中学数学中的分形几何
- 格式:docx
- 大小:19.06 KB
- 文档页数:2
分形几何学的基本概念与应用分形几何学是一门研究复杂、自相似结构的几何学科。
它的研究对象包括自然界中的许多现象和图形,如云朵、山脉、植物的分枝结构等。
分形几何学的出现和发展,为我们认识自然界的复杂性提供了新的视角。
本文将介绍分形几何学的基本概念,并重点探讨其在科学研究和实际应用中的价值。
一、分形几何学的基本概念分形几何学最核心的概念是“分形”。
分形是指具有自相似性质或统计尺度不变性的几何图形或物体。
它具备以下特点:1. 自相似性:分形的一部分与整体的形状非常相似,即具有自我重复的特性。
无论从整体还是局部的角度观察,其形状和结构都保持不变。
2. 统计尺度不变性:无论在什么尺度上观察分形,都能发现相似的图形和结构。
分形具有无标度的特性,不受空间尺度的限制。
3. 复杂性和碎形维度:分形体现了自然界中复杂系统的普遍性和多样性。
通过碎形维度的衡量,我们可以描述分形的几何形态。
二、分形几何学的应用领域分形几何学的研究成果,对科学研究和实际应用有着广泛的影响和应用价值。
1. 自然科学领域在物理学、化学、天文学等自然科学领域,分形几何学的应用已经取得了许多重要的突破。
例如,在物质表面的研究中,分形维度可以帮助我们更好地理解物质的分布和表面形态;在流体力学领域,分形几何学可以用来描述复杂流体的运动和传输现象。
2. 生命科学领域分形几何学在生物学、医学和生态学等领域的应用也日益增多。
在生物进化研究中,利用分形模型可以揭示物种的分支进化和形态演化;在生物医学图像处理领域,分形分析可以用于肿瘤和病变的诊断。
3. 技术工程领域在工程学、计算机科学和通信领域,分形几何学为我们提供了一些创新的解决方案。
例如,在图像压缩和数据传输中,可以利用分形编码来提高传输效率和图像质量;在通信网络设计中,采用分形结构可以提高网络的可靠性和稳定性。
4. 艺术与设计领域分形几何学的美学价值也不可忽视。
许多艺术家和设计师利用分形几何学的原理和方法创作出具有独特美感的艺术作品和设计。
分形原理及其应用
分形原理,也称为分形几何,是一种描述自相似性和复杂性的数学理论。
它指的是在自然界和人造物中,许多物体和现象都具有在不同尺度上重复出现的特征。
分形几何试图通过数学模型来解释这种自相似性,并提供了一种理解和描述复杂系统的方法。
分形原理的应用非常广泛。
以下是几个常见的应用领域:
1. 自然科学:许多自然界中的物体和现象都具有分形特征,如云朵、植物的分枝结构、山脉的形状等。
通过分形原理,科学家可以更好地理解和描述这些自然现象,并研究它们背后的原理。
2. 数据压缩:分形压缩是一种常用的图像和视频压缩方法。
它基于分形原理,将复杂的图像分解成一系列相似的子图像,并利用这些子图像的变换来重建原始图像。
分形压缩能够在保持图像质量的同时实现较高的压缩比。
3. 金融市场:金融市场的价格走势也常常具有分形特征。
通过分形分析,可以识别出市场中的重要转折点和趋势,为投资决策提供参考。
4. 计算机图形学:分形几何提供了一种生成逼真自然风景的方法。
通过分形算法,可以模拟出山脉、云彩等自然对象的形态和纹理,用于电影特效、游戏开发等领域。
5. 网络优化:分形原理可以应用于网络布线、数据传输等领域的优化。
比如,通过分析网络的分形结构,可以设计出更高效的布线方案,提高数据传输速度和可靠性。
以上只是一些分形原理应用的例子,实际上分形几何在科学、艺术、工程等各个领域都有广泛的应用,并且不断地拓展出新的应用领域。
数学的分形几何分形几何是一门独特而迷人的数学领域,它研究的是自相似的结构和形态。
分形几何的概念由波蒂亚·曼德博(Benoit Mandelbrot)在1975年首次提出,之后得到了广泛应用和发展。
本文将介绍分形几何的基本概念和应用领域,旨在帮助读者更好地了解这一令人着迷的学科。
一、分形几何的基本概念分形(fractal)是一种非几何形状,具有自相似的特点。
简单来说,分形就是在各个尺度上都具有相似性的图形。
与传统的几何图形相比,分形图形更加复杂、细致,其形状常常无法用传统的几何方法进行描述。
分形几何的基本概念包括分形维度、分形特征和分形生成等。
1. 分形维度分形维度是分形几何中的重要概念之一。
