九年级数学下册26.1反比例函数26.1.2反比例函数的图象和性质专题训练无答案新版新人教版
- 格式:docx
- 大小:68.89 KB
- 文档页数:6
人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2一. 教材分析《反比例函数的图象和性质》是人教版九年级数学下册第26章第1节的内容。
本节课主要介绍了反比例函数的图象和性质,是学生在学习了正比例函数和一次函数的基础上进行学习的。
通过本节课的学习,使学生能理解反比例函数的概念,会绘制反比例函数的图象,掌握反比例函数的性质,并能应用于实际问题中。
二. 学情分析学生在学习本节课之前,已经学习了正比例函数和一次函数的相关知识,对函数的概念、图象和性质有一定的了解。
但反比例函数的概念和性质与前两者存在较大差异,需要学生在已有的知识基础上进行迁移和拓展。
同时,学生需要理解反比例函数图象的特点,如双曲线、渐近线等,这对学生的空间想象能力有一定要求。
三. 教学目标1.了解反比例函数的概念,掌握反比例函数的性质。
2.学会绘制反比例函数的图象,并能分析反比例函数图象的特点。
3.能将反比例函数应用于实际问题中,提高解决问题的能力。
4.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数图象的绘制和分析。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。
通过设置问题引导学生思考,分析案例使学生理解反比例函数的应用,小组合作讨论促进学生交流和拓展思维。
六. 教学准备1.准备反比例函数的相关案例和问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备反比例函数图象的素材,如图片、图表等。
七. 教学过程导入(5分钟)教师通过展示一些实际问题,如购物时商品的单价和数量的关系,引出反比例函数的概念。
让学生思考并讨论这些问题,引导学生发现其中的规律。
呈现(10分钟)教师通过多媒体展示反比例函数的图象和性质,引导学生观察和分析。
同时,教师给出反比例函数的定义,并解释反比例函数的性质。
操练(10分钟)教师提出一些有关反比例函数的问题,让学生独立解答。
教师选取部分学生的解答进行讲解和分析,引导学生掌握反比例函数的性质。
专项26 反比例函数图像和性质(3大类型)【考点1 反比例函数性质】1.若反比例函数y=的图象经过点(2,﹣3),则k= .【答案】﹣6【解答】解:∵反比例函数y=的图象经过点(2,﹣3),∴﹣3=,解得,k=﹣6,故答案为:﹣6.2.若反比例函数的图象在第二、四象限,m的值为 .【答案】-2【解答】解:∵是反比例函数,∴3﹣m2=﹣1.解得:m=±2.∵函数图象在第二、四象限,∴m+1<0,解得:m<﹣1.∴m=﹣2.故答案为:﹣2.3.已知反比例函数y=图象位于一、三象限,则m的取值范围是 .【答案】m<6【解答】解:∵反比例函数y=图象位于一、三象限,∴﹣(m﹣6)>0,解得m<6.故答案是:m<6.4.在反比例函数y=的图象的每一支上,y都随x的增大而增大,则m的取值范围是 .【答案】m<2 【解答】解:依题意得:m﹣2<0,解得m<2故答案是:m<2.5.已知点A(2,a)、B(b,﹣3)都在函数的图象y=上,若将这个函数图象向左平行3个单位长度,则曲线AB所扫过的图形的面积是 .【答案】9【解答】解:将A、B两点代入函数解析式,得:a=﹣6,b=4,∴A(2、﹣6)、B(4,﹣3),∴向左平行3个单位长度后A的对应点A'(﹣1,﹣6),B的对应点B'(1,﹣3).∴平行四边形ABB'A'的底=3,高=﹣3﹣(﹣6)=3,∴平行四边形ABB'A'的面积=3×3=9,∴曲线AB所扫过的图形的面积=平行四边形ABB'A'的面积=9.故答案为:9.【考点2 反比例大小比较】6.若点A(﹣1,y1)、B(﹣,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为 .【答案】y2<y1<y3【解答】解:∵反比例函数y=(k为常数),k2+1>0,∴该函数图象在第一、三象限,在每个象限内y随x的增大而减小,∵点A(﹣1,y1)、B(﹣,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,﹣1<﹣,点A、B在第三象限,点C在第一象限,∴y2<y1<y3,故答案为:y2<y1<y3.7.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣2,2),B(n,﹣1).当y1<y2时,x的取值范围是 .【答案】﹣2<x<0或x>4【解答】解:∵反比例函数y2=的图象经过点A(﹣2,2),B(n,﹣1),∴﹣1×n=(﹣2)×2,∴n=4.∴B(4,﹣1).由图象可知:第二象限中点A的右侧部分和第四象限中点B右侧的部分满足y1<y2,∴当y1<y2时,x的取值范围是﹣2<x<0或x>4.故答案为:﹣2<x<0或x>4.8.如图,正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象相交于A,B 两点,其中点A的横坐标为1.当k1x<时,x的取值范围是 .【答案】0<x<1或x<﹣1【解答】解:由正比例函数与反比例函数的对称性可得点B横坐标为﹣1,由图象可得当k1x<时,x的取值范围是0<x<1或x<﹣1.故答案为:0<x<1或x<﹣1.【考点3 反比例函数与其他综合运用】9.在一个不透明的纸箱内装有形状、质地、大小、颜色完全相同的5张卡片,卡片上分别标有数字﹣3,﹣1,0,1,2,将它们洗匀后,背面朝上,从中随机抽取1张,把抽得的数字记作a,再从剩下的卡片中随机抽取1张,把抽得的数字记作b,则使得反比例函数的图象经过第一、三象限的概率为 .【答案】【解答】解:∵反比例函数的图象经过第一、三象限,∴ab>0,画树状图得:则共有20种等可能的结果,ab为正数的所有可能值为:3,3,2,2;∴使得反比例函数的图象经过第一、三象限的概率为=.故答案为:.10.反比例函数y=(k为整数,且k≠0)在第一象限的图象如图所示,已知图中点A的坐标为(2,1),则k的值是 .【答案】1【解答】解:假设点A(2,1)在反比例函数y=(k为正整数)第一象限的图象上,则1=,∴k=2,但是点A在反比例函数y=(k为正整数)第一象限的图象的上方,∴k<2,∵k为整数,且k≠0,k>0,∴k=1,故答案为:1.11.当≤x≤2时,函数y=的图象为曲线段CD,y=﹣2x﹣b的图象分别与x轴、y轴交于A、B两点,若曲线段CD在△AOB的内部(且与三条边无交点),则b的取值范围为 .【答案】b<﹣ 【解答】解:反比例函数y=,当≤x≤2时,≤y≤2,∵曲线段CD在△AOB的内部(且与三条边无交点),∴当x=,﹣2×﹣b>2 ①,当x=2时,﹣2×2﹣b>②,解①得b<﹣3,解②得b<﹣,因此,b的取值范围为b<﹣.故答案为:b<﹣.12.当1≤x≤2时,反比例函数y=(k>﹣3且k≠0)的最大值与最小值之差是1,则k 的值是 .【答案】±2【解答】解:当k>0时,在其每一象限内,反比例函数y随x的增大而减小.∴,解得k=2,当﹣3<k<0时,在其每一象限内,反比例函数y随x的增大而增大.,解得k=﹣2,综上所述,k=±2.答案:±2.13.如图,曲线AB是抛物线y=﹣4x2+8x+1的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线y=(k≠0)的一部分.曲线AB与BC组成图形W.由点C开始不断重复图形W形成一组“波浪线”.若点P(2020,m),Q(x,n),在该“波浪线”上,则m的值为 ,n的最大值为 .【答案】1,5【解答】解:∵y=﹣4x2+8x+1=﹣4(x﹣1)2+5,∴当x=0时,y=1,∴点A的坐标为(0,1),点B的坐标为(1,5),∵点B(1,5)在y=的图象上,∴k=5,∵点C在y=的图象上,点C的横坐标为5,∴点C的纵坐标是1,∴点C的坐标为(5,1),∵2020÷5=404,∴P(2020,m)在抛物线y=﹣4x2+8x+1的图象上,m=﹣4×0+8×0+1=1,∵点Q(x,n)在该“波浪线”上,∴n的最大值是5,故答案为:1,5.14.如图,在△ABO中,∠ABO=90°,点A的坐标为(3,4).写出一个反比例函数y=(k≠0),使它的图象与△ABO有两个不同的交点,这个函数的表达式为 .【答案】y=(答案不唯一)【解答】解:∵∠ABO=90°,点A的坐标为(3,4),反比例函数y=(k≠0),使它的图象与△ABO有两个不同的交点,∴这个函数的表达式为:y=(答案不唯一).故答案为:y=(答案不唯一).15.如图,点P(4a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为17π,则反比例函数的解析式为 .【答案】y=【解答】解:∵图中阴影部分的面积为17π,∴圆的面积=4×17π=68π,∴圆的半径=2,∵P(4a,a)在圆上,∴16a2+a2=(2)2,解得a=2或﹣2(舍去),∴P点坐标为(8,2),把P(8,2)代入y=得k=8×2=16,∴反比例函数的解析式为y=.故答案为y=.16.如图,在平面直角坐标系xOy中,矩形OABC,OA=2,OC=1,写出一个函数y=,使它的图象与矩形OABC的边有两个公共点,这个函数的表达式可以为 (答案不唯一).【答案】y=,(答案不唯一,0<k<2的任何一个数)【解答】解:∵矩形OABC,OA=2,OC=1,∴B点坐标为(2,1),当函数y=(k≠0)过B点时,k=2×1=2,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,(答案不唯一,0<k<2的任何一个数);17.给定函数y=,下列说法正确的有 .①不等式y>0的解为:x<或x>1;②无论t为何值,方程y=t一定有解;③若点(x1、y1),(x2,y2)在该函数图象上而且x1<x2,则y1>y2;④经过原点的直线和该函数的图象一定有交点;⑤该函数的图象既是中心对称图形,又是轴对称图形.【答案】①④⑤ 【解答】解:函数y=可化为:y==3+①当y>0时,或解得:x>1或x<故①正确;②∵y=3+∴y≠3∴当t=3时,y=3,方程无解;故②错误;③若取x=0,则y=1;x=3,y=40<3,1<4,故③错误;④∵y=3+可看作由y=向右平移一个单位,再向上平移三个单位∴经过原点的直线和该函数的图象一定有交点故④正确;⑤∵y=既是轴对称图形,也是中心对称图形,y=3+是y=平移之后的图形,故其既是轴对称图形,也是中心对称图形故⑤正确综上,正确的选项有:①④⑤故答案为:①④⑤.18.函数y1=x与y2=的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是 .【答案】①③【解答】解:①由图象可以看出函数图象上的每一个点都可以找到关于原点对称的点,故正确;②在每个象限内,不同自变量的取值,函数值的变化是不同的,故错误;③y=x+=(﹣)2+4≥4,当且仅当x=2时取“=”.即在第一象限内,最低点的坐标为(2,4),故正确;∴正确的有①③.故答案为:①③.19.如图,在平面直角坐标系中,直线y=x+1与x轴,y轴分别交于点A,B,与反比例函数y=的图象在第一象限交于点C,若AB=BC,则k的值为 .【答案】2【解答】解:过点C作CH⊥x轴于点H.