m=2.(3)因为|2c+d|与√d2−16互为相反数,所以|2c+d|+√d2−16=0,所以|2c+d|=0,且√d2−16=0,所以c=-2,d=4,或c=2,d=-4.①当c=-2,d=4时,2c-3d=-16,无平方根;②当c=2,d=-4时,2c-3d=16,所以2c-3d的平方根为±4.综上,2c-3d的平方根为±4.例2如图①是由8个同样大小的立方体组成的魔方,体积为8.(1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长;(3)把正方形ABCD放到数轴上,如图②,使得点A与表示-1的点重合,那么点D在数轴上表示的数为-1-√2.分析:(1)根据立方体的体积公式,直接求棱长即可;(2)根据棱长,求出每个小立方体的棱长,进而可得小正方形的对角线,即阴影部分图形的边长,即可得解;(3)用点A表示的数减去边长即可得解.解:(1)设魔方的棱长为x,则x3=8,所以x=2.(2)因为棱长为2,所以魔方的每个面的面积为22=4.=2.易知正方形ABCD的面积为42所以正方形ABCD的边长为√2.。
人教版七年级数学下册6.3.1《实数的概念》教学设计一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在掌握了有理数的基础上,进一步对实数进行学习。
本节内容主要介绍实数的概念,包括实数的定义、实数的性质等。
教材通过实例和问题,引导学生理解实数的意义,并能够运用实数进行简单的运算和解决问题。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的概念和运算方法,具备一定的数学基础。
但实数概念相对抽象,学生可能存在一定的理解难度。
因此,在教学过程中,需要结合学生的实际情况,通过实例和问题,引导学生理解和掌握实数的概念。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够运用实数进行简单的运算和解决问题。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.实数的定义和性质。
2.实数的运算方法。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生思考,实例帮助学生理解,小组合作促进学生交流和讨论。
六. 教学准备1.教材、PPT等相关教学资料。
2.实例和问题。
3.小组合作学习分组。
七. 教学过程1. 导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数,那么有理数能表示所有的数吗?还有哪些数是有理数无法表示的?”2. 呈现(15分钟)利用PPT展示实数的定义和性质,结合实例进行讲解。
例如,通过数轴展示实数,解释实数包括有理数和无理数,以及实数的性质如大小关系、加减乘除等。
3. 操练(15分钟)让学生进行实数的运算练习,巩固所学知识。
例如,给出一些实数的运算题目,让学生独立完成,然后集体讲解答案。
4. 巩固(10分钟)通过问题和小测验的形式,巩固学生对实数的理解和掌握。
例如,提出一些关于实数的问题,让学生回答,或者让学生解决一些实际问题,运用实数进行计算。
5. 拓展(10分钟)引导学生思考实数在实际生活中的应用,拓展学生的思维。