传统的几何图形维度一般为整数,如直线的维度为1,平面的维度为2,而分形图形的维度可以是非整数。
分形维度能够描述分形的复杂程度和空间占据情况,是衡量分形图形特性的重要指标。
2. 分形特征分形几何的分形特征是指分形图形所具有的一些独特性质。
其中最著名的就是自相似性,即分形图形在不同尺度上具有相似的形态和结构。
此外,分形图形还具有无限的细节,无论放大多少倍都能够找到相似的结构。
3. 分形生成分形图形的生成是分形几何中的关键问题之一。
分形图形可以通过递归、迭代等方式进行生成,比如著名的分形集合——曼德博集合就是通过迭代运算得到的。
分形生成的过程常常需要计算机的辅助,对于不同的分形形状,生成算法也有所不同。
二、分形几何的应用领域分形几何的独特性质使其在许多领域中得到广泛应用。
以下列举了几个典型的应用领域。
1. 自然科学分形几何在自然科学中有着广泛的应用。
例如,分形理论可以用来研究自然界中的地形、云雾形态等。
通过分形几何的方法,我们能够更好地理解和描述自然界的复杂性,揭示出隐藏在表面之下的规律。
2. 经济金融分形几何在经济金融领域也有着重要的应用。
金融市场的价格走势往往具有分形特征,通过分形几何的方法可以更好地预测未来的市场走势和波动。
中学数学中的分形几何广西桂林市恭城瑶族自治县栗木中学数学组何桂荣(542502)桂林市第十八中学数学组蒋雪祥(541004)内容提要:本文论述了规则图形的容量维,对容量维的计算作了说明,同时还对4个较为著名的与中学有关的,或是可以用于启发学生思维的分形问题进行了分析。
关键字:容量维 Sierpinski三角毯 Koch曲线Koch岛 Sierpinski-Menger海绵1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。
分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。
由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。
数千年来,几何学的发展从来没有二十世纪诞生的分形几何那样对物理学和数学发展产生如此巨大的影响。
分形几何对我们大多数人来说是陌生的,因为它看起来离我们太远。
其实分形就在我们身边,在近年的竞赛与高考中,分形的影子已经出现。
中学数学中的分形与数学研究中的分形所看的角度与研究目标都不同,可以说是羊头狗肉之分吧。
笔者试对此进行一点探讨,以抛砖引玉尔。
一、规则图形的容量维为了描述混沌学中奇怪吸引子的这种奇特结构,曼德尔布罗特(Mandelbrot)最早(1975年)引进了分形(既其维数是非整数的对象)的概念。
维数是描述客体的重要几何参量。
也可以说,维数是为了确定几何对象中一个点的位置所需的独立坐标数目。
已经知道:点是零维,线是一维,平面是二维,而立方体是三维的。
这种维数称为拓扑维,用字母"d"表示。
维数也可以这样来考虑:比如,取一线段,将该线段的长度乘2,就得到另一个线段,长度为n=2个原线段长度。
一正方形,每边长×2,得到一个大的正方形,它等于4个原来大小的正方形。
一立方体,每边长×2,得到一个大的立方体,它等于8个原来大小的立方体。
几何里的艺术家——分形几何1. 引言1.1 什么是分形几何分形几何是一种数学理论,包括了自相似性、不规则性和复杂性等特点,它能够描述自然界和人造物体中所存在的复杂形态。
分形几何可以将复杂的形状分解为简单的结构单元,从而更好地解释和描述复杂系统的特征。
分形几何的研究对象可以是自然界中的云雾、山脉、植物等,也可以是人类创造的艺术作品、城市景观等。
通过分形几何的研究,人们能够更深入地理解形态的形成规律和演化过程,为科学研究和艺术创作提供了新的视角。
分形几何的特点在于其不规则性和自相似性。
不规则性指的是形状的复杂度和不规则程度,而自相似性则是指在不同尺度上体现相似性。
分形几何的特点使得人们可以用简单的数学模型来描述复杂的自然现象,从而更好地理解事物的本质及其演变规律。
分形几何是一种独特的数学理论,它不仅在科学领域有着广泛的应用,还在艺术领域中扮演着重要的角色。
通过分形几何的研究和应用,人们能够更好地理解世界的复杂性和多样性,从而为人类的进步和发展提供新的思路和方向。