∵直线y=x+1与x轴,y轴分别交于点A,B,∴A(﹣1,0),B(0,1),∴OA=OB=1,∵OB∥CH,∴==1,∴OA=OH=1,∴CH=2OB=2,∴C(1,2),∵点C在y=的图象上,∴k=2,故答案为:2.20.已知点A在反比例函数y=(x>0)的图象上,点B在x轴正半轴上,若△OAB为等腰三角形,且腰长为5,则AB的长为 .【答案】5或2或【解答】解:当AO=AB时,AB=5;当AB=BO时,AB=5;当OA=OB时,设A(a,)(a>0),B(5,0),∵OA=5,∴=5,解得:a1=3,a2=4,∴A(3,4)或(4,3),∴AB==2或AB==;综上所述,AB的长为5或2或.故答案为:5或2或.21.已知点A为直线y=﹣2x上一点,过点A作AB∥x轴,交双曲线y=于点B.若点A 与点B关于y轴对称,则点A的坐标为 .【答案】(,﹣2)或(﹣,2)【解答】解:因为点A为直线y=﹣2x上,因此可设A(a,﹣2a),则点A关于y轴对称的点B(﹣a,﹣2a),由点B在反比例函数y=的图象上可得2a2=4,解得a=±所以A(,﹣2)或(﹣,2),故答案为:(,﹣2)或(﹣,2).22.如图,在平面直角坐标系中,直线y=x与函数y=(x>0)的图象交于点A,直线y=x﹣1与函数y=(x>0)的图象交于点B,与x轴交于点C.若点B的横坐标是点A的横坐标的2倍,则k的值为 .【答案】【解答】解:直线y=x与函数y=(x>0)的图象交于点A,∴k>0,设A(a,a),则B(2a,2a﹣1),代入y=,,即a=2a﹣1,解得,a=,把a=,代入a=,得k=,故答案为:.23.已知点A是反比例函数y=﹣(x<0)的图象上的一个动点,连接OA,若将线段OA 绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数关系式是 .【答案】y=(x>0)【解答】解:如图,∵点A是反比例函数y=﹣(x<0)的图象上∴S△OAM=|k|=,∵线段OB是由线段OA绕点O顺时针旋转90°得到的,∴OA=OB,∠AOB=90°,又∵∠AOM+∠OAM=90°,∠AOM+∠BON=180°﹣90°=90°,∵∠AMO=∠ONB=90°,∴△AOM≌△OBN(AAS),∴S△OBN =S△AOM==|k|,又∵k>0,∴k=3,∴过点B的反比例函数关系式为y=(x>0),故答案为:y=(x>0).24.如图,△OA1B1,△A1A2B2,△A2A3B3…是分别以A1,A2,A3…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1,C2,C3…均在反比例函数y=(x>0)的图象上,则点A2021的坐标为 .【答案】(2,0)【解答】解:设点C1的坐标为(x,),∵点C1是OB1的中点,∴点B1的坐标为(2x,),∴A1的坐标为(2x,0),∴OA1=2x,A1B1=,∵△OA1B1是等腰直角三角形,∴OA1=A1B1,即2x=,解得:x=1或x=﹣1(舍),∴点A1的坐标为(2,0);设点C2的坐标为(a,),∵点C2是A1B2的中点,∴点B2的坐标为(2a﹣2,),点A2的坐标为(2a﹣2,0),∴A1A2=2a﹣4,A2B2=,∵△A1B2A2是等腰直角三角形,∴A1A2=A2B2,即2a﹣4=,解得:a=1+或a=1﹣(舍),∴点A2的坐标为(2,0),设点C3的坐标为(m,),∵点C3是A2B3的中点,∴点B3的坐标为(2m﹣2,),点A3的坐标为(2m﹣2,0),∴A2A3=2m﹣4,A3B3=,∵△A2B3A3是等腰直角三角形,∴A2A3=A3B3,即2m﹣4=,解得:m=+或m=﹣(舍),∴点A3的坐标为(2,0),…,点A2021的坐标为(2,0),故答案为:(2,0).。
人教版九年级数学下册反比例函数知识点归纳及练习(含答案)-CAL-FENGHAI.-(YICAI)-Company One1反比例函数26.1知识点1 反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:①x ky =(0k ≠),②1kx y -=(0k ≠),③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.2知识点2用待定系数法求反比例函数的解析式 由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
人教版九年级数学下册《26.1.2 反比例函数的图像和性质》练习题-附带有答案一、单选题1.如果点(m,−2m)在双曲线y=kx (k≠0)上,那么双曲线y=kx的图象在()A.第一、二象限B.第三、四象限C.第一、三䱲限D.第二、四象限2.若点A(2,y1),B(3,y2),C(−2,y3)都在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y1<y3<y2D.y3<y2<y13.若ab<0,则函数y=ax与y=bx在同一平面直角坐标系中的图象大致是()A.B.C.D.4.如图,A是双曲线y=kx(x>0)上的一点,点C是OA的中点,过点C作y轴的垂线,垂足为D,交双曲线于点B,且△ABD的面积是4,则k=()A.4 B.6 C.8 D.105.如图,在平面直角坐标系中,A是x轴正半轴上的一个定点,点P是反比例函数y=3x(x>0)图象上的一个动点,PB⊥y轴于点B .当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A .逐渐增大B .不变C .逐渐减小D .先增大后减小6.如图,在平面直角坐标系中,O 为□ABCD 的对称中心,点A 的坐标为(-2,-2),AB=5,AB//轴,反比例函数y= kx 的图象经过点D ,将□ABCD 沿y 轴向下平移,使点C 的对应点C ′落在反比例函数的图象上,则平移过程中线段AC 扫过的面积为( )A .10B .18C .20D .24二、填空题7.在反比例函数 y =1−2m x的图象上的图象在二、四象限,则 m 的取值范围是 .8.点 A(x 1,y 1) , B(x 2,y 2) 是反比例函数 y =kx (k ≠0) 图象上两点,当 x 1>x 2>0 时 y 1>y 2 那么一次函数 y =kx −k 的图象不经过第 象限.9.如图,L 1是反比例函数y= kx 在第一象限内的图像,且过点A (2,1),L 2与L 1关于x 轴对称,那么图像L 2的函数解析式为 (x >0).10.如图,已知点A 在反比例函数y=10x (x <0)的图象上,AD ∥x 轴,AB ∥y 轴,点B 在反比例函数y=kx (x<0)的图象上,过点B作BC∥x轴,交y轴于点C,若四边形ABCD的面积为8,则k的值为(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别11.如图所示,点A、B在反比例函数y=kx为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为.三、解答题(m≠0)相交于A、B两点,且A点坐标为(1,3),12.已知一次函数y=kx+b(k≠0)与反比例函数y=mxB点的横坐标为-3.(1)求反比例函数和一次函数的解析式.时x的取值范围.(2)根据图象直接写出使得kx+b<mx13.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=m的x图象经过点E,与AB交于点F .(1)若点B坐标为(−6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF−AE=2,求反比例函数的表达式.14.如图,等边△ABC放置在平面直角坐标系中,已知A(0,0)、B(2,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)如果将等边△ABC向上平移n个单位长度,使点B恰好落在双曲线上,求n的值.15.如图矩形OABC中,点B的坐标(a,b);点P为线段BC上的一动点(与点B,点C不重合),过动点的图象交AB于Q,延长PQ交x轴于D.P的反比例函数y=kx(1)求证:四边形ADPC为平行四边形;(2)若a,b是方程3x2﹣28x+64=0的根(a>b),点F在AC上,若四边形AQPF为菱形时,求这个反比例函数的解析式并直接写出点F的坐标.16.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,对角线OB长为8,且∠COB=30°,D是AB边上的点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处.(1)求OE的长;(2)点E在一反比例函数的图象上,那么该函数的解析式;(3)反比例函数与BC交于M点,连接OM,求△OBM的面积.答案1.D 2.B 3.B 4.C 5.C 6.C 7.m > 12 8.三 9.y=﹣ 2x 10.18 11.412.(1)解:将点 A (1,3)代入 解得:m =3.∴反比例函数解析式为y =3x . ∵点 B 的横坐标为-3 ∴点 B 坐标(-3,-1).把 A (1,3),B (-3,-1)代入 y =kx+b 得:{k +b =3−3k +b =−1解得:{k =1b =2∴一次函数的解析式为 y =x+2;(2)解:由图象可知 kx+b <m k 时,x <-3 或 0<113.(1)∵B(−6,0),AD =3,AB =8,E 为 CD 的中点, ∴E(−3,4),A(−6,8) . ∵反比例函数图象过点 E(−3,4) ∴m =−3×4=−12 .设图象经过 A 、 E 两点的一次函数表达式为: y =kx +b ∴{−6k +b =8−3k +b =4解得 :{k =−43b =0 ∴y =−43x .(2)∵AD =3,DE =4 , ∴AE =5 . ∵AF −AE =2 ∴AF =7 ∴BF =1 .设 E 点坐标为 (a ,4) ,则点 F 坐标为 (a −3,1) .∵E ,F 两点在 y =mx 图象上 ∴4a =a −3 解得: a =−1 ∴E(−1,4) ∴m =−4 ∴y =−4x .14.解:(1)过点C 作CD ⊥x 轴,垂足为D ,如图,设反比例函数的解析式为y =kx ∵A (0,0)、B (2,0) ∴AB=2∵△ABC 是等边三角形 ∴AC=AB=2,∠CAB=60° ∴AD=1,CD=ACsin60=2×√32=√3∴点C 坐标为(1,√3) ∵反比例函数的图象经过点C ∴k=1×√3=√3∴反比例函数的解析式y =√3x;(2)∵将等边△ABC 向上平移n 个单位,则平移后B 点坐标为(2,n ),而平移后的点B 恰好落在双曲线上 ∴2n=√3 ∴n=√32.15.(1)证明:∵四边形OABC 是矩形,点B 的坐标(a ,b ) ∴BC ∥OA ,AB ∥OC ∴C (0,b ),A (a ,0)∵点P 为线段BC 上,点P 的反比例函数y =kx 的图象交AB 于Q ∴P (k b ,b ),Q (a ,ka ),k <ab ∴CP=k b ,BP=a -k b ,BQ=b -k a ,AQ=ka ∵BC ∥OA∴∠BPQ=∠ADQ ,∠PBQ=∠DAQ ∴△QBP ∽△QAD ∴AQ BQ =ADBP ,即k ab−ka=AD a−k b解得:AD=kb∴AD=CP ,又CP ∥AD∴四边形ADPC 是平行四边形;(2)解:解方程3x 2﹣28x +64=0得x 1=4,x 2=163 ∵a ,b 是方程3x 2﹣28x +64=0的根(a >b ) ∴a= 163,b=4∴BP= 163-k 4,BQ=4-3k 16,AQ=3k16∵四边形AQPF 为菱形∴PF ∥AQ ∥OC ,PF=PQ=AQ ,即PQ 2=AQ 2∴(163-k4)2+(4-3k16)2=(3k16)2 解得:k=403或k=1603∵k <ab=643 ∴k=403∴反比例函数的解析式为y =403x ;F (103,32). 16.(1)解:∵四边形ABCD 是矩形 ∴∠OCB=90° ∵OB=8,∠COB=30° ∴BC=OA=4由折叠可知:OE=OA=4; (2)解:过E 点作EF ⊥OC 于F∴∠EFO=90° ∴OF=12OE=2 在Rt △EFO 中OF =√OE 2−EF 2=√16−4=2√3∴点E (−2√3,2)设过点E 的反比例函数解析式为y =kx (k ≠0) ∴k =−2√3×2=−4√3 ∴反比例函数解析式为y =−4√3x.(3)解:在Rt △OBC 中,∠COB=30° ∴BC=12OB=4OC=√OB2−BC2=√82−42=4√3∴点C(−4√3,0)当x=−4√3时,y=1∴CM=1∴BM=BC-CM=4-1=3×3×4√3=6√3∴S△OBM=12。
人教版九年级数学26.1 反比例函数课时训练一、选择题1. 点(2,-4)在反比例函数y=kx的图象上,则下列各点在此函数图象上的是() A. (2,4) B. (-1,-8) C. (-2,-4) D. (4,-2)2. (2020·海南)下列各点中,在反比例函数y=8x图象上的点是( ) A.(-1,8)B.(-2,4)C.(1,7)D.(2,4)3. 设函数y=kx(k≠0,x>0)的图象如图所示,若z=1y,则z关于x的函数图象可能为()4. (2020·营口)反比例函数y=1x(x<0)的图象位于()A.第一象限B.第二象限C.第三象限D.第四象限5. 反比例函数y=-1x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A. y1<y2<0B. y1<0<y2C. y1>y2>0D. y1>0>y26. (2020·湖北孝感)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图像如图所示,则这个反比例函数的解析式为( )A.I=24RB.I=36RC.I=48RD.I=64R7. (2020·青海)若ab<0,则正比例函数y=ax与反比例函数y=b x在同一平面直角坐标系中的大致图象可能是( )8. (2020·淄博)如图,在直角坐标系中,以坐标原点O (0,0),A (0,4),B (3,0)为顶点的R t △AOB ,其两个锐角对应的外角角平分线相交于点P ,且点P 恰好在反比例函数y的图象上,则k 的值为( )A .36B .48C .49D .64二、填空题9. 已知反比例函数y=kx的图象在每一个象限内y 随x 的增大而增大,请写一个符合条件的反比例函数解析式____________.10. 已知反比例函数y =kx(k ≠0),如果在这个函数图象所在的每一个象限内,y 的值随着x 的值增大而减小,那么k 的取值范围是________.11. 如图,过原点O 的直线与反比例函数y 1、y 2的图象在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1=1x ,则y 2与x 的函数表达式是________.12. 双曲线y =m -1x 在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是________.Oxy O xyO x yO x yA .B .C .D .13. 已知点(m -1,y 1),(m -3,y 2)是反比例函数y =mx (m <0)图象上的两点,则y 1________y 2(填“>”或“=”或“<”).14. 如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x(x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为________.15. 如图所示,反比例函数y =kx (k ≠0,x >0)的图象经过矩形OABC 的对角线AC的中点D ,若矩形OABC 的面积为8,则k 的值为________.16. (2019•北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x 上,点A 关于x 轴的对称点B 在双曲线y =2kx,则k 1+k 2的值为__________.三、解答题17. 如图,函数y 1=k 1x +b的图象与函数y 2=k 2x (x>0)的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3). (1)求函数y 1的表达式和B 点坐标;(2)观察图象,比较当x>0时,y 1与y 2的大小.18. 在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、第四象限内的A ,B 两点,与y 轴交于C 点,过点A 作AH △y轴,垂足为H ,OH =3,tan ∠AOH =43,点B 的坐标为(m ,-2). (1)求△AHO 的周长;(2)求该反比例函数和一次函数的解析式.19. (2019·山东泰安)已知一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A ,与x 轴交于点B (5,0),若OB =AB ,且S △OAB =152. (1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,△ABP 是等腰三角形,求点P 的坐标.人教版九年级数学26.1 反比例函数课时训练-答案一、选择题1. 【答案】D【解析】由题知,A(2,-4)在反比例函数图象上,则k=2×(-4)=-8,所以只需要某个点的横纵坐标的乘积等于-8,该点就在这个反比例函数图象上.不难得到,只有D选项中2×(-4)=-8.2. 【答案】D【解析】∵反比例函数的系数8,∴该反比例函数图象上的点的横坐标与纵坐标之积为8,故选D.3. 【答案】D【解析】函数y=kx(k≠0,x>0)的图象在第一象限,则k>0,x>0.由已知得z=1y=1kx=xk,所以z关于x的函数图象是一条射线,且在第一象限,故选D.4. 【答案】【答案】C【解析】结合反比例函数图象的性质,∵k=1>0,所以反比例函数y=1x的图象分布在第一、三象限,又∵x<0,所以它的图象位于第三象限.5. 【答案】D【解析】根据反比例函数的性质或者利用特殊值法即可作出选择.方法一:△反比例函数y=-1x中k=-1<0,∴当x<0时,y>0;当x>0时,y<0.又△x1<0<x2,∴y1>0>y2.故选D.方法二:令x1=-1,则y1=1,令x2=1,则y2=-1,∴y1>0>y2.6. 【答案】C【解析】设反比例函数解析式为I=kR,把图中点(8,6)代入得:k=8×6=48.故选C.7. 【答案】B【解析】∵ab<0,∴a,b异号.(1)当a>0,b<0时,正比例函数y=ax的图象是经过一、三象限和原点的直线,反比例函数y=bx是位于二、四象限的双曲线.选项中没有这样的图形;(2)当a<0,b>0时,正比例函数y=ax的图象是经过二、四象限和原点的直线,反比例函数y=bx是位于一、三象限的双曲线.选项B中的图形与此相符.故选B.8. 【答案】过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,∵A (0,4),B (3,0),∴OA =4,OB =3,∴AB 5,∵△OAB 的两个锐角对应的外角角平分线相交于点P , ∴PE =PC ,PD =PC ,∴PE =PC =PD ,设P (t ,t ),则PC =t ,∵S △P AE +S △P AB +S △PBD +S △OAB =S 矩形PEOD , ∴t ×(t ﹣4)5×tt ×(t ﹣3)3×4=t ×t , 解得t =6, ∴P (6,6), 把P (6,6)代入y 得k =6×6=36.故选:A .二、填空题9. 【答案】y =-2x (答案不唯一) 【解析】△反比例函数的图象在每一个象限内y随x 的增大而增大,∴k <0,∴k 可取-2(答案不唯一).10. 【答案】k>0 【解析】∵反比例函数y =kx(k≠0),图象所在的每一个象限内,y 的值随着x 的值增大而减小,∴k 的取值范围是:k >0.11. 【答案】y 2=4x 【解析】设y 2与x 的函数关系式为y 2=k x ,A 点坐标为(a ,b),则ab =1.又A 点为OB 的中点,因此,点B 的坐标为(2a ,2b),则k =2a·2b =4ab=4,所以y 2与x 的函数关系式为y 2=4x .12. 【答案】m <1【解析】△在每个象限内,函数值y 随x 的增大而增大,∴双曲线在二、四象限内,∴在函数y =m -1x 中,m -1<0,即m <1.13. 【答案】> 【解析】△m <0,∴反比例函数y =mx 的图象位于第二、四象限,且在每一象限内y 随x 的增大而增大,又△m -1>m -3,∴y 1>y 2.14. 【答案】6 【解析】 设A 点的坐标为(a ,9a),直线OA 的解析式为y =kx ,于是有9a =ka ,∴k =9a 2,直线为y =9a 2x ,联立得方程组⎩⎪⎨⎪⎧y =9a 2x y =1x,解得B 点的坐标为(a 3,3a ),∵AO =AC ,A(a ,9a ),∴C(2a ,0),∴S △ABC =S △AOC -S △BOC =12×2a×9a -12×2a×3a =9-3=6.15. 【答案】2 【解析】由题意可知,D 点在反比例函数图象上,如解图所示,过点D 作DE△x 轴于点E ,作DF△y 轴于点F ,则k =x D ·y D =DF·DE =S 矩形OEDF ,又D 为对角线AC 中点,所以S 矩形OEDF =14S 矩形OABC =2,∴k =2.16. 【答案】0【解析】∵点A (a ,b )(a >0,b >0)在双曲线y =1k x上,∴k 1=ab ; 又∵点A 与点B 关于x 轴对称,∴B (a ,–b ),∵点B 在双曲线y =2kx上,∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0;故答案为:0.三、解答题17. 【答案】解:(1)由直线过A 、C 两点得⎩⎨⎧2k 1+b =1,b =3解得k 1=-1,b =3.∴y 1=-x +3.将A 点坐标代入y 2=k 2x 得1=k 22,∴k 2=2,∴y 2=2x .设B 点坐标为(m ,n),∵B 是函数y 1=-x +3与y 2=2x 图象的交点, ∴-m +3=2m ,解得m =1或m =2,由题意知m =1,此时n =2m =2,∴B 点的坐标为(1,2). (2)由图知:①当0<x <1或x >2时,y 1<y 2; ②当x =1或x =2时,y 1=y 2; ③当1<x <2时,y 1>y 2.18. 【答案】(1)【思路分析】在Rt △AOH 中用三角函数求出AH ,再用勾股定理求出AO ,进而得周长.解:在Rt △AOH 中,tan ∠AOH =43,OH =3, ∴AH =OH·tan ∠AOH =4,(2分) ∴AO =OH 2+AH 2=5,∴C △AOH =AO +OH +AH =5+3+4=12.(4分)(2)【思路分析】由(1)得出A 点坐标,再用待定系数法求出反比例函数解析式,由反比例函数解析式求出B 点坐标,最后把A 、B 点坐标代入一次函数解析式中求出一次函数解析式. 解:由(1)得,A(-4,3),把A(-4,3)代入反比例函数y =kx 中,得k =-12,∴反比例函数解析式为y =-12x ,(6分)把B(m ,-2)代入反比例函数y =-12x 中,得m =6, ∴B(6,-2),(8分)把A(-4,3),B(6,-2)代入一次函数y =ax +b 中,得 ⎩⎨⎧6a +b =-2-4a +b =3, ∴⎩⎪⎨⎪⎧a =-12b =1, ∴一次函数的解析式为y =-12x +1.(10分)19. 【答案】(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S△OAB =152,∴12×5×AD=152,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=mx中得,m=9×3=27,∴反比例函数的解析式为y=27x,将点A(9,3),B(5,0)代入直线y=kx+b中,9350k bk b+=⎧⎨+=⎩,∴3434kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AB的解析式为y=34x﹣34;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2,∴a=658,∴P(658,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(658,0).。