1.2 分形几何的应用分形几何在应用领域有着广泛的用途,其独特的性质和特点使其在科学、工程、医学等领域发挥着重要作用。
分形几何在图像压缩和图像处理中有着重要的应用。
通过分形图像压缩技术,可以大大减少图像传输和存储时所需的数据量,从而提高图像的传输速度和保存效率。
分形图像处理技术还可以用于图像的放大和缩小,不会出现传统方法中所产生的模糊和失真现象。
在地理信息系统中,分形几何可以用来模拟地形特征,以实现更加逼真的地形图像。
分形几何在地震预测、金融市场分析、气象预测等领域也有着广泛的应用。
分形几何的应用领域十分广泛,不断地为各个领域带来新的发展和突破。
1.3 分形几何在艺术中的作用分形几何在艺术中的作用主要体现在其能够呈现出独特而美丽的几何形状和图案。
分形几何的特点使得它能够生成各种复杂、丰富并且具有自相似性的图像。
这种自相似性使得分形几何产生的图案看起来既具有整体性又具有细节性,给人以视觉上的愉悦和惊叹。
分形几何有许多典型的范例,以下是其中一些:
1. 谢尔宾斯基三角形:这是一种自相似的分形图形,通过不断将三角形划分为更小的三角形,最终得到具有无限复杂性的图形。
2. 谢尔宾斯基垫片:这是由谢尔宾斯基三角形进一步演化而来的一种分形图形,由三角形内部的三角形构成,整体呈现出一个自相似的模式。
3. 科赫曲线:又称为科赫雪花或科赫蛇,是一种分形曲线。
通过不断将一段线段分割成等长的两段,然后将每一段线段的中间部分弯曲成等边三角形,最终得到具有无限复杂性的图形。
4. 曼德布罗集:这是由数学家本华·曼德布罗提出的分形图形,通过不断将单位正方形进行切割和填充,最终得到的图形是一个具有无限复杂性的集合。
5. 皮亚诺曲线:这是一种由意大利数学家皮亚诺提出的分形图形,它是一种在平面上的连续曲线,通过不断将线段进行延长和弯曲,最终得到的图形具有无限复杂性和自相似性。
这些只是分形几何中的一些典型范例,实际上还有许多其他的分形图形和结构,如朱利亚集、费根堡姆曲线等。
这些分形图形的特点是具有无限的复杂性和自相似性,并且在许多领域中得到了应用。
自仿射分形,自反演分形和自平方分形自仿射分形、自反演分形和自平方分形分形(Fractal)是指在任意缩放下都能保持自相似性的几何形状。
在数学上,分形是一种具有非整数维度的特殊几何体。
自仿射分形、自反演分形和自平方分形是三种常见的分形类型。
本文将对这三种分形进行介绍和探讨。
一、自仿射分形自仿射分形是指通过平移、旋转、缩放等仿射变换产生的分形。
其中最经典的自仿射分形是科赫曲线(Koch Curve)。
科赫曲线是通过迭代地将线段分成三等分,并以等边三角形代替中间的一段线段而生成的。
科赫曲线具有无穷细节和边长无限增长的特点,即使只是一条有限长度的线段,也能产生复杂的形态。
自仿射分形还包括谢尔宾斯基三角形、棉花糖曲线等。
二、自反演分形自反演分形是指通过对自身进行反演操作而生成的分形。
最著名的自反演分形是谢尔宾斯基地毯(Sierpinski Carpet)。
谢尔宾斯基地毯是通过在一个正方形中去除中央的正方形并以余下部分的8个缩小副本填充而生成的。
经过无限次反演操作后,谢尔宾斯基地毯逐渐呈现出结构复杂、形状不规则的特点。
此外,自反演分形还包括谢尔宾斯基三角形、迭代函数系统等。
三、自平方分形自平方分形是指通过自身的平方操作而生成的分形。
其中最典型的自平方分形是曼德勃罗集(Mandelbrot Set)。
曼德勃罗集是以数学家本尼迪克特·曼德勃罗(Benoit Mandelbrot)命名的,它是复平面上一组逃逸时间无限的点的集合。
曼德勃罗集的图像呈现出规则的几何结构和复杂的边界特征,具有无限细节和自相似性。
此外,自平方分形还包括朱利亚集、维诺亚图等。
总结:自仿射分形、自反演分形和自平方分形是分形中的三种重要类型。
它们分别以自我仿射、自我反演和自我平方的方式生成具有非整数维度的几何形状。
这些分形呈现出丰富的细节和复杂的结构,具有独特的美学价值和数学属性。
通过研究分形,我们不仅可以欣赏到自然界和数学世界中的奇妙形态,还可以深入探索细节世界中的规律和普遍性。
分形几何学简介分形几何学是一门以不规则几何形态为研究对象的几何学。
相对于传统几何学的研究对象为整数维数,如,零维的点、一维的线、二维的面、三维的立体乃至四维的时空。
分形几何学的研究对象为非负实数维数,如0.63、1.58、2.72、log2/log3(参见康托尔集)。