26.1.2 反比例函数的图象和性质一、选择题1.函数与y=﹣mx2+m(m≠0)在同一直角坐标系中的大致图象可能是()A.B.C.D.【答案】B【解析】解:由解析式y=﹣mx2+m可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得m<0,则﹣m>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与m的取值相矛盾,故A不符合题意;B、由双曲线的两支分别位于一、三象限,可得m>0,则﹣m<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B符合题意;C、由双曲线的两支分别位于一、三象限,可得m>0,则﹣m<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与m的取值相矛盾,故C不符合题意;D、由双曲线的两支分别位于一、三象限,可得m>0,则﹣m<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与m的取值相矛盾,故D符合题意.故选:B.2.将函数y=的图象沿x轴向右平移1个单位长度,得到的图象所相应的函数表达式是()A.y=B.y=C.y=+1D.y=﹣1【答案】B【解析】解:将函数y=的图象沿x轴向右平移1个单位长度,得到的图象所相应的函数表达式是y=,故选:B.3.关于反比例函数y=下列说法不正确的是()A.图象关于原点成中心对称B.当x>0时,y随x的增大而增大C.图象与坐标轴无交点D.图象位于第二、四象限【答案】D【解析】解:A、反比例函数y=,图象关于原点成中心对称,正确,不合题意;B、反比例函数y=,当x>0时,y随x的增大而增大,正确,不合题意;C、反比例函数y=,图象与坐标轴无交点,正确,不合题意;D、反比例函数y=,图象位于第一、三象限,原说法错误,符合题意;故选:D.4.已知抛物线y=x2+2x﹣k﹣2与x轴没有交点,则函数y=的图象大致是()A.B.C.D.【答案】B【解析】解:∵抛物线y=x2+2x﹣k﹣2与x轴没有交点,∴方程x2+2x﹣k﹣2=0没有实数根,∴△=22﹣4×1×(﹣k﹣2)=4k+12<0,解得k<﹣3,∴函数y=的图象在二、四象限,故选:B.5.已知一次函数y=kx+5,y随x的增大而减小.下列关于反比例函数y=的描述,其中正确的是()A.当x>0时,y>0B.y随x的增大而增大C.y随x的增大而减小D.图象在第二、四象限【答案】D【解析】解:∵一次函数y=kx+5,y随x的增大而减小,∴k<0,∴k﹣2<0,∴反比例函数y=的图象在第二、四象限,故选项D正确;当x>0时,反比例函数y=的函数值y<0,故选项A错误;在每个象限内,y随x的增大而增大,故选项B错误、选项C错误;故选:D.二、填空题6.反比例函数y=(x<0)的图象如图所示,则m的取值范围为.【答案】m<﹣2.【解析】解:∵反比例函数y=(x<0)的图象在第二象限,∴m+2<0,∴m<﹣2.故答案为:m<﹣2.7.我们知道,一次函数y=x+1的图象可以由正比例函数y=x的图象向上平移1个长度单位得到.将函数y=的图象向平移个长度单位得到函数y=的图象.【答案】左,2.【解析】解:函数y=的图象可以看成是由反比例函数y=的图象向左平移2个单位长度得到.故答案为:左,2.8.反比例函数经过(﹣3,2),则图象在象限.【答案】二四【解析】解:∵反比例函数经过(﹣3,2),∴k=﹣3×2=﹣6,∴图象在二四象限,故答案为二四.9.已知一个函数的图象与反比例函数y=的图象关于y轴对称,则这个函数的表达式是.【答案】y=﹣.【解析】解:反比例函数y=的图象关于y轴对称的函数x互为相反数,y不变.得y==﹣.故答案为y=﹣.10.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是.【答案】k1>k2>k3.【解析】解:由图象可得,k1>0,k2<0,k3<0,∵点(﹣1,﹣)在y2=的图象上,点(﹣1,)在y3=的图象上,∴﹣<,∴k2>k3,由上可得,k1>k2>k3,故答案为:k1>k2>k3.三、解答题11.我们已经知道,一次函数y=x+1的图象可以看成由正比例函数y=x的图象沿x轴向左平移1个单位得到;也可以看成由正比例函数y=x的图象沿y轴向上平移1个单位得到.(1)函数y=的图象可以看成由反比例函数y=的图象沿x轴向平移1个单位得到;(2)函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向平移个单位得到;(3)如果将二次函数y=﹣x2的图象沿着x轴向右平移a(a>0)个单位,再沿y轴向上平移2a个单位,得到y=﹣x2+mx﹣15的图象,试求m的值.【答案】解:(1)利用反比例函数图象的左右平移规律是左加右减,函数y=的图象可以看成由反比例函数y=的图象沿x轴向右平移1个单位得到.故答案是:右.(2)利用一次函数图象的上下平移规律是上加下减,函数y=2x+4的图象可以看成由正比例函数y=2x 图象沿x轴向左平移2个单位得到.故答案是:左,2.(3)利用二次函数图象的平移规律,y=﹣x2向右平移a个单位,再向上平移2a个单位后可得:y=﹣(x﹣a)2+2a与y=﹣x2+mx﹣15对应后可得:∵a>0,∴故答案是:m=10.【解析】(1)利用反比例函数图象的左右平移规律是左加右减;(2)利用一次函数图象的左右平移规律是左加右减;(3)利用二次函数图象的平移规律,再对应比较.12.先填表,再画出反比例函数的图象x﹣4﹣3﹣2﹣11234y【答案】解:填写如下:x﹣4﹣3﹣2﹣11234y﹣1﹣2﹣4421图象为:【解析】将点的横坐标代入到反比例函数的解析式后求得y值,首先求出图象所过的点的坐标,然后再画出双曲线.13.若函数y=(2m﹣9)x|m|﹣7是反比例函数,且它的图象分别位于第一象限和第三象限内,求m的值.【答案】解:根据题意,得解得m=6,故m的值为:6.【解析】根据反比例函数y=(k≠0)中自变量的指数是﹣1和当k>0时,该函数图象位于第一、第三象限求解即可.14.已知反比例函数y=的图象在第一、三象限,求m的取值范围.【答案】解:∵反比例函数y=的图象在第一、三象限,∴2m﹣1>0,解得,m>.【解析】根据反比例函数的性质列出不等式,解不等式得到答案.15.如图,是反比例函数y=的图象的一支,根据图象回答下面的问题:图象的另一支在哪个象限?常数m的取值范围是什么?【答案】解:∵比例函数的一支图象在第一象限,∴图象的另一支在第三象限;∵反比例函数的图象在第一、三象限,∴m﹣7>0,解得m>7.【解析】根据反比例函数图象的对称性可知另一支在第三象限,且m﹣7>0,可求得m的范围.。
九年级数学下分层优化堂堂清 第26章 反比例函数26.1.2 反比例函数的图像和性质(二)学习目标:1 通过图象探索反比例函数的主要性质.2 逐步提高从函数图象获取信息的能力,会运用数形结合的思想方法解决涉及反比例函数的有关问题.老师对你说:知识点一 、反比例函数()中的比例系数k 的几何意义过双曲线x k y =(0k ≠) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . 过双曲线x k y =(0k ≠) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k.要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.知识点二 、反比例函数几何意义的应用【考点1】 反比例函数的几何意义【例11】已知反比例函数y =图象如图所示,下列说法正确的是( )A .k >0B .若图象上点的坐标分别是 M (﹣2,y 1 ),N (﹣1,y 2 ),则 y 1>y 2C .y 随x 的增大而减小D .若矩形OABC 面积为2,则k =﹣2【例12】若图中反比例函数的表达式均为y =,则阴影面积为1.5的是( )A .B .C .D .【例13】如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =4,若反比例函数y =(k ≠0)图象的一支经过点A ,则k 的值是( )A .B .C .D .【例14】反比例函数的图象如图所示,则△ABC 的面积为( ) A . B . C .3 D .6【例21】如图,点A 在双曲线2y x =上,点B 在双曲线6y x =上,点C 、D 在x 轴上,若四边形ABCD 是矩形,则它的面积为( )A .2B .3C .4D .5【例22】如图,直线l ⊥x 轴于点P ,且与反比例函数1y =1k x(x >0)及2y =2k x (x >0)的图象分别交于点A 、B ,连接OA 、OB ,若△OAB 的面积为3,则k 1﹣k 2的值为( )A .32B .3C .6D .9【例23】如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数6y x =-和8y x=的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接,AC BC ,则ABC 的面积为( )A .6B .7C .8D .14能力强化提升训练1 .如图,平行四边形OABC 的顶点O ,B 在y 轴上,顶点A 在y =(k 1<0)上,顶点C 在y =(k 2>0)上,则平行四边形OABC 的面积是( )A .﹣2k 1B .2k 2C .k 1+k 2D .k 2﹣k 1 2 .如图,在反比例函数y =(x >0)的图象上,有点P 1、P 2、P 3、P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1、S 2、S 3,则S 1+S 2+S 3=( )A .1 C .2 D .无法确定3 .