因为它的研究对象普遍存在于自然界中,因此分形几何学又被称为“大自然的几何学”。
一个数学意义上分形的分解成就是基于一个不断运算的方程式,即为一种基于递回的反馈系统。
分形存有几种类型,可以分别依据整体表现出来的准确自相似性、半自相似性和统计数据自相似性去定义。
虽然分形就是一个数学结构,它们同样可以在自然界中被找出,这使它们被划归艺术作品的范畴。
分形在医学、土力学、地震学和技术分析中都存有应用领域。
由来客观自然界中许多事物,具备自相近的“层次”结构,在理想情况下,甚分形几何学分形几何学至具有无穷层次。
适当的放大或缩小事物的几何尺寸,整个结构并不改变。
不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。
客观事物都存有它自己的特征尺度,必须用恰当的尺度回去测量。
用尺子去测量万里长城,疑太短,而用以测量大肠杆菌,又疑太长。
除了的事物没特征尺度,就必须同时考量从小到大的许许多多尺度(或者叫做标度),这就是“并无标度性”的问题。
湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。
流体宏观运动的能量,经过大、中、小、微等许多多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态。
要描述湍流现象就需要借助流体的的“无标度性”,而湍流中高漩涡区域,就需要用到分形几何学。
什么是分形几何?1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。
分形(Fractal)一词,是曼德勃罗创造出来的,其愿意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。
由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。
分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。
分形几何与传统几何相比有什么特点⑴从整体上看,分形几何图形是处处不规则的。
例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
⑵在不同尺度上,图形的规则性又是相同的。
上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。
当然,也有一些分形几何图形,它们并不完全是自相似的。
其中一些是用来描述一般随即现象的,还有一些是用来描述混沌和非线性系统的。
什么是分维?在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。
也可以梢加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。
分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。
为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。
分维的概念我们可以从两方面建立起来:一方面,我们首先画一个线段、正方形和立方体,它们的边长都是1。
将它们的边长二等分,此时,原图的线度缩小为原来的1/2,而将原图等分为若干个相似的图形。
其线段、正方形、立方体分别被等分为2^1、2^2和2^3个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。
一般说来,如果某图形是由把原图缩小为1/a的相似的b个图形所组成,有:a^D=b, D=logb/loga的关系成立,则指数D称为相似性维数,D可以是整数,也可以是分数。
分形几何学的原理及应用分形几何学是一种不断重复自己的几何形状,被广泛应用于自然科学、工程、计算机科学等领域。
它不仅仅是数学学科,更是对事物的抽象和描述,可以解释自然界中那些看似无序的形状和现象。
本文将主要介绍分形几何学的原理和应用。
一、分形几何学的原理分形几何学最重要的原理是不断重复。
我们知道,自然界里的一些事物,比如云彩、海岸线、树枝等都呈现出相似模式不断重复的形状,这样的形状可以用分形几何学来描述。
在数学上,分形被定义为那些能通过改变尺度来自我复制的形状。
这种形状的特殊之处在于,无论怎样放大或缩小,它们都会保持相似性,这就是所谓的“自相似性”。
此外,分形几何学还有一个重要的原理是分形维数。
一般来说,维数是我们用来描述空间的一个概念,例如,在传统几何学中,一个点的维度为0,一条线段的维度为1,一个平面的维度为2。
但是在分形几何学中,物体的维度既可以是非整数,也可以是分数,这种维度被称为分形维数。
分形维数的计算方法不同于传统的几何形状,需要更加灵活和创新的思想方式。
二、分形几何学的应用1. 自然科学分形几何学在自然科学中的应用是非常广泛的。
例如,地理学界的海岸线研究常常使用分形维数来描述。
因为海岸线具有自我相似性,以前使用传统的测量方法可以得出各种不同的结果。
但是使用分形维数能够得到更加准确和稳定的结果。
另外,在生物学中,分形几何学也得到了很好的应用。
例如,人体内部的支气管和血管系统都具有分形结构。
分形几何学可以帮助研究这种结构的特点,这在很多医学问题中都是非常重要的。
2. 工程学分形几何学在工程学中的应用也非常广泛。
例如,结构工程中的分野纹理研究就需要使用分形维数,来帮助设计出更加可靠和安全的结构。
再比如,在城市规划方面,使用分形几何学来研究交通网络的结构和城市的空间分布规律。
这样可以优化城市的规划和设计,更好地满足人们的需求。
3. 计算机科学分形几何学在计算机科学领域也有着广泛的应用。
比如,计算机图形学中,分形几何学可以被用来生成虚拟现实世界中的山川湖海等自然景观,让人们可以更真实地感受到虚拟世界的美妙。
高一数学中的分形几何初步是什么在高一数学的学习中,我们会接触到一个新奇而有趣的概念——分形几何。
这一概念仿佛为我们打开了一扇通往奇妙数学世界的大门,让我们能够以全新的视角去理解和探索周围的事物。
那么,究竟什么是分形几何呢?简单来说,分形几何是研究具有自相似性的不规则图形和结构的数学分支。
想象一下,你在大自然中看到一棵大树。
如果仔细观察它的树枝,你会发现树枝的形状和结构与整棵树有一定的相似性。
大的树枝上分出小的树枝,小的树枝再分出更小的树枝,这种相似性不断重复,就是一种自相似的特征。
再比如,一片雪花的形状,它的每一个分支也都和整体有着相似的结构。
分形几何的特点之一就是其复杂性和不规则性。
传统的几何图形,如圆形、三角形、正方形等,都具有简单、规则的形状和明确的数学定义。
但分形几何所研究的对象往往没有平滑的线条和整齐的形状,而是充满了曲折和细节。
这种不规则性使得分形几何在描述和理解自然界中的许多现象时具有独特的优势。
比如,山脉的轮廓、河流的走向、云朵的形状等等,这些自然现象都很难用传统的几何图形来准确描绘,但分形几何却能够很好地捕捉到它们的特征。
分形几何中的一个重要概念是“分形维数”。
在我们熟悉的欧几里得几何中,维度是整数,比如点是零维,线是一维,面是二维,体是三维。
但在分形几何中,维度可以是分数。
举个例子,科赫雪花就是一个典型的分形图形。
我们从一个等边三角形开始,然后在每条边的中间三分之一处向外凸出一个等边三角形,不断重复这个过程。
通过计算可以发现,它的维数约为 126 维。
这个分数维数反映了分形图形的复杂程度和填充空间的能力。
分形几何的应用非常广泛。
在计算机图形学中,分形可以用来生成逼真的自然景观,如山脉、树木等。
在物理学中,分形有助于研究混沌现象和复杂的物理系统。
在生物学中,分形可以帮助我们理解生物结构的形成和发展。
对于高一的同学来说,学习分形几何初步不仅仅是为了掌握一个新的数学概念,更重要的是培养一种新的思维方式。
分形几何的特征及其维数
分形几何,这一诞生于二十世纪的数学领域瑰宝,以其独特的美学与科学魅力在2024年的今天依然引人入胜。
它的核心特征可以概括为以下几点:
1. 自相似性:这是分形最直观也最具代表性的特点,即不论是在整体还是局部,乃至无限次放大的微小部分,都能发现与整体形态相似或等比例缩小的结构。
比如著名的科赫雪花和谢尔宾斯基三角形。
2. 不规则性和复杂性:传统几何形状如圆形、方形等具有明显的边界和规则性,而分形则呈现出无规律、不规则的复杂结构,难以用传统的欧几里得几何来描述。