如图,两个反比例函数3y x =和1y x =在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形P AOB 的面积为_______.4 .如图,点,2A a 在反比例函数4y x =的图象上,//AB x 轴,且交y 轴于点C ,交反比例函数k y x=于点B ,已知2AC BC =.(1)求直线OA 的解析式; (2)求反比例函数k y x=的解析式; (3)点D 为反比例函数k y x =上一动点,连接AD 交y 轴于点E ,当E 为AD 中点时,求OAD △的面积. 堂堂清一、选择题(每小题4分,共32分)1 .若图中反比例函数的表达式均为,则阴影面积为2的是( )A .B .C .D .4 .如图,点A 是反比例函数y =x的图象上的一点,过点A 作AB ⊥x 轴,垂足为B .点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为4,则k 的值是( )A . 4B . ﹣4C . 8D . ﹣8上,若□ABCD 面积为6,则k 的值是( )A .1B .3C .6D .6 7 .如图,点A 、B 在反比函数12y x =的图象上,A 、B 的纵坐标分别是3和6,连接OA 、OB ,则OAB 的面积是( )A .9B .8C .7D .6MN ⊥x 轴于点N ,则⊥MON 的面积可能是( )A .0.5.B .1.C .2.D .3.5.二、填空题(每小题4分,共20分)10 .如图,A ,B 两点在双曲线 y =x上,分别经过 A ,B 两点向轴作垂线段,已知阴影小矩形的面积为 1,则空白两小矩形面积的和 S 1+S 2=______.11 .如图,在平面直角坐标系中,点B 在第一象限,BA x ⊥轴于点A ,反比例函数(0)k y x x=>的图象与线段AB 相交于点C ,且C 是线段AB 的中点,若OAB ∆的面积为3,则k 的值为__________.12 .点A ,B 分别是双曲线(0)k y k x=>上的点,AC y ⊥轴正半轴于点C ,BD y ⊥轴于点D ,联结AD ,BC ,若四边形ACBD 是面积为12的平行四边形,则k =________.13 .如图,点P 是双曲线()4:0C y x x =>上的一点,过点P 作x 轴的垂线交直线1:22AB y x =-于点Q ,连结,OP OQ 当点P 在曲线C 上运动,且点P 在Q 的上方时,POQ △面积的最大值是________.三、解答题(共6小题,48分)14 (6分)双曲线C 1:y =和C 2:y =如图所示,点A 是C 1上一点,分别过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足分别为点B 、点C ,AB ,AC 与C 2分别交于点D 、点E ,若四边形ADOE 的面积为4,求k 1﹣k 2的值15 .(9分)如图,点,2A a 在反比例函数4y x=的图象上,//AB x 轴,且交y 轴于点C ,交反比例函数k y x=于点B ,已知2AC BC =. (1)求直线OA 的解析式;(2)求反比例函数k y x=的解析式; (3)点D 为反比例函数k y x =上一动点,连接AD 交y 轴于点E ,当E 为AD 中点时,求OAD △的面积. 16 .(8分)反比例函数,(n <0)的图象如图所示,点P 为x 轴上不与原点重合的一动点,过点P 作AB ∥y 轴,分别与y 1、y 2交于A 、B 两点.(1)当n =﹣10时,求S △OAB ;(2)延长BA 到点D ,使得DA =AB ,求在点P 整个运动过程中,点D 所形成的函数图象的表达式.(用含有n 的代数式表示).17 .(8分)如图,A 、B 两点在反比例函数y =(x >0)的图象上,其中k >0,AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,且AC =1(1)若k =2,则AO 的长为 ,△BOD 的面积为 1 ;(2)若点B 的横坐标为k ,且k >1,当AO =AB 时,求k 的值.18 .(8分)如图,在直角坐标系中,四边形OABC 是矩形,点D (1,4)是BC 中点,反比例函数y =的图象经过点D ,并交AB 于点E .(1)求k 的值;(2)求五边形OAEDC 的面积S .19 .(9分)平面直角坐标系中,点A 在函数y 1=(x >0)的图象上,点B 在y 2=﹣(x <0)的图象上,设A 的横坐标为a ,B 的纵坐标为b .(1)当|a |=|b |=5时,求△OAB 的面积;(2)当AB ∥x 轴时,求△OAB 的面积.拓展培优*冲刺满分1 .反比例函数y=在一象限上有两点A、B.(1)如图1,AM⊥y轴于M,BN⊥x轴于N,求证:△AMO的面积与△BNO面积相等;(2)如图2,若点A(2,m),B(n,2)且△AOB的面积为16,求k值.。
第二十六章反比例函数26.1.2 反比例函数的图像和性质精选练习答案基础篇一. 单选题(共10小题)1.(2019·利辛县期中)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2【答案】C【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.2.(2019·南海区期末)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.0【答案】B【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选B.3.(2019·山东胜利一中初三期中)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【答案】D【解析】详解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.4.(2018·宜春市期末)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n【答案】D【详解】∵y=−2x的k=-2<0,图象位于二四象限,a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.5.(2019·安庆市期中)一次函数y=ax+b和反比例函数y在同一直角坐标系中的大致图象是()A.B.C.D.【答案】A【详解】图A、B直线y=ax+b经过第一、二、三象限,∴a>0、b>0,∵y=0时,x=-,即直线y=ax+b与x轴的交点为(-,0)由图A、B的直线和x轴的交点知:->-1,即b<a,所以b-a<0,∴a-b>0,此时双曲线在第一、三象限,故选项B不成立,选项A正确;图C、D直线y=ax+b经过第二、一、四象限,∴a<0,b>0,此时a-b<0,双曲线位于第二、四象限,故选项C、D均不成立;故选:A.6.(2019·深圳市高级中学初三期中)已知反比例函数,下列结论中不正确的是A.其图象经过点B.其图象分别位于第一、第三象限C.当时,y随x的增大而减小D.当时,【答案】D【详解】A、当时,,此函数图象过点,故本选项正确;B、,此函数图象的两个分支位于一三象限,故本选项正确;C、,当时,y随着x的增大而减小,故本选项正确;D、当时,,当时,,故本选项错误,故选D.7.(2018·冠县期末)若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【答案】B【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a <0,b >0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B 符合.故选B8.(2019·长春市期中)若点1(,6)A x -,2(,2)B x -,3(,2)C x 在反比例函数的图像上,则,,的大小关系是( )A .B .C .D .【答案】B【解析】详解:∵反比例函数y =中,k=12>0, ∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小,∵y 1<y 2<0<y 3, ∴.故选:B .9.(2018·钦州市期末)已知反比函数,下列结论中不正确的是( ) A .图象必经过点B .图象位于第二、四象限C .若则D .在每一个象限内,随值的增大而减小【答案】D【详解】 选项A ,当x=-3时,y=﹣=2,∴图象经过点(﹣3,2),选项A 正确;选项B ,∵k=-6<0,∴图象在第二、四象限,选项B 正确;选项C ,k=-6<0,∴图象在第四象限内y 随x 的增大而减小,∴当x <-2时,0<y <3,选项C 正确; 选项D ,∵k=-6<0,∴在每一象限内, y 随x 的增大而增大,选项D 错误;故选D .10.(2018·庆安市期末)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y =6x的图象上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【答案】B【详解】∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=6x的图象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故选B.二. 填空题(共5小题)11.(2019·新乐市期末)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是_____.【答案】k<1【详解】∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1,故答案为:k<1.12.(2018·沁水县期末)已知点P(a,b)在反比例函数y=2x的图象上,则ab=_____.【答案】2【详解】∵点P(a,b)在反比例函数y=的图象上,提升篇∴b=,∴ab=2,故答案为:2.13.(2019·阳东区期末)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为__________.【答案】y1<y2【解析】详解:∵反比例函数y=-,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-图象上的两个点,-4<-1,∴y1<y2,故答案为:y1<y2.14.(2019·大东区期末)若反比例函数的图象位于第二、四象限,则的取值范围是__.【答案】k>2【详解】∵反比例函数y=的图象在第二、四象限,∴2-k<0,∴k>2.故答案为:k>2.15.(2019·滨海新区期末)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB 的面积为2,则k的值是_____.【答案】4【详解】∵点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,∴S△AOB=|k|=2,又∵函数图象位于一、三象限,∴k=4,故答案为:4.三. 解答题(共2小题)16.(2018·福州市期末)如图,在平面直角坐标系中,一次函数与反比例函数2myx的图像交于和两点.(1)求,的值;(2)结合图像,当时,直接写出的取值范围.【答案】(1)=4,=6;(2)或【分析】(1)和是一次函数与反比例函数2myx的图像的两个交点,将其分别代入一次函数,即可求出,的值.(2)题干要求当时,直接写出的取值范围,即直线在曲线上方,观察图像交点即可求出的取值范围.【详解】解:( 1 ) ∵A ( -3,a ) ,B ( b,-2 ),∴a=∴ b = 6.( 2 ) ∵A ( -3 ,4 ) ,B ( 6 ,-2 )∴当时,观察图像可知或.17.(2019·桂林市期中)如图,反比例函数y1=的图象与一次函数y2=ax+b的图象相交于点A(1,4)和B(﹣2,n).(1)求反比例函数与一次函数的解析式;(2)请根据图象直接写出y1<y2时,x的取值范围.【答案】(1)y1=,y2=2x+2;(2)﹣2<x<0或x>1.【分析】(1)根据待定系数法,可得函数解析式;(2)根据一次函数图象在上方的部分是不等式的解,可得答案.【详解】(1)∵反比例函数y1=的图过点A(1,4),∴4=,即k=4,∴反比例函数的解析式为:y1=,∵反比例函数y1=的图象过点B(﹣2,n),∴n==﹣2,∴B(﹣2,﹣2),∵一次函数y2=ax+b的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得:∴一次函数的解析式为:y2=2x+2;(2)由图象可知:当﹣2<x<0或x>1.。