3. 维数的非整数性:分形维数是衡量分形结构复杂程度的一个重要概念,它突破了经典欧氏空间中一维、二维、三维等整数维的界限。
例如,科赫曲线虽然看似占据了一维空间,但实际上其分形维数大于1但小于2,这体现了它在有限空间内展现出了超越常理解的空间复杂度。
分形维数的计算通常采用盒计数法,通过将分形划分为多个大小相等的小区域(盒子),统计不同尺度下被分形所覆盖的盒子数量随尺度改变的关系,从而得到描述分形复杂度的维数值。
总之,在我们所处的2024年,分形几何已经广泛应用于艺术、自然科学、社会科学等多个领域,并以其深邃的内涵和无穷的变化,持续启发着人们对自然界及宇宙奥秘的认识探索。
数学中的分形几何学研究数学是一门广泛而深奥的学科,其中一个引人注目的领域是分形几何学。
分形几何学研究的是那些具有自相似性质的几何对象。
这些对象通常具有复杂的形态,不同于我们熟悉的欧几里得几何中的简单形状。
本文将介绍分形几何学的基本概念、发展历程以及其在科学和艺术领域中的应用。
一、分形几何学的基本概念在数学中,分形是指具有自相似性质的几何对象。
简单来说,自相似性是指一个对象的局部部分与整体具有相似的结构。
这种自我重复的特点使得分形对象在不同的尺度上都呈现出相似的形状,无论是放大还是缩小都能看到相似的结构。
分形几何学的概念由波兰数学家Mandelbrot于20世纪70年代提出。
他提出了分形维度的概念,用来描述分形对象的复杂程度。
与传统的欧几里得几何中的整数维度不同,分形维度可以是小数或甚至是复数。
这种非整数维度反映了分形对象的复杂性和内在的奇特性。
二、分形几何学的发展历程分形几何学的发展历程可以追溯到20世纪初。
法国数学家Julia和Fatou在复变函数论中研究了分形形态的变化规律。
在20世纪60年代,英国数学家Mandelbrot通过计算机模拟实验研究了分形对象的特性,并提出了“分形”这一概念。
在之后的几十年里,分形几何学得到了广泛的关注和研究。
人们发现分形几何学的理论可以应用于自然科学、社会科学、经济学以及艺术领域中。
世界各地的研究者都对分形几何学的应用进行了深入的探索和研究。
三、分形几何学在科学领域的应用分形几何学在科学领域中有着广泛的应用,特别是在自然科学中。
例如,分形结构在物理学中的应用包括描述分形雪花的形态、研究分形线圈的导电性以及模拟分形粗糙表面的特性。
在地质学中,分形几何学被用于研究岩石的纹理和断层的分布规律。
生物学中,分形理论被应用于研究动脉树和神经网络的分形结构。
分形几何学也在计算机科学领域中得到了广泛的应用。
例如,分形算法可以用于图像压缩和图像合成,同时也在计算机图形学中被用于生成逼真的自然景观和人物造型。
数学中的分形几何学概念分形几何学是数学中的一个重要分支,它研究的是自相似和自适应的结构以及其数学性质。
分形在描述自然界中的很多现象和物体时具有很高的适用性,如云朵、山脉、河流、植物的分型等。
这些物体在不同的尺度上都具有相似的结构,即使放大或者缩小,仍然可以看到相似的形状和图案。
分形几何学为我们提供了一种全新的视角来理解和研究这些复杂的自然现象。
首先,让我们来了解一下分形这个词是如何产生的。
分形一词最早由数学家Benoit Mandelbrot在1975年引入。
他将拉丁语中的“fractus”(意为“碎片”或“破裂”)与希腊语中的“fraktos”(意为“不规则”)相结合,形成了“fractal”一词。
分形表达了物体的不规则性、复杂性和多重性,与传统几何学中的简单和规则的形状相区别。
分形几何学的一个重要概念是自相似性。
自相似是指一个物体的一部分与整体相似,即无论放大还是缩小,都能够看到相同的结构和形状。
自相似性是分形的基本特征,它使得分形能够在不同尺度上呈现出相似的图案和形态。
例如,科赫曲线是一个经典的分形图形,它由一个边上减去中间三分之一的小边形成。
无论是整个科赫曲线还是它的一部分,都可以看到相似的形态,这就是自相似的体现。
自适应性是分形几何学的另一个重要概念。
自适应性是指物体的结构和形状可以根据环境和条件的改变而发生变化。
分形物体能够根据自身的规则和指导,适应不同的环境和条件,从而形成不同的形态和结构。
例如,植物的分型是分形的一种具体表现,不同的植物在生长过程中会适应不同的光照、水分和风向等因素,从而形成不同的分型。
这种自适应性使得植物具有更好的适应能力和生存能力。
除了自相似性和自适应性,分形几何学还有其他一些重要的概念和特性,如分形维度和分形参数。
分形维度是描述分形物体复杂程度的一个指标,它比传统几何学中的整数维度更加精确和准确。
传统的几何图形如点、线和面的维度分别为0、1和2维,而分形几何图形的维度可以是分数或者是介于整数维度之间的数值。
几何里的艺术家——分形几何几何不仅仅是数学中的一个概念,它也是艺术中的一种灵感源泉。
而分形几何则将几何之美发挥到了极致,成为了一种兼具科学和艺术特质的美学形式。
在分形几何的世界里,数学的精密和艺术的想象交织在一起,勾勒出了独特的美丽景观。
本文将带领读者一起探索几何里的艺术家——分形几何。
1. 分形几何的起源分形几何一词最早由法国数学家贝诺瓦·曼德博特在1975年提出。
分形一词源于拉丁文“fractus”,意为碎片、断裂。
在数学上,分形是指一种具有自相似性的几何形态,即整体的部分在不同尺度上都与整体类似。
这种自相似性使得分形几何成为了一种富有美感和艺术感的数学形式。
分形几何得到了诸多科学和艺术领域的关注,成为了一种跨学科的研究领域。
2. 分形几何和艺术在艺术领域,分形几何为艺术家们带来了无限的灵感。
通过计算机技术和数学算法,艺术家们可以创造出种种奇妙的分形图像,这些图像既具有科学的精密性,又富有艺术的想象力。
分形艺术作品常常展现出几何的美感和图案的丰富多样性,在细节的赏析上更是令人叹为观止。
分形艺术作品已经成为了一种独特的艺术风格,吸引了众多艺术家和观众的关注。
3. 分形几何的应用除了在艺术领域中发挥重要作用之外,分形几何在科学领域中也有着广泛的应用。
在物理、生物、地质等领域,分形几何被用来研究复杂系统的形态和特性。
分形几何的自相似性和分形维度等特性,为科学家们提供了一种独特的研究方法,帮助他们理解和解释自然界中的复杂现象。
分形几何的应用范围正在不断拓展,有望成为解决复杂问题的重要工具。
4. 分形几何与人类文化分形几何不仅仅是一种数学形式,它还深刻地影响着人类文化的发展。
在建筑、绘画、音乐等领域,分形几何都留下了深远的痕迹。
建筑设计师们常常运用分形几何的原理来设计出富有美感和结构稳定性的建筑物;绘画艺术家们则通过分形几何的图案来展现出作品的纷繁多样;音乐创作家们也借助分形几何的节奏和和谐结构来创作富有艺术感的音乐作品。
中学数学中的分形几何
广西桂林市恭城瑶族自治县栗木中学数学组何桂荣(542502)
桂林市第十八中学数学组蒋雪祥(541004)
内容提要:本文论述了规则图形的容量维,对容量维的计算作了说明,同时还对4个较为著名的与中学有关的,或是可以用于启发学生思维的分形问题进行了分析。
关键字:容量维Sierpinski三角毯Koch曲线
Koch岛Sierpinski-Menger海绵
1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。
分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。
由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。
数千年来,几何学的发展从来没有二十世纪诞生的分形几何那样对物理学和数学发展产生如此巨大的影响。
分形几何对我们大多数人来说是陌生的,因为它看起来离我们太远。
其实分形就在我们身边,在近年的竞赛与高考中,分形的影子已经出现。
中学数学中的分形与数学研究中的分形所看的角度与研究目标都不同,可以说是羊头狗肉之分吧。
笔者试对此进行一点探讨,以抛砖引玉尔。
一、规则图形的容量维
为了描述混沌学中奇怪吸引子的这种奇特结构,曼德尔布罗特(Mandelbrot)最早(1975年)引进了分形(既其维数是非整数的对象)的概念。
维数是描述客体的重要几何参量。
也可以说,维数是为了确定几何对象中一个点的位置所需的独立坐标数目。
已经知道:点是零维,线是一维,平面是二维,而立方体是三维的。
这种维数称为拓扑维,用字母"d"表示。
维数也可以这样来考虑:比如,取一线段,将该线段的长度乘2,就得到另一个线段,长度为n=2个原线段长度。
一正方形,每边长×2,得到一个大的正方形,它等于4个原来大小的正方形。
一立方体,每边长×2,得到一个大的立方体,它等于8个原来大小的立方体。