专项练习2 反比例函数的图象和性质(限时:30分钟 满分:60分)一、选择题(每小题3分,共18分)1.反比例函数 y =5x 的图象位于平面直角坐标系的( ) A.第一、三象限 B.第二、四象限C.第一、二象限D.第三、四象限2.若点A(3,-4)、B(-2,m)在同一个反比例函数的图象上,则m 的值为( )A.6B. -6C.12D.-123.若 P ₁(x ₁,y ₁),P ₂(x ₂,y ₂)在反比例函数 y =k x (k⟩0)的图象上,且 x₁=−x₂,则( )A.y₁<y₂B.y₁=y₂C.y₁>y₂D.y₁=−y₂4.一次函数y=ax+b 与反比例函数y=a−b x ,其中ab<0,a 、b 为常数,它们在同一坐标系中的图象可以是( )5.在反比例函数 y =1−3m x 图象上有两点 A (x₁,y₁),B (x₂,y₂),x₁<0<x₂,y₁<y₂,则m 的取值范围是( )A.m >13B.m <13C.m ≥13D.m ≤136.如图,A ,B 两点在反比例函数 y =k 1x 的图象上,C ,D 两点在反比例函数 y =k 2x 的图象上,AC⊥y轴于点E,BD⊥y 轴于点F,AC=2,BD=1,EF=3,则 k₁−k₂的值是( )A.6B.4C.3D.2二、填空题(每小题3分,共12分)7.已知反比例函数. y =6x ,当x>3时,y 的取值范围是 .8.如图,直线 y=kx 与双曲线 y =2x (x⟩0)交于点A(1,a),则k= .9.如图,已知反比例函数 y =k x (k 为常数,k≠0)的图象经过点 A,过 A 点作 AB⊥x 轴,垂足为 B,若△AOB 的面积为1,则 k=10.反比例函数 y 1=k 1x ,y 2=k 2x 和 y 3=k 3x 的图象如图所示,则k ₁、k ₂ 和k ₃ 大小关系为三、解答题(每小题10分,共30分)11.画出函数 y =6x 与函数y=6x 的图象,并写出它们的交点坐标.12.如图,已知反比例函数 y =k x 的图象经过点A(4,m),AB⊥x 轴,且△AOB 的面积为 2.(1)求k 和m 的值;(2)若点C(x,y)也在反比例函数 y =k x 的图象上,当-3≤x≤-1时,求函数值y 的取值范围.13.已知A(-4,2),B(n,-4)两点是一次函数 y=kx+b和反比例函数.y=mx图象的两个交点.(1)求一次函数和反比例函数的关系式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b-mx>0的解集.专项练习2 反比例函数的图象和性质1. A2. A3. D4. C5. B6. D7.0<y<2 8.2 9.—2 10. k ₁<k ₂<k ₃11.解:画图如下,它们的交点坐标为(1,6),( (−1,−6).12.解:(1)∵反比例函数 y =k x 的图象经过点A(4,m),. AB ⊥x 轴于点B,△AOB 的面积为2, ∴12OB ×AB =2,12×4×m =2,∴m =1,∴A (4,1),∴)=xy=4.(2)由(1)知反比例函数的关系式为 y =4x ,∵k=4>0,∴当-3≤x≤-1时,y 随x 的增大而减小.∵点C(x,y)在反比例函数 y =4x 的图象上,∴当x=-3时,y 取最大值, y =−43;当x=-1时,y 取最小值,y=-4.∴y 的取值范围为: −4≤y ≤−43.13.解:(1)把A(-4,2)代入 y =m x ,得m=2×(-4)=-8.所以反比例函数的关系式为 y =−8x .把B(n,-4)代入 y =−8x ,得-4n=-8,解得n=2.把A(--4,2)和 B(2,- 4)代入 y= kx+b,得 {−4k +b =2,2k +b =−4.解得 {k =−1,b =−2.所以一次函数的关系式为y=-x-2.(2)在y=-x-2中,当y=0时,x=-2,即直线y=-x-2与x 轴交于点C(-2,0),∴OC=2. ∴S AOB =S αx +S Hc =12×2×2+12×2×4=6,(3)x<-4或0<x<2.。
2022-2023学年人教版九年级数学下册《26.1反比例函数》同步练习题(附答案)一.选择题1.下列函数中,不是反比例函数的是()A.y=x﹣1B.xy=5C.D.2.若y=(a+1)x a2﹣2是反比例函数,则a的值为()A.1B.﹣1C.±1D.任意实数3.如图,过原点的一条直线与反比例函数(k≠0)的图象分别交于A、B两点,若A 点的坐标为(3,﹣5),则B点的坐标为()A.(3,﹣5)B.(﹣5,3)C.(﹣3,+5)D.(+3,﹣5)4.下列函数中,y的值随x值的增大而增大的函数是()A.y=B.y=﹣2x+1C.y=x﹣2D.y=﹣x﹣2 5.已知反比例函数y=﹣,下列说法不正确的是()A.图象经过点(2,﹣4)B.图象分别位于第二、四象限内C.在每个象限内y的值随x的值增大而增大D.y≤1时,x≤﹣86.对于反比例函数y=﹣,下列说法不正确的是()A.点(﹣2,1)在它的图象上B.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2C.它的图象在第二、四象限D.当x>0时y随x的增大而增大7.若反比例函数在每个象限内,y随x的增大而减小,则()A.B.C.D.8.二次函数y=ax2+bx和反比例函数在同一直角坐标系中的大致图象是()A.B.C.D.9.两个反比例函数C1:和C2:在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形P AOB的面积为()A.1B.2C.3D.410.如图,∠OAB=30°,点A在反比例函数的图象上,过B的反比例函数解析式为()A.B.C.D.二.填空题11.反比例函数图象的一支如图所示,△POM的面积为2,则该函数的解析式是.12.在反比例函数y=的图象的每一支上,y都随x的增大而减小,则k的取值范围是.13.下列函数:①y=﹣5x;②y=3x﹣2;③y=﹣(x>0);④y=3x2(x<0),其中y的值随x的增大而增大的函数为.(填序号)14.若(1,y1)、(2,y2)、(﹣3,y3)都在函数y=﹣的图象上,则y1、y2、y3的大小关系是.15.如图,一次函数y1=k1x+b的图象与反比例函数y2=的图象交于点A(1,m),B(4,n).当y1>y2时,x的取值范围是.16.如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.17.如图,四边形OABC是正方形,OA在y轴正半轴上,OC在x轴负半轴上.反比例函数y=﹣在第二象限的图象与BC,AB分别交于点E,F.若∠EOF=30°,则线段OE的长度为.三.解答题18.已知y是关于x的反比例函数,当x=3时,y=﹣2.(1)求此函数的表达式;(2)当x=﹣4时,函数值是2m,求m的值.19.如图,反比例函数的图象经过点(﹣2,4)和点A(a,﹣2).(Ⅰ)求该反比例函数的解析式和a的值.(Ⅱ)若点C(x,y)也在反比例函数的图象上,当2<x<8时,求函数y 的取值范围.20.已知图中的曲线是反比例函数y=(m为常数)图象的一支.(1)根据图象位置,求m的取值范围;(2)若该函数的图象任取一点A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求m的值.21.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于点A(3,1),B(﹣1,n)两点.(1)分别求出一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b≥的x的取值范围;(3)连接BO并延长交双曲线于点C,连接AC,求△ABC的面积.22.如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为;(3)点P是x轴上一点,当S△P AC=S△AOB时,请直接写出点P的坐标为.23.如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D在x轴的正半轴上.若AB的对应线段CB恰好经过点O.(1)求点B的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由.24.如图,平行四边形ABCD的面积为12,AB∥y轴,AB,CD与x轴分别交于点M,N,对角线AC,BD的交点为坐标原点,点A的坐标为(﹣2,1),反比例函数的图象经过点B,D.(1)求反比例函数的解析式;(2)点P为y轴上的点,连接AP,若△AOP为等腰三角形,求满足条件的点P的坐标.参考答案一.选择题1.解:反比例函数的三种形式为:①y=(k为常数,k≠0),②xy=k(k为常数,k≠0),③y=kx﹣1(k为常数,k≠0),由此可知:只有y=不是反比例函数,其它都是反比例函数,故选:C.2.解:由反比例函数的定义得a+1≠0且a2﹣2=﹣1由a+1≠0得a≠﹣1由a2﹣2=﹣1得a=±1综上所述,a=1.故选:A.3.解:∵反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称,∴它的另一个交点的坐标是(﹣3,+5).故选:C.4.解:A、y=是反比例函数,k=2>0,在每个象限内,y随x的增大而减小,所以A选项不合题意;B、y=﹣2x+1是一次函数,k=﹣2<0,y随x的增大而减小,所以B选项不合题意;C、y=x﹣2是一次函数,k=1>0,y随x的增大而增大,所以C选项符合题意;D、y=﹣x﹣2是一次函数,k=﹣1<0,y随x的增大而减小,所以D选项不合题意.故选:C.5.解:A、当x=2时,y=﹣4,即反比例函数y=﹣的图像经过点(2,﹣4),故不符合题意;B、因为反比例函数y=﹣中的k=﹣8,所以图像分别在二、四象限,故不符合题意;C、因为反比例函数y=﹣中的k=﹣8,所以在每个象限内y随x增大而增大,故不符合题意;D、y≤1时,x≤﹣8或x>0,故符合题意;故选:D.6.解:A、当x=﹣2时,y=1,即点(﹣2,1)在它的图象上,不符合题意;B、点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,符合题意;C、反比例函数y=﹣中的k=﹣2<0,所以它的图象在第二、四象限,不符合题意;D、反比例函数y=﹣中的k=﹣2<0,所以当x>0时y随x的增大而增大,不符合题意.