由此可以推得,一个d维的几何对象,它的每一个独立方向都增长L倍,结果得到N个原来的对象,这三者的关系为,两边取自然对数,得维数。
在本例的正方体中,如果是L=2,则必有N=8,于是就有,即立方体是三维的。
将上式的定义加以推广,就得到d不必一定是整数,它可以是分数,我们就把这样推广定义的维数称为分维(fractal),用字母"" 表示。
对于规则的几何对象,可以使用统一的长度变换倍数L。
而对于不规整的复杂体,如海岸线的长度,总长度与测量单位有关,为了得到精确的测量,不是把尺寸放大L倍,而是测量单位缩小为原来的ε倍,L=1/ε,测量长度次数N随ε减小而增大,记为N(ε),这时分维定义为:。
上式定义的分维称为容量维,又称为柯尔莫哥洛夫(A.N.Kolmogorov)容量维。
可以证明,拓扑维d和分维满足如下关系:d≤式中取等号是对普通规则几何对象而言的。
容量维为非整数的典型的例子是康托集合。
如图示,考虑一闭合线段[0,1],将其分成三等分,舍弃中段,剩下的两段
再分别三等分和舍弃中段,如此继续下去,最后剩下的点的总体就是康托集合。
它是一种处处稀疏的对象(自相似结构),其拓扑维d=0,现在来求它的分维。
当ε=1/3,N=2;当ε
=1/9,N=4;...亦即当时,N=。
于是可得康托集合的容量维为由此可见康托集合满足关系d ≤D。
奇怪吸引子的维数从一个侧面反映了说明此吸引子所必须的信息量,它是该系统中最重要和最主要的信息,对它的细致研究将有利于我们抓住问题的主要方面,更根本地分析和认识问题。
二、中学数学分形问题与分形几何学问题的例子
例1、将一个三角形的三边中点连结,挖去所得的小三角形;再将剩下的图形的各边的中点
连结,各得一个三角形,挖去所得三角形;如此继续下去,第七次总共可得多少个三角形(例如第二次挖去后,总共有13个三角形)?
第一次(4个)第二次(13个)第三次(40个)
这个问题就是分形几何学中所说的Sierpinski三角毯,在我们竞赛中是一个数列问题,而在分形几何中,它是一个规则的分形。
其中白色的三角形共有(n为第n次挖取)。
当然在分形几何中,所研究的不是三角形的个数,而是利用下述公式从测度的角度把规则图形的维度D确定为。
这里的是测量单元的尺寸,是测度得到的规则图形的测量单元数。
本例中=,=于是得到此分形图的容量维为
例2、如图,挖去线段中间的后,加上等边三角形的二边,形成四段等长线段组成的折线,如此无限地进行下去,形成处处连续、但处处不可微的Koch曲线。
在数学竞赛中,本问题是要求折线的条数。
第n次变换后有条。
但在分形几何中,用上述的公式可以计算此分形图的容量维为
例3、如图,这是著名的n级三分Koch岛,在我们的问题中,一是可能问及的问题是,每次三分后,边长如何变化;二是当其进行无限次等分后,其面积是多少。
前者是数列通项问题,后者是数列与极限问题。
在分形几何中,其容量维仍为。
例4、正方体27等分(沿三条棱三等分)成27个小正方体,挖去中心和6个面中心位置上总共6个小正方体,留下20个小正方体,如此无限进行,试求当进行到第n次时,有多少个小正方体。
其容量维为多大?
此为分形几何中著名的Sierpinski-Menger海绵,其中正方体有个,其容量维为
上述几个例子说明了分形几何已经成为中学数学的一个问题源。
这只是分形几何中与中学学习中最能让我们理解的几个问题,还有许多问题需要我们许多同行去研究挖掘。
不难看出,这些问题还只是处于其最常见的变形为数列或几何问题,其基本数学思想还没有进入中学。
某些地区已经将分形几何作为中学生学习内容,可以预见,分形几何不仅在内容上走进中学,其根本的思想也将在不久的未来进入中学课堂。
学生经常问数列的一些问题是如何来的,一些立体几何问题为什么那么看起来无聊而又一再考试,这些都是应当看到和说明的。
教师应当了解一点分形几何,从而拓宽自己的数学问题源,让自己的知识更加丰富,通过这些有趣的知识调动学生的学习积极性、激发学生的求知欲,这无疑是一个很好的选择。
教师为学习分形几何可以参考的书有许多,笔者所阅读的书列于本文之后的参考资料。
参考资料:Thomas L.Pirnot 著Mathematics All Around 机械工业出版社,2003年1月第1版
孙霞等编著分形原理及其应用中国科技大学出版社,2003年10月第1版。