故选:B.7.解:∵反比例函数在每个象限内,y随x的增大而减小,∴3k﹣2>0,解得k>,故选:A.8.解:A、由反比例函数得:b>0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b<0,∴选项A不正确;B、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b>0,∴选项B正确;C、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b<0,∴选项C不正确;D、由反比例函数得:b<0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b>0,∴选项D不正确;故选:B.9.解:∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=|k|=,S矩形PCOD=|2|=2,∴四边形P AOB的面积=2﹣2•=1.故选:A.10.解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图.∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴=,∵S△AOD==3,∴S△BCO=|k|=1,∵经过点B的反比例函数图象在第二象限,∴k=﹣2,故反比例函数解析式为:y=﹣.故选:C.二.填空题11.解:∵△POM的面积为2,∴S=|k|=2,∴k=±4,又∵图象在第四象限,∴k<0,∴k=﹣4,∴反比例函数的解析式为:y=﹣.故答案为:y=﹣.12.解:在反比例函数y=的图象的每一支上,y都随x的增大而减少,∴﹣k+1>0,∴k<1,∴k的取值范围为:k<1.故答案为:k<1.13.解:①对于y=﹣5x,y随x的增大而减小;②对于y=3x﹣2,y随x的增大而增大;③当x>0时,函数y=﹣,y随x的增大而增大;④y=3x2,当x<0时,y随x的增大而减小.故答案为:②③.14.解:∵y=﹣中,k=﹣2<0,∴图象在二、四象限,在每一象限内y随x的增大而增大,∵2>1>0,﹣3<0,∴点(1,y1),B(2,y2)在第四象限,(﹣3,y3)在第二象限,∴y1<y2<0,y3>0.∴y1<y2<y3.故答案为:y1<y2<y3.15.解:∵一次函数y1=k1x+b的图象与反比例函数的图象交于点A(1,m),B(4,n),∴当1<x<4时,y1>y2,当x<0时,y1>y2,即当y1>y2时,x的取值范围是x<0或1<x<4.故答案为:x<0或1<x<4.16.解:延长AC交x轴于E,如图所示:则AE⊥x轴,∵C的坐标为(4,3),∴OE=4,CE=3,∴OC==5,∵四边形OBAC是菱形,∴AB=OB=OC=AC=5,∴AE=5+3=8,∴点A的坐标为(4,8),把A(4,8)代入函数y=(x>0)得:k=4×8=32;故答案为:32.17.解:∵四边形OABC是正方形,∴OA=OC,∠OAF=∠OCE=90°,∵反比例函数y=﹣在第二象限的图象与BC,AB分别交于点E,F,∴CE×OC=AF×OA=4,∴CE=AF,在△OCE与OAF中,,∴△OCE≌△OAF(SAS),∵∠EOF=30°,∴∠COE=∠AOF=30°,∴OC=CE,∵CE×OC=4,∴CE=2,∴OE=2CE=4,故答案为:4.三.解答题18.解:(1)设y=(k≠0),则k=xy;∵当x=3时,y=﹣2,∴k=3×(﹣2)=﹣6,∴该反比例函数的解析式是:y=﹣;(2)由(1)知,y=﹣,∵x=﹣4时,函数值是2m,∴2m=﹣,∴m=.19.解:(Ⅰ)将点(﹣2,4)代入y=(k≠0),得:k=﹣2×4=﹣8,∴反比例函数解析式为:y=﹣,把点A(a,﹣2)代入y=﹣得﹣=﹣2,∴a=4,A(4,﹣2);(Ⅱ)∵点C(x,y)也在反比例函数的图象上,∴当x=2时,y=﹣4;当x=8时,y=﹣1,∵k=﹣8<0,∴当x>0 时,y随x值增大而增大,∴当2<x<8 时,﹣4<y<﹣1.20.解:(1)∵这个反比例函数的图象分布在第一、第三象限,∴m﹣5>0,解得m>5.(2)∵S△OAB=|k|,△OAB的面积为4,∴(m﹣5)=4,∴m=13.21.解:(1)∵把A(3,1)代入y=得:k2=3×1=3,∴反比例函数的解析式是y=,∵B(﹣1,n)代入反比例函数y=得:n=﹣3,∴B的坐标是(﹣1,﹣3),把A、B的坐标代入一次函数y=k1x+b得:,解得:k1=1,b=﹣2,∴一次函数的解析式是y=x﹣2;(2)从图象可知:k1x+b≥的x的取值范围是当﹣1≤x<0或x≥3.(3)过C点作CD∥y轴,交直线AB于D,∵B(﹣1,﹣3),B、C关于原点对称,∴C(1,3),把x=1代入y=x﹣2得,y=﹣1,∴D(1,﹣1),∴CD=4,∴S△ABC=S△ACD+S△BCD=×4×(3+1)=8.22.解:(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=得8=,解得k=16,∴反比例函数的解析式为y=;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2,故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=S△AOB=×30=24,∴2S△AOP=24,∴2××y A=24,即2×OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).23.解:(1)∵AB∥x轴,∴∠ABO=∠BOD,由旋转可知∠ABO=∠CBD,∴∠BOD=∠CBD,∴OD=BD,由旋转知OB=BD,∴△OBD是等边三角形,∴∠BOD=60°,∴B(1,),∵双曲线y=经过点B,∴k=xy=1×=.∴双曲线的解析式为y=.(2)∵∠ABO=60°,∠AOB=90°,∴∠A=30°,∴AB=2OB,由旋转知AB=BC,∴BC=2OB,∴OC=OB,∴点C(﹣1,﹣),把点C(﹣1,﹣)代入y=,﹣=﹣,∴点C在双曲线上.24.解:(1)∵AB∥y轴,AB⊥x轴.点A(﹣2,1),且平行四边形ABCD对角线交于坐标原点O,∴AM=1,OM=ON=2,∴MN=4,∵平行四边形ABCD的面积为12,∴AB•MN=12,∴AB=3,BM=2.∴点B(﹣2,﹣2).将点B(﹣2,﹣2)代入,得,∴k=4.∴反比例函数的解析式为;(2)在Rt△AOM中,根据勾股定理,得.当△AOP是等腰三角形时,分三种情况讨论:①当OA=OP时,若点P在y轴的负半轴上,则点,若点P在y轴的正半轴上,则点;②当OP=AP时,点P在OA的垂直平分线上,如图,∴,∵∠POG+∠AOM=90°=∠AOM+∠OAM,∴∠POG=∠OAM,∵∠PGO=∠AMO=90°,∴△OAM∽△POG,∴OP=OG=,∴点P3的坐标为;③当AP=AO时,点A在OP4的垂直平分线上,∴点P4的坐标为(0,2).综上可知,点P的坐标为或或或(0,2).。
人教版九年级下第二十六章反比例函数 26.1 反比例函数课时2 反比例函数的图象和性质(word无答案)一、单选题(★★) 1 . 在下图中,反比例函数的图象大致是( )A.B.C.D.(★) 2 . 已知点A(1,-3)关于x轴的对称点A'在反比例函数的图像上,则实数k的值为()A.3B.C.-3D.(★★) 3 . 若反比例函数y=的图象过点(﹣2,1),则其图象所在的象限为()A.第一、三象限B.第一、二象限C.第二、四象限D.第二、三象限(★★) 4 . 已知抛物线 y= x 2+2 x﹣ m﹣1与 x轴没有交点,则函数 y=的大致图象是()A.B.C.D.(★) 5 . 对于反比例函数,当时, y随 x的增大而减小,则 k的取值范围是()A.B.C.D.(★★) 6 . 如图,已知直线y=k 1x(k 1≠0)与反比例函数y= (k 2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)(★★) 7 . 下列关于反比例函数y=- 的说法正确的是()A.y随x的增大而增大B.函数图象过点(2,)C.图象位于第一、第三象限D.x>0时,y随x的增大而增大(★★) 8 . 若,是函数图象上的两点,当时,下列结论正确的是A.B.C.D.二、填空题(★) 9 . 已知反比例函数,当时,y的取值范围为____.三、单选题(★★) 10 . 反比例函数 y=﹣( x<0)如图所示,则矩形 OAPB的面积是()A.3B.﹣3C.D.﹣(★★) 11 . 位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k的值为( )A.4B.2C.1D.-2四、填空题(★★) 12 . 如图,在平面直角坐标系中,菱形 OABC的面积为12,点 B在 y轴上,点 C在反比例函数 y= 的图象上,则 k的值为 ________ .五、单选题(★★) 13 . 已知反比例函数的图象如图所示,则k的值可能是()A.-1B.C.1D.2(★) 14 . 已知点,,在双曲线,则下列关系式正确的是()A .B .C .D .(★) 15 . 在同一直角坐标系中,一次函数y=kx-k 与反比例函数 的图象大致是()A .B .C .D .(★★) 16 . 如图, A 、 B 两点在双曲线 y = 上,分别经过 A 、 B 两点向坐标轴作垂线段,已知 S 阴影=1.7,则 S 1+ S 2等于( )A .4B .4.2C .4.6D .5(★★) 17 . 如图,A ,B 是反比例函数y= 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1六、填空题(★★) 18 . 如图,点A 在双曲线上,点B 在双曲线上,且AB∥x 轴,C 、D 在x轴上,若四边形ABCD为矩形,则它的面积为.七、解答题(★★) 19 . 如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y= (x>0)和y= (x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.(★★) 20 . 如图,一次函数y=kx+b(k≠0)的图象与反比例函数y= (a≠0)的图象在第二象限交于点A(m,2).与x轴交于点C(﹣1,0).过点A作AB⊥x轴于点B,△ABC的面积是3.(1)求一次函数和反比例函数的解析式;(2)若直线AC与y轴交于点D,求△BCD的面积.。
反比例函数的图象和性质【学习目标】1、会用描点法画反比例函数的图象,能结合图象分析并掌握反比例函数的性质2、培养学生的探究、归纳及概括能力。
3、全力以赴,全心投入。
【学习重点】画反比例函数图像,理解并掌握反比例函数的图象和性质。
【学习难点】通过观察、分析,归纳出反比例函数的性质,并能灵活应用【学习过程】一、温故知新1.一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么?其性质有哪些?正比例函数y =kx (k ≠0)呢?2.作函数图像的一般步骤: 、 、 各应注意什么?3.若点(3,6)在反比例函数)0(≠=k xk y 的图象上,反比例函数的解析式 二、探索新知【活动一】问题:画出反比例函数y=x 6与y= -x6的图象(用描点法)(在学案纸上)【活动二】思考:反比例函数xy 6=和x y 6-=的图象有什么共同特征?它们有什么关系?归纳总结反比例函数图像特点和性质三、学以致用:1、xy 20=的图像叫 ,图像位于 象限,在每一象限内,y 随x 的增大而 ;2、函数y=x30-图象在第 象限,在每个象限内,y 随x 的增大而 3、对于函数y=x21,当 x<0时,y 随x 的_____而增大,这部分图象在第 ____象限.4、已知反比例函数)0(≠=k x k y 的图象的一支如图。
(1)判断k 是正数还是负数;(2)求这个反比例函数的解析式;四、反馈检测1、已知反比例函数xk y 2-=的图像位于第一、三象限,则k 的取值范围是( ) A.2>k B.2≥k C. 2≤k D.2<k2、反比例函数xk y 2=(k ≠0)的图象的两个分支分别位于( )象限。
A 、一、二 B 、一、三C 、二、四D 、一、四3、在反比例函数xk y -=1的图像的每一条曲线上,y 随x 的增大而增大,则k 值可以是( )A 、-1B 、0C 、1D 、24、已知反比例函数32)1(--=m x m y 的图象在第二、四象限,则m=5.若()()()321,1,,2,,3y C y B y A ---三点都在 函数xy 1-=的图象上,则321,,y y y 的大小关系是( ) A. 321y y y << B. 321y y y ==C. 231y y y <<D. 321y y y >>6.已知点A ()、B ()是反比例函数xk y =()图象上的两点,若,则有( )A .B .C .D .11x y ,22x y ,0>k 210x x <<210y y <<120y y <<021<<y y 012<<y y。
九年级数学下册26.1《反比例函数》26.1.2《反比例函数的图象和性质》专题训练(无答案)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册26.1《反比例函数》26.1.2《反比例函数的图象和性质》专题训练(无答案)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册 26.1《反比例函数》26.1.2《反比例函数的图象和性质》专题训练(无答案)(新版)新人教版的全部内容。
专题训练—反比例函数的图象与性质一、单项选择题(共11题,共33分)1. 函数是反比例函数,则m的值是( )A.m=±1B.m=1C.m=±D.m=﹣12. 下面四个关系式中,y是x的反比例函数的是( )A.y=B.yx=﹣C.y=5x+6D.=3。
当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A.B.C.D.4。
反比例函数y=和正比例函数y=mx的图象如图.由此可以得到方程=mx的实数根为()A.x=﹣2B.x=1C.x1=2,x2=﹣2D.x1=1,x2=﹣25。
已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3B.4C.5D.66.如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有( )A.4条B.3条C.2条D.1条7。
(2016•长春)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA 于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小8。
26.1.2 反比例函数的图象和性质第1课时反比例函数的图象和性质知能演练提升能力提升1.若反比例函数y=3k-1k的图象位于第二、四象限,则k的取值X围是()A.k>13B.k<13C.k=13D.不存在2.对于反比例函数y=k2k(k≠0),下列说法不正确的是()A.它的图象位于第一、三象限B.点(k,k)在它的图象上C.它的图象关于原点对称D.y随x的增大而增大3.已知反比例函数y=kk在第一象限的图象如图所示,则k的值可能是()A.1B.2C.3D.44.如图,反比例函数y=kk的图象经过点A(-1,-2).则当x>1时,函数值y的取值X围是()A.y>1B.0<y<1C.y>2D.0<y<2(第3题图)(第4题图)5.一个反比例函数具有下列性质:①它的图象经过点(-1,1);②它的图象在第二、四象限内,且在每个象限内,函数值y 随自变量x 的增大而增大,则这个反比例函数的解析式为.6.如图,点A 在双曲线y=5k 上,点B 在双曲线y=8k 上,且AB ∥x 轴,则△OAB 的面积等于. 7.反比例函数y 1=k 1k ,y 2=k 2k 和y 3=k3k 的图象如图所示,则k 1,k 2和k 3的大小关系为.8.如图,点P ,Q 是反比例函数y=k k 图象上的两点,PA ⊥y 轴于点A ,QN ⊥x 轴于点N ,作PM ⊥x 轴于点M ,QB ⊥y 轴于点B ,连接PB ,QM ,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1S 2.(填“>”“<”或“=”)(第7题图)(第8题图)9.两个反比例函数y=k k 和y=1k 在第一象限内的图象如图所示,点P 在y=k k 的图象上,PC ⊥x 轴于点C ,交y=1k 的图象于点A ,PD ⊥y 轴于点D ,交y=1k 的图象于点B ,则当点P 在y=k k 的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是线段PC 的中点时,点B 一定是线段PD 的中点.其中一定正确的是.(把你认为正确结论的序号都填上)★10.如图,在平面直角坐标系中,反比例函数y=k k (x>0)的图象和矩形ABCD 在第一象限内,AD 平行于x 轴,且AB=2,AD=4,点A 的坐标为(2,6).(1)直接写出B ,C ,D 三点的坐标;(2)若将矩形向下平移,使矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求出矩形的平移距离和反比例函数的解析式.创新应用★11.如图,正方形OABC 的面积为4,点O 为坐标原点,点B 在函数y=k k (k<0,x<0)的图象上,点P (m ,n )是函数y=k k (k<0,x<0)的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E ,F.(1)设矩形OEPF 的面积为S 1,判断S 1与点P 的位置是否有关(不必说明理由);(2)从矩形OEPF 的面积中减去其与正方形OABC 重合部分的面积,剩余部分的面积记为S 2,写出S 2关于m 的函数解析式,并标明m 的取值X 围.参考答案能力提升1.B 反比例函数y=3k -1k 的图象位于第二、四象限,则3k-1<0,解得k<13. 2.D3.C ∵2<k<4,∴k 的值可能是3.也可用排除法.4.D 将点A (-1,-2)代入y=k k ,得k=2.∴y=2k .当x=1时,y=2, ∵在第一象限内,y 随x 的增大而减小,∴当x>1时,0<y<2.5.y=-1k6.32延长BA 交y 轴于点C ,∵S △OAC =12×5=52,S △OCB =12×8=4,∴S △OAB =S △OCB -S △OAC =4-52=32.7.k 1<k 2<k 3显然k 1<0,k 2>0,k 3>0,故k 1最小.在y 2与y 3的函数图象上画出横坐标为1时的点,不难发现k 2=1×y 2<1×y 3=k 3,故k 2<k 3.综上可知k 1<k 2<k 3.8.= 设PM 与BQ 相交于点C ,则有S 矩形AOMP =S 矩形BONQ ,∴S 矩形ABCP =S 矩形MNQC ,∴S 1=S 2.9.①②④ S △ODB =12,S △OCA =12,所以结论①成立;S 矩形OCPD =k ,S 四边形OAPB =S 矩形OCPD -S △ODB -S △OCA =k-1,所以结论②成立;当点P 沿着y=k k 的图象向左移动时,PA 变大,PB 变小,所以结论③不成立;当点A 是线段PC 的中点时,PC=2AC ,即k k =2·1k ,得k=2,所以点P 的横坐标是点B 的横坐标的2倍,所以结论④成立. 10.解 (1)B (2,4),C (6,4),D (6,6).(2)如图,矩形ABCD 平移后得到矩形A'B'C'D',设平移距离为a ,则A'(2,6-a ),C'(6,4-a ). 因为点A'、点C'在y=k k 的图象上,所以2(6-a )=6(4-a ),解得a=3,所以点A'(2,3),所以反比例函数的解析式为y=6k .创新应用11.解 (1)S 1与点P 的位置无关.(2)当点P 在点B 上方时,S 2=4+2m (-2<m<0);当点P 在点B 下方时,S 2=4+8k (m<-2).。
专题训练-反比例函数的图象与性质
一、单项选择题(共11题,共33分)
1.函数是反比例函数,则m的值是()A.m=±1
B.m=1
C.m=±
D.m=﹣1
2.下面四个关系式中,y是x的反比例函数的是()
A.y=
B.yx=﹣
C.y=5x+6
D.=
3.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A.
B.
C.
D.
4.反比例函数y=和正比例函数y=mx的图象如图.由此可以得到方程=mx的实数根为()
A.x=﹣2
B.x=1
C.x1=2,x2=﹣2
D.x1=1,x2=﹣2
5.已知反比例函数y=,当1<x<3时,y的最小整数值是()
A.3
B.4
C.5
D.6
6.如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()
A.4条
B.3条
C.2条
D.1条
7.(2016•长春)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x >0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()
A.减小
B.增大
C.先减小后增大
D.先增大后减小
8.(2016•十堰)如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是
AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()
A.25
B.18
C.9
D.9
9.(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()
A.y1<y3<y2
B.y1<y2<y3
C.y3<y2<y1
D.y2<y1<y3
10.(2016•抚顺县一模)一个反比例函数在第二象限的图象如图所示,点A是图象上任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,求这个反比例函数的解析式是()
A.y=﹣
B.y=
C.y=
D.y=﹣
11.(2016•宁夏)正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()
A.x<﹣2或x>2
B.x<﹣2或0<x<2
C.﹣2<x<0或0<x<2
D.﹣2<x<0或x>2
二、填空题(共1题,共3分)
1.(2016•宁波)如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x >